地的总结图像配准算法
如何进行高效的图像匹配和图像配准
如何进行高效的图像匹配和图像配准图像匹配和图像配准是计算机视觉领域中常见的任务,其目的是通过计算机算法将两幅或多幅图像进行比较,从而找出它们之间的相似性或者进行图像的对齐。
本文将介绍一些高效的图像匹配和图像配准的方法。
一、图像匹配图像匹配即是将一幅图像中的特征在另一幅图像中找到对应物体或者区域。
下面是一些常见的图像匹配方法:1.特征点匹配特征点匹配是最常见的图像匹配方法之一,它通过在图像中提取特征点,并计算特征点的描述子,然后使用某种度量来比较两幅图像的特征点,找出最相似的特征点对。
常用的特征点匹配算法包括SIFT、SURF和ORB等。
2.直方图匹配直方图匹配是一种基于图像全局颜色或纹理分布的匹配方法,它将图像的直方图进行比较,通过计算直方图之间的相似性度量来进行匹配。
直方图匹配适用于颜色和纹理信息较为明显的图像匹配任务。
3.模板匹配模板匹配是一种基于像素点灰度值的匹配方法,它通过将一个预定义的模板图像滑动或者扫描到待匹配图像上,计算模板和图像之间的相似性度量,从而找到最佳匹配位置。
模板匹配适用于物体检测和目标跟踪等应用场景。
4.特征描述子匹配特征描述子匹配是一种将图像中的局部特征点的描述子进行比较的匹配方法,它通过计算特征点描述子之间的相似性度量找到最佳匹配。
常用的特征描述子匹配算法包括基于二值描述子的BRISK和ORB,基于二进制描述子的BRIEF和FREAK,以及基于浮点数描述子的SIFT、SURF和AKAZE等。
二、图像配准图像配准是将两幅或多幅图像进行对齐,使得它们在空间上或者几何上具有一致性。
下面是一些常用的图像配准方法:1.特征点配准特征点配准是将两幅图像中的特征点进行对应的一种配准方法,它通过计算特征点的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像的特征点对应一致。
常用的特征点配准方法包括RANSAC、LMS和Hough变换等。
2.像素级配准像素级配准是将两幅图像的像素进行一一对应的配准方法,它通过计算图像间的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像在几何上对应一致。
测绘技术中如何进行地图与图像配准
测绘技术中如何进行地图与图像配准地图与图像配准是测绘技术中的一个重要环节,它解决了地图和图像之间的关联问题,使得地图与图像能够相互补充,提供更加全面和精准的地理信息。
本文将从配准的概念、方法和应用方面进行探讨,以帮助读者更好地了解和应用地图与图像配准技术。
一、配准的概念和意义地图与图像配准是指将已有的地图与获取的遥感图像进行几何校正和精确定位,使其实现空间上的一一对应。
通过配准,我们可以将地图上的坐标系统和图像上的像素坐标系统进行统一,从而实现地图与图像之间的关联和交互。
配准的意义在于提高地理信息的准确性和可靠性。
在测绘领域,我们常常需要利用遥感图像进行地理信息的提取和更新。
而地理信息的精确度和实用性很大程度上取决于地图与图像的配准质量。
只有保证了地图与图像的一致性,才能在地理信息的分析和决策中提供准确、可靠的依据。
二、配准的方法和流程地图与图像配准主要依赖于几何校正和点匹配两种方法。
几何校正是指通过空间变换将地图与图像进行对齐,使得它们在几何形状上一致;点匹配是利用已知坐标点在地图和图像上的对应关系,计算出坐标转换模型,实现地图与图像的精确定位。
在进行几何校正时,我们需要选取一些具有显著地物特征且在地图和图像上都存在的特定点,常用的特征包括道路交叉口、建筑物拐角等。
通过人工或自动提取这些特征点的像素坐标,再与地图上对应点的地理坐标进行关联,最终得到几何变换模型,使得地图与图像的形状一致。
点匹配的过程相对复杂一些。
首先,我们需要在地图和图像上选择一些具有地理坐标的参考点,这些点通常应分布在整个区域内,同时又易于提取和匹配。
然后,利用各种配准方法(如最小二乘、刚性变换、仿射变换等)计算出地图与图像之间的转换参数。
最后,通过误差分析和迭代调整,进一步提高配准精度。
三、配准的应用和挑战地图与图像配准的应用非常广泛。
首先,它可以用于地理信息系统(GIS)中的实时定位和导航。
通过将实时获取的地理位置与已有的地图进行配准,我们可以实现GPS定位的精确显示和导航引导。
测绘技术中的地理配准方法简介
测绘技术中的地理配准方法简介地理配准是测绘技术中至关重要的一个环节,它是将不同来源、不同标准的地理信息数据整合为统一的坐标系统的过程。
合理和精确的地理配准方法对于地理信息数据的准确性和有效性具有至关重要的影响。
本文将对地理配准方法进行简要介绍,包括常见的数学模型和配准算法。
1.数学模型数学模型是地理配准的基础,它用于描述不同数据源之间的空间关系。
最常用的数学模型包括最小二乘法、仿射变换和投影变换等。
(1)最小二乘法最小二乘法是一种经典的拟合方法,它通过最小化残差平方和来确定最优配准参数。
在地理配准中,最小二乘法常用于平面配准,可以通过控制点的坐标误差来估计配准参数。
(2)仿射变换仿射变换是一种保持线性关系的坐标变换方法,它包括平移、旋转、缩放和错切等操作。
在地理配准中,仿射变换常用于校正图像、配准遥感影像等。
(3)投影变换投影变换是将地球表面的三维坐标映射到二维平面上的方法,它通常用于地理坐标系与地图投影坐标系之间的转换。
在地理配准中,投影变换可以用来实现不同空间数据之间的配准。
2.配准算法配准算法是根据数学模型进行计算和处理的方法,它包括点匹配、特征匹配和影像配准等。
(1)点匹配点匹配是最基本的配准方法,它通过选取一些具有明显特征的控制点,计算它们之间的几何变换关系,进而确定配准参数。
点匹配适用于具有明显点特征的数据,如地理图像、卫星遥感影像等。
(2)特征匹配特征匹配是一种可以提取图像局部特征的配准方法,它通过提取特征点或特征描述子,并计算它们之间的相似度来进行匹配。
