两角和与差的正弦、余弦和正切公式复习课件
第4章 §4.3 两角和与差的正弦、余弦和正切公式--新高考数学新题型一轮复习课件
新高考数学新题型一轮复习课件第四章§4.3 两角和与差的正弦、余弦和正切公式考试要求1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用.落实主干知识课时精练探究核心题型内容索引L U O S H I Z H U G A N Z H I S H I 落实主干知识知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)=;(2)公式C (α+β):cos(α+β)=;(3)公式S (α-β):sin(α-β)=;(4)公式S (α+β):sin(α+β)=;cos αcos β+sin αsin βcos αcos β-sin αsin βsin αcos β-cos αsin βsin αcos β+cos αsin β(5)公式T(α-β):tan(α-β)=;(6)公式T(α+β):tan(α+β)= .2.辅助角公式a sin α+b cos α=,其中sin φ=,cos φ=两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( )(3)公式tan(α+β)= 可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )√×××√∵α是第三象限角,2.计算:sin 108°cos 42°-cos 72°sin 42°= .原式=sin(180°-72°)cos 42°-cos 72°sin 42°=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)3.若tan α=,tan(α+β)=,则tan β= . tan β=tan[(α+β)-α]T A N J I U H E X I N T I X I N G 探究核心题型题型一两角和与差的三角函数公式√教师备选√√两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.√题型二两角和与差的三角函数公式的逆用与变形√√由题意知,sin γ=sin β-sin α,cos γ=cos α-cos β,将两式分别平方后相加,得1=(sin β-sin α)2+(cos α-cos β)2=2-2(sin βsin α+cos βcos α),∴sin γ=sin β-sin α>0,即选项D 正确,C 错误.√∵A+B=π-C,∴tan(A+B)=-tan C.延伸探究 若将本例(2)的条件改为tan A tan B=tan A+tan B+1,则C等于√A.45°B.135°C.150°D.30°在△ABC中,因为tan A tan B=tan A+tan B+1,所以tan C=1,所以C=45°.教师备选2 1.若α+β=-,则(1+tan α)(1+tan β)= .所以1-tan αtan β=tan α+tan β,所以1+tan α+tan β+tan αtan β=2,即(1+tan α)·(1+tan β)=2.2.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= .∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.跟踪训练2 (1)设a=cos 50°cos 127°+cos 40°cos 37°,b= (sin 56°-cos 56°),c=,则a,b,c的大小关系是A.a>b>cB.b>a>c√C.c>a>bD.a>c>b由两角和与差的正、余弦公式及诱导公式,可得a=cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,=sin(56°-45°)=sin 11°,所以a>c>b.4(2)(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)= .(1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan 25°=1+tan(20°+25°)(1-tan 20°tan 25°)+tan 20°tan 25°=2,同理可得(1+tan 21°)(1+tan 24°)=2,所以原式=4.题型三角的变换问题√(2)(2022·青岛模拟)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .-1∵tan(α+2β)=2,tan β=-3,∴tan(α+β)=tan(α+2β-β)教师备选因为sin2α+cos2α=1,(2)求tan(α-β)的值.因为α,β为锐角,所以α+β∈(0,π).因此tan(α+β)=-2.因此,tan(α-β)=tan[2α-(α+β)]因为α,β均为锐角,所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)cos β= .则0<β-α<π,。
两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)
( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.
练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin
两角和与差的正弦、余弦和正切公式及二倍角公式PPT
1 cos 2α
2
;
(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
教材研读 栏目索引
教材研读 栏目索引
1.sin 20°cos 10°-cos 160°sin 10°= ( D )
A.- 3 B. 3 C.- 1 D. 1
2
2
2
2
2.化简cos 18°cos 42°-cos 72°sin 42°的值为 ( B )
0,
2
,tan
α=2,则cos
α
4
=
.
(3)设sin
2α=-sin
α,α∈
2
,
,则tan
2α的值是
.
