3.7用导数求函数的极大值与极小值
导数与函数的极值、最值(经典导学案及练习答案详解)
§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。
求函数的极限值的方法总结
求函数的极限值的方法总结在数学中,函数的极限值是指函数在某一特定区间上取得的最大值或最小值。
求解函数的极限值是数学分析中经常遇到的问题之一,下面将总结一些常用的方法来求解函数的极限值。
一、导数法对于给定的函数,可以通过求导数来判断函数在某一点附近的单调性和极值情况。
导数表示了函数在某一点处的变化率,通过求导数可以获得函数的驻点(导数为零的点)以及极值点。
一般来说,当函数从单调递增变为单调递减时,即导数由正变负,函数的极大值出现;当函数从单调递减变为单调递增时,即导数由负变正,函数的极小值出现。
所以,通过求导数可以找到函数的极值点,然后通过比较极值点和边界点的函数值,即可确定函数的极限值。
二、二阶导数法在某些特殊情况下,求函数的二阶导数可以提供更加准确的信息来确定函数的极限值。
当函数的二阶导数恒为正时,表示函数处于凸型,此时函数可能有极小值但没有极大值;当函数的二阶导数恒为负时,表示函数处于凹型,此时函数可能有极大值但没有极小值。
通过对二阶导数进行符号判断,可以帮助确定函数的极限值。
三、极限值存在性判定对于一些特殊的函数,通过判定函数的极限值是否存在可以快速确定函数的极限值。
当函数在某一区间上连续且存在最大最小值时,函数的极限值也会存在。
因此,可以通过求解函数在区间端点的函数值,并比较这些函数值来确定函数的极限值。
四、拉格朗日乘数法拉格朗日乘数法是一种通过引入约束条件来求解极值的方法,特别适用于求解带有约束条件的函数的极值。
通过构造拉格朗日函数,将原始问题转化为无约束的极值问题,然后通过求解极值问题来确定函数的极限值。
五、切线法切线法是一种直观而有效的求解函数极值的方法。
通过观察函数图像,在极值附近找到一条切线,使得切线与函数图像的接触点的函数值最大或最小。
通过近似切线与函数图像的接触点,可以获得函数的极值的近似值。
六、数值法数值法是一种通过计算机进行数值逼近的方法来求解函数的极限值。
通过将函数离散化,并在离散点上进行计算,可以得到函数在这些离散点上的函数值,然后通过比较这些函数值来确定函数的极限值。
导数求函数最值
导数求函数最值导数是微积分中的重要概念,它能够帮助我们求解函数的最值。
函数的最值包括最大值和最小值,而导数可以告诉我们函数在某一点的斜率,通过斜率的正负性可以判断函数在该点是增函数还是减函数,从而找到函数的极值点。
下面将介绍如何利用导数来求解函数的最值。
我们需要找到函数的导数。
导数表示函数在某一点的变化率,可以通过求导数来找到函数的极值点。
一般来说,函数的极值点要么是导数为0的点,要么是导数不存在的点。
所以,我们首先需要求出函数的导数,并将导数等于0或不存在的点作为候选的极值点。
我们需要利用导数的正负性来判断极值点的类型。
如果在导数为0的点的左侧导数为正,右侧导数为负,那么这个点就是函数的局部最大值点;如果在导数为0的点的左侧导数为负,右侧导数为正,那么这个点就是函数的局部最小值点。
通过这种方法,我们可以找到函数的极值点。
除了求解函数的极值点,导数还可以帮助我们判断函数的凹凸性。
函数的凹凸性可以告诉我们函数的曲线是向上凸起还是向下凹陷。
具体来说,如果函数的二阶导数大于0,那么函数是向上凸起的;如果函数的二阶导数小于0,那么函数是向下凹陷的。
通过分析函数的凹凸性,我们可以更好地理解函数的形状。
导数还可以帮助我们求解函数的拐点。
拐点是函数曲线上的一个点,在这个点处函数的曲率发生突变。
通过求解函数的二阶导数,我们可以找到函数的拐点。
具体来说,如果函数的二阶导数在某一点发生了从正到负或从负到正的变化,那么这个点就是函数的拐点。
通过分析函数的拐点,我们可以更加全面地了解函数的性质。
总的来说,导数在求解函数的最值、凹凸性和拐点等方面起着重要作用。
通过对函数的导数进行分析,我们可以更好地理解函数的性质,并找到函数的极值点。
因此,在微积分中,导数是一个非常重要的概念,它帮助我们解决各种数学和物理问题,对于深入理解函数的行为规律起着至关重要的作用。
用导数求函数的最大值与最小值-2023年学习资料
观察下面函数y=fc在区间[a,b]上的图象,回答:-1在哪一点处函数y=fx有极大值和极小值?-极大:x x1x=X3x=x5-极小:x=x2x=x4-2函数y=fx在[a,b]上有最大值和最小值吗?如果有,-最 值和最小值分别是什么?-ymnx =fx3-y=fo-ymin =fx-:-1x29x3-xsb
练习:-如果函数fx=ax5-bx3+ca≠0在-x=±1时有极值,极大值为4,极小值为0,-试求a,b, 的值-提示:y'=5ax4-3bx2由y'=0.得-x25ax2-3b=0-.x=±1是极值点,∴.5ab=0-又x2=0-∴.x=0,x=土1可能是极值点。
练习:-如果函数fx=x5-bx3+ca≠0在x=士1-时有极值,极大值为4,极小值为0,试求a,b,c值-若a>0,y'=5ax2x2-1.由x,y,y'的变化得-X--00,-1--1,0-0,1-1,+∞ f'x-无极值--a+b+c=4-a-b+c=0-b=5-5a=3b-c=2
练习:-如果函数fx=ax5-bx3+ca≠0在x=士1-时有极值,极大值为4,极小值为0,试求a,b,c 的值-若a<0,y'=5ax2x2-1.由x,y,y'的变化得-a=-3-b=-5-c=2
练习3:-求函数y=x3-3ax+2a>0的极值,并问方程-x3-3ax+2=0何时有三个不同的实根?-何 有连个根?有唯一的实根?-,a>0,y'=3x2-3a.由x,y,y'的变化得-X--w,-a-a,a-√ ,+-f'x-fx-极大-极小
一般地,在闭区间[α,b]上的连续函数fx必有最大值与最小值-在开区间a,b内的连续函数fx不一定有最大值 最小值.-=x-y=f-若函数x在所给的区间I内有唯一的极值,则它是函数的-最值
高三数学利用导数求最值和极值试题答案及解析
高三数学利用导数求最值和极值试题答案及解析1.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值2.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)=f(1)=0,∴a≤0,故a最大值为0.min3.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O 为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,解得b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.5.已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是________.【答案】(-1,0)【解析】根据函数极大值与导函数的关系,借助二次函数图象求解.因为f(x)在x=a处取到极大值,所以x=a为f′(x)的一个零点,且在x=a的左边f′(x)>0,右边f′(x)<0,所以导函数f′(x)的开口向下,且a>-1,即a的取值范围是(-1,0).6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.7.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴f(1)不是极值,故A,B错;当k=2时,f′(x)=(x-1)(x e x+e x-2),显然f′(1)=0,且x在1的左侧附近f′(x)<0,x在1的右侧附近f′(x)>0,∴f(x)在x=1处取到极小值.故选C.8.设函数,则函数的各极小值之和为()A.B.C.D.【答案】D【解析】,令,则,令,则,所以当时,取极小值,其极小值为所以函数的各极小值之和,故选D.【考点】1.函数的极值求解;2.数列的求和.9.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析10.已知函数在处取得极值,则取值的集合为 .【答案】.【解析】,,依题意有,从而有,且有,即,解得或,当时,,此时,此时函数无极值,当时,,此时,此时函数有极值,故.【考点】函数的极值11.函数最小值是___________.【答案】【解析】函数求导得.当时,,即在上单调递减;当时,,即在上单调递增,因此函数在处取得最小值,即.【考点】利用导数求函数的最值.12.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.13.设函数,(1)求函数的极大值;(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.【答案】(1);(2) .【解析】(1)由导函数或求得函数的单调区间,再找极大值;(2) 的导函数是一元二次函数,转化为一元二次函数在上的最值,再满足条件即可.试题解析:(1)令,且当时,得;当时,得或∴的单调递增区间为;的单调递减区间为和,故当时,有极大值,其极大值为 6分(2)∵ 7分①当时,,∴在区间内单调递减∴,且∵恒有成立∵又,此时, 10分②当时,,得因为恒有成立,所以,即,又得, 14分综上可知,实数的取值范围 . 15分【考点】1.函数的极值;2.一元二次函数的最值.14.已知函数.(Ⅰ)若在上的最大值为,求实数的值;(Ⅱ)若对任意,都有恒成立,求实数的取值范围;(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.【答案】(Ⅰ).(Ⅱ).(Ⅲ)对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上.【解析】(Ⅰ)由,得,令,得或.当变化时,及的变化如下表:由,,,即最大值为,. 4分(Ⅱ)由,得.,且等号不能同时取,,即恒成立,即. 6分令,求导得,,当时,,从而,在上为增函数,,. 8分(Ⅲ)由条件,,假设曲线上存在两点,满足题意,则,只能在轴两侧,不妨设,则,且.是以为直角顶点的直角三角形,,,是否存在,等价于方程在且时是否有解. 10分①若时,方程为,化简得,此方程无解;②若时,方程为,即,设,则,显然,当时,,即在上为增函数,的值域为,即,当时,方程总有解.对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上. 14分【考点】利用导数研究函数的单调性、最值。
高中数学导数知识点归纳的总结及例题(word文档物超所值)
为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
求极值的方法与技巧
求极值的方法与技巧求极值(即最大值或最小值)是数学中的一个重要问题,对于实际问题的解决非常有帮助。
在解决求极值问题时,有几种方法和技巧可以帮助我们找到最优解。
一、导数法导数法是求取函数极值的一种重要方法。
它的基本思想是通过求取函数的导数来研究函数的增减性,从而得到函数的最值。
1.确定函数的定义域:首先需要确定函数的自变量范围,即函数是定义在哪个区间上的。
2.求导数:对于给定的函数,求取其导函数。
3.找到导数为零的点:求解导函数等于零的方程,在这些点处函数的导数为零,也就是函数的极值点。
4.检查极值:计算极值点的函数值,比较得出最大值或最小值。
例如,对于函数f(x)=x^2-4x+3,我们可以通过求导数的方法来求取极值。
首先求导函数f'(x)=2x-4,然后将导函数等于零,得到方程2x-4=0,解出x=2接下来,将x=2代入原函数中,得到f(2)=(2)^2-4(2)+3=-1所以,函数f(x)的极小值为-1,当且仅当x=2时。
二、二次型矩阵法对于二次型矩阵,我们可以通过计算其特征值和特征向量来求取极值。
1.构造二次型矩阵:将函数转化为一个二次型矩阵,即通过展开函数,并将其写成矩阵的形式。
2.求取特征值和特征向量:计算二次型矩阵的特征值和特征向量。
3.判断极值:根据特征值的正负情况来判断函数的极值。
如果特征值都大于零,那么函数有一个极小值。
如果特征值都小于零,那么函数有一个极大值。
如果特征值既有正数又有负数,那么函数没有极值。
三、拉格朗日乘数法拉格朗日乘数法是一种求解约束问题的极值方法,可用于求解带有约束条件的极值问题。
1.确定函数和约束条件:首先需要将函数和约束条件写出来。
2.构造拉格朗日函数:将约束条件乘以一个拉格朗日乘子,并与原函数相加,形成一个新的函数。
3.求取梯度:对构造的拉格朗日函数求取梯度,得到等于零的方程组。
4.解方程组:求解方程组,得到自变量的值。
5.检查极值:将求得的自变量代入原函数中,求取函数的极值。
函数的极大值与极小值(使用)
3、函数的极值不是唯一的即一个函数在某区间 上或定义域内极大值或极小值可以不止一个。
4、极大值与极小值之间无确定的大小关系即一
个函数的极大值未必大于极小值,如下图所示。
x1
x4
f(x4)f(x1)
观察图像并类比于函数的单调性与导数关系的研
究方法,看极值与导数之间有什么关系?
y
oa
y
x0 b x
f(x) >0 f(x) =0 f(x) <0
由 f(-1)=-1-12+2+c=32,得 c=1.