特征匹配适用于存在较多局部特征的数据,如数字地图、空照图像等。
(3)影像配准影像配准是将不同时间或不同传感器获取的遥感影像配准到同一坐标系统的方法。
影像配准常使用基于特征的方法,如尺度不变特征变换(SIFT)、快速特征匹配(SURF)等。
同时,影像配准还可以利用影像边界信息进行辅助配准。
3.地理配准的应用地理配准广泛应用于各个领域,如地图制图、遥感影像处理、地理信息系统(GIS)等。
计算机视觉中的图像配准与目标检测算法
计算机视觉中的图像配准与目标检测算法图像配准与目标检测算法在计算机视觉中扮演着重要的角色,它们可以帮助计算机系统更好地分析和理解图像信息。
图像配准是指将两幅或多幅图像中的对应点一一对应起来,以便在匹配这些图像时获得更加准确的结果。
而目标检测算法则是用来识别图像中特定目标的算法,例如人脸、车辆、动物等。
本文将介绍图像配准和目标检测算法的基本原理和常用方法,以及它们在计算机视觉领域中的应用。
一、图像配准算法1.1基本原理图像配准是通过计算机算法将两幅或多幅图像中的相关特征点进行匹配,以获得这些图像之间的几何变换关系。
这些特征点可以是角点、边缘、纹理等,通过对这些特征点进行匹配,可以得到这些图像之间的旋转、平移、缩放等变换关系。
图像配准的主要目的是将不同条件下获取的图像进行精确对准,从而获得更加准确的匹配结果。
1.2常用方法(1)特征点匹配特征点匹配是图像配准算法中最常见的方法之一,它通过对图像中的特征点进行匹配来获得图像之间的几何变换关系。
这些特征点可以是由角点检测算法检测出的角点,也可以是由边缘检测算法检测出的边缘点等。
在特征点匹配中,通常会使用一些匹配算法来寻找图像中对应的特征点,常用的匹配算法有最近邻匹配、RANSAC算法等。
(2)基于图像内容的配准基于图像内容的配准是一种能够自动进行图像配准的方法,它不需要事先提取出特征点,而是直接对整幅图像进行匹配。
这种方法通常会使用图像相似度度量来进行匹配,例如结构相似度(SSIM)度量、互相关等。
基于图像内容的配准在匹配结果的准确性和鲁棒性方面往往比特征点匹配方法更好,但计算复杂度较高。
1.3应用场景图像配准算法在计算机视觉中有着广泛的应用场景,例如医学影像配准、遥感影像配准、工业检测等。
在医学影像配准中,图像配准算法可以帮助医生更好地对比不同时间或不同条件下的患者影像,从而更准确地诊断疾病。
在遥感影像中,图像配准算法可以将同一地区不同时间的遥感影像进行配准,以获得地表特征的变化情况。
图像配准的方法
图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。
总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。
比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。
图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择多图像中的一张图像作为参考图像,将其它的相关图像与之配准,其坐标系统是任意的。
绝对配准是指先定义一个控制网格,所有的图像相对于这个网格来进行配准,也就是分别完成各分量图像的几何校正来实现坐标系的统一。
本文主要研究大幅面多图像的相对配准,因此如何确定多图像之间的配准函数映射关系是图像配准的关键。
通常通过一个适当的多项式来拟合两图像之间的平移、旋转和仿射变换,由此将图像配准函数映射关系转化为如何确定多项式的系数,最终转化为如何确定配准控制点(RCP)。
目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配准方法分为三个主要类别:基于灰度信息法、变换域法和基于特征法[25],其中基于特征法又可以根据所用的特征属性的不同而细分为若干类别。
以下将根据这一分类原则来讨论目前已经报道的各种图像配准方法和原理。
1基于灰度信息的图像配准方法基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。
主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。
经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。
(1)互相关法互相关法是最基本的基于灰度统计的图像配准的方法,通常被用于进行模板匹配和模式识别。
它是一种匹配度量,通过计算模板图像和搜索窗口之间的互相关值,来确定匹配的程度,互相关值最大时的搜索窗口位置决定了模板图像在待配准图像中的位置。
图像配准算法在医学图像处理中的应用
图像配准算法在医学图像处理中的应用随着科技的发展,医学图像处理逐渐成为医学领域中不可或缺的工具。
其中,图像配准算法作为医学图像处理的基础技术之一,被广泛应用于医学图像的定位、术前规划和术后评估等多个领域。
本文将介绍图像配准算法的基本原理以及在医学图像处理中的应用。
一、图像配准算法的基本原理图像配准算法旨在实现将两幅(或多幅)图像重合在一起,并以此实现图像的对比分析和测量。
图像配准的本质是计算两幅图像之间的几何变换关系,然后利用此关系将两幅图像进行对齐。
在实际应用中,图像配准算法需要克服多个因素对图像匹配准确度的影响,例如亮度、对比度、噪声、不同视角下的空间变形等。
常用的图像配准算法包括基于特征点匹配的方法、基于区域匹配的方法和基于形态学变换的方法。
其中,基于特征点匹配的方法通过寻找两幅图像中具有共性的特征点来计算两幅图像之间的关系,例如SIFT(Scale-Invariant Feature Transform)算法和SURF(Speeded-Up Robust Features)算法。
基于区域匹配的方法则是通过寻找两幅图像中相似的图像区域来实现匹配,例如基于相似性的区域匹配算法和基于形状匹配的算法。