栏目索引
考点突破
栏目索引
答案 (1)A (2) 3 10 (3) 3
10
解析
(1)∵sin
6
α
=cos
6
α
,
∴ 1 cos α- 3 sin α= 3 cos α- 1 sin α.
2
5
故sin
4
α
=sin
4
cos
α+cos
4
sin
α
=
2 2
×
2
5 5
+2
2
×5
5
=-10
10
.
(2)由(1)知sin 2α=2sin αcos α=2× 5
5
×
2
5 5
=4-
5
,
考点突破
栏目索引
cos 2α=1-2sin2α=1-2×
5 2
5.5.1两角和与差的正弦、余弦和正切公式1PPT课件(人教版)
5.5.1两角和与差的正弦、余弦和正切公式
第一课时 两角差的余弦公式
学习目标: 1.掌握两角差的余弦公式; 2.明确公式的推导过程; 3.能利用公式进行相关计算.
教学重点: 掌握两角差的余弦公式. 教学难点: 公式的推导过程.
根据两点间的 距离公式
思考 两角差的余弦公式有无巧记的方法呢?
跟踪训练1 化简下列各式: (1)cos(θ+21°)cos(θ-24°)+sin(θ+21°)sin(θ-24°);
解 原式=cos[θ+21°-(θ-24°)] =cos 45°= 22.
(2)-sin 167°·sin 223°+sin 257°·sin 313°.
解 原式=-sin(180°-13°)sin(180°+43°)+sin(180°+77°)·sin(360°-47°)
55×3 1010=
2 2.
又 sin α<sin β,∴0<α<β<π2,
∴-π2<α-β<0.故 α-β=-π4.
反 已知三角函数值求角的解题步骤
思
感 (1)界定角的范围,根据条件确定所求角的范围. 悟 (2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三
角函数.
(3)结合三角函数值及角的范围求角.
1-172=4
7
3 .
∵β=α-(α-β)∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=12.
∵0<β<π2,∴β=π3.
随堂练习
1.cos 47°cos 137°+sin 47°sin 137°的值等于
两角和与差的正弦、余弦、正切公式 课件
即 tan(α-β)=________,这就是两角差的正切公式.
练习 5:1t+an4ta5n°4-5°ttaann1155°°=________________.
tan α-tan β 1+tan αtan β
练习:5.
3 3
思考应用
3.两角和与差的正切公式的适用范围及公式的特 征有哪些?
解析:(1) 适用范围:限制条件:α、β、α+β 均不为 kπ+π2(k∈Z);可以是数、字母和代数式.从公式推导过程进 行说理:cos(α+β)≠0,则 α+β≠kπ+π2;同除 cos α、cos β, 得 cos α≠0,cos β≠0,则 α≠kπ+π2,cos β≠kπ+π2.cos x≠0, 保证了 tan x 有意义.
∵cos(α-β)=1134,∴sin(α-β)=3143, 由 β=α-(α-β),得
cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=7×4914=12, ∵0<β<π2,所以 β=π3.
点评: 解答此类问题分三步:第一步,求角的某 一个三角函数值;第二步,确定角所在的范围;第三 步,根据角的范围写出所求的角.特别注意选取角的 某一个三角函数值,是取正弦?还是取余弦?应先缩 小所求角的取值范围,最好把角的范围缩小在某一三 角函数值的一个单调区间内.
sin αcos β+cos αsin β
以-β 代替公式 sin(α+β)=sin αcos β+cos αsin β
中的 β,得到 sin[α+(-β)]=sin αcos(-β)+
cos αsin(-β)=sin αcos β-cos αsin β,
课件7:3.1.2 两角和与差的正弦、余弦、正切公式
例 2 求下列各式的值:
1+tan (1)1-tan
75°; 75°
(2)tan 17°+tan 28°+tan 17°tan 28°;
(3)tan 70°-tan 10°- 3tan 70°tan 10°
解:(1)方法 1:原式=1t- ant4a5n°4+5°ttaann7755°°=
tan(45°+75°)=tan 120°=- 3.