∴f(x)=x3-12x2-2x+1.∴f′(x)=3x2-x-2. 当 x 变化时,f′(x)、f(x)的变化情况如下表:
x (-∞,-23) -23 (-23,1) 1 (1,+∞)
f′(x)
+
0
-
0
+
f(x)
极大值
极小值
∴f(x)的递增区间为(-∞,-23)和(1,+∞),递 减区间为(-23,1). 当 x=-23时,f(x)有极大值,f(-23)=4297; 当 x=1 时,f(x)有极小值,f(1)=-12.
在极大值点附近 y
y=f(x) f (x)>0
f (x)<0
•极值点处的导数不一定是存在的;
f (x)<0
f (x)>0
•导数为0的点不一定是极值点;
O a在极小x值1 点附近•x若2 极值点b x处的导数存在,则一定为0
1、如果在x0附近的左侧f ’(x)>0,右侧f ’(x)<0, 则f (x0)是极大值; 2、如果在x0附近的左侧f ’(x)<0,右侧f ’(x)>0, 则f (x0)是极小值;
极值第二判别法函数的最值
1 3 2 y x (6 3 x ) 3x x 2 2
x x
y 3 3x
令y 0 , 求 得 驻 点 x 1.
例7 欲用长6m的铝合金材料加工一日字形窗框 (如图所示),问它的长和宽分别为多少时,才能使窗户 面积最大,最大面积是多少? 1 解 设窗框的宽为 xm,则长为 (6 3x)m. x 2
x0 处取得
(3)若 f ( x 0 ) 0,则不能判断 f ( x 0 )是否是极值 .
例3 求 出 函 数 f (x) x3 3x2 24x 20的 极 值. 解
2 f (x) 3x 6x 24 3( x 4)(x 2) 令 f ( x) 0 , 得驻点 x1 4, x2 2. f (x) 6x 6,
计 算 出
再 计 算 出
f(2) 11
比较这三个函数值,得 出f ( x)在2,2 上的 最大值为 f (2) 11 ,最小值为 f (1) 2.
实际问题求最值应注意:
建立目标函数; 求最值;
若目标函数只有唯一驻 点,则该点的 函数值即为所求的最( 或最小)值.
例7 欲用长6m的铝合金材料加工一日字形窗框 (如图所示),问它的长和宽分别为多少时,才能使窗户 面积最大,最大面积是多少? 1 解 设窗框的宽为 xm,则长为 (6 3x)m. x 2 于是窗户的面积
用第一判别法判断 .
函数的不可导点,也可能是函数的极值点. 如下面的例题3.
课堂练习 Ex3 7 ( 2 , 4 , )
课堂练习解答:
7(2) y 6x 2 6 x 12 6( x 2 x 2) 令 y 0 , 解得 x -1, x 2 y 12x - 6 y
导数与函数的极值、最值 解析版
导数与函数的极值、最值【考试提醒】1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.【知识点】1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值都小,f′(a)=0;而且在点x =a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点处的函数值都大,f′(b)=0;而且在点x= b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件【核心题型】题型一 利用导数求解函数的极值问题根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.命题点1 根据函数图象判断极值1(2024·四川广安·二模)已知函数f x =ax+1e x,给出下列4个图象:其中,可以作为函数f x 的大致图象的个数为()A.1B.2C.3D.4【答案】D【分析】对a的情况进行分类讨论,借助于导数对函数的单调性进行分析即可判断函数的大致图象.【详解】由题意知,f x 定义域为R,当a=0时,f x =e x,由指数函数的单调性可知函数f x 单调递增,可对应①;当a>0时,f x =ax+a+1e x,令f x =0可得:x=-a+1a<0,所以当x∈-∞,-a+1a时,f x<0,当x∈-a+1a ,+∞时,f x >0,所以,函数f x 先减后增,且当x<-1a时,f x <0,此时可对应②;当a<0时,f x =ax+a+1e x,当f x =0时x=-a+1a,当x∈-∞,-a+1a时,f x >0,当x∈-a+1a ,+∞时,f x <0,所以,函数f x 先增后减,当a<-1时,x=-a+1a<0,且此时0<-1a<1,所以可对应③,当-1<a<0时,x=-a+1a>0,此时-1a>1,所以可对应④.故选:D2(23-24高三上·黑龙江·阶段练习)如图是函数y=f x 的导函数y=f x 的图象,下列结论正确的是()A.y=f x 在x=-1处取得极大值B.x=1是函数y=f x 的极值点C.x=-2是函数y=f x 的极小值点D.函数y=f x 在区间-1,1上单调递减【答案】C【分析】根据导函数的正负即可求解y=f x 的单调性,即可结合选项逐一求解.【详解】由图象可知:当x<-2时,f x <0,f x 单调递减,当x≥-2时,f x ≥0,f x 单调递增,故x=-2是函数y=f x 的极小值点,y=f x 无极大值.故选:C3(2023·河北·模拟预测)函数f(x)=1x4-1x2的大致图象是()A. B.C. D.【答案】D【分析】先判断函数的奇偶性,再利用导数法判断.【详解】解:因为函数f (x )=1x4-1x 2的定义域为:x |x ∈R ,x ≠0 ,且f -x =f x ,所以函数f x 是偶函数,当x >0时,f x =-4x -51-12x 2 ,令fx =0,得x =2,当0<x <2时,f x <0,当x >2时,f x >0,所以当x =2时,f x 取得极小值,故选:D4(2024高三·全国·专题练习)已知函数f (x )的导函数f ′(x )的图象如图所示,则下列结论正确的是()A.曲线y =f (x )在点(1,f (1))处的切线斜率小于零B.函数f (x )在区间(-1,1)上单调递增C.函数f (x )在x =1处取得极大值D.函数f (x )在区间(-3,3)内至多有两个零点【答案】D【详解】解析:由题意,得f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线斜率等于零,故A 错误;当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上单调递减,故B 错误;当-2<x <1时,f ′(x )<0,f (x )单调递减,当x >1,f ′(x )<0,f (x )单调递减,所以x =1不是f (x )的极值点,故C 错误;当x ∈(-3,-2)时,f ′(x )>0,f (x )单调递增,当x ∈(-2,3)时,f ′(x )≤0,f (x )单调递减,所以当f (-2)<0时,f (x )在(-3,3)上没有零点;当f (-2)=0时,f (x )在(-3,3)上只有一个零点;当f (-2)>0时,f (x )在(-3,3)上有两个零点.综上,函数f (x )在区间(-3,3)内至多有两个零点,故选D .命题点2 求已知函数的极值5(2024·宁夏银川·一模)若函数f (x )=x 2-ax -2 e x 在x =-2处取得极大值,则f (x )的极小值为()A.-6e 2B.-4eC.-2e 2D.-e【答案】C【分析】由题意求出a 的值,进而求出f x ,再解出极小值即可.【详解】因为函数f (x )=x 2-ax -2 e x 在x =-2处取得极大值,则f x =x 2+2-a x -2-a ⋅e x ,x ∈R 且f -2 =0,即4-22-a -2-a =0,所以a =2;所以f x =x 2-2x -2 ⋅e x ,f x =x 2-4 ⋅e x =x +2 x -2 e x ,令f x =0,则x =2或x =-2,由x ∈-∞,-2 ,f x >0,x ∈-2,2 ,f x <0,x ∈2,+∞ ,f x >0,所以f x 在-∞,-2 ,2,+∞ 上单调递增,在-2,2 上单调递减.所以函数f x 在x =-2处取得极大值,f 极小=f 2 =-2e 2.故选:C .6(2023·全国·模拟预测)函数f x =2x -tan x -π在区间-π2,π2的极大值、极小值分别为()A.π2+1,-π2+1B.-π2+1,-3π2+1C.3π2-1,-π2+1D.-π2-1,-3π2+1【答案】D【分析】求出f x ,由f (x )<0、f (x )>0可得答案.【详解】由题意,得f(x )=2-sin x cos x =2-1cos 2x =2cos 2x -1cos 2x,当x ∈-π2,-π4 ∪π4,π2 时,2cos 2x -1<0,f (x )<0;当x ∈-π4,π4时,2cos 2x -1>0,f (x )>0.所以f (x )在-π2,-π4 上单调递减,在-π4,π4 上单调递增,在π4,π2上单调递减.当x =-π4时,f (x )取得极小值,为f -π4 =-3π2+1;当x =π4时,f (x )取得极大值,为f π4 =-π2-1.故选:D .7(多选)(2024·全国·模拟预测)已知f (x )=e xx,x >0,-x 2-4x -1,x ≤0, 则方程f 2(x )-(k +3)f (x )+3k =0可能有( )个解.A.3 B.4C.5D.6【答案】BCD【分析】方程f 2(x )-(k +3)f (x )+3k =0得f (x )=3或f (x )=k ,作出函数图象,数形结合判断解的个数.【详解】f (x )=e x x x >0 ,有f(x )=e x x -1 x 2,当0<x <1时f (x )<0,f (x )单调递减;当x >1时f (x )>0,f (x )单调递增,当x =1时,f (x )有极小值f 1 =e.f (x )=-x 2-4x -1x ≤0 ,由二次函数的性质可知,f (x )在-∞,-2 上单调递增,在-2,0 上单调递减,当x =-2时,f (x )有极大值f (-2)=3.由f (x )=e xx,x >0,-x 2-4x -1,x ≤0 的图象如图所示,由f 2(x )-(k +3)f (x )+3k =0得f (x )=3或f (x )=k ,由图象可知f (x )=3有3个解,f (x )=k 可能有1,2,3,4个解,故方程f 2(x )-(k +3)f (x )+3k =0可能有4,5,6,7个解.故选:BCD .【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令f x =0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间a ,b 上是连续不断的曲线,且f a ⋅f b <0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点8(2024·辽宁鞍山·二模)f x =x 2e -x 的极大值为.【答案】4e2【分析】借助导数研究函数的单调性即可得其极大值.【详解】f x =2xe -x +x 2-e -x =2x -x 2 e -x =-x x -2 e -x ,当x ∈-∞,0 ∪2,+∞ 时,f x <0,当x ∈0,2 时,f x >0,故f x 在-∞,0 、2,+∞ 上单调递减,在0,2 上单调递增,故f x 有极大值f 2 =22e -2=4e2.故答案为:4e2命题点3 已知极值(点)求参数9(2024·全国·模拟预测)设x 1,x 2为函数f x =x x -2 x -a (其中a >0)的两个不同的极值点,若不等式f x 1 +f x 2 ≥0成立,则实数a 的取值范围为()A.1,4B.0,4C.0,1D.4,+∞【答案】A【分析】导函数为二次函数,x 1,x 2为对应的一元二次方程的两根,由f x 1 +f x 2 ≥0,代入函数解析式,结合韦达定理化简,可解出实数a 的取值范围.【详解】因为f x =x x -2 x -a ,所以f x =3x 2-22+a x +2a .又函数f x 有两个不同的极值点x 1,x 2,所以Δ=4a 2-2a +4 >0,x 1+x 2=22+a3,x 1x 2=2a 3.解法一:由f x 1 +f x 2 ≥0,得x 31+x 32-a +2 x 21+ x 22 +2a x 1+x 2 ≥0,即x 1+x 2 x 1+x 2 2- 3x 1x 2 -a +2 x 1+x 2 2-2x 1x 2 +2a x 1+ x 2 ≥0∗ .