基于形态学变换的方法则是将一幅图像进行形态学变换,以使其与另一幅图像尽可能对齐。
二、图像配准算法作为医学图像处理中的基础技术之一,在医学领域中被广泛应用。
下面将介绍图像配准算法在医学图像处理中的应用。
1. 图像地图制作在医学图像处理中,通常需要制作图像地图以进行指导性操作或术前规划。
例如,在放射学诊断中,医生需要通过图像地图来识别病变区域或者导航手术工具。
图像配准算法被广泛应用于图像地图的生成中,通过将不同成像方式(如CT和MRI)获得的医学图像进行对齐,能够使图像地图更加准确、全面、可信,从而有效提高医疗质量。
2. 定位和跟踪医学图像处理中另一个重要的应用就是定位和跟踪。
例如,医生需要在手术中对定位点进行确定,或对术后的病灶进行监测。
计算机视觉技术中的图像配准算法介绍
计算机视觉技术中的图像配准算法介绍图像配准是计算机视觉的一个关键任务,其目标是将多张图像从不同的视角、尺度或形变下进行对齐,以便于后续的图像处理和分析。
图像配准技术广泛应用于医学影像、遥感影像、计算机辅助设计等多个领域。
本文将介绍几种常见的图像配准算法,包括特征点匹配、相位相关法和仿射变换法。
特征点匹配是图像配准中最常用的算法之一。
该算法的思想是在图像中提取一些鲁棒的特征点,并通过匹配这些特征点来确定两幅图像之间的变换关系。
常用的特征点包括角点、边缘点和尺度不变特征点(SIFT、SURF等)。
特征点匹配算法可以分为基于局部邻域的匹配和基于全局优化的匹配。
前者主要根据特征点附近的图像信息进行匹配,例如使用局部特征描述子来计算相似性。
后者则通过全局最优化方法,如RANSAC、Hough变换等,对所有特征点进行匹配和优化,以得到更准确的变换矩阵。
相位相关法是一种基于频域的图像配准方法。
该方法通过计算图像的互相关函数(cross-correlation)来确定两幅图像间的平移参数。
互相关函数测量了两幅图像在不同平移情况下的相似性,平移参数对应于最大互相关值出现的位置。
相位相关法适用于提供噪声较小、对齐相对简单的图像,例如纹理丰富的物体或具有明确边缘的物体。
此外,相位相关法还可以通过引入多尺度和金字塔技术来增强算法的鲁棒性,以适应不同尺度和旋转情况下的图像配准需求。
仿射变换法是一种常用的几何变换方法,它能够通过应用平移、旋转、缩放和切变等操作,将一幅图像映射到另一幅图像上。
在图像配准中,仿射变换法假设两幅图像具有相似的几何形状,且变换关系可以通过线性变换来表示。
一般来说,仿射变换法需要事先提取出一些图像上的特征点,并通过最小二乘法或一致性检测等方法来优化变换参数。
仿射变换法广泛应用于平面图像的配准,例如拼接全景图像、图像纠正和图像校正等场景。
除了上述介绍的算法,图像配准还有其他一些方法,如强度匹配法、基于统计的方法和形态学变换等。
医学影像处理中的图像配准算法实现技巧
医学影像处理中的图像配准算法实现技巧医学影像处理在现代医学诊断中起着至关重要的作用。
而图像配准作为其中重要的一环,是将不同影像之间进行准确的位置、尺度和方向的对齐,以实现医学影像的比较、融合和分析。
本文将介绍医学影像处理中的图像配准算法实现技巧。
一、图像配准概述图像配准是指将一组图像中的目标物体进行精确定位和对齐。
医学影像处理中的图像配准旨在准确地比较不同时间点或不同影像模态的医学图像,以便更好地追踪疾病的进展和评估治疗效果。
二、图像配准的算法医学影像图像配准的算法可以分为以下几类:1. 特征点匹配算法特征点匹配算法是一种常用的图像配准方法。
该方法通过检测图像中的特征点,并找到这些特征点之间的对应关系,从而实现图像的对齐。
常用的特征点匹配算法包括SIFT、SURF和ORB等。
首先,算法会在图像中提取特征点,并计算每个特征点的描述子。
然后,通过计算特征点描述子之间的相似度,找到最佳匹配。
最后,通过对特征点的位置进行配准,实现图像的对齐。
2. 基于互信息的配准算法互信息是一种常用的图像配准衡量指标,用于评估两幅图像的相似性。
基于互信息的配准算法主要包括归一化互信息(NMI)和互信息标准差(MIS)等。
该方法通过计算图像中的灰度直方图,并结合互信息来衡量两幅图像的相似度。
然后,通过优化配准变换参数,使得互信息最大化,实现图像的配准。
3. 基于变形场的配准算法基于变形场的配准算法利用变形场来描述图像的形变情况,并通过优化变形场来实现图像的对齐。
典型的基于变形场的配准算法有Thin-Plate Spline(TPS)和B-spline等。
该方法首先计算图像的像素点之间的位移,然后通过插值方法生成变形场。
最后,通过优化变形场的参数,实现图像的对齐。
三、图像配准的应用图像配准在医学影像处理中广泛应用于以下领域:1. 临床诊断医学影像图像配准可以提供医生在不同时间点或不同影像模态下进行疾病比较和评估的依据。
例如,在肿瘤的持续监测中,医学影像配准可以实现不同时间点下肿瘤的精确测量和比较。
测绘技术中常见的地图配准算法介绍
测绘技术中常见的地图配准算法介绍地图配准是测绘技术中的一个重要环节,它的主要目的是将多幅地图或者地理数据进行对应,使得它们在同一基准下具备一致性。
在实际的测绘应用中,地图配准算法能够帮助我们更加准确地理解和分析地理现象,为精确测绘和地理信息系统等应用提供支持。
本文将介绍一些常见的地图配准算法,以及它们的原理和应用。
一. 特征点匹配算法特征点匹配算法是地图配准中常用的一种方法。
该算法通过提取地图上的关键特征点,比如角点或者边缘点,然后在不同地图上寻找相应的特征点进行匹配。
在特征点匹配中,常用的算法包括克鲁斯卡尔算法、归一化互相关算法和改进的归一化互相关算法等。
克鲁斯卡尔算法是一种最小生成树的算法,它的主要思想是通过连接权值最小的边逐步构建最小生成树。
在地图配准中,我们可以将特征点作为节点,它们之间的相似度作为边的权值,然后使用克鲁斯卡尔算法寻找最佳的匹配组合。
归一化互相关算法是一种基于互相关的特征点匹配方法。
它通过计算两个特征点周围区域内的互相关系数来判断它们的相似度。
