第十章数学模型常用例子
简单数学建模应用例子
最后由于g(0)f(0)=0 ,即g(0)= f(0)=0.
建模实例
评注:这个模型的巧妙之处在于用一元变量
表示椅子的位置,用 的两个函数表示椅子的 四脚与地面的距离,利用正方形的中心对称及 旋转900并不是本质的,大家可以考虑四脚呈 长方形的情形(作业)
x (t t) x (t) r(tx ) t
建模实例
于是x(t)满足如下方程:
dx rx dt x ( 0 ) x 0
易知其解为 x(t) x0ert
(2) (3)
建模实例
上式表明了人口增长的指数规律,此时将t离 散化,并认为r较小,则可得(1)式,即(1) 为指数增长模型的一种离散形式的近似表示。 人们发现,在地广人稀的加拿大领土上,法国 移民后代的人口比较符合指数增长模型,而同 一血统的法国本土居民人口的增长却远低于这 个模型。
建模实例
在xoy坐标系上画出如图所示的方格,方格点 上的坐标同时也表示状态s = ( x , y ). 允许状 态集是沿方格 线移动1或2格,k为奇数时向左、 下方移动,k为偶数
时向右、上方移动。 要确定一系列的dk使 由s1=(3,3)经过那些 点最终移至原点(0, 0),左图中给出了 一种决策方案,最终 有s12=(0,0).
建模实例
安全渡河条件下的状态集称为允许状态集合, 记作S,不难写出
S={(x,y)|x=0, y=0, 1, 2, 3; x=y=1,2} - (1)
记第k次渡船上的商人数为uk ,随从数为vk ,将 二维向量dk = (uk,vk)定义为决策,允许决集合 记作D,由小船的容量可知
D={(u,v)| u + v = 1 , 2 }-
离散数学课件第十章 几种图的介绍
前言
在图论的历史中,还有一个最著名的问题——四色猜想。这个猜想说 ,在一个平面或球面上的任何地图能够只用四种颜色来着色,使得没 有两个相邻的国家有相同的颜色。每个国家必须由一个单连通域构成 ,而两个国家相邻是指它们有一段公共的边界,而不仅仅只有一个公 共点。四色猜想有一段有趣的历史。每个地图可以导出一个图,其中 国家都是点,当相应的两个国家相邻时这两个点用一条线来连接。所 以四色猜想是图论中的一个问题。它对图的着色理论、平面图理论、 代数拓扑图论等分支的发展起到推动作用。
10.2 哈密尔顿图
定理10.7 设图 G是具有n(≥3)个结点的无向简单图,如果 G中每一 对结点度数之和大于等于n-1,则在 G 中存在一条哈密尔顿路。 定理10.8 若G是具有n(≥3)个结点的无向简单图,对于G中每一对不
相邻的结点 u , v 均有 d(u)d(v)≥n,则G是一个哈密尔顿图。
图10.6
10.2 哈密尔顿图
定义10.3 给定无向图G,图G中包含其所有顶点的简单开路径称为图G 的哈密尔顿路径,图G中包含其所有顶点的简单闭路径称为G的哈密尔顿 回路。具有哈密顿回路的图称为哈密尔顿图。
由定义可知哈密尔顿圈与哈密尔顿路通过图G中的每个结点一次且仅 一次,例如图10.6(b)就是哈密尔顿图(哈密尔顿圈用实线标出)。
10.2 哈密尔顿图
例10.4 图10.8(a)不是哈密尔顿图。
图10.8
图10.8(a)中共有9个结点,如果取结点集S={3个白点},即 S 3 。而
这时 (GS)4(如图(b))。这说明图10.8(a)不是哈密尔顿图。但要注
意若一个图满足定理10.6的条件也不能保证这个图一定是哈密尔顿图,如图10.8 (c)。
定理10.7和10.8都是充分条件,即满足这些条件的图一定是哈密尔顿图。但不是所 有的哈密尔顿图都满足这些条件。例如图10.9是哈密尔顿图,但它不满足上述定理的 条件。
(完整版)高中常见数学模型案例
高中常见数学模型案例中华人民共和国教育部2003年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。
”教材中常见模型有如下几种:一、函数模型用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。
函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。
1、正比例、反比例函数问题例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x 与按新价让利总额y 之间的函数关系是___________。
分析:欲求货物数x 与按新价让利总额y 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。
若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(⋅-=---b a b 化简得a b 45=,所以x a bx y ⋅⋅==2.0452.0,即+∈=N x x a y ,42、一次函数问题例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路x (km )表示为时间t (h )的函数,并画出函数的图像。
分析:根据路程=速度×时间,可得出路程x 和时间t 得函数关系式x (t );同样,可列出v(t)的关系式。
第十章-结构优化例子-机械
( D , h ) y ——为起作用约束