A.- 3
B. 3
C.-
3 3
3 D. 3
【解析】tanta2n02°t0a°n-(-ta5n05°0)-° 1=ttaann2500°°t-ant5a0n°2+0°1=tan130°
= 3.故选 B.
3.(2014 年贵州模拟)tan 20°+tan 40°+ 3tan 20°·tan 40° =________.
得csoins((αα+-ββ))=scions ααccooss
β+cos β+sin
αsin αsin
ββ=1t+antαan+αttaannββ=1-3 3
=-23.
规律总结
1.公式 Tα ± β 中 α≠kπ+π2,β≠kπ+π2,α±β≠kπ+π2(k∈Z). 2.两角和的正切公式 tan(α+β)=1t-antαan+αttaannββ的常用变形: (1)1t-antαan+αttaannββ=tan(α+β); (2)1-tan αtan β=tatnanα(+α+taβn)β;
(3)tan α+tan β=tan(α+β)(1-tan αtan β); (4)tan αtan βtan(α+β)=tan(α+β)-tan α-tan β.
()
1
1
A.5
高中数学两角和与差的正弦、余弦、正切公式课件
Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五
( − ) = ,
( − ) = .
公式六
( + ) = ,
2
( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.
2
;
1
④ cos
课件9:3.1.2 两角和与差的正弦、余弦、正切公式
类型 1 灵活应用和、差角公式化简三角函数式
例1
(1)
sin
47°-sin 17°cos cos 17°
30°=(
)
A.-
3 2
B.-12
C.12
D.
3 2
【解析】sin
47°-sin 17°cos cos 17°
30°
=sin(17°+30c°o)s -17s°in 17°cos 30°
=sin
∴sin α=sin[(α-β)+β]
=sin(α-β)cos β+cos(α-β)sin β
=45×7102+35×-102=
2 2.
又 α∈0,π2,∴α=π4.
探究点 辅助角公式的应用 探究 1 函数 y=sin x+cos x(x∈Z)的最大值为 2 对吗?
为什么?
【提示】 不对.因为 sin x+cos x
3.1.2 两角和与差的正弦、余弦、正切公式
学习目标 1.能根据两角差的余弦公式推导出两角和与差的正弦、 余弦公式,并灵活运用.(重点) 2.能利用两角和与差的正弦、余弦公式推导出两角 与差的正切公式.(难点) 3.掌握两角和与差的正切公式及变形应用.(难点、 易错点)
基础·初探
教材整理 1 两角和与差的余弦公式
【解析】 逆用两角和的余弦公式可得 cos 75°cos 15°-sin 75°sin 15°=cos(75°+15°)= cos 90°=0. 【答案】 0
教材整理 2 两角和与差的正弦公式
1.公式
名称
简记 符号
公式
两角和的正弦
S(α+β)
sin(α+β)=
_s_i_n_α_c_o_s__β_+__c_o_s_α_s_i_n_β_
两角和与差的正弦、余弦、正切公式 课件
2 2.
(2)(tan 10°-
Hale Waihona Puke cos 3) sin5100°°=(tan
10°-tan
cos 60°) sin
10° 50°
=csoins
1100°°-csoins
60°cos 60° sin
5100°°=cossin10-°c5o0s°60°·csoins
10° 50°
=-cos160°=-2.
例 3 已知 sin(2α+β)=3sin β,求证:tan(α+β)=2tan α.
证明 sin(2α+β)=3sin β ⇒sin[(α+β)+α]=3sin[(α+β)-α] ⇒sin(α+β)cos α+cos(α+β)sin α =3sin(α+β)cos α-3cos(α+β)sin α ⇒2sin(α+β)cos α=4cos(α+β)sin α ⇒tan(α+β)=2tan α. 小结 证明三角恒等式一般采用“由繁到简”、“等价转化”、 “往中间凑”等办法,注意等式两边角的差异、函数名称的差异、 结构形式的差异.