在进行配准时,我们可以选取特定阈值来筛选出相似度较高的特征点对,从而得到最佳的匹配结果。
改进的归一化互相关算法是针对传统归一化互相关算法的一种改进。
它在计算互相关系数时引入了自适应窗口大小和自适应核函数,从而提高了特征点匹配的准确性和鲁棒性。
改进的归一化互相关算法在地图配准和图像配准中都有广泛的应用。
二. 尺度不变特征变换算法尺度不变特征变换(Scale-Invariant Feature Transform,简称SIFT)算法是一种经典的特征点匹配算法,它在地图配准中也有较为广泛的应用。
SIFT算法通过分析图像的局部特征,如边缘和角点等,并在不同图像中寻找相应的特征点进行匹配。
SIFT算法的主要步骤包括尺度空间极值检测、关键点定位、方向分配、描述子生成和特征点匹配等。
在进行地图配准时,我们可以提取地图上的SIFT特征点,并在不同地图中进行匹配,从而得到两幅地图之间的对应关系。
图像处理中图像配准算法的使用技巧
图像处理中图像配准算法的使用技巧图像配准是图像处理中常见的任务之一,它是指将两幅或多幅图像在空间上进行对齐的过程。
通过图像配准,我们可以使得不同来源、不同角度或者不同感光条件下获取的图像能够准确对齐,从而方便后续的图像分析与处理。
本文将介绍常见的图像配准算法以及它们的使用技巧。
一、基本概念与原理在开始介绍图像配准算法之前,我们首先来了解一些基本概念与原理。
1. 图像配准的目标图像配准的目标是通过对两幅或多幅图像进行变换,使得它们在某种准则下达到最佳的对齐效果。
常见的配准准则包括最小化均方误差、最大化互信息等。
2. 变换模型图像配准的核心是通过对图像进行一定的变换,将它们对齐。
常用的变换模型包括平移、旋转、缩放、仿射变换等。
不同的变换模型适用于不同的应用场景。
3. 配准误差评估在进行图像配准后,我们需要对配准结果进行评估。
常见的评估指标包括均方差、互信息、相对误差等。
二、常见的图像配准算法1. 特征点匹配法特征点匹配法是一种常用的图像配准算法。
它通过在图像中提取特征点,然后在两幅或多幅图像中寻找对应的特征点,最后利用对应的特征点计算出图像之间的变换关系。
常见的特征点匹配算法包括SIFT、SURF、ORB等。
使用技巧:- 在选择特征点时,应选择具有鲁棒性和独特性的点,避免选择到噪声点或者重复点。
- 对于大场景或者复杂场景,可以先对图像进行分区域处理,以降低计算量并提高匹配的准确性。
- 在进行特征点匹配时,可以使用RANSAC算法去除误匹配的点,提高匹配结果的准确性。
2. 相关性匹配法相关性匹配法是一种基于图像之间的互相关性进行配准的算法。
它通过计算图像之间的互相关系数,来寻找最佳的配准变换关系。
这种方法相对于特征点匹配法更加直接,适用于一些相对简单的图像。
使用技巧:- 在计算互相关系数时,可以使用加速技术,如傅里叶变换、局部相干性算法等,提高计算效率。
- 在进行配准时,可以先进行图像的预处理,如亮度调整、去噪等操作,提高配准效果。
医学图像配准算法的使用技巧总结
医学图像配准算法的使用技巧总结医学图像的配准是指将多幅不同时间、不同模态或不同平面的医学图像进行对齐,以便进行准确的比较、分析和诊断。
医学图像配准算法是实现这一目标的重要工具,它可以帮助医生或研究人员将医学图像精确地叠加在一起,从而提供更准确的信息和更准确的诊断结果。
本文将总结常见的医学图像配准算法的使用技巧,旨在帮助读者更好地理解和应用这些算法。
一、点对点配准算法点对点配准算法是医学图像配准中最基本也是最常用的一种方法。
该算法通过选取两幅图像中相应位置的一组特征点,在这些特征点间建立关联,然后通过计算得出一个转换函数,将其中一幅图像对齐到另一幅图像上。
在使用点对点配准算法时,要注意以下几点:1. 特征点选择:选择正确的特征点是点对点配准的关键。
通常,特征点应具有明显的边界和独特的特征,可以通过算法自动选择或手动标注。
2. 特征点匹配:将两幅图像中的特征点进行匹配是配准的关键步骤。
常用的匹配算法包括最小二乘法、最大熵法、迭代最近点法等。
选择适合的匹配算法可以提高匹配精度和算法的鲁棒性。
3. 转换函数确定:根据匹配的特征点,通过计算得出一个转换函数,将其中一幅图像对齐到另一幅图像上。
常用的转换函数有仿射变换、透视变换等。
根据具体情况选择合适的转换函数能够提高配准的效果。
二、局部变形模型算法局部变形模型算法是一种高级的医学图像配准方法,通过将医学图像划分为小块,并在每个小块内进行局部的非刚性变形,从而实现全局的图像配准。
在使用局部变形模型算法时,需要注意以下几点:1. 网格划分:将医学图像划分为小块是局部变形模型的关键。
可以根据图像的特征和需要进行不同大小的划分,合理划分可以提高算法的速度和准确性。
2. 变形模型选择:根据具体问题和需求选择合适的变形模型,常用的变形模型包括B样条变形模型、Thin-Plate Spline变形模型等。
选择适合的变形模型可以提高配准的精度和效果。
3. 形变策略:在进行局部变形时,需要选择合适的形变策略,常用的形变策略有拉普拉斯形变、弹性形变等。
图像匹配算法的使用教程和实践技巧
图像匹配算法的使用教程和实践技巧随着计算机视觉技术的发展和应用的广泛,图像匹配算法扮演着重要的角色。
它能够将不同图像之间的相似性进行比较和匹配,被广泛应用于图像检索、目标跟踪、图像处理及计算机视觉等领域。
本文将为读者介绍图像匹配算法的原理、应用和实践技巧。
一、图像匹配算法原理图像匹配算法的实现基于图像特征的提取和相似性度量。
图像特征可以是颜色直方图、纹理特征、形状特征或者局部特征等。
而相似性度量可以通过欧氏距离、汉明距离、余弦相似度等方式来进行比较。
在图像匹配算法中,常用的特征提取方法包括SIFT、SURF、ORB等,而相似性度量方法则可以采用最简单的欧氏距离进行比较。
二、图像匹配算法的应用1. 图像检索图像检索是应用最广泛的图像匹配算法之一。
通过将待搜索图像与数据库中的图像进行比较和匹配,可以快速地找到相似或相同的图像。