D * 6 .43 cm
h* 76 cm
m*=8.47kg
五. 讨论
若将许用应力
(虚线—强度曲线) * * T T 解析法得到: x1 [ D , h ] [3 .84 cm ,76 cm ]
y由420提高到703Mpa,可行域变化
——等值线与强度曲 线的交点,但不是最 优解 (不满足稳定约 束条件) 实际最优点 x1* [ D * , h * ]T
[ 4.75cm,513cm ] (两约束交点处) * m1 5.45 kg
(过x1点的等值线)
T
最优点的三种情况
1. 最优点的等值线在可行域内中心点 ——约束不起作用(无约束问题) 2.最优点在可行域边界与等值线切点处 ——一个起作用约束 3.多个约束交点处 ——多个起作用约束
x2 1
x3 1
x2 x3 6
x2 x3 4
最终得到最优方案: x 4.1286
* 2 * x3 2.3325
f * 0.0156
二. 薄板包装箱的优化设计
设计一个体积为5m3的薄板包装箱,如图所示,其中 一边的长度不小于 4m,要求使薄板材料消耗最少,试确 定包装箱的尺寸参数,即确定包装箱的长、宽和高。
曲柄摇杆机构的优化数学模型
x x2
minT
x3 R 2
f ( x) f ( x2 , x3 ) ( i ji ) 2
i 0
s
i 0,1, 2......s
s.t.
x x 2x2 x3 cos135 36 0
2 2 2 3
2 2 x2 x3 2x2 x3 cos 45 16 0
数学建模简单13个例子
另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线
拟合方法得出,也可利用牛顿第二定律计算出来
黄灯究竟应当亮多久现在已经变得清楚多了。
第一步,先计算出L应多大才能使看见黄灯的司机停
得住车。
第二步,黄灯亮的时间应当让已过线
的车顺利穿过马路,
D
即T 至少应当达到 (L+D)/v。
L
返回
9、砖块延伸
出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
总距离为 n 1 ,
故有砖点n块 出向人右意可料时 叠。k1至, 2knk任1 2意1k远,n这1 一21n结果多少返回
10、寻找黑匣子
飞机失事时,黑匣子会自动打开,发射出某种 射线。为了搞清失事原因,人们必须尽快找回匣子。 确定黑匣子的位置,必须确定其所在的方向和距离, 试设计一些寻找黑匣子的方法。由于要确定两个参 数,至少要用仪器检测两次,除非你事先知道黑匣 子发射射线的强度。
I2 I1
1
方法二
A
在方法一中,两检测点与黑匣子
位于β一α a
直线上,这一点比较容易 点是结果对照度测
量的精C做度到要, 求主 较要 高缺 ,B
很少的误差会造成结果的很大变化,即敏感性很
强,现提出另一方法,在 A点测得黑匣子方向后 ,
到B点再测方向 ,AB 距离为a ,∠BAC=α,
数学建模
微分方程应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一。嫌疑犯问题(尸体温度的变化率正比于尸
人口(亿)5
可以看出,人口每增长十亿的时间,由一百 年缩短为十二三年。我们赖以生存的地球,已经带 着它的60亿子民踏入了21世纪。 长期以来,人类的繁衍一直在自发地进行着。 只是由于人口数量的迅速膨胀和环境质量的急剧恶 化,人们才猛然醒悟,开始研究人类和自然的关系, 人口数量的变化规律,以及如何进行人口控制等问 题。
当T 37。 时,有21.1 11.5e 0.110 t 37,所以 C t 2.95小时 2小时57分 所以 Td 8小时20分 2小时57分 5小时23分 即被害人死亡时间大约 在下午5: ,因此张某不 23 能被排除在嫌疑犯之外 。
二、微分方程模型
引言
体温度与室温的差)
受害者的尸体于晚上7:30被发现。法医于晚上
32.6。 ,一小时 C 8:20赶到凶案现场,测得尸体体温为
后,当尸体即将被抬走时,测得尸体温度为 31.4。C
室温在几小时内始终保持21.1。C ,此案最大的嫌疑犯是 张某,但张某声称自己是无罪的,并有证人说:“下 午张某一直在办公室上班,5:00时打了一个电话,打 完电话后就离开了办公室。”从张某的办公室到受害 者家(凶案现场)步行需5分钟,现在的问题:是张某 不在凶案现场的证言能否使他被排除在嫌疑犯之外 ? 解设T (t ) 表示时刻t尸体的温度,并记晚 : 为t 0,则 8 20
返回
高级计量经济学 第十章 消费行为模型[精]
边际消费倾向满足0<<1 Ct=+Yt+ut
相对收入假说
消费水平不仅受消费者当前收入水平的影响,还受其 过去最高收入水平的影响。
Ct=+1Yt+ 2Ytmax+ut 当收入呈现稳定增长趋势时,可能会有Ytmax=Yt-1。
3
宏观消费函数:理论基础
?支出弹性??????bpj??ap2lnlnnijijjkkijkmmp????????????????????????????????????????????????i????????10ijij?????????????bp??ap12?1lniiiimw????????????????分层消费模型弹性计算?前面给出的计算公式针对不分层的模型可以看作是有条件弹性取决于类支出计算基于总消费支出的无条件弹性需要做必要的假定