解 原式=sinπ4-3xcos3π-3x-sinπ3-3xcos4π-3x
=sinπ4-3x-3π-3x=sinπ4-π3=sin
π 4cos
π3-cos
π 4sin
π 3
= 22×12- 22× 23=
2- 4
6 .
【典型例题】
例 1 化简求值: (1)sin(x+27°)cos(18°-x)-sin(63°-x)sin(x-18°);
探究点一 由公式 C(α-β)推导公式 C(α+β) 由于公式 C(α-β)对于任意 α,β 都成立,那么把其中的+β 换成 -β 后,也一定成立.请你根据这种联系,从两角差的余弦公 式出发,推导出用任意角 α,β 的正弦、余弦值表示 cos(α+β) 的公式.试一试写出推导过程. 答 ∵α+β=α-(-β),cos(-β)=cos β,sin(-β)=-sin β,
两角和与差的正弦、余弦、正切公式 课件
所以 cos(α+ β )=-1114,
所以 sin β=sin[(α+ β )-α]
=sin(α+ β )cos α-cos (α+ β )sin α
=5143×17--1114×4 7 3=
3 2.
又因为 0< β <π2,所以 β =π3.
[迁移探究] (变换条件)若把本例中的“0< β<π2” 改为“π2< β <π”,求角 β 的值.
解:因为 0<α<π2,cos α=17,所以 sin α=473. 又因为π2< β <π,所以π2<α+ β <32π. 因为 sin(α+ β )=5143,所以 cos (α+ β )=-1114,
所以 sin β=sin [(α+ β )-α]= sin(α+ β )cos α-cos(α+ β )sin α= 5143×17--1114×473= 23. 又因为π2< β <π,所以 β=23π.
归纳升华 1.(1)逆用两角和的正弦公式可得:asin x+bcos x= a2+b2·sin(x+θ );(2)将含有 sin ωx,cos ωx 的一次式 子化简成 Asin(ωx+φ )的形式,为进一步研究函数的性质 提供了方便.
2.与特殊角有关的几个结论: sin x±cos x= 2sinx±π4; sin x± 3cos x=2sinx±π3=2cosx±π6.
2.两角和与差的正切公式
名称
公式
使用条件
两角和的 tan(α+β)= α,β,α+β≠kπ+π2
正切
tan α+tanβ _1_-__ta_n__α_t_a_n_β__ (k∈Z)
两角差的 正切
tan(α-β)= tan α-tanβ
α,β,α-β≠kπ+π2
高三数学复习课件【两角和与差的正弦、余弦和正切公式】
练透基点,研通难点,备考不留死角
返回
考点一 三角函数公式的直接应用 [考什么·怎么考]
三角函数公式的直接应用是基础,直接命题较 少,主要考查三角函数公式的识记,多体现在简单三 角函数求值中.
返回
1.已知cos α=-35,α是第三象限角,则cosπ4+α的值为(
)
2 A. 10
B.-
Hale Waihona Puke 返回解析:∵α∈0,π2,tan α=2,
∴sin α=255,cos α= 55,
∴cosα-π4=cos
αcosπ4+sin
π αsin4
=
22×2 5 5+
55=3
10 10 .
答案:3
10 10
2.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.
(1)求sin(α-β)的值;
,tan(π-β)=
1 2
,则tan(α-β)的
值为
()
A.-121
2 B.11
11 C. 2
解析:因为sin α=35,α∈π2,π,
D.-121
所以cos α=- 1-sin2α=-45,所以tan α=csions αα=-34.
因为tan(π-β)=12=-tan β,所以tan β=-12,
=
412c2ossin101°0°-co23s s1i0n°10°=4sins3i0n°20-°10°=14.