这在电子商务、医学图像诊断、旅游导航等领域都有重要的应用。
2. 目标跟踪图像匹配算法也可用于目标跟踪。
每个目标都可以由一组特征描述,通过不断的图像匹配,可以实时地跟踪目标的位置、形状和运动状态。
这在视频监控、智能交通系统等领域具有重要的应用价值。
3. 图像处理图像匹配算法在图像处理中也发挥着重要作用。
通过图像匹配算法,可以实现图像的配准、图像融合、图像修复等处理。
这对于军事侦察、医学图像处理等领域来说非常重要。
三、图像匹配算法实践技巧1. 特征选择在进行图像匹配算法时,选择适合具体问题的图像特征非常重要。
不同的特征适用于不同的场景。
比如,对于纹理丰富的图像,可以选择使用LBP(局部二值模式)特征;而对于目标跟踪,使用SURF(加速稳健特征)特征效果较好。
2. 特征描述选择好特征后,需要使用适当的描述算法将特征进行描述。
常见的特征描述算法有Bag of Words、VLAD等。
这些算法能够将特征从高维空间映射到低维空间,减少计算复杂度和存储空间。
3. 相似性度量在比较图像相似性时,需要选择合适的相似性度量方法。
图像配准算法的使用方法
图像配准算法的使用方法图像配准是一种广泛应用于计算机视觉和图像处理领域的技术,它的作用是对两幅或多幅图像进行对齐,使得它们的位置、尺度、旋转等发生变化,从而方便后续的图像分析和处理工作。
本文将介绍图像配准算法的使用方法,包括基本的配准流程、常用的算法以及相关工具的使用。
一、图像配准的基本流程图像配准的基本流程通常包括以下几个步骤:1. 收集待配准的图像:首先需要收集要进行配准的图像,这些图像可能来自不同的来源和不同的传感器,可能存在位置、尺度、旋转等方面的差异。
2. 特征提取:特征提取是图像配准算法的关键步骤,它能够从图像中提取出一些有用的特征信息,用于匹配和对齐图像。
常用的特征包括角点、边缘、纹理等。
3. 特征匹配:在这一步骤中,算法将对特征进行匹配,找出在不同图像中对应的特征点。
常用的特征匹配算法包括最近邻匹配、最短距离匹配、RANSAC算法等。
4. 变换估计:通过特征匹配得到的对应特征点,可以估计出用于将图像对齐的变换参数,常用的变换包括平移、旋转、缩放等。
常用的变换估计方法有最小二乘法、最大似然估计等。
5. 图像对齐:根据估计的变换参数,对待配准图像进行变换,使其与基准图像对齐。
常用的变换方法包括仿射变换、透视变换等。
6. 重采样:在图像对齐后,可能需要对图像进行一些后续处理,比如调整尺度、裁剪等。
这一步骤是可选的,具体根据需求而定。
以上是图像配准的基本流程,不同的算法可能会在某些步骤上有所差异。
二、常用的图像配准算法1. 特征匹配算法:特征匹配是图像配准的基础,常用的特征匹配算法包括最近邻匹配、最短距离匹配、RANSAC算法等。
最近邻匹配基于特征点之间的欧氏距离进行匹配,最短距离匹配则是寻找两幅图像中特征点之间的最短距离,并将其作为匹配关系。
RANSAC算法则由于其能够排除噪声和误匹配的特点而广泛应用于图像配准。
2. 变换估计算法:变换估计是根据特征匹配结果,估计出用于将图像对齐的变换参数。
测绘技术中的图像配准与融合算法解析
测绘技术中的图像配准与融合算法解析导语:测绘技术是一门研究测量、制图和地理信息处理的学科,而图像配准和融合算法是测绘技术中的重要组成部分。
本文将对图像配准和融合算法进行解析,总结其原理和应用,并探讨其在实际工程中的应用前景。
一、图像配准算法的原理图像配准是将多幅或多源图像定位、对齐、配准到统一的坐标系统中的过程。
在测绘、遥感和地理信息系统等领域中,图像配准是数据融合和高精度信息提取的关键环节。
图像配准算法的原理主要包括特征提取、特征匹配和变换模型三个步骤。
特征提取是指通过算法从原始图像中提取出具有显著的、可区分的特征点或特征区域。
这些特征点可以是角点、边缘点、斑点等,通过识别这些特征点可以使得图像配准的过程更加准确和稳定。
特征匹配是指在两幅或多幅图像中,通过比较特征点的相似性来建立它们之间的对应关系。
常见的特征匹配算法包括基于相似度的匹配算法和基于拓扑关系的匹配算法。
前者包括最小距离匹配、K近邻匹配等,后者包括RANSAC算法、Hough变换等。
变换模型是指将参考图像与待配准图像之间的几何关系通过数学模型来表示。
常用的变换模型包括刚体变换、相似变换、仿射变换和投影变换等,根据图像间的几何关系选择合适的变换模型,从而实现图像的配准。
二、图像融合算法的原理图像融合是指将多幅或多种类型的图像融合成一幅图像,以获得更多的信息和更好的视觉效果。
图像融合算法的原理主要包括图像预处理、图像融合和图像后处理三个步骤。
图像预处理是指对原始图像进行滤波、增强、分割等操作,以提高图像质量和增强图像的信息。
常用的图像预处理方法包括直方图均衡化、高斯滤波、中值滤波等,通过这些预处理方法可以减少图像噪声和增加图像对比度。
图像融合是指将多幅图像的信息融合在一起,以提取出更丰富和更准确的信息。
常见的图像融合算法包括像素级融合算法、特征级融合算法和决策级融合算法等。
这些算法根据图像的特点和应用需求,选择合适的融合方法来实现图像融合。
图像处理中的图像配准算法技巧分享
图像处理中的图像配准算法技巧分享图像配准是指将两幅或多幅图像中的相同场景进行几何变换,使得它们在像素级别上对应一致。
在图像处理领域,图像配准是一个重要的任务,它广泛应用于医学影像分析、机器视觉、遥感影像处理等领域。
本文将重点介绍图像配准算法中的关键技巧和常用方法。
一、预处理在进行图像配准之前,预处理是必不可少的一步。
预处理可以包括图像去噪、图像增强、图像旋转翻转等操作。
其中,图像去噪可以减少图像配准时由于噪声引起的对应关系错误,可以使用各种滤波器如均值滤波器、中值滤波器等;图像增强可以增强图像的对比度和边缘信息,可以使用直方图均衡化、拉普拉斯算子等方法;图像旋转翻转可以将图像调整到一致的方向,可以使用旋转操作、翻转操作等。