CPt=YPt+ut
YP可以用现期和过去收入的加权平均值来表示,过去收入的效应 随时间推移而逐步减小到零。
Ct=+tYt+ut
4
宏观消费函数:理论基础
相对收入假说和持久收入假说均可以用几何分布滞后模型 来反映:
Ct=+1Yt+ 2Ct-1+ut
对该模型也可以直接解释为,消费行为的变化非常缓慢,前期消 费行为和现期可支配收入共同影响现期消费行为。
局部均衡分析框架(假定该商品市场上发生的变化不 会影响到其他市场)
应用模型常常根据研究需要扩展进其他解释变量
持久收入(家庭资产) 政策干预(定量供给、补贴…) 人口学特征(年龄、教育、家庭人口构成…) 市场环境
15
单一商品需求模型:理论基础
数学建模简单13个例子_2022年学习资料
7、气象预报问题-在气象台A的正西方向300km处有一台风中心,它以-40km/h的速度向东北方向移动;根 台风的强度,在距-其中心250km以内的地方将受到影响,问多长时间后气象-台所在地区将遭受台风的影响?持续 间多长?-此问题是某气象台所遇到的实际问题,为了搞好气象-预报,现建立解析几何模型加以探-以气象台A为坐标 点建立-平而直角坐标系,设台风中心为B,-如图
某人第一天由A地去B地,第二天由B地沿原路-返回A地。问:在什么条件下,可以保证途中-至少存在一地,此人在 天中的同一时间到达该-假如我们换一种想法,把第二天的返回改变成另一-人在同一天由B去A,问题就化为在什么条 下,两-人至少在途中相遇一次,这样结论就很容易得出了:-只要任何一人的到达时间晚于另一人的出发时间,-两人 会在途中相遇。
1.皮的厚度一样2.汤圆(饺子)的形状-假设-R大皮的半径,r小皮的半-模型-S=ns-S=k R,V=k R3V=kS2-s=kr2,v=kr3 v=ks2-=n32v-应用-V=√nv≥vv是nv是√n倍-若1 0个汤圆(饺子包1公斤馅,-则50个汤圆(-问题杀羊方案-现有26只羊,要求7天杀完且每天必须杀奇数只,-问各天分别杀几只?-分析:-1 这是一个有限问题,解决此类问题的一-类方法是枚举,你可以试试。-建模:-2.依题意,设第i天杀2k,+1k 自然数只,-则所提问题变为在自然数集上求解方程-之2k,+10=26-i=1-于是,我们有了该问题的数学语 表达—数学模型-求解:-用反证法容易证明本问题的解不存在。-返回
x+y=l-y+z=m-x+7=n-由三元一次线性方程组解出x,y,z即得三根-电线的电阻。-说明:此问题 难,点也是可贵之处是用方程-“观点”、”立场”去分析,用活的数学思想使实-际问题转到新剑设的情景中去。-返
第十章 常用水力计算模型
在M-B实验范围内,由实测压降摩阻压降求得反算的 水力摩阻系数和相同操作条件下,按无滑脱雷诺数从 莫迪图或Colebrook公式上查得的的值大体相等。故 H w 2 H dw H H g (1 )l Pf Re H 2d H
H g (1 ) g
冲击流向雾状流的转换方程。
N gv 10 [1.401 2.69 N L 0.521N LV
0.329
后一种流型间的转换与倾角无关,而液体粘度对流型转 换有较大影响,增加粘度将加速从冲击流到环雾流的转 型。
下倾管和水平管流型转换方程
气泡到冲击流型的转型方程
N gv 10 [0.431 1.132sin 3.003N L 1.133 (log N LV ) sin 0.429(log N LV ) 2 sin ]
倾角管截面含气率
H L () H L (0)
b aRL H L (0) c Fr
1 1 c[sin(1.8) sin 3 (1.8)] 倾角修正系数 3
e f c (1 RL ) ln dRL N lw Frg
对Beggs-Brill关系式的评价
0.504887
其它
-0.516644
0.789805
0.551627
15.51921
0.371771
0.393952
压降相关式
经验相关式的缺点是:其使用范围受实验条件和流体性质等因素 的影响。管道流动条件和流体性质超出实验范围,就可能引起较 大误差。为克服上述缺点,以实验数据为基础用合适的无因次参
环状流摩阻损失
HL
Hr 1 HL
r
高中数学第十章-排列组合
高三数学总复习................................................................高考复习科目:数学 高中数学总复习(九)复习内容:高中数学第十章-排列组合 复习范围:第十章 编写时间:2004-7修订时间:总计第三次 2005-4 一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) 二、排列.1. ⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n个不同元素中取出m 个元素的一个排列数,用符号m n A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n=.