答案:14
返回
2.在△ABC中,若tan Atan B= tan A+tan B+1, 则cos C=
________. 解析:由tan Atan B=tan A+tan B+1,可得1t-antaAn+AttaannBB
两角和与差的正弦、余弦、正切公式课件
3.两角和与差的正切公式
名称
公式
两角和的正切
tan(α+β) =
tan α+tan β 1-tan αtan β
两角差的正切
tan(α-β) =
tan α-tan β 1+tan αtan β
简记符号
使用条件
T(α+β)
α,β,α+β≠kπ+π2 (k∈Z)
T(α-β)
α,β,α-β≠kπ+π2 (k∈Z)
∴cos(α+β)=cos α·cos β-sin αsin β
=2 5 5·3 1010-
55·1100=
2 2.
由 0<α<2π,0<β<2π得 0<α+β<π,
又 cos(α+β)>0,∴α+β 为锐角,∴α+β=4π.
规律方法 此类题是给值求角问题,步骤如下:①求所求角的 某一个三角函数值,②确定所求角的范围,此类题常犯的错误 是对角的范围不加讨论,或范围讨论的程度过大或过小,这样 就会使求出的角不合题意或者漏解,同时要根据角的范围确定 取该角的哪一种三角函数值.
规律方法 化简三角函数式是为了更清楚地显示式中所含量之 间的关系,以便于应用,对于三角函数式的化简要求应熟练掌 握:(1)能求出值的应求出值.(2)使三角函数种数尽量少.(3) 使三角函数式中的项数尽量少.(4)尽量使分母不含有三角函 数.(5)尽量使被开方数不含三角函数.
题型二 给角求值问题
【例 2】 求下列各式的值:
两角和与差的正弦、余弦、正切公式
自学导引
1.两角和与差的余弦公式
C(α+β):cos(α+β)= cos αcos β-sin αsin β
;
C(α-β):cos(α-β)= cos αcos β+sin αsin β.来自2.两角和与差的正弦公式
两角和与差的正弦、余弦、正切公式 课件
• 二、两角和与差的正弦公式
名称 简记符号
公式
两角和 的正弦
S(α+β)
sin(α+β)= sin αcos β+cos αsin β
两角差 的正弦
S(α-β)
sin(α-β)= sin αcos β-cos αsin β
使用条件 α,β∈R α,β∈R
• 2.怎样利用诱导公式推出sin(α±β)? 提示:sin(α+β)=cosπ2-α+β=cosπ2-α-β =cosπ2-αcos β+sinπ2-αsin β =sin αcos β+cos αsin β, 用-β 代 β 得 sin(α-β)=sin[α+(-β)]=sin αcos(-β)+ cos αsin(-β)=sin αcos β-cos αsin β.
(4)若角的范围是-π2,π2,则选择正弦函数比余弦函数 更好;
(5)若角的范围是(0,π),则选择余弦函数比正弦函数更 好.总之,尽量选择在区间上单调的函数.
• 三、两角和与差的正切公式
名称
公式
简记符号
使用条件
两角和 的正切
tan(α+β)= tan α+tan β 1-tan αtan β
T(α+β)
α,β,α+β≠ kπ+π2(k∈Z)
tan(α-β)=
两角差 的正切
tan α-tan β 1+tan αtan β
T(α-β)
α,β,
α-β≠ π
kπ+ 2(k∈Z)
α=(α+β)-β,α=β-(β-α), α=(2α-β)-(α-β),2α=(α+β)+(α-β) α=12[(α+β)+(α-β)],α=12[(β+α)-(β-α)]等.
• S(α±β)的正向应用是把α±β的形式转化为单角α、β的三角函 数值计算.