二、特征提取特征提取是图像配准的核心环节之一。
通过提取图像的特征点或特征描述子,可以在不同图像中找到对应的点,从而建立起它们之间的映射关系。
常用的特征点检测算法包括Harris角点检测算法、SIFT算法、SURF算法等,这些算法可以在图像中检测到关键的局部区域,并计算出其特征描述子;常用的特征描述子算法包括SIFT描述子、SURF描述子、ORB描述子等,这些算法可以将特征点的局部区域转换为具有描述性信息的向量。
三、特征匹配特征匹配是建立起两幅图像之间对应关系的关键步骤。
通过将图像中提取出的特征点或特征描述子进行匹配,可以找到两幅图像中对应的点集。
常用的特征匹配算法有暴力匹配算法、kd树匹配算法、RANSAC算法等。
在进行特征匹配时,需要考虑到匹配的准确性和鲁棒性,可以使用距离阈值、相似性度量等方法进行筛选和优化。
四、几何变换几何变换是将图像进行配准的关键步骤之一,它可以通过对图像进行旋转、平移和缩放等操作,使得两幅图像之间的对应点对齐。
常用的几何变换方法有仿射变换、透视变换等。
仿射变换是一种线性变换,可以实现图像的旋转、平移和缩放等操作;透视变换则可以处理更复杂的图像变换,例如图像的投影变换等。
图像匹配方法总结
图像匹配方法总结图像匹配最早是美国70年代从事飞行器辅助导航系统,武器投射系统的末制导等应用研究中提出的。
从80年代以后,其应用已逐步从原来单纯的军事应用扩大到其它领域。
随着科学技术的发展,图像匹配技术已经成为现代信息处理领域中的一项极为重要的技术,在许多领域内有着广泛而实际的应用,如:模式识别,自动导航,医学诊断,计算机视觉,图像三维重构、遥感图像处理等领域。
图像匹配是这些应用领域的瓶颈问题,目前很多重要的计算机视觉方面的研究都是在假设匹配问题已经得到解决的前提下开展的。
因此,对图像匹配做进一步深入的研究有着非常重要的意义。
图像匹配是图像处理领域常见的基础问题, 是在变换空间中寻找一种或多种变换, 使来自不同时间、不同传感器或不同视角的同一场景的两幅或多幅图像在空间上一致。
由于拍摄时间、角度、环境的变化、多种传感器的使用和传感器本身的缺陷, 使拍摄的图像不仅受噪声的影响, 而且存在严重的灰度失真和几何畸变。
在这种条件下, 匹配算法如何达到精度高、匹配正确率高、速度快、鲁棒性和抗干扰性强以及并行实现成为人们追求的目标。
根据匹配算法的基本思想可将图像匹配方法分成两大类,即基于区域的匹配方法和基于特征的匹配方法。
两类方法相比而言,基于特征的匹配方法有计算量小,鲁棒性好,对图像形变不敏感等优点,所以基于特征的匹配方法是目前研究的热点。
基于特征的图像匹配方法主要包括三步:特征提取、特征描述和特征匹配。
一、特征提取方法图像匹配过程中,首先要根据给定的匹配任务和参与匹配图像的数据特性来决定使用何种特征进行匹配。
所选取的特征必须要显著,并且易于提取,在参考图像和待配准图像上都要有足够多的分布,另外,所选择的特征必须易于进行后续的匹配。
在图像配准中常用的特征有特征点,如拐点、角点;特征线,如边缘曲线、直线段;特征面,如小面元、闭合区域等。
1、 Harris算法基本思想:它是一种基于信号的点特征提取算子。
这种算子受信号处理中自相关函数的启发,给出与自相关函数相联系的矩阵M。
图像处理中的图像配准算法与匹配效果评估
图像处理中的图像配准算法与匹配效果评估图像配准是图像处理中一项重要的任务,它旨在将多幅图像间的特征点进行对齐,使得它们在空间上完全或近似重合。
图像配准广泛应用于医学影像诊断、航空摄影、遥感图像处理等领域。
本文将介绍几种常见的图像配准算法,并对它们的匹配效果进行评估。
首先介绍一种经典的图像配准算法——特征点匹配算法。
该算法通过检测图像中的显著特征点,如角点、边缘等,然后在两幅图像中找到一一对应的特征点,并通过计算它们之间的几何变换关系来实现图像配准。
特征点匹配算法的优点在于对图像变换具有较好的鲁棒性,但在特征点提取和匹配过程中存在一定的误差。
在特征点匹配算法的基础上,发展出了一种更加准确的图像配准算法——基于特征描述子的匹配算法。
这种算法不仅考虑了特征点的位置信息,还利用了特征点周围的像素信息,通过构建特征描述子来描述特征点的外观特征。
在进行特征点匹配时,不再仅仅依赖几何变换关系,而是将特征点的外观特征进行比较,从而提高匹配的准确性和鲁棒性。
除了基于特征点的配准算法,还有一种常见的图像配准方法是基于图像亮度的匹配算法。
该算法通过对亮度信息进行统计分析和变换,使得两幅图像的亮度分布尽可能相似,从而达到图像配准的目的。
这种方法适用于场景相对简单、光照条件相对稳定的情况下,但对于复杂背景和光照变化较大的图像配准任务效果较差。
针对以上介绍的图像配准算法,评估其匹配效果是非常重要的。
常用的评估指标包括均方差(MSE)、结构相似性指标(SSIM)和互信息(MI)等。
均方差是衡量两幅图像之间差异性的指标,值越小表示两幅图像越接近。
结构相似性指标是一种感知质量评估方法,它考虑了亮度、对比度和结构之间的关系,范围为-1到1之间,值越大表示两幅图像越相似。
互信息是一种描述两幅图像之间统计依赖性的指标,范围为0到1之间,值越大表示两幅图像的相关性越高。
在进行图像配准算法的匹配效果评估时,可以选择一组具有真实配准结果的图像作为标准,将不同算法得到的配准结果与标准进行比较。
医学影像处理与分析中的图像配准算法
医学影像处理与分析中的图像配准算法第一章引言医学影像处理与分析是医学影像学的重要研究领域,图像配准算法在该领域中扮演着至关重要的角色。
图像配准是将一系列医学图像中的相同结构对齐,从而实现更精确的图像定量分析与比较。
本文将重点介绍医学影像处理与分析中常用的图像配准算法及其应用。
第二章图像配准算法的基本原理2.1 特征点匹配特征点匹配是图像配准算法的基础。
通过寻找图像中的特征点,并利用特征点之间的相对位置关系进行匹配,从而实现图像对齐。
常用的特征点匹配算法有SIFT、SURF和ORB等。