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mmmn m n -=+--==⑬两个公式:①;m n n m n C C -= ②mn m n m n C C C 11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有mn m n m n C C C 11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式n n n n n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n kn m n m m n m m m m m m n n n n n n n n C n C k nCkC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C .vi. 构造二项式. 如:n nn n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中nx 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而mm A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则. ⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mmm m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某rx 1x 2x 3x 4个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有m n A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
14849-数学建模-《应用多元统计分析》第10章_多维标度法
多维标度法内容丰富、方法较多。
按相似性(距离)数据测量尺度的不同MDS可分为:度量 MDS和非度量MDS。当利用原始相似性(距离)的实际数值 为间隔尺度和比率尺度时称为度量MDS(metric MDS),当利用 原始相似性(距离)的等级顺序(即有序尺度)而非实际数值 时称为非度量MDS(nonmetric MDS)。
在此基础上也可按对象点之间距离的远近实现对样品的分类 ,多维标度法能弥补聚类分析的不足之处,因为聚类分析将 相似的样品归类,最后得到一个反映样品亲疏关系的谱系图 。聚类分析比较简便易行,但是,聚类分析的缺点是将一些 高维的样品强行纳入一个一维的谱系分类中,常常使原始样 品之间的关系简单化,甚至有时失真。而多维标度法是将几 个高维研究对象,在近似的意义下,从高维约简到一个较低 维的空间内,并且寻求一个最佳的空间维数和空间位置如2 维或3维)而仍保持各研究对象数据的原始关系。
8 2139 1858 949 1645 347 2594 2571 0
678 2442
9 2182 1737 1021 1891 959 2734 2408 678 0
2329
10 543 597 1494 1220 2300 923 205 2442 2329 0
1=Atlanta , 2=Chicago, 3=Denver, 4=Houston, 5=Los Angeles 6=Miami , 7=New York, 8=S an Francisco , 9=Seattle, 10=Washington. DC
初中数学建模举例
初中数学建模举例所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。
笔者以一次函数的应用为例,探讨几种不同的数学建模过程。
一、直接给出模型例1.已知弹簧的长度y在一定的限度内是所挂物质重量x的一次函数。
现已测得所挂重物重量为4kg时,弹簧的长度是7.2cm;所挂重物重量为5kg时,弹簧的长度为7.5cm。
求所挂重物重量为6kg 时弹簧的长度。
既然题干中已经明确给出了y与x之间具备的是一次函数关系,那么实际上本题目中数学建模过程已经被省略掉了。
可以设数学模型为y=kx+b,将已知的两个条件分别代入这个模型关系式中,可得:7.2=4x+b,7.5=5x+b。
求解二元一次方程组,得出k=0.3,b=6。
从而得到模型y=0.3x+6,将x=6代入该模型中,得到y=7.8。
于是得到该问题的最终结果,即当所挂物体重量为6kg时,弹簧长度为7.8cm。
这种直接给出数学模型的方法,在初学一次函数理解其待定系数法时,不失为一种较为合适的数学题目设计。
但是从数学应用的角度来看,不利于锻炼学生从实际问题中抽象出数学问题的能力。
二、猜测建立模型例2.爸爸穿42码的鞋,长度为26cm;妈妈穿39码的鞋,长度为24.5cm。
小明穿41码的鞋子,长度为多少?可以设数学模型为y=kx+b,将已知的两个条件分别代入到这个模型关系式中,可得:26=42k+b,24.5=39k+b。
求解二元一次方程组,得解k=0.5,b=5。
得到模型y=0.5x+5,将x=41代入该模型中,得到y=25.5。
从而得到该问题的最终结果,即小明所穿的41码的鞋子,长度为25.5cm。
本例至此,似乎已经解决了问题。
但实际上,如果只知道两对已知的函数数值,还不能否定尺码和长度之间是否存在着其他函数关系,譬如二次函数关系。
因此,在该题目的题设中应该再给出一个条件,比如可以再给出“妹妹穿36码的鞋,长度为23cm”,以便获得一次函数模型后的验证。