将x 1+x 2,x 1x 2的值代入(*)式,得a 2-5a +4≤0,解得1≤a ≤4,故选:A .解法二:函数y =ax 3+kx a ≠0 为奇函数,图象的对称中心为0,0 ,则函数y =a x -m 3+k x -m +n 图象的对称中心为m ,n 设g x =ax 3+bx 2+cx +d =a x -m 3+k x -m +n ,a x -m 3+k x -m +n =ax 3-3amx 2+3am 2+k x +n -am 3-km ,比较系数,有-3am =b 3am 2+k =c n -am 3-km =d,解得m =-b 3a ,k =c -b 23a ,n =2b 327a2-bc 3a +d =g -b3a 所以函数g x =ax 3+bx 2+cx +d a ≠0 图象的对称中心为-b 3a ,g -b3a,即若f x 存在两个相异的极值点x 1,x 2,则其对称中心为点x 1,f x 1 和点x 2,f x 2 的中点,即f x 1 +f x 2 2=f x 1+x22.由题设得f x 1 +f x 2 ≥0,即f x 1+x 22 ≥0,即f 2+a3≥0,所以a >0,a +23a +23-2 a +23-a ≥0,解得1≤a ≤4.故选:A .10(2024·四川绵阳·三模)若函数f x =12ax 2-x +b ln x a ≠0 有唯一极值点,则下列关系式一定成立的是()A.a >0,b <0B.a <0,b >0C.ab <14D.ab >0【答案】C【分析】求导,构造函数g x =ax 2-x +b a ≠0 ,利用二次函数零点的分布,结合分类讨论以及极值点的定义即可求解.【详解】fx =ax -1+b x =ax 2-x +b x,令g x =ax 2-x +b a ≠0 ,Δ=1-4ab ,若Δ=1-4ab ≤0,则g x =ax 2-x +b ≥0或g x =ax 2-x +b ≤0,此时f x 单调,不存在极值点,故不符合题意,若Δ=1-4ab >0,则方程g x =ax 2-x +b =0有两个实数根,由于f x =12ax 2-x +b ln x a ≠0 有唯一极值点,故g x =ax 2-x +b =0只能有一个正实数根,若另一个实数根为0,此时b =0,显然满足条件,若令一个实数根为负根,则ba <0,故ab <0,结合选项可知,ab <14一定成立,故选:C11(2024·辽宁·一模)已知函数f x =x 3+ax 2+bx +a 2在x =-1处有极值8,则f 1 等于.【答案】-4【分析】求导,即可由f -1 =8且f -1 =0求解a ,b ,进而代入验证是否满足极值点即可.【详解】f x =3x 2+2ax +b ,若函数f x 在x =-1处有极值8,则f -1 =8,f-1 =0,即-1+a -b +a 2=83-2a +b =0,解得:a =3,b =3或a =-2,b =-7,当a =3,b =3时,f x =3x 2+6x +3=3(x +1)2≥0,此时x =-1不是极值点,故舍去;当a =-2,b =-7时,f x =3x 2-4x -7=3x -7 x +1 ,当x >73或x <-1时,f x >0,当-1<x <73,f x <0,故x =-1是极值点,故a =-2,b =-7符合题意,故f x =x 3-2x 2-7x +4,故f 1 =-4.故答案为:-412(2024·全国·模拟预测)已知函数f x =ln x -x 2+ax -2a ∈R .(1)若f x 的极值为-2,求a 的值;(2)若m ,n 是f x 的两个不同的零点,求证:f m +n +m +n <0.【答案】(1)1(2)证明见解析【分析】(1)对函数f x 求导,再根据函数与导数的关系研究函数f x 的性质,即可得解;(2)由题意f m +n +m +n =1m -n m -n m +n -ln m n ,再设m >n >0,t =mn,进而构造函数g t =t -1t +1-ln t t >1 ,利用函数的单调性进行证明即可.【详解】(1)由题知f x 的定义域为0,+∞ ,fx =1x -2x +a =-2x 2+ax +1x.由f x =0可得2x 2-ax -1=0,解得x 1=a -a 2+84(舍去),x 2=a +a 2+84,且ax 2=2x 22-1,∴f x 在0,x 2 上单调递增,在x 2,+∞ 上单调递减,∴f x 有极大值f x 2 =ln x 2-x 22+ax 2-2=ln x 2-x 22+2x 22-1 -2=ln x 2+x 22-3.设h x =ln x +x 2-3,则h x 在0,+∞ 上单调递增,且h 1 =-2,故x 2=1,即a +a 2+84=1,解得a =1.(2)由条件可得f m =ln m -m 2+am -2=0,f n =ln n -n 2+an -2=0,两式相减,可得ln mn -m 2-n 2 +a m -n =0,故a =m +n -ln m nm -n,f m +n +m +n =1m +n-2m +n +a +m +n=1m +n -ln m nm -n =1m -n m -n m +n -ln m n.不妨设m >n >0,t =mn,则t >1,要证f m +n +m +n <0,只需证明m -n m +n -ln mn<0,即证t -1t +1-ln t <0.设g t =t -1t +1-ln t t >1 ,则gt =2t +12-1t =2t t +1 2t t +1 2=-t 2+1t t +1 2<0,∴g t 在1,+∞ 上单调递减,g t <1-11+1-ln1=0,故f m +n +m +n <0.【点睛】方法点睛:(1)研究函数零点、极值时,一般需要求导分析函数、导函数的单调性,并结合特值进行分析判断;(2)证明有关零点的不等式时,需要观察不等式,构造常用函数g t =t -1t +1-ln t t >1 证明即可.题型二 利用导数求函数最值求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.命题点1 不含参函数的最值13(2024·陕西·模拟预测)∀x ∈1,2 ,有a ≥-x 2ln x +x 2恒成立,则实数a 的取值范围为()A.e ,+∞B.1,+∞C.e2,+∞ D.2e ,+∞【答案】C【分析】构造函数μx =-x 2ln x +x 2,x ∈1,2 ,求导可得函数的单调性,即可求解最值μx max =μe =e 2,进而a ≥μx max 即可.【详解】由a ≥-x 2ln x +x 2在x ∈1,2 上恒成立,令μx =-x 2ln x +x 2,x ∈1,2 ,则μ x =-2x ln x -x +2x =-2x ln x +x =x -2ln x +1 .令μ x =0,则x =e ,当x ∈1,e 时,μ x >0,故μ x 在1,e 上单调递增;当x ∈e ,2 时,μ x <0,故μ x 在e ,2 上单调递减;则μx ≤μe =e 2,所以a ≥e2故选:C14(2024·四川·模拟预测)已知f x =x 2-2x +a ln x -x ,若存在x 0∈0,e ,使得f x 0 ≤0成立,则实数a 的取值范围是.【答案】-1,+∞【分析】先用导数证明不等式x -ln x -1≥0,然后对a ≥-1和a <-1分类讨论,即可得出结果.【详解】设g x =x -ln x ,则g x =1-1x =x -1x,从而当0<x <1时g x <0,当x >1时g x >0.所以g x 在0,1 上递减,在1,+∞ 上递增,故对任意x >0有x -ln x =g x ≥g 1 =1,即x -ln x -1≥0.一方面,当a ≥-1时,由于f 1 =1-2-a =-1-a ≤0,故存在x 0=1使得f x 0 ≤0成立;另一方面,当a <-1时,由于对任意x ∈0,e 都有f x =x 2-2x +a ln x -x =x -1 2-1+a ln x -x =x -1 2+-a x -ln x -1=x -1 2+-a x -ln x -1 +-a -1≥0+0+-a -1 (这里用到x -1 2≥0,-a >0,x -ln x -1≥0)=-a -1>0,所以对任意x ∈0,e 都有f x >0.综上,a 的取值范围是-1,+∞ .故答案为:-1,+∞ .【点睛】关键点点睛:对于求取值范围问题,本质上就是要确定一个集合,使得命题成立的充要条件是参数属于该集合. 故本题中我们从两个方面入手,证明了存在x 0∈0,e 使得f x 0 ≤0的充要条件是a ∈-1,+∞ ,即可解决问题15(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道l 1,l 2相交于点O ,一根长度为8的直杆AB 的两端点A ,B 分别在l 1,l 2上滑动(A ,B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP ⊥AB ,则△OAP 面积的取值范围是.【答案】(0,63]【分析】令∠OAB =x 0<x <π2,利用直角三角形边角关系及三角形面积公式求出△OAP 的面积函数,再利用导数求出值域即得.【详解】依题意,设∠OAB =x 0<x <π2,则OA =AB cos x =8cos x ,AP =OA cos x =8cos 2x ,因此△OAP 的面积f (x )=12OA ⋅AP sin x =32sin x cos 3x ,0<x <π2,求导得f (x )=32(cos 4x -3sin 2x cos 2x )=32cos 4x (1-3tan 2x ),当0<x <π6时,f (x )>0,当π6<x <π2时,f (x )<0,即函数f (x )在0,π6 上递增,在π6,π2上递减,因此f (x )max =f π6 =32×32 3×12=63,而f (0)=f π2 =0,则0<f (x )≤63,所以△OAP 面积的取值范围是(0,63].故答案为:(0,63]16(2024·全国·模拟预测)已知函数f x =ln x .(1)求函数g x =f xx的最值.(2)证明:xe x-14x 4-e 2-34x 3-ef x >0(其中e 为自然对数的底数).【答案】(1)最大值为g e =1e,无最小值;(2)证明见解析.【分析】(1)先求出函数的导数,根据导数得出函数的单调区间,从而得出函数的最值.(2)不等式转化为e x-14x3-e2-34x2-e ln xx>0,结合(1)知ln xx≤1e,从而证明:ex-14x3-e2-34x2-1≥0,再结合导数求函数的最小值证得结果.【详解】(1)由题意知g x =ln xx,定义域为0,+∞,从而g x =1-ln x x2.所以当x∈0,e时,g x >0;当x∈e,+∞时,g x <0.所以函数g x 在0,e上单调递增,在e,+∞上单调递减.所以函数g x 的最大值为g e =1e,无最小值.(2)欲证xe x-14x4-e2-34x3-ef x >0,只需证e x-14x3-e2-34x2-e ln xx>0.由(1)知ln xx≤1e,从而e ln xx≤1,当且仅当x=e时取等号.下面证明:e x-14x3-e2-34x2-1≥0.设h x =e x-14x3-e2-34x2-1,x>0,则h x =e x-34x2-e2-32x.设H x =e x-34x2-e2-32x,则H x =e x-32x-e2-32.设F x =e x-32x-e2-32,则Fx =e x-32,故当x∈0,ln 3 2时,F x <0;当x∈ln32,+∞时,F x >0.所以函数F x 在0,ln 3 2上单调递减,在ln32,+∞上单调递增.由于F0 =5-e22<0,F2 =e2-32>0,F ln32=32-32ln32-e2-32<0,故设存在唯一的x0∈ln 3 2 ,2,使F x0 =0,且当x∈0,x0时,F x <0,当x∈x0,+∞时,F x >0.故函数H x 在0,x0上单调递减,在x0,+∞上单调递增.又H0 =1,H1 =e-e22+34=4e+3-2e24<0,H2 =e2-3-e2-3=0,所以存在唯一的x1∈0,1,使H x1=0,故当x∈0,x1∪2,+∞时,H x >0;当x∈x1,2时,H x <0.从而函数h x 在0,x1,2,+∞上分别单调递增,在x1,2上单调递减.因为h0 =e0-0-0-1=0,h2 =e2-2-e2-3-1=0,所以h x ≥0在0,+∞上恒成立,当且仅当x=2时取等号.因为取等条件不相同,所以e x-14x3-e2-34x2-e ln xx>0恒成立,即xe x-14x4-e2-34x3-ef x >0成立.