2.2 变换模型变换模型是图像配准算法中的关键概念。
变换模型描述了待匹配图像相对于参考图像的几何变换关系。
常用的变换模型包括刚体变换、相似变换和仿射变换等。
根据具体的应用场景选择合适的变换模型,以实现更准确的图像配准。
第三章图像配准算法的应用3.1 影像融合影像融合是将不同成像模态下的医学影像融合为一幅综合的图像。
通过图像配准算法,可以实现不同模态影像之间的对齐,从而改善图像质量、增强图像细节,并提高医学诊断的准确性。
3.2 手术导航图像配准算法在手术导航中起到关键作用。
医生可以通过将患者的实时影像与之前获取的高质量影像进行配准,来指导手术操作。
图像配准的精度直接影响手术的成功率和患者的康复效果。
3.3 病灶追踪图像配准技术可以用于病灶追踪。
通过将不同时间点的病理影像进行配准,可以实现病灶的位置变化分析,及早发现疾病的进展情况,并制定相应的治疗方案。
第四章图像配准算法的评估方法为了评估图像配准算法的性能,需要选择合适的评估方法。
主要包括目标函数、配准精度和计算时间等指标。
目标函数用于度量配准结果与真实结果之间的差异程度,配准精度用于衡量配准算法的准确性,计算时间用于评估算法的效率。
第五章图像配准的挑战与未来发展方向5.1 图像质量图像质量对于图像配准算法来说是一个重要的挑战。
不同成像条件下获取的图像质量可能存在差异,这对图像配准的准确性产生影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像配准定义为:对从不同传感器、不同时相、不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程[2]。
图像配准需要分析各分量图像上的几何畸变,然后采用一种几何变换将图像归化到统一的坐标系统中。
在配准过程中,通常取其中的一幅图像作为配准的标准,称之为参考图像;另一幅图像作为配准图像。
图1-1 图像配准的基本流程图1-2 图像配准方法分类根据配准使用的特征,图像配准的方法大致可分为三类:(1)基于图像灰度的配准算法。
首先从参考图像中提取目标区作为配准的模板,然后用该模板在待配准图像中滑动,通过相似性度量(如相关系数法、差的平方和法、差的绝对值法、协方差法)来寻找最佳匹配点。
(2)基于图像特征的配准算法。
该算法是以图像中某些显著特征(点、线、区域)为配准基元,算法过程分为两步:特征提取和特征匹配。
首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集。
然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。
对于非特征像素点利用插值等方法作处理推算出对应匹配关系,从而实现两幅图像之间逐像素的配准。
(3)基于对图像的理解和解释的配准算法。
这种配准算法不仅能自动识别相应像点,而且还可以由计算机自动识别各种目标的性质和相互关系,具有极高的可靠性和精度。
这种基于理解和解释的图像配准涉及到诸如计算机视觉、模式识别、人工智能等许多领域。
不仅依赖于这些领域中理论上的突破,而且有待于高速度并行处理计算机的研制。
从自动化角度来看,可以将配准过程分为自动、半自动和手动配准。
存在问题:如何提高图像的配准速度将是大范围遥感图像自动配准问题的要点;选取何种自动配准方案以保证图像的配准精度将是大范围遥感图像自动配准问题的另一要点。
2(,)[1((,f x yg fh x y其中,h表示二维空间坐标变换。
g表示灰度或辐射变换,描述因传感器类型的不同以及成像时气候等环境的影响所带来的图像灰度的变换。
配准问题的实质就是要找到最优的空域变换h和灰度变换g,使得上述的等式成立,从而找到配准变换的参数特征空间的选择通常要考虑以下几个因素:相似性;空间分布;唯一性。
在自动图像配准中对特征的理解可以分为两类。
(1)基于灰度的方法:基于灰度的方法将重点放在特征匹配上,在其过程中并没有真正提取特征。
一般所说的模板匹配法就是这种方法的代表。
这种方法实际上将图像的灰度分布直接作为特征而构成匹配的基础。
(2)基于特征的方法:基于特征的方法需要在图像中提取显著的特征:区域(森林、湖泊、农田等)、线(区域的边界、道路等)和点(区域的角点、线的交点、曲线上的高曲率点等)。
特征应该可以分布在图像任何地方并且可以被提取出来。
一般图像配准的过程主要涉及到图像的特征空间、相似性测度和搜索策略这三个方面。
我们称这三个方面为图像配准的三要素,它们决定了图像配准的精度和速度。
按照配准过程中采用的特征类型,图像配准可分成两类:基于灰度的配准和基于特征的配准的方法。
基于图像灰度的配准方法是直接利用图像的灰度值来确定配准的空间变换,其中充分利用图像中所包含的信息,从而也称为基于图像整体内容的配准方法。
这类方法的核心思想是认为参考图像和待配准图像上的对应点及其周围区域具有相同或者相似的灰度,并以灰度相似为基础采用相似度函数,然后寻找一组最优的几何变换参数使得相似度函数最大,从而实现图像的配准。
在两幅图像灰度信息相似的情况下,常用的匹配方法有:互相关法(Cross-correlation),序贯相似检测算法(Sequential Similarity Detection Algorithms, SSDA)以及最大互信息法。
虽然基于灰度的图像配准方法实现简单,但存在着如下缺点:(1)对图像的灰度变化比较敏感,尤其是非线性的光照变化,将大大降低算法的性能;(2)计算的复杂度高;(3)对目标的旋转,形变以及遮挡比较敏感。
因此这种方法通常并不单独用在遥感图像配准中。
基于特征的图像配准方法可以克服利用图像灰度信息进行图像配准的缺点,主要体现在以下三个方面:(1)图像的特征点比图像的象素点要少很多,因此大大减少了配准过程的计算量;(2)特征点的匹配度量值对位置的变化比较敏感,可以大大提高配准的精确程度;(3)特征点的提取过程可以减少噪声的影响,对灰度变化,图像形变以及遮挡等都有较好的适应能力。