第十章 统计回归模型
改进模型2
考虑x1和x2的交互作用
y 0 1x1 2 x2 3x22 4 x1x2
参数
参数估计值
置信区间
0
29.1133
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]
yˆ
yˆ
9
9
8.5
x2=6.5 8.5
8
8
7.5
-0.2
0
0.2
0.4
yˆ
10
9.5 解释性好
9
8.5
8
7.5
5
6
7
0.6 x1
7.5
-0.2
0
0.2
0.4
yˆ
10.5
x1=0.2
10 精度高
9.5
9
8 x2 没道理
8.5 8 5
6
7
0.6 x1 8 x2
更完整的模型:完全二次多项式 y 0 1x1 2 x2 3 x1x2 4 x12 5 x22
多元线性回归y = x+的方差分析
误差平方和分解: SST=SSE+SSR
SST
||
Y
Y
1 ||2 , SSE
||
Y
Yˆ
||2 , SSR
||
Yˆ
Y
1 ||2
总误差平方和SST: 代表直接用y的均值来估计y时的误差(即i=0时)
残差平方和SSE: 代表用回归模型不能解释的那部分误差
数学建模案例分析第十章统计回归模型
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。
关于数学建模的几种典型问题
ˆ ˆ ˆ ˆ ˆ 销售量预测 y = β 0 + β1 x1 + β 2 x2 + β 3 x22
价格差x 其它厂家价格x 本公司价格x 其它厂家价格 本公司价格 价格差 1=其它厂家价格 3-本公司价格 4 估计x 调整x 估计 3 调整 4 控制x 控制 1 通过x 预测y 通过 1, x2预测 控制价格差x 控制价格差 1=0.2元,投入广告费 2=650万元 元 投入广告费x 万元
alpha(置信水平,0.05) 置信水平 置信水平 参数
β0 β1 β2 β3
参数估计值 置信区间 17.3244 [5.7282 28.9206] 1.3070 [0.6829 1.9311 ] -3.6956 [-7.4989 0.1077 ] 0.3486 [0.0379 0.6594 ] R2=0.9054 F=82.9409 p=0.0001
加大广告投入使销售量增加 大于6百万元 百万元) ( x2大于 百万元) 价格差较小时增加 的速率更大
8 7.5 5 6 7 8
x2
价格差较小时更需要靠广告 来吸引顾客的眼球
完全二次多项式模型 2 2 y = β 0 + β1 x1 + β 2 x 2 + β 3 x1 x 2 + β 4 x1 + β 5 x 2 + ε
ˆ ˆ ˆ ˆ 2 ˆ y = β 0 + β 1 x1 + β 2 x 2 + β 3 x 2 = 8 . 2933 (百万支 百万支) 百万支
销售量预测区间为 [7.8230,8.7636](置信度 , (置信度95%) ) 上限用作库存管理的目标值 下限用来把握公司的现金流 若估计x 若估计 3=3.9,设定 4=3.7,则可以 ,设定x ,则可以95%的把握 的把握 知道销售额在 7.8320×3.7≈ 29(百万元)以上 × ≈ (百万元)
数学模型经典例题
一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。
(15分) 解:一、模型假设:1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。
2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。
3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。
(3分) 二、建立模型:以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定:()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和由假设3可得,()f θ、()g θ中至少有一个为0。
由假设2知()f θ、()g θ是θ的连续函数。
(3分) 问题归结为:已知()f θ和()g θ是θ的连续函数,对任意θ,()()0f g θθ=,且设()()00,00g f =>。
证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。
(3分)由f g 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在()000θθπ<<使000()0,()()h f g θθθ==即。
最后,因为00()()0f g θθ=,所以00()()0f g θθ==。
(3分)图 5二、给出7支队参加比赛的循环比赛赛程安排,要求各参赛队的每两场比赛之间的休息场次尽可能均衡,并列出表格说明。
解:设(1,2,7)i A i =表示7支参赛队。
数学模型应用举例
(1) 试验的样本空间只包含 有限个元素; ( 2) 试验中每个基本事件发 生的可能性相同 . 具有以上两个特点的试 验称为等可能概型或 古典概型 .