【点睛】本题第(2)问考查的是利用导数证明不等式.证明时有三个关键点:一是不等式的等价变形,由第(1)问的提示可知,需要把所证明的不等式两端同时除以x,使不等式等价转化为e x-14x 3-e 2-34x 2-e ln xx>0;二是放缩法的应用,由(1)知ln x x ≤1e ,从而e ln x x ≤1,此时只需再证明不等式e x-14x 3-e 2-34x 2-1≥0即可;三是构造函数h x =e x-14x 3-e 2-34x 2-1,通过求导研究h x 的单调性,进一步求得h x 的最小值,在研究h x 单调性的过程中,需要注意特殊点、端点,以及隐零点的讨论.命题点2 含参函数的最值17(2024·四川成都·模拟预测)已知函数f (x )=e x -12(a +1)x 2-bx (a ,b ∈R )没有极值点,则ba +1的最大值为()A.e2B.e 2C.eD.e 22【答案】B【分析】转化为f (x )=e x -1a +1x -b ≥0恒成立,构造函数,求导,得到其单调性和最值,从而得到b ≤1a +1+ln a +1 a +1,故b a +1≤ln a +1 +1a +12,换元后,构造函数,求导得到其单调性和最值,求出答案.【详解】函数f x =e x -12a +1x 2-bx 没有极值点,∴f (x )=e x -1a +1x -b ≥0,或f (x )≤0恒成立,由y =e x 指数爆炸的增长性,f (x )不可能恒小于等于0,∴f (x )=e x -1a +1x -b ≥0恒成立.令h x =e x -1a +1x -b ,则h x =e x -1a +1,当a +1<0时,h x >0恒成立,h x 为R 上的增函数,因为e x ∈0,+∞ 是增函数,-1a +1x -b ∈-∞,+∞ 也是增函数,所以,此时h (x )∈-∞,+∞ ,不合题意;②当a +1>0时,h x =e x -1a +1为增函数,由h x =0得x =-ln a +1 ,令h x >0⇔x >-ln a +1 ,h x <0⇔x <-ln a +1 ,∴h x 在-∞,-ln a +1 上单调递减,在-ln a +1 ,+∞ 上单调递增,当x =-ln a +1 时,依题意有h x min =h -ln a +1 =1a +1+ln a +1 a +1-b ≥0,即b ≤1a +1+ln a +1 a +1,∵a +1>0,∴ba +1≤ln a +1 +1a +12,令a +1=x (x >0),u x =ln x +1x2x >0 ,则u x =x -ln x +1 ⋅2x x4=-2ln x +1x 3,令u x >0⇔0<x <1e ,令u x <0,解得x >1e,所以当x =1e 时,u x 取最大值u 1e=e2.故当a +1=1e,b =e 2,即a =e e -1,b =e 2时,b a +1取得最大值e 2.综上,若函数h x 没有极值点,则b a +1的最大值为e2.故选:B .【点睛】关键点睛:将函数没有极值点的问题转化为导函数恒大于等于0,通过构造函数,借助导数研究函数的最小值,从而得解.18(23-24高三下·重庆·阶段练习)若过点a ,b 可以作曲线y =ln x 的两条切线,则()A.b >ln aB.b <ln aC.a <0D.b >e a【答案】A【分析】设切点坐标为(x 0,y 0),由切点坐标求出切线方程,代入坐标(a ,b ),关于x 0的方程有两个不同的实数解,变形后转化为直线与函数图象有两个交点,构造新函数由导数确定函数的图象后可得.【详解】设切点坐标为(x 0,y 0),由于y =1x ,因此切线方程为y -ln x 0=1x 0(x -x 0),又切线过点(a ,b ),则b -ln x 0=a -x 0x 0,b +1=ln x 0+ax 0,设f (x )=ln x +ax,函数定义域是(0,+∞),则直线y =b +1与曲线f (x )=ln x +a x 有两个不同的交点,f (x )=1x -a x 2=x -ax 2,当a ≤0时,f (x )>0恒成立,f (x )在定义域内单调递增,不合题意;当a >0时,0<x <a 时,f (x )<0,f (x )单调递减,x >a 时,f (x )>0,f (x )单调递增,所以f (x )min =f (a )=ln a +1,结合图象可知b +1>ln a +1,即b >ln a .故选:A .19(2024·全国·模拟预测)函数f x =x +2 ln x +1 -ax 只有3个零点x 1,x 2,x 3x 1<x 2<x 3<3 ,则a +x 2的取值范围是.【答案】2,10ln23【分析】由题意对函数求导,为判断导数与零的大小关系,对导数再次求导求其最值,利用分类讨论思想,结合零点存在性定理,建立不等式组,可得答案.【详解】函数f x =x +2 ln x +1 -ax 的定义域为-1,+∞ ,则f x =ln x +1 +x +2x +1-a .设g x =f x ,则g x =1x +1-1x +1 2=xx +1 2,所以当x ∈-1,0 时,g x <0,f x 单调递减,当x ∈0,+∞ 时,g x >0,f x 单调递增,所以f x ≥f 0 =2-a .当2-a ≥0,即a ≤2时,f x ≥0,f x 单调递增,且f 0 =0,此时f x 只有1个零点,不满足题意;当2-a <0,即a >2时,由f1e a -1 =ln 1e a -1+1+1e a-1+21ea -1+1-a =e a +1-2a >0,f e a -1 =ln e a -1+1 +e a-1+2e a-1+1-a =1+1ea >0存在m ∈-1,0 ,n ∈0,+∞ ,使得f m =0,f n =0,当x ∈-1,m ∪n ,+∞ 时,f x >0;当x ∈m ,n 时,f x <0,所以f x 在-1,m 上单调递增,在m ,n 上单调递减,在n ,+∞ 上单调递增,又f 0 =0,易知f m >0,f n <0,由f1ea-1 =1ea-1+2 ln1ea-1+1-a1ea-1=-2ae -a <0,f e a -1 =e a -1+2 ln e a -1+1 -a e a -1 =2a >0,则f x 在-1,m ,n ,+∞ 上各有1个零点,此时满足题意.所以a >2,且x 2=0.由x 3<3,得f 3 =5ln4-3a >0,得a <10ln23.所以a +x 2的取值范围是2,10ln23.故答案为:2,10ln23.【点睛】关键点点睛:本题的关键是对a 分a ≤2和a >2讨论,当a >2时,需要利用零点存在性定理证明其满足题意,再根据x 3<3,则f 3 =5ln4-3a >0,解出即可.4.2024·北京海淀·一模)已知函数f (x )=xe a -12x .(1)求f (x )的单调区间;(2)若函数g (x )=f (x )+e -2a ,x ∈(0,+∞)存在最大值,求a 的取值范围.【答案】(1)f (x )的增区间为-∞,2 ,减区间为(2,+∞)(2)a ≥-1【分析】(1)对函数求导,得到f(x )=ea -12x 1-12x ,再求出f(x )>0和f(x )<0对应的x 取值,即可求出结果;(2)令h (x )=f (x )+e -2a ,对h (x )求导,利用导数与函数单调性间的关系,求出h (x )的单调区间,进而得出h (x )在(0,+∞)上取值范围,从而将问题转化成2e a -1+e -2a ≥e -2a 成立,构造函数m (x )=e x -1+e -2x ,再利用m (x )的单调性,即可求出结果.【详解】(1)易知定义域为R ,因为f (x )=xe a -12x ,所以f(x )=e a -12x -12xe a -12x =e a -12x 1-12x ,由f (x )=0,得到x =2,当x <2时,f (x )>0,当x >2时,f (x )<0,所以,函数f (x )的单调递增区间为-∞,2 ,单调递减区间为2,+∞ .(2)令h (x )=f (x )+e -2a ,则h (x )=f (x ),由(1)知,函数f (x )的单调递增区间为-∞,2 ,单调递减区间为2,+∞ ,所以h (x )在x =2时取得最大值h (2)=2e a -1+e -2a ,所以当x >2时,h (x )=xe a -12x +e -2a >e -2a =h (0),当0<x <2时,h (x )>h (0),即当x ∈(0,+∞)时,h (x )∈h (0),h (2) ,所以函数g (x )=xea -12x +e -2a 在(0,+∞)存在最大值的充要条件是2e a -1+e -2a ≥e -2a ,即2e a -1+e -2a +e -2a 2=e a -1+e -2a ≥0,令m (x )=e x -1+e -2x ,则m (x )=e x -1+e -2>0恒成立,所以m (x )=e x -1+e -2x 是增函数,又因为m (-1)=e -2-e -2=0,所以m (a )=e a -1+e -2a ≥0的充要条件是a ≥-1,所以a 的取值范围为-1,+∞ .【点睛】关键点点晴:本题的关键在于第(2)问,构造函数h (x )=xe a -12x +e -2a ,利用函数单调性得到x ∈(0,+∞)时,h (x )∈h (0),h (2) ,从而将问题转化成2e a -1+e -2a ≥e -2a ,构造函数m (x )=e x -1+e -2x ,再利用m (x )的单调性来解决问题【课后强化】基础保分练一、单选题1(2023·广西·模拟预测)函数f x =x 3+ax 在x =1处取得极小值,则极小值为()A.1B.2C.-2D.-1【答案】C【分析】求出函数f (x )的导数,利用极小值点求出a 值,再借助导数求出极小值作答.【详解】依题意,f x =3x 2+a ,因为函数f (x )在x =1处取得极小值,则f 1 =3+a =0,解得a =-3,此时f x =3x 2-3=3(x +1)(x -1),当x <-1或x >1时,f (x )>0,当-1<x <1,时f (x )<0,因此函数f (x )在-∞,-1 ,1,+∞ 上单调递增,在(-1,1)上单调递减,所以函数f x =x 3-3x 在x =1处取得极小值f (1)=-2.故选:C2(2024·四川凉山·二模)若f x =x sin x +cos x -1,x ∈-π2,π ,则函数f x 的零点个数为()A.0B.1C.2D.3【答案】C【分析】求导,研究函数单调性,极值,画图,根据图象得零点个数.【详解】f x =sin x +x cos x -sin x =x cos x ,当x ∈-π2,0 时,f x <0,f x 单调递减,当x ∈0,π2 时,f x >0,f x 单调递增,当x ∈π2,π 时,f x <0,f x 单调递减,又f -π2 =π2-1>0,f 0 =0,f π2 =π2-1>0,f π =-2<0,则f x =x sin x +cos x -1的草图如下:由图象可得函数f x 的零点个数为2.故选:C .3(2024·黑龙江哈尔滨·一模)在同一平面直角坐标系内,函数y=f x 及其导函数y=f x 的图象如图所示,已知两图象有且仅有一个公共点,其坐标为0,1,则()A.函数y=f x ⋅e x的最大值为1B.函数y=f x ⋅e x的最小值为1C.函数y=f xe x的最大值为1 D.函数y=f xe x的最小值为1【答案】C【分析】AB选项,先判断出虚线部分为y=f x ,实线部分为y=f x ,求导得到y=f x ⋅e x在R上单调递增,AB错误;再求导得到x∈(-∞,0)时,y=f(x)e x单调递增,当x∈(0,+∞)时,y=f(x)e x单调递减,故C正确,D错误.【详解】AB选项,由题意可知,两个函数图像都在x轴上方,任何一个为导函数,则另外一个函数应该单调递增,判断可知,虚线部分为y=f x ,实线部分为y=f x ,故y =f x ⋅e x+f x ⋅e x=f x +f x⋅e x>0恒成立,故y=f x ⋅e x在R上单调递增,则A,B显然错误,对于C,D,y =f (x)e x-f(x)e xe x2=f (x)-f(x)e x,由图像可知x∈(-∞,0),y =f (x)-f(x)e x>0恒成立,故y=f(x)e x单调递增,当x∈(0,+∞),y =f (x)-f(x)e x<0,y=f(x)e x单调递减,所以函数y=f(x)e x在x=0处取得极大值,也为最大值,f0e0=1,C正确,D错误.故选:C4(2024·陕西安康·模拟预测)已知函数f x =ae2x+be x+2x有2个极值点,则()A.0<a<b216B.b>0C.a<4bD.b>2a【答案】A【分析】求出函数的导函数,令t=e x,依题意可得关于t的方程2at2+bt+2=0有两个不相等的正实根t1、t2,则2a≠0Δ>0t1+t2>0t1t2>0,即可判断.