两角和与差的正弦、余弦和正切公式 (共38张PPT)
4
) 2求
1 2 sin cos cos 2 的值。
(二)小题查验
1.判断正误
(1)两角和与差的正弦、余弦公式中的角 α,β 是任意的 ( √ )
(2)存在实数 α,β,使等式 sin(α+β)=sin α+sin β 成立 ( √ )
(3)在锐角△ABC 中,sin Asin B 和 cos Acos B 大小不确定( × ) tan α+tan β (4) 公式 tan(α + β) = 可以变形为 tan α + tan β = 1-tan αtan β
为锐角,由
所以 原式
tan
5 4
1 2 得 cos , 2 5
(二)小题查验
1.判断正误
θ 2θ (1)cos θ=2cos -1=1-2sin 2 2
2
( √ )
(2)二倍角的正弦、余弦、正切公式的适用范围是任意角 ( × )
(3)存在角 α,使得 sin 2α=2sin α 成立 ( √ )
2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α; cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; 2tan α tan 2α= 2 . 1-tan α
[题组练透]
π 3 1.已知 sin α= ,α∈2 ,π,则 5
cos 2α
7 3 25 2. (人教 A 版教材习题改编)已知 sin(α-π)= , 则 cos 2α=________.
5
2- 3 tan 7.5° 2 3.计算: =________. 2
1-tan 7.5°
考点一
三角函数公式的基本应用 (基础送分型考点——自主练透)
两角和与差的正弦、余弦、正切公式 课件
由于角的范围过大致误
典例 4 已知 sinα= 55,sinβ= 1100,且 α、β 为锐角,求 α+β 的值. [错解] ∵α 为锐角,∴cosα= 1-sin2α=255. 又 β 为锐角,∴cosβ= 1-sin2β=31010. ∴sin(α+β)=sinαcosβ+cosαsinβ= 55×31010+255× 1100= 22. 由于 0°<α<90°,0°<β<90°, 所以 0°<α+β<180°,故 α+β=45°或 135°.
[辨析] 上述解法欠严密,仅由 sin(α+β)= 22以及 0°<α+β<180°就得到 α+β =45°或 α+β=135°是不正确的,因为角 α、β 的范围是有一定限制的,事实上 sinα = 55<12,sinβ= 1100<12,故 α<30°,β<30°,从而 0°<α+β<60°,故应仅有 α+β= 45°.为了避免出现上述失误我们可以选用两角和的余弦公式计算.
又 cos(α-β)=1123,sin(α+β)=-35,
所以 sin(α-β)= 1-cos2α-β=
1-11232=153,
cos(α+β)=- 1-sin2α+β=- 所以 sin2α=sin[(α-β)+(α+β)]
1--352=-45.
=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)
=153×(-45)+1123×(-35)=-5665.
辅助角公式及其运用
(1)公式形式:公式 asinα+bcosα= a2+b2sin(α+φ)(或 asinα+bcosα)= a2+b2cos(α-φ)将形如 asinα+bcosα(a,b 不同时为零)的三角函数式收缩为同一 个角的一种三角函数式.
两角和与差的正弦、余弦、正切公式 课件
1.求解该类问题常犯的错误是对角的范围讨论程度过 大(小),导致求出的角不合题意或者漏解.
2.求角的大小,要解决两点:(1)确定所求角的范围, (2)求角的某一三角函数值,特别是要根据角的范围确定取该 角的哪一种三角函数值.
若把本例题的条件改为“α∈(0,2π),β∈(-π2,0),且 cos(α-β)=35,sin β=-102”,试求角 α 的大小.
化简求值: (1)sin1π2- 3cos1π2;
sin 15°-cos 15° (2)cos 15°+sin 15°.
【思路探究】 解答本题中的(1)可先考虑如何去变换系 数,才能与学习的公式相联系,可以考虑 1=2×12, 3= 2× 23,引入特殊角的三角函数;(2)可先分子分母同除以 cos 15°得出t1a+n 1ta5n°-151°,然后再把该式向公式 tan(α±β)转化.
= 22sin(x+51π2).