2. 古典概型问题的求解计算公式 设试验 E 的样本空间由n 个样本点构成, A为 E 的任意一个事件,且包含 nA 个样本 点,则事件 A 出现的概率记为:
k n
且两两互相容.
因此 A在 n 次试验中发生 k 次的概率为
P{X k} C p (1 p)
k n k
n k
,
k 0,1,2,, n
记为 X ~ b( n, p).
问题提出 设有80台同类型设备,各台工作是相互 独立的,发生故障的概率都是 0.01,且一台设备的 故障能由一个人处理. (1)由四人维护,每人负责20台; (2)由3人共同维护台80. 比较这两种管理设备方法的优裂.
问题假设 一、各台设备工作是相互独立的; 二、各台设备发生故障的概率都是0.01; 三、一台设备的故障能由一人处理; 四、只考虑设备发生故障不能及时维修 评价这两种管理; 五、以X表示同一时刻发生故障的台数; 六、以A表示80台中发生故障而不能维修。
模型建立 (1)问题一 管理方案1归结为 X~b(20,0.01);
nA A 所包含样本点的个数 P ( A) . n 样本点总数
问题提出 某接待站在某一周曾接待过 12次来访, 已知所有这 12 次接待都是在周二和周四进行的, 问是否可以推断接待时间是有规定的. 问题假设 假设接待站的接待时间没有规定,且各 来访者在一周的任一天中去接待站是等可能的. 模型建立 把该问题归结为等可能概型(古典概型) 问题。
问题求解 7 1 周一 7 2 周二 7 3 周三 7 4 周四
数学模型的应用典例精讲
数学模型的应用典例精讲例1:时下网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格:x (单位:元/套)满足的关系式()2462m y x x =+--,其中26,x m <<为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)【解】:(1)将4,21x y ==代入关系式可得:()221446102m m =+-⇒=(2)依题意所获利润()()()()21022462f x x y x x x ⎛⎫=-=-+-⎪-⎝⎭化简可得:()32456240278f x x x x =-+-()26x <<()()()'21211224043106f x x x x x ∴=-+=--令()'0f x >,即解不等式()()31060x x -->26x << ∴解得103x <()f x ∴在102,3⎛⎫ ⎪⎝⎭单调递增,在10,63⎛⎫ ⎪⎝⎭单调递减()f x ∴在103x =取得最大值,即x=3.3例2:如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求M 在AB的延长线上,N 在AD 的延长线上,且对角线MN 过C点。
已知3AB =米,2AD =米。
(1)设x AN =(单位:米),要使花坛AMPN 的面积大于32平方米,求x 的取值范围;(2)若)4,3[∈x (单位:米),则当,AM AN 的长度分别是多少时,花坛AMPN 的面积最大?并求出最大面积。
解:(1)根据相似三角形可得线段比例:ND DC AN AM =,从而解出32x AM x =-,则232AMPN x S AN AM x =⋅=-,从而可得23322x x >-,解出x 的范围,()82,8,3x ⎛⎫∈+∞ ⎪⎝⎭(2)设()232x f x x =-)4,3[∈x ()4432=32422f x x x x x ⎛⎫⎛⎫∴=++-++ ⎪ ⎪--⎝⎭⎝⎭设2t x =-,则[)1,2t ∈则434y t t ⎛⎫=++ ⎪⎝⎭,根据对勾函数可得:1t =时,y 达到最大值,即27y =此时13t x =⇒=,所以33,92x AN AM x ===-答:当3,9AN AM ==时,四边形AMPN 的面积最大,为227m例3:某人销售某种商品,发现每日的销售量y (单位:kg)与销售价格x (单位:元/kg)满足关系式⎪⎪⎩⎪⎪⎨⎧≤≤--<<-+-=159,6177,96,)9(61502x x x x x a x y ,其中a 为常数.