【详解】函数f x =ae2x+be x+2x的定义域为R,且f x =2ae2x+be x+2,依题意f x =0有两个不相等实数根,令t=e x,则关于t的方程2at2+bt+2=0有两个不相等的正实根t1、t2,所以2a ≠0Δ=b 2-16a >0t 1+t 2=-b 2a >0t 1t 2=1a >0,所以0<a <b216,b <0.故选:A5(2024·全国·模拟预测)已知函数f x =a sin x +cos xe x+x 在0,π 上恰有两个极值点,则实数a的取值范围是()A.0,22e π4B.-∞,e πC.0,e πD.22e π4,+∞【答案】D【分析】函数f x 在0,π 上恰有两个极值点,fx 在0,π 上有两个变号零点,分离常数得a =e x 2sin x,转化为两函数图象有两个不同的交点,利用数形结合思想进行求解;或直接求函数f x 的单调性,求图象在0,π 上与x 轴有两个交点的条件.【详解】解法一:由题意可得f x =-2a sin xex+1,因为函数f x 在0,π 上恰有两个极值点,所以f x 在0,π 上有两个变号零点.令fx =-2a sin x e x+1=0,可得a =e x 2sin x ,令g x =e x 2sin x ,x ∈0,π ,则直线y =a 与函数y =g x ,x ∈0,π 的图象有两个不同的交点,g x =2e x sin x -cos x 2sin x 2=22e x sin x -π4 2sin x 2,当x ∈π4,π 时,g x >0,所以g x 在π4,π 上单调递增,当x ∈0,π4 时,g x <0,所以g x 在0,π4上单调递减,又g π4 =22e π4,当x 趋近于0时,g x 趋近于+∞,当x 趋近于π时,g x 趋近于+∞,所以可作出g x 的图象如图所示,数形结合可知a >22e π4,即实数a 的取值范围是22e π4,+∞,故选:D .解法二 由题意可得f x =-2a sin xex+1.因为函数f x 在0,π 上恰有两个极值点,所以f x 在0,π 上有两个变号零点.当a ≤0时,f x >0在0,π 上恒成立,不符合题意.当a >0时,令h x =fx =-2a sin x e x +1,则hx=22a sin x -π4 e x,当x ∈π4,π 时,h x >0,h x 单调递增,当x ∈0,π4时,h x <0,h x 单调递减,因为h 0 =h π =1,h π4 =1-2a e π4,所以h π4 =1-2a eπ4<0,则a >22e π4,即实数a 的取值范围是22e π4,+∞,故选:D .【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.二、多选题6(2024·全国·模拟预测)已知函数f x =ae x +bx在定义域内既存在极大值点又存在极小值点,则()A.ab >0B.b a ≤4e2C.4a -be 2>0 D.对于任意非零实数a ,总存在实数b 满足题意【答案】AD【分析】根据给定条件,分类讨论,逐项判断即可.【详解】由题意,得f x =ae x-b x 2=ax 2e x -b x 2.令f x =0,得x 2e x =b a .令g x =x 2e x ,则g x =x x +2 e x .当x ∈-∞,-2 ∪0,+∞ 时,g x >0,此时g x 单调递增;当x ∈-2,0 时,g x <0,此时g x 单调递减.∵g -2 =4e 2,g 0 =0,当x →-∞时,g x →0,∴当0<b a <4e2时,f x 在定义域内既存在极大值点又存在极小值点.故A 正确,B 不正确.当a <0时,由0<b a <4e2知,当b <0时,4a -be 2<0,故C 不正确.对于任意非零实数a ,总存在实数b ,使得0<b a <4e2成立,故D 正确.故选:AD .7(2024·湖北武汉·模拟预测)已知各项都是正数的数列a n 的前n 项和为S n ,且S n =a n 2+12a n,则下列结论正确的是()A.当m >n m ,n ∈N * 时,a m >a nB.S n +S n +2<2S n +1C.数列S 2n 是等差数列D.S n -1S n≥ln n 【答案】BCD【分析】计算数列首项及第二项可判定A ,利用等差数列的定义及S n ,a n 的关系可判定C ,从而求出S n 的通项公式结合基本不等式、函数的单调性可判定B 、D .【详解】对A ,由题意可知a 1=a 12+12a 1⇒a 21=1,所以a 1=1,则a 1+a 2=a 22+12a 2⇒a 22+2a 2-1=0,所以a 2=2-1<a 1,故A 错误;对C ,由S n =a n 2+12a n ⇒S n =S n -S n -12+12S n -S n -1⇒S 2n -S 2n -1=1n ≥2 ,故C 正确;对C ,所以S 2n =1+n -1 =n ⇒S n =n ,则S n +S n +2=n +n +2<2n +n +22=2S n +1,故B 正确;对D ,易知S n -1S n =n -1n,令f x =x -1x -2ln x x ≥1 ,则f x =1+1x2-2x =1x -1 2≥0,则f x 单调递增,所以f x ≥f 1 =0⇒n -1n ≥ln n ,即S n -1S n ≥ln n ,故D 正确.故选:BCD 三、填空题8(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段CE ,DF 与分别以OC ,OD 为直径的半圆弧组成)表示一条步道.其中的点C ,D 是线段AB 上的动点,点O 为线段AB ,CD 的中点,点E ,F 在以AB 为直径的半圆弧上,且∠OCE ,∠ODF 均为直角.若AB =1百米,则此步道的最大长度为百米.【答案】π2+42【分析】设半圆步道直径为x 百米,连接AE ,BE ,借助相似三角形性质用x 表示CE ,结合对称性求出步道长度关于x 的函数关系,利用导数求出最大值即得.【详解】设半圆步道直径为x 百米,连接AE ,BE ,显然∠AEB =90°,由点O 为线段AB ,CD 的中点,得两个半圆步道及直道CE ,DF 都关于过点O 垂直于AB 的直线对称,则AC =12-x ,BC =12+x ,又CE ⊥AB ,则Rt △ACE ∽Rt △ECB ,有CE 2=AC ⋅BC ,即有DF =CE =14-x 2,因此步道长f (x )=214-x 2+πx =1-4x 2+πx ,0<x <12,求导得f (x )=-4x 1-4x 2+π,由f(x )=0,得x =π2π2+4,当0<x <π2π2+4时,f (x )>0,函数f (x )递增,当π2π2+4<x <12时,f(x )<0,函数f (x )递减,因此当x =π2π2+4时,f (x )max =1-4π2π2+42+π22π2+4=π2+42,所以步道的最大长度为π2+42百米.故答案为:π2+429(2023·江西赣州·模拟预测)当x =0时,函数f x =ae -x +bx 取得极小值1,则a +b =.【答案】2【分析】求导函数f x =-ae -x +b ,根据f (0)=a =1f (0)=-a +b =0求得a ,b 的值,检验极值点后可得a +b 的值.【详解】函数f x =ae -x +bx ,则f x =-ae -x +b 当x =0时,函数f x =ae -x +bx 取得极小值1,所以f (0)=a =1f (0)=-a +b =0,解得a =1,b =1,所以f x =-e -x+1=e x -1ex ,则函数在x ∈-∞,0 时,f x <0,函数单调递减;在x ∈0,+∞ 时,f x >0,函数单调递增;符合x =0是函数的极值点;故a +b =2.故答案为:2.四、解答题10(2023·河南洛阳·一模)已知函数f x =12x 2+1x +12.(1)求f x 的图像在点2,f 2 处的切线方程;(2)求f x 在12,2上的值域.【答案】(1) 7x -4y -2=0;(2)2,3 .【分析】(1)把点2,f 2 代入函数解析式,得切点坐标,通过求导,得到切线的斜率,根据直线的点斜式方程,求切线方程.(2)解不等式f x >0,得函数增区间,解不等式f x <0,得函数减区间,结合x ∈12,2,确定函数单调性,求得最值,进而得出f x 在12,2上的值域.【详解】(1)因为f x =12x 2+1x +12,所以f x =x -1x2,所以f 2 =3,f 2 =74,故所求切线方程为y -3=74x -2 ,即7x -4y -2=0.(2)由(1)知f x =x 3-1x 2=x -1 x 2+x +1 x 2,x ∈12,2 .令f x >0,得1<x ≤2;令f x <0,得12≤x <1.所以f x 在12,1上单调递减,在1,2 上单调递增,所以f x min =f 1 =2.又f 12 =218,f 2 =3,因为f 2 >f 12,所以2≤f x ≤3,即f x 在12,2上的值域为2,3 .11(2024·上海静安·二模)已知k ∈R ,记f (x )=a x +k ⋅a -x (a >0且a ≠1).(1)当a =e (e 是自然对数的底)时,试讨论函数y =f (x )的单调性和最值;(2)试讨论函数y =f (x )的奇偶性;(3)拓展与探究:① 当k 在什么范围取值时,函数y =f (x )的图象在x 轴上存在对称中心?请说明理由;②请提出函数y =f (x )的一个新性质,并用数学符号语言表达出来.(不必证明)【答案】(1)详见解析;(2)详见解析;(3)①当k <0时,函数y =f (x )有对称中心12log (-k ),0,理由见解析;②答案见解析.【分析】(1)当a =e 时,求得f (x )=e x -k ⋅e -x ,分k ≤0和k >0,两种情况讨论,分别求得函数的单调性,进而求得函数的最值;(2)根据题意,分别结合f (-x )=f (x )和f (-x )=-f (x ),列出方程求得k 的值,即可得到结论;(3)根据题意,得到当k <0时,函数y =f (x )有对称中心12log (-k ),0 ,且k <0时,对于任意的x ∈R ,都有-x ∈R ,并且f (log a (-k )-x )=-f (x ).【详解】(1)解:当a =e 时,函数f (x )=e x +k ⋅e -x ,可得f (x )=e x -k ⋅e -x ,若k ≤0时,f (x )>0,故函数y =f (x )在R 上单调递增,函数y =f (x )在R 上无最值;若k >0时,令f (x )=0,可得x =12ln k ,当x ∈-∞,12ln k 时,f x <0,函数y =f (x )在-∞,12ln k 上为严格减函数;当x ∈12ln k ,+∞ 时,f x >0,函数y =f (x )在12ln k ,+∞ 上为严格增函数,所以,当x =12ln k 时,函数取得最小值,最小值为f 12ln k =2k ,无最大值.综上:当k ≤0时,函数f (x )在R 上无最值;当k >0时,最小值为2k ,无最大值.(2)解:因为“y =f (x )为偶函数”⇔“对于任意的x ∈R ,都有f (-x )=f (x )”即对于任意的x ∈R ,都有-x ∈R ,并且a x +k ⋅a -x =a -x +k ⋅a x ;即对于任意的x ∈R ,(k -1)(a x -a -x )=0,可得k =1,所以k =1是y =f (x )为偶函数的充要条件.因为“y =f (x )为奇函数”⇔“对于任意的x ∈R ,都有f (-x )=-f (x )”,即对于任意的x ∈R ,都有-x ∈R ,并且-a x -k ⋅a -x =a -x +k ⋅a x ,即对于任意的x ∈R ,(k +1)(a x +a -x )=0,可得k =-1,所以k =-1是y =f (x )为奇函数的充要条件,当k ≠±1时,y =f (x )是非奇非偶函数.(3)解:①当k <0时,函数y =f (x )有对称中心12log (-k ),0,当k <0时,对于任意的x ∈R ,都有-x ∈R ,并且f (log a (-k )-x )=-f (x ).证明:当k <0时,令f (x )=0,解得x =12log a (-k )为函数y =f (x )的零点,由f (x )=a x +k ⋅a -x ,。
导数法求最大最小值
令V(x)60x3x20,解得x=0(舍去),x=40.且V(40)=
16000.