1.对于形如 sin α±cos α, 3sin α±cos α 的三角函数式均 可利用特殊值与特殊角的关系,运用和差角正、余弦公式化 简为含有一个三角函数的形式.
2.在解法上充分体现了角的变换和整体思想,在三角 函数求值化简的变换过程中,一定要本着先整体后局部的基 本原则.
【自主解答】
(1)法一
原式=2(12sin1π2-
3π 2 cos12)
=2(sinπ6sin1π2-cosπ6cos1π2)
=-2cos(π6+1π2)=-2cosπ4
=- 2.
法二
原式=2(12sin1π2-
3π 2 cos12)
=2(cosπ3sin1π2-sinπ3cos1π2)
=-2sin(π3-1π2)
将本例中条件“已知 α、β 是锐角”改为“α、β 都是钝 角”.仍求 sin β 的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 个技巧——拼角、凑角的技巧 (1)用已知角表示未知角 2α=(α+β)+(α-β);2β=(α+β)-(α-β); α=(α+β)-β=(α-β)+β; α+ β α - β α+ β α- β α= + ,β= - ; 2 2 2 2
α- β β α = α+2 - 2 +β等. 2
β 1 α 2 π 【例 2】 已知 cos(α-2)=-9,sin(2-β)=3,且2<α<π, α+β π 0<β<2,求 cos 2 的值. 思路分析:角的变换:所求角分拆成已知角的和、差、倍 角等,综合上述公式及平方关系.
α+β β α 解:(α- )-( -β)= , 2 2 2 π π ∵2<α<π,0<β<2 π β π α π ∴ <α- <π,- < -β< . 4 2 4 2 4 β ∴sin(α-2)= α cos(2-β)= α+β ∴cos 2 β α β α 7 5 =cos(α-2)cos(2-β)+sin(α-2)· sin(2-β)= 27 . β 4 5 1-cos (α-2)= 9 ,
已知 tan(α+β)=3,tan(α-β)=5,则 tan2α 等于( 1 1 A. B.- 8 8 4 4 C. D.- 7 7
)
解析:tan2α=tan[(α+β)+(α-β)] tanα+β+tanα-β = 1-tanα+β· tanα-β 3+5 8 4 = = =- . 7 1-3×5 -14 答案:D
(2)互余与互补关系
π π π π π π +α+ -α= ; +α+ -α= ; 4 4 2 3 6 2 3π π π 5π -α+ +α=π; +α+ -α=π;… 4 4 6 6
1.两角和与差的正弦、余弦和正切公式
(1)要注意公式间的内在联系及特点,做题过程中,要善于 观察差异,寻找联系,实现转化;要熟悉公式的正用、逆用 和变形用,也应注意公式成立的条件.例如:tanα± tanβ= tan(α± β)(1∓tanαtanβ). (2)注意拆角、拼角技巧.例如:2α=(α+β)+(α-β),α=(α α+β α-β α-β β α +β)-β,β= 2 - 2 , 2 =(α+2)-(2+β)等.
2
α 5 1-sin (2-β)= 3
2
变式迁移 2
π 3π π 3 3π 已知 0<β<4<α< 4 , cos(4-α)=5, sin( 4 +β)
5 =13,求 sin(α+β)的值.
π π 3 解:cos(4-α)=sin(4+α)=5, π 3π ∵0<β<4<α< 4 , π π 3π 3π ∴2<4+α<π, 4 < 4 +β<π. π ∴cos(4+α)=- 3π cos( +β)=- 4 π 4 1-sin (4+α)=-5,
2
3π 12 1-sin ( +β)=- . 4 13
2
π 3π ∴sin[π+(α+β)]=sin[( +α)+( +β)] 4 4 π 3π π 3π =sin( +α)cos( +β)+cos( +α)sin( +β) 4 4 4 4 3 12 4 5 56 = ×(- )- × =- . 5 13 5 13 65 56 ∴sin(α+β)= . 65