已知销售价格为8元/kg 时,该日的销售量是80kg.(1)求a 的值;(2)若该商品成本为6元/kg,求商品销售价格x 为何值时,每日销售该商品所获得的利润最大.解:(1)当8x =时,()2150808986a =+--,解得:5a =()215059,696177,9156x x x y x x x ⎧+-<<⎪⎪-∴=⎨⎪-≤≤⎪-⎩(2)设商品利润为()f x ,则有()()6f x x y =-⋅,由第(1)问可得:()()()()()2150659,69661776,9156x x x x f x x y x x x x ⎧⎡⎤-+-<<⎪⎢⎥-⎪⎣⎦=-=⎨⎛⎫⎪--≤≤ ⎪⎪-⎝⎭⎩当69x <<时,()()()2150596f x x x =+--则()()()()()()2'592691579fx x x x x x ⎡⎤=-+--=--⎣⎦令()'0f x >,由()6,9x ∈解得:67x <<()f x ∴在()6,7单调递增,在()7,+∞单调递减()()7170f x f ∴≤=当915x ≤≤时,()()2217763186f x x x x =-+=--+()f x ∴在()9,15单调递减()()9150f x f ∴≤=()()79f f ∴≥()max 170f x ∴=例4:甲,乙两校计划周末组织学生参加敬老活动,甲校每位同学的往返车费是5元,每人可为3位老人服务,乙校每位同学往返车费是3元,每人可为5位老人服务,两校都有学生参加,甲校参加活动的学生比乙校至少多1人,且两校同学往返总车费不超过45元,如何安排甲,乙两校参加活动的人数,才能使收到服务的老人最多?此时受到服务的老人最多有多少人?思路:本题涉及的变量有两个:甲校人数与乙校的人数,且所给条件均为关于两校人数的不等式,所以可联想到线性规划问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
0.2
0.4
6
7
0.6 x1
x1=0.2
8 x2
7.5 -0.2
yˆ
10.5 10 9.5 9 8.5 8 5
0
0.2
0.4
6
7
0.6 x1 8 x2
交互作用影响的讨论 y ˆ0 ˆ 1 x 1 ˆ2 x 2 ˆ3 x 2 2 ˆ4 x 1 x 2
价格差 x1=0.1
y ˆx1 0.13.2 027 6 .775x25 0.8 67x2 21
2
-3.6956
[-7.4989 0.1077 ]
x1和x2对y 的影响有
交互作用
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y 0 1 x 1 2 x 2 3 x 2 2 4 x 1 x 2
参数
参数估计值
置信区间
0
29.1133
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y 的 影响不太显著
x22项显著
可将x2保留在模型中
销售量预测 y ˆˆ0ˆ1 x 1ˆ2x 2ˆ3 x 2 2
控制价格差x1=0.2元,投入广告费x2=6.5百万元
y ˆˆ0ˆ1x 1ˆ2x2ˆ3x2 2 yˆ 8.2933(百万支) 区间 [7.8230,8.7636]
yˆ 8.3272(百万支)
y ˆ0 ˆ 1 x 1 ˆ2 x 2 ˆ3 x 2 2 ˆ4 x 1 x 2
区间 [7.8953,8.7592]
中学程度薪金比更 高的少2994
R2,F, p 模型整体上可用
x1~资历(年) x2 = 1~ 管理,x2 = 0~ 非管理
中学:x3=1, x4=0;大 学:x3=0, x4=1; 更高:
x3=0, x4=0.
大学程度薪金比更 高的多148
a4置信区间包含零点, 解释不可靠!