2
由题意可知,当x过小(接近0)或过大(接近60)时,箱子
的容积很小,因此,16000是最大值.
答:当x=40cm时,箱子容积最大,最大容积是16000cm3.
类题:圆柱形金属饮料罐的容积一定时,它的高与底半径 应怎样选取,才能使所用的材料最省?
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
注:可以进一步讨论,当AB的距离大于15千米时,要找的 最优点总在距A点15千米的D点处;当AB之间的距离 不超过15千米时,所选D点与B点重合.
练习:已知圆锥的底面半径为R,高为H,求内接于这个圆 锥体并且体积最大的圆柱体的高h.
答:设圆柱底面半径为r,可得r=R(H-h)/H.易得当h=H/3 时, 圆柱体的体积最大.
函数的最大值 与最小值
一、复习与引入
1.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方 法是: ①如果在x0附近的左侧 f(x)0 右侧 f(x)0,那么,f(x0) 是极大值; ②如果在x0附近的左侧 f(x)0右侧 f(x)0 ,那么,f(x0) 是极小值.
2.导数为零的点是该点为极值点的必要条件,而不是充 分条件.极值只能在函数不可导的点或导数为零的点 取到.
例2:如图,铁路线上AB段长
C
100km,工厂C到铁路的
距离CA=20km.现在要
在AB上某一处D,向C修 一条公路.已知铁路每吨 B
D
A
千米与公路每吨千米的运费之比为3:5.为了使原料
从供应站B运到工厂C的运费最省,D应修在何处?
解:设DA=xkm,那么DB=(100-x)km,CD= 202 x2 400 x2km.
【鼎尖教案】人教版高中数学必修系列:3.7函数的极值(第一课时)
3.7 函数的极值课时安排2课时从容说课从函数图象出发讲述函数的极大值、极小值、极值、极值点的意义.在教法上,让学生从解题过程中概括出利用一阶导数求函数的极大值和极小值的方法.函数的极值是就函数在某一点附近的小区间而言的,在函数的整个定义区间内可能有多个极大值或极小值,并且函数要在这一点处连续.教学时,可以安排这样的例题来加以说明,加深理解.在求可导函数的极值时,应要求学生注意如下几点:(1)可导函数的极值点一定是它的驻点(即f′(x0)=0),注意这句话中的“可导”两字是必不可少的.例如函数y=|x|在点x=0处有极小值f(0)=0,可是f(x)在x=0处不可导.(2)可导函数的驻点可能是极值点,也可能不是极值点,例如函数y=x3的导数是f′(x)=3x2,在点x=0处有f′(0)=0,即点x=0是f(x)=x3的驻点,但不是极值点.(3)求一个可导函数的极值时,常常把驻点附近的函数值的讨论情况列成表格,这样可使函数在各单调区间的增减情况一目了然.但是值得注意的是不能忘记定义域的作用.在教学时要采用主动学习模式,让学生积极参加,主动建构,不能被动接受.教师的作用就是调节、策划.增加一些新的教学内容,可以让学生自主编拟题目,或者分组编题、解题.培养学生良好的数学素养和个性品质.第十三课时课题3.7.1 函数的极值(一)教学目标一,教学知识点1.极大值的定义和判别方法.2.极小值的定义和判别方法.3.极值的概念.4.求可导函数f(x)的极值的步骤.二,能力训练要求1.理解极大值、极小值的概念.2.能够运用判别极大值、极小值的方法来求函数的极值.3.掌握求可导函数的极值的步骤.三,德育渗透目标1.加深学生对局部与整体之间的理解.2.培养学生数形结合的数学思想.3.培养学生自己归纳、总结的能力.教学重点极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点对极大、极小值概念的理解,可以结合图象进行说明,并且要说明函数的极值是就函数在某一点附近的小区间而言的.观察图象得出判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号.教学方法建构主义观点下的高中数学教学实践,让学生通过观察图象,得到极大、极小值的定义,并让他们比较其与最大、最小值的区别.让学生自己观察图象得到判别极大、极小值的方法,并通过例1,自己归纳、总结解题的步骤.教具准备幻灯片三张第一张:极大、极小值的定义(记作3.7.1A)1.极大值.一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点.2.极小值.一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.3.极大值与极小值统称为极值.第二张:判别f(x0)是极大、极小值的方法(记作3.7.1 B)当函数f(x)在点x0处连续时,判别f(x0)是极大(小)值的方法是:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.第三张:求可导函数f(x)的极值的步骤(记作3.7.1 C)求可导函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x).(2)求方程f′(x)=0的根.(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.教学过程Ⅰ.课题导入[师]我们上节课利用学过的导数这个有力工具研究了函数的一种性质——单调性,怎么来判断函数的单调性呢?[生]先对函数进行求导.如果f′(x)>0,那么函数f(x)为增函数;如果f′(x)<0,那么函数f(x)为减函数.[师]比较一下,以前判断函数单调性的方法和现在的判断方法,哪个比较简单?[生齐答]现在的.[师]那么,我们再利用导数这种先进有效的工具,再来研究一下函数的另一种性质——函数的极值.Ⅱ.讲授新课图3-17图3-18[师]我们观察一下两张图象中,点a和点b处的函数值与它们附近点的函数值有什么关系?[生]从图3-17可以看出,点a处的函数值f(a)比点a附近的点的函数值大;而从图3-18可以看出,点b处的函数值f(b)比点b附近的点的函数值小.[师]我们把如图3-17情况的点a的函数值f(a)称极大值,把如图3-18情况的点b的函数值f(b)称极小值,那么能给极大值,极小值下个定义吗?[生]如果对点x0附近的所有的点,都有f(x)<f(x0),那么f(x0)是函数f(x)的一个极大值.如果对点x0附近的所有的点,都有f(x)>f(x0),那么f(x0)是函数f(x)的一个极小值.[师]下定义时,要更准确一点,有f(x0)存在,且与附近点的函数值比较.那么首先f(x)在点x0附近有定义,把极大值、极小值统称为极值.(打出幻灯片3.7.1 A)[师]我们看一下极大值、极小值的概念和学过的最大值、最小值的概念有什么区别?[生]极大、极小值是对于点x0附近的点而言的,而最大、最小值是对于整个定义区间上的点而言的.[师]最大、最小值可以有几个?极大、极小值呢?[生]最大、最小值只有1个,极大、极小值可以有多个.(板书)(一)函数的极值1.函数的极值是就函数在某一点附近的小区间而言的,在函数的整个定义区间内可能有多个极大值或极小值,并且函数要在这点处连续.[师]我们继续观察图3-17和图3-18,点a、b处的切线与点a、b附近的点处的切线有什么特点?[生]点a、b处的切线都与x轴平行,所以点a、b处的切线的斜率为0,即f′(a)=0,f′(b)=0.在点a的左侧的点处的切线的斜率为正,右侧为负;而在点b的左侧的点处的切线的斜率为负,右侧为正.(一开始画图,f′(a)=0,f′(b)=0,f′(x)>0,f′(x)<0,可不必标上去,等学生回答后再在图上标出)[师]那么如果函数f (x )在点x 0处连续,是否可以总结一下判别f (x 0)是极大或极小值的方法.[生]如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值.如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.(打开幻灯片3.7.1 B )[师]我们知道,可导函数如果x 0是极值点,那么f ′(x 0)=0,所以可导函数极值点的导数为0,那么反过来,导数为0的点一定是极值点吗?[生]不是.[师]举个例子.(学生举例,老师板书)(板书)y =x 3,在x =0处.∵y ′=(x 3)′=3x 2,y ′|x =0=0,当x >0时,y ′>0,当x <0时,y ′>0,∴由极大、极小值的定义知,x =0不是极值点.[师]再来看一个例子.(板书)y =|x |,在x =0处.∵⎩⎨⎧<-≥=,0 ,0x x x x y ∴⎩⎨⎧<->=',0 1,01x x y ∴y =|x |在x =0处不可导.当x <0时y ′<0,当x >0时y ′>0,∴x =0是y =|x |的极小值点.2.对于可导函数,一点是极值点的必要条件是这点的导数为0,而一点是极值点的充分条件是这点两侧的导数异号,即可导函数极值点的导数一定为0,但导数为0的点不一定都是极值点,且对于一般的函数,函数的不可导点也可能是极值点.(二)课本例题[例1]求y =31x 3-4x +4的极值.解:y ′=(31x 3-4x +4)′=x 2-4=(x +2)(x -2), 令y ′=0,解得x 1=-2,x 2=2.当x 变化时,y ′、y 的变化情况如下表:x (-∞,-2)-2 (-2,2)2 (2,+∞)y ′ + 0 -0 +y↗极大值328↘极小值-34 ↗∴当x =-2时,y 有极大值且y 极大值=328;当x =2时,y 有极小值且y 极小值=-34.[例2]求y =(x 2-1)3+1的极值.解:y ′=6x (x 2-1)2=6x (x +1)2(x -1)2,令y ′=0,解得x 1=-1,x 2=0,x 3=1.当x 变化时,y ′、y 的变化情况如下表:x (-∞,-1)-1 (-1,0)0 (0,1) 1 (1,+∞)y ′ - 0 - 0 + 0 + y↘无极值↘极小值0↗无极值↗∴当x =0时,y 有极小值且y 极小值=0.[师]这就是我们解极值问题的一般解法,对于可导函数,能否总结一下,求极值的具体步骤呢?[生]第一,求导数f ′(x ).第二,令f ′(x )=0求方程的根.第三,列表,检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右都是正,或者左右都是负,那么f (x )在这个根处无极值.[师]这位同学回答得很好,他把无极值的情况也总结了一下.而书本上的总结只是针对例1的情况,我们可以根据例1、例2,把所有的情况都总结一下.但这个解法的前提是对可导函数而言的.如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点.(打出幻灯片3.7.1 C ) (三)精选例题[例1]已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,求f (2)的值.解:∵f ′(x )=3x 2+2ax +b , 又∵在x =1处有极值为10,∴⎩⎨⎧==',10)1(,0)1(f f∴⎩⎨⎧=+++=++.101,0322a b a b a两式相减得a 2-a -12=0,∴a =4,a =-3.当a =4时,b =-11; 当a =-3时,b =3.当f (x )=x 3+4x 2-11x +16时,f (2)=8+4×4-11×2+16=18;当f (x )=x 3-3x 2+3x +9时,f (2)=8-3×4+3×2+9=11.[例2]已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,求实数a 的取值范围.解:∵f ′(x )=3x 2+2ax +a +6,令f ′(x )=0,∴3x 2+2ax +a +6=0有两个不同的解.∴Δ>0.∴4a 2-12(a +6)>0.∴a 2-3a -18>0. ∴a >6或a <-3,即所求a 的取值范围是(-∞,-3)∪(6,+∞).Ⅲ.课堂练习 求下列函数的极值.(1)y =x 2-7x +6;(2)y =x 3-27x .解:(1)y ′=(x 2-7x +6)′=2x -7,令y ′=0,解得x =27.当x 变化时,y ′,y 的变化情况如下表:x (-∞,27) 27 (27,+∞) y ′ - 0 + y↘极小值-425 ↗∴当x =27时,y 有极小值,且y 极小值=-425.(2)y ′=(x 3-27x )′=3x 2-27=3(x +3)(x -3),令y ′=0,解得x 1=-3,x 2=3.当x 变化时,y ′,y 的变化情况如下表:x (-∞,-3)-3 (-3,3)3 (3,+∞)y ′ + 0 - 0 + y↗极大值54↘极小值-54↗∴当x =-3时,y 有极大值,且y 极大值=54;当x =3时,y 有极小值,且y 极小值=-54.Ⅳ.课时小结[学生总结]这节课我们主要学习了函数的极大、极小值的定义以及判别方法,求可导函数f (x )的极值的三个步骤,还有要弄清函数的极值是就函数在某一点附近的小区间而言的,在整个定义区间可能有多个极值,且要在这点处连续.可导函数极值点的导数为0,但导数为零的点不一定是极值点,要看这点两侧的导数是否异号.函数的不可导点可能是极值点.Ⅴ.课后作业(一)课本P 130习题3.7 1.(二)复习并总结这节的内容.板书设计3.7.1 函数的极值(一)画图举例:y=x3,在x=0处.y=|x|,在x=0处.课本例题1x3-4x+4的极值.例1.