结果分析 残差分析方法
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进 y01 x 12 x 23 x 2 2
x1和x2对y 的影响独立
参数
0 1
参数估计值 17.3244 1.3070
置信区间 [5.7282 28.9206] [0.6829 1.9311 ]
第十章 统计回归模型
10.1 牙膏的销售量 10.2 软件开发人员的薪金 10.3 酶促反应 10.4 投资额与国民生产总值和
物价指数
数学建模的基本方法 机理分析 测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。
通过对数据的统计分析,找出与数据拟合最好的模型
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22] ~n4数
据矩阵, 第1列为全1向量
bint~b的置信区间 r ~残差向量y-xb
alpha(置信水平,0.05)
rint~r的置信区间
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ]
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
y ˆˆ0ˆ1 x 1ˆ2x 2ˆ3 x 2 2 8 .29(百3 万支3)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]
4
-1.4777
[-2.8518 -0.1037 ]
R2=0.9209 F=72.7771 p=0.0000
两模型销售量预测比较
参数 参数估计值 置信区间
500
a0
11204
[11044 11363] 0
a1
497
[486 508] -500
a2
7048
[6841 7255]
e ~ x1
a3
-1727
[-1939 -1514]
-1000 0
5
10
15
20
a4
-348
[-545 –152]
500
a5
-3071
[-3372 -2769] 0
a6
1836
[1571 2101]
-500 e ~组合
R2=0.999 F=554 p=0.000
-1000
1
2
3
4
5
6
R2,F有改进,所有回归系数置信
消除了不正常现象
区间都不含零点,模型完全可用
异常数据(33号)应去掉
去掉异常数据后的结果
参数 参数估计值 置信区间
a0
11200
[11139 11261]
10844
4
1
2
a0+a2+a4+a6
19882
5
0
3
a0
11200
6
1
3
a0+a2
18241
大学程度管理人员比更高程度管理人员的薪金高
资历每加一年薪金的增长是常数;
管理、教育、资历之间无交互作用
线性回归模型 y a 0 a 1 x 1 a 2 x 2 a 3 x 3 a 4 x 4
a0, a1, …, a4是待估计的回归系数,是随机误差
模型求解 y a 0 a 1 x 1 a 2 x 2 a 3 x 3 a 4 x 4
价格差 x1=0.3
y ˆx1 0 .33.4 258 3 .055x21 0 .3 67x2 21
yˆ
yˆ yˆ x2 7.5357 x10.3
10.5
x10.1 10
价格优势会使销售量增加 9.5 9
8.5
加大广告投入使销售量增加
8
( x2大于6百万元)
ห้องสมุดไป่ตู้
7.5 5
x1=0.3 x1=0.1
6
7
8 x2
0 200 100
0 -100 -200
1
e ~ x1
5
10
15
20
e ~组合
2
3
4
5
6
R2: 0.957 0.999 0.9998
残差图十分正常
F: 226 554 36701 最终模型的结果可以应用 置信区间长度更短
模型应用 y ˆ a ˆ 0 a ˆ 1 x 1 a ˆ 2 x 2 a ˆ 3 x 3 a ˆ 4 x 4 a ˆ 5 x 2 x 3 a ˆ 6 x 2 x 4
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1 2 29 30
本公司价 格(元) 3.85 3.75 3.80 3.70
其它厂家 价格(元)
3.80 4.00 3.85 4.25
广告费用 (百万元)
5.50 6.75 5.80 6.80
价格差 (元) -0.05
0.25 0.05 0.55
制订6种管理—教育组合人员的“基础”薪金(资历为0)
x1= 0; x2 = 1~ 管理,x2 = 0~ 非管理 中学:x3=1, x4=0 ;大学:x3=0, x4=1; 更高:x3=0, x4=0
组合 管理 教育
系数
“基础”薪金
1
0
1
a0+a3
9463
2
1
1
a0+a2+a3+a5
13448
3
0
2
a0+a4
a1
498
[494 503]
a2
7041
[6962 7120]
a3
-1737
[-1818 -1656]
a4
-356
[-431 –281]
a5
-3056
[-3171 –2942]
a6
2019
[1894 2100]
R2= 0.9998 F=36701 p=0.0000
200 100
0 -100 -200
参数 参数估计值
置信区间
a0
11032
[ 10258 11807 ]
a1
546
[ 484 608 ]
a2
6883
[ 6248 7517 ]
a3
-2994
[ -3826 -2162 ]
a4
148
[ -636 931 ]
R2=0.957 F=226 p=0.000
资历增加1年薪 金增长546
管理人员薪金多 6883
回归模型是用统计分析方法建立的最常用的一类模型
• 不涉及回归分析的数学原理和方法
• 通过实例讨论如何选择不同类型的模型