求y=3例2.求y=(x2-1)3+1的极值.1.函数的极值是就函数在某一点附近的小区间而言的,在函数的整个定义区间内可能有多个极大(极小)值,且函数要在这点处连续.2.对于可导函数,一点是极值点的必要条件是这点导数为0,充分条件是这点两侧的导数异号.精选例题例1.例2.课堂练习求下列函数的极值:(1)y=x2-7x+6;(2)y=x3-27x.课时小结课后作业 备课资料关于9sin x +16csc x 值域的研究王思俭第五届“希望杯”高二第二试二4:函数y =9sin x +16csc x ,x ∈(0, 2π],则函数的最小值为__________.1.挖掘多种解法,揭示解题思想思路1:本题不能直接使用均值不等式求最小值,因为虽然有9sin x +16csc x ≥2x x csc 16sin 9⋅=24,但等号成立的充要条件是9sin x =16csc x ,即sin x =34∉(0,1],但可借助函数y =9t +t16,t ∈(0,1]的单调性来求解.解:令sin x =t ∈(0,1],则y =9t +t 16,易证函数y 在(0,1]上是单调递减的,所以当t =1,即x =2π时,y m in =25.思路2:虽然不能直接使用均值不等式求最小值,但只要对xsin 16进行分析就可以利用了.解:y =9(sin x +xsin 1)+x sin 7≥9·2x x sin 1sin ⋅+x sin 7=18+x sin 7≥18+17=25,两处不等式中等号成立的充要条件都是sin x =1. 故y m in =25.思路3:令sin x =t ∈(0,1],于是问题转化为关于t 的一元二次方程9t 2-yt +16=0在(0,1]中至少有一个根时,求参数y 的取值范围,利用二次函数图象就可求得.解:令sin x =t ,原式化为9t 2-yt +16=0, t ∈(0,1],(*) 此方程在(0,1]内至少有一个解.首先应有Δ≥0,即y ≥24.由于二次函数f (t )=9t 2-yt +16的对称轴t =18y>1,所以有⎪⎩⎪⎨⎧>≤≥∆.0)0(,0)1(,0f f 解得y ≥25.思路4:可从原式中解出sin x ,再利用正弦sin x ∈(0,1]求解.解:原式化为9(sin x )2-y sin x +16=0,当Δ≥0,即y ≥24时,sin x =1816362⋅-±y y .而y ≥24,0<sin x ≤1,所以0<1816362⋅--y y ≤1.解得y ≥25,故y m in =25.2.挖掘试题内涵,培养揭示能力引申1:函数y =ax +xb 的性质(ab ≠0). (如下表)条件图象与性质项 目⎩⎨⎧>>00b a ⎩⎨⎧><00b a ⎩⎨⎧<<00b a ⎩⎨⎧<>0b a图 象奇偶性 奇函数 奇函数 奇函数奇函数 极 值 y 极大=-2ab ,y 极小=2ab 无极值 y 极大=-2ab ,y 极小=2ab 无极值 图象极值点极大值点:(-a b,-2ab ) 极小值点:(ab,2ab ) 无极大值点:(ab,-2ab ) 极小值点:(-ab,2ab ) 无渐近线方程 x =0及y =ax x =0及y =ax x =0及y =axx =0及y =ax 递增区间(-∞,-ab]和[ab,+∞) 无[-ab ,0)和(0,ab ] (-∞,0)和(0,+∞)递减区间(-a b ,0)和(0,ab ) (-∞,0)和(0,+∞) (-∞,-ab)和(ab,+∞) 无引申2:函数y =x b a x n m sin sin +(a >0,b >0,m 、n ∈N ,0<x <2π).(1)若abn ≥m ,当且仅当sin x =1时,有最小值y m in =a1+b .(2)若abn <m ,当且仅当sin x =nm mabnf +时,有最小值y m in =(m +n )nm nn m ma n mb +.证明:(1)y =axm sin +xa n sin 1+xa n sin 1+…+xa n sin 1≥a1(ab +1)1)sin 1(+-ab mabn x,因为abn -m ≥0,而xsin 1≥1, 所以y m in =a 1(ab +1)=a1+b .取等号的充要条件为sin x =1.(2)y =na x m sin +na x m sin +na x m sin +…+na x m sin +x m b n sin +x m b n sin +…+xm bn sin≥(m +n )n m mn nm n n m m x x a n m b +⋅)(sin )(sin =(m +n )nm nn m m a n m b +.3.挖掘应用功能,提高解题能力赛题及引申给出了这类问题的一般图象和性质.引导学生应用这些性质解题,尤其是高考和竞赛题,可以培养灵活解题的能力.[例1](1988年全国高考,文6)解不等式lg (x -x1)<0.解:原不等式为0<x -x1<1,由函数y =x -x1的图象(如图3-19),知不等式解集为(-1,x 1)∪(1,x 2)(x 1,x 2为方程x -x1=1的两个根,即251±).图3-19[例2](1986年上海市高中数学竞赛)设a >1,a 、θ均为实数,求当θ变化时,函数θθθsin 1)sin 4)(sin (+++=a y 的最小值.解:令1+sin θ=t ∈(0,2],则y =tt a t )3)(1(+-+=t +ta )1(3-+2+a ,∵a >1,∴a -1>0. 故u =t +ta )1(3-(a >1,0<t ≤2)的图象是位于第一象限的曲线段(如图3-20).图3-20根据函数的性质,极小值点为()1(3-a ,)1(32-a ). 于是当0<)1(3-a ≤2,即1<a ≤37时,y m in =)1(32-a +a +2.当)1(3-a >2,即a >37时,函数y 在(0,2]上是减函数,所以在t =2时,有最小值y m in =2)1(5+a .[例3](1990年上海市高三数学竞赛题)设抛物线y =x 2+mx +2与两端点为(0,1),(2,3)的线段有两个相异的交点,则m 的取值范围是__________.略解:联立方程组⎩⎨⎧≤≤+=++=)20(1,22x x y mx x y化为1-mx =x 2-x +2,易知x =0时不成立.所以1-m =x +x1(0<x ≤2).方程的解的问题转化为两函数u =1-m ,u =x +x1(0<x ≤2)有两个相异交点的问题(如图3-21),其充要条件为2<1-m ≤u(2)=25,即-23≤m <-1.图3-21[例4](1991年上海高考压轴题)在△ABC 中,BC =a ,AC =b ,BA =c ,∠ACB =θ,现将△ABC 分别以BC 、AC 、AB 所在直线为轴旋转一周,设所得的三个旋转体的体积依次为V 1、V 2、V 3.(1)求T =213V V V +(用a 、b 、c 、θ表示);(2)若θ为定值,并令cba +=x ,将T 表示为x 的函数,写出这个函数的定义域,并求这个函数的最大值u ;(3)当θ在[3π,π)内变化时,求u 的最大值.略解:(1)在△ABC 中,设BC 、AC 、AB 上的高依次为h 1、h 2、h 3,则h 3=cab θsin , h 1=b sin θ,h 2=a sin θ.而V 1=3πa 2b sin 2θ,V 2=3πb 2a sin 2θ,V 3=31cb a 22sin 2θ,所以T =cb a ab)(+.(2)因为c 2=a 2+b 2-2ab cos θ=(a +b )2-2ab (1+cos θ),而a +b =cx ,所以ab =)cos 1(2)1(22θ+-c x .故T =)cos 1(21θ+(x -x1).又因为c2=(a +b )2-2ab (1+cos θ)≥(a +b )2-2)(2b a +(1+cos θ)=2)(2b a +(1-cos θ),所以1<x 2≤θcos 12-,即1<x ≤θcos 12-.又因为函数y =x -x1在x >0时为增函数,所以当x =θcos 12-时,T max =2sin41 =u .(3)因为3π≤θ<π,所以21≤sin θ<1,故u max =21. (原文发表在《数理天地》北京1998年第1期)。
用导数求函数极值
①首先确定函数定义域。
②二次函数通过配方或分解因式可求极值。
③通过求导是求极值最常用方法。
f'(x)=0,则此时有极值。
>0为↑
<0为↓
判断是极大还是极小值。
例如:
①求函数的二阶导数,将极值点代入,二级导数值>0
为极小值点,反之为极大值点
二级导数值=0,有可能不是极值点;
②判断极值点左右邻域的导数值的正负:左+右-
为极大值点,左-右+
为极小值点,左右正负不变,不是极值点。
极大值和极小值
也可以为集合定义极大值和极小值。
一般来说,如果有序集S具有极大的元素m,则m是极大元素。
此外,如果S是有序集T的子集,并且m是相对于由T诱导的阶数的S的极大元素,则m是T中S的极小上限。
类似的结果适用于极小元素,极小元素和极大的下限。
在一般的部分顺序的情况下,极小元素(小于所有其他元素)不应该与极小元素混淆(没有更小)。
同样,部分有序集合(poset)的极大元素是集合中包含的集合的上限,而集合A的极大元素m是A的元素,使得如果m≤b(对于任何b在A)然后m = b。
导数的应用 3.7 利用MATLAB求一元函数的极值与最值
例1 求函数 y 2x3 6x2 18x 7 在 [4, 4] 上的极值,并作图对照
解:作图输入
>> x=-4:0.1:4;y=2*x.^3-6*x.^2-18*x+7;plot(x,y) 输出图形,由图可知,显然函数y 在[-4,4] 上有极 大值和极小值
。
求极小值输入: >>[x1,y1]=fminbnd('2*x^3-6*x^2-18*x+7',-4,4) 输出: x1 = 3.0000 y1 = -47.0000 求极大值输入: >>[x2,y2]=fminbnd('-(2*x^3-6*x^2-18*x+7)',-4,4) x2 = -1.0000 y2 = -17.0000 即函数在 x 3 处取得极小值-47;在 x 1 输出:
MATLAB7.1提供fminbnd函数求一元函数
的极小值点与最小值点,其调用格式如下:
f=‘f(x)’;[xmin,ymin]=fminbnd(f,a,b)
表示求函数 在区间 上的极小值,但它只能
给出连续函数的局部最优解;
f=‘-f(x)’;[xmax,ymax]=fminbnd(f,a,b)
表示求函数 在区间 上的极大值,这里极大 值要取出输出量ymax的相反数。
处取得极大值为17。
例题 例2 用一块边长为24cm的正方形铁皮,在其四角各截 去一块面积相等的小正方形,做成无盖的铁盒. 问截 去的小正方形边长为多少时,做出的铁盒容积最大? 第一步 建模:设截去的小正方形的边长为x cm
V x(24 2 x) 2 (0 x 12)
第二步 优化: >>f='-x*(24-2*x)^2'; >> fminbnd(f,0,12) >>ans = 4.0000
函数的极值与最值的求解
函数的极值与最值的求解在数学中,我们经常需要求解函数的极值和最值。
函数的极值指的是函数在某个定义域内取得的最大值或最小值,最值则是函数在整个定义域内的最大值或最小值。
本文将介绍如何求解函数的极值和最值的方法。
一、函数的极值求解方法1. 导数法导数法是求解函数极值的一种常用方法。
根据函数的极值定义,极值点处函数的导数为零或不存在。
因此,我们可以通过以下步骤求解函数的极值:1)求函数的导数;2)令导数等于零,解方程得到极值点的横坐标;3)将极值点的横坐标代入原函数,求得纵坐标。
例如,对于函数f(x) = x^2 - 2x + 1,我们可以进行如下计算:1)求导:f'(x) = 2x - 2;2)令导数等于零:2x - 2 = 0,解得x = 1;3)将x = 1代入原函数:f(1) = 1^2 - 2(1) + 1 = 0,得到极小值0。
2. 二阶导数法在某些情况下,使用二阶导数可以更方便地求解函数的极值。
根据函数的极值定义,当函数的一阶导数为零且二阶导数大于零时,函数取得极小值;当一阶导数为零且二阶导数小于零时,函数取得极大值。
例如,对于函数f(x) = x^3 - 6x^2 + 9x + 2,我们可以进行如下计算:1)求导:f'(x) = 3x^2 - 12x + 9;2)求二阶导数:f''(x) = 6x - 12;3)令一阶导数等于零,解方程得到极值点的横坐标:3x^2 - 12x +9 = 0,解得x = 1;4)将x = 1代入二阶导数:f''(1) = 6 - 12 = -6,表明函数在x = 1处取得极大值。
二、函数的最值求解方法函数的最值即为整个定义域内的最大值或最小值。
求解函数最值的方法有以下几种:1. 导数法和求解极值类似,我们可以通过求解函数在定义域内的导数来找到函数的最值。
例如,对于函数f(x) = -x^2 + 4x - 3,我们可以进行如下计算:1)求导:f'(x) = -2x + 4;2)令导数等于零,解方程得到最值点的横坐标:-2x + 4 = 0,解得x = 2;3)将x = 2代入原函数:f(2) = -(2^2) + 4(2) - 3 = 1,得到函数的最大值1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (x)
+
0
≤0
0
+
f(x) ↗ 极大值 ↘ 极小值 ↗
由表可得40 ff((11)),即aabbcc04 .
又5a=3b,解得a=3,b=5,c=2. (2)设a<0,列表如下:
x (,1) -1 (-1,1) 1 (1, )
f (x)
-
0
≥0 0
4,极小值为0.试确定a,b,c的值.
解: f ( x) 5ax4 3bx2 x2(5ax2 3b). 由题意, f (x) 0应有根 x 1,故5a=3b,于是:
f ( x) 5ax2 ( x2 1).
(1)设a>0,列表如下:
x (,1) -1 (-1,1) 1 (1, )
-
f(x) ↘ 极小值 ↗ 极大值 ↘
由表可得04 ff((11)),即aabbcc40 . 又5a=3b,解得a=-3,b=-5,c=2.
练习1:已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为 10,求a、b的值.
解: f (x) =3x2+2ax+b=0有一个根x=1,故3+2a+b=0.①
当 0 x 2 时,x2<2,由条件②可知 f ( x2 ) 0,即:
为什么要加
g( x) f ( x2 ) 2x 0;
上这一步?
又当 x 2 时, g( 2) f (2) 2 2 0.
所以当 x 2 时,函数y=f(x2)取得极小值.
例2:已知f(x)=ax5-bx3+c在x= 1处有极值,且极大值为
-3/11<x<1时, f (x) 0 ;x>1时, f (x) 0 ,此时x=1是极
y’ -
0
+
0
y ↘ 极大值-3 ↗ 极小值3
因此,当x=-1时有极大值,并且,y极大值=3; 而,当x=1时有极小值,并且,y极小值=- 3.
(2,+∞) ↘
例3:已知函数f(x)=-x3+ax2+b. (1)若函数f(x)在x=0,x=4处取得极值,且极小值为-1, 求a、b的值. (2)若 x [0,1],函数f(x)图象上的任意一点的切线斜 率为k,试讨论k≥-1成立的充要条件 .
x (-∞,-2) -2
(-2,2) 2
(2,+∞)
y’ +
0
-
0
+
y
↗ 极大值28/3 ↘ 极小值-4/3
↗
因此,当x=-2时有极大值,并且,y极大值=28/3; 而,当x=2时有极小值,并且,y极小值=- 4/3.
总结:求可导函数f(x)的极值的步骤如下:
(1).求导数 f (x).
(2).求方程 f (x) 0的根.
(3)极大值与极小值之间无确定的大小关系.即一个 函数的极大值未必大于极小值,如下图所示,x1是极大值 点,x4是极小值点,而f(x4)>f(x1).
y
f ( x4 ) f ( x1 )
o a X1
X2
X3 X4 b
x
(4)函数的极值点一定出现在区间的内部,区间的端 点不能成为极值点.而使函数取得最大值、最小值的点 可能在区间的内部,也可能在区间的端点.
f ( x) 在x0两侧满足“左正右负”,则x0是f(x)的极大值
点,
f ( x)
f(x0)是极大值;如果 在x0两侧满足“左负右正”,则 x0是从f(x曲)的线极的小切值线点角,度f(x看0),是曲极线小在值极.值点处切线的斜率 为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为
负;曲线在极小值点左侧切线的斜率为负,右侧为正.
函数的极值
一、复习与引入:
上节课,我们讲了利用函数的导数来研究函数的单调
性这个问题.其基本的步骤为: ①求函数的定义域; ②求函数的导数 f (x) ; ③解不等式 f (x)>0得f(x)的单调递增区间;
解不等式 f (x) <0得f(x)的单调递减区间.
右下图为函数y=2x3-6x2+7的图象,从图象我们可以
在定义中,取得极值的点称为极值点,极值点是自变 量的值,极值指的是对应的函数值.
请注意以下几点:
(1)极值是一个局部概念.由定义,极值只是某个点的 函数值与它附近点的函数值比较是最大或最小.并不意 味着它在函数的整个的定义域内最大或最小.也就是说 极值与最值是两个不同的概念.
(2)函数的极值不是唯一的.即一个函数在某区间上 或定义域内极大值或极小值可以不止一个.
看出下面的结论:
y
函数在X=0的函数值比它附近所有各
点的函数值都大,我们说f(0)是函数
的一个极大值;函数在X=2的函数值
比它附近所有各点的函数值都小,我 0 2
x
们说f(2)是函数的一个极小值。
二、新课——函数的极值:
一般地,设函数y=f(x)在x0及其附近有定义,如果f(x0) 的值比x0附近所有各点的函数值都大,我们说f(x0)是函 数y=f(x)的一个极大值;如果f(x0)的值比x0附近所有各点 的函数值都小,我们说f(x0)是函数y=f(x)的一个极小值. 极大值与极小值统称极值.
y
y
f (x0) 0
f (x) 0 f (x) 0
oa
X00 b
x
f (x) 0
f (x) 0
f ( x0 ) 0
o a X0
bx
如上左图所示,若x0是f(x)的极大值点,则x0两侧附近 点的函数值必须小于f(x0) .因此, x0的左侧附近f(x)只能 是增函数,即 f (x) 0 ; x0的右侧附近f(x)只能是减函数,即
f ( x) 0.
同理,如上右图所示,若x0是f(x)极小值点,则在x0的 左侧附近f(x)只能是减函数,即f (x) 0 ;在x0的右侧附近 只能是增函数,即f (x) 0 .
从而我们得出结论:若x0满足 f (x0) 0 ,且在x0的两侧
的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果
x<2时,f ( x) 0 ;③ f (2) 0. 求证:函数y=f(x2)在 x 2 处有极小值.
证:设g(x)=f(x2),则 g( x) f ( x2 ) 2 x.
故当 x 2 时,x2>2,由条件①可知 f ( x2 ) 0,即:
g( x) f ( x2 ) 2x 0;
又f(1)=10,故1+a+b+a2=10.②
由①、②解得
ba411或
a 3
b
3
.
当a=-3,b=3时, f (x) 3(x 1)2 0 ,此时f(x)在x=1处无
极值,不合题意.
当a=4,b=-11时, f (x) 3x2 8x 11 (3x 11)( x 1).
说明:本题中的极大值是小于极小值的,这充分表明极值 与最值是完全不同的两个概念.
6x
练习1:求函数 y 1 x2 的极值.
解:
y
6(1 x2 ) (1 x 2 )2
.
令 y=0,解得x1=-1,x2=1.
当x变化时, y,y的变化情况如下表:
x (-∞,-1) -1 (-1,1) 1
(3)检查 f ( x)在方程根左右的值的符号,如果左正右负,
那么f(x)在这个根处取得极大值;如果左正右负,那
么f(x)在这个根处取得极大值.
例2:求函数
f
(
x)
x
a2 x
(a
0)
的极值.
解:函数的定义域为( ,0) (0, ),
f
( x) 1
a2 x2
( x a)( x a)
2.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方 法是: (1):如果在x0附近的左侧 f (x) 0,右侧 f (x) 0,那么, f(x0)是极大值;
(2):如果在x0附近的左侧 f (x) 0,右侧 f (x) 0,那么, f(x0)是极小值. 3.理解函数极值的定义时应注意以下几点:
在上节课中,我们是利用函数的导数来研究函数的 单调性的.下面我们利用函数的导数来研究函数的极值 问题.
由上图可以看出,在函数取得极值处,如果曲线有切 线的话,则切线是水平的,从而有 f (x0) 0 .但反过来不一 定.如函数y=x3,在x=0处,曲线的切线是水平的,但这点 的函数值既不比它附近的点的函数值大,也不比它附近 的点的函数值小.假设x0使f (x0) 0 .那么在什么情况下x0 是f(x)的极值点呢?
3x2-2ax-1≤0对一切 x [0,1恒] 成立.
由于g(0)=-1≤0,故只需g(1)=2-2a≤0,即a≥1.
反之,当a≥1时,g(x)≤0对一切 x [0,恒1]成立.
所以,a≥1是k≥-1成立的充要条件.
第二课时
一、复习:
1.设函数y=f(x)在x0及其附近有定义,如果f(x0)的值比x0 附近所有各点的函数值都大,我们说f(x0)是函数y=f(x) 的一个极大值;如果f(x0)的值比x0附近所有各点的函 数值都小,我们说f(x0)是函数y=f(x)的一个极小值.极 大值与极小值统称极值.
x2
.
令 f (x) 0 ,解得x1=-a,x2=a(a>0).
当x变化时, f ( x) ,f(x)的变化情况如下表:
x (-∞,-a) -a (-a,0) (0,a) a (a,+∞)
f’(x) +
0