因此,其在图像配准领域得到了广泛应用。
基于特征的图像配准方法有两个重要环节:特征提取和特征匹配。
图2-13 基于特征的图像配准方法的基本步骤基于特征点的配准方法的缺点:目前大多数的遥感图像配准系统都采用基于特征点的配准方法,以交互或自动的方式选择必要的控制点,但这些系统不能很好地适用于自动处理大量的数据,原因是特征点或控制点的选取是一项耗时、耗力的工作,在要求实时处理的应用中,这种方法是不现实的。
同时自动配准要考虑是精度问题,因为在卫星遥感图像中自动地确定有效的、精确的控制点有时是困难的,太少的点、不准确的点或者分布不均匀的点被选取都可能导致配准的误差,而且这种情况是经常发生的。
基于特征的要求图像比较清晰,能选出特征点,线,区域即:基于特征点的局部自动配准的一个前提是,能够从图像中准确提取点特征。
图像模糊,这必然使得点特征的提取比较困难,更加容易漏选特征点和产生伪特征点,从而导致配准精度不高。
1. 基于小波变换的遥感图像自动配准算法其基本思想是:在对大尺度遥感图像进行配准时,为了降低运算量,提高速度,利用小波变换的多分辨率特性,首先在低分辨率图像上获得一组配准参数,然后以此为初始值,再向高分辨率方向上逐层映射;算法在实现上,遵循一种由粗到精的搜索策略,即首先利用相似性度量获得图像间的一个粗略的变换参数估计,逐层迭代搜索,最终获得精确的配准参数。
基于图像灰度的全局配准,全局配准则是利用整幅图像直接对映射函数进行搜索。
基于小波变换的配准原理:图像配准过程中,如果对整幅图像进行搜索,计算量大、耗时长。
为了减少搜索空间,可以利用小波变换构造多尺度图像金字塔,采取由粗到细的搜索策略,即只在最高层进行全搜索,逐层缩小搜索范围,大大提高搜索效率。
图像经小波分解后分别得到低频和高频分量数据,低频子图像反映了原图像的平滑特征,高频系数分别反映了原图像水平、垂直和对角方法的亮度突变特征。
该突变特征可用于图像配准的特征点(控制点),而且小波分解后子图尺寸减小2l(l表示分解层数)倍。
因此为了减小计算量,需要找到小波分解后的子图配准与原图配准之间的关系。
基于小波变换的配准方案:基于小波变换的全局配准方案,其基本思想是:首先采用小波变换将原始图像逐级分解得到一个分辨率从低到高、规模由小到大的层次式结构(也称金字塔结构);然后在分辨率低的图像层,通过线性搜索或其他策略得到该分辨率下最优解的初步变换参数估计,并将此估计作为下一级图像层处理的搜索中心,使得变换参数估计在较高分辨率下逐级得到校正和精化,随着分辨率的提高,估计的精度随之提高,同时搜索的范围也逐级缩小,最终在最高分辨率的图层上得到满足精度要求的最优解。
可见,在分辨率最低的图像层,即使采用线性搜索策略,由于其数据量与原始图像相比己经很小,计算量也会大大减小,而到了分辨率较高的图层,由于搜索的范围越来越小,那么虽然图像规模变大,计算量也得到了有效的控制。
该方案的基本流程如下:(1)对参考图像和待配准图像均采用小波变换进行逐级分解,得到不同分辨率和大小的两组金字塔图像;(2)给定变换参数的搜索范围,在分辨率最低的图层上进行全搜索:依次取出搜索空间中的变换参数,对待配准图像对应的图层进行几何变换,采用基于灰度的配准方法(互相关法、最大互信息法等),得到该分辨率下最优解的初步变换参数估计,并将此估计作为下一级图像层处理的搜索中心;(3)以上一层的搜索结果为搜索中心,在高一级分辨率下搜索变换参数,由粗到精逐步细化变换参数。
最终在原始配准图像上得到满足精度要求的配准参数该配准方案的特点可以归纳如下:算法不需要人工干预,适合于大数据量的遥感图像自动配准。
与基于点特征的自动配准方案相比,在缺乏先验知识的情况下,避免了点-点匹配的方法因缺乏充足和准确的控制点而导致较大的配准误差。
利用了多分辨率小波的优势,采用由粗到精的搜索策略,减少了搜索空间,加速了处理过程,提高了图像配准的速度。
2.高分辨率SAR影像同名点自动匹配技术图像自动配准大致包括以下3大步骤:(1)在主、辅影像中提取特征点,通过实施同名点搜索来获取同名点;(2)利用同名点信息来解求主、辅影像之间的变换函数;(3)对辅影像进行几何变换,并通过重采样来获得纠正后的配准影像。
在这3大步骤中,之所以同名点对的确定是自动配准流程中的关键环节,首先,因为它的配准精度将直接决定变换函数的解求及解求精度;其次,因为同名点搜索计算复杂度通常情况下较复杂,其在整个影像配准流程中占有较高的机时量。
鉴于此,研究一种高精度、高效率的同名点搜索技术将显得格外重要。
本文提出的同名点自动匹配算法大致包括以下3大步骤: (1)创建金字塔影像,并通过在金字塔影像上进行回溯搜索来确定初始变换函数类型及相应的变换参数; (2)通过分层回溯逐层加密控制点来解求最佳变换函数类型及相应变换参数; (3)在原始影像分辨率下修正同名点坐标,以获取最终匹配同名点对。
3.图像配准技术研究进展将配准技术概括为8个方面,包括:配准对象、特征提取、特征匹配、变换模型、优化策略、坐标变换与插值、系统实现及算法评估,并考虑每项内容的技术特性进行细分,然后依据某一算法的创新点进行分类。
4.图像配准方法及其在目标跟踪中的应用图像配准方法可以分为基于灰度的配准和基于特征的配准。
基于特征的图像配准方法有两个重要环节:特征提取和特征匹配。
可以选取的特征包括点、线与区域。
基于特征的图像配准方法主要有两方面优点:a.图像的特征点比图像的像素点要少很多,大大减少了匹配过程的计算量;b.特征点的提取过程可以减少噪声的影响,对灰度变化、图像形变以及遮挡等都有较好的适应能力。
基于点特征的图像配准方法:特征点的提取——特征点匹配——误匹配点剔除——配准参数计算5.图像配准技术研究图像之间的配准一般可分为以下5个步骤:(l)从基准图像和参考图像中提取共有的控制结构,这种控制结构可以是物体的点、边缘和边界等;(2)对每幅图像中的控制结构(特征点)进行匹配;(3)选择几何变换模型,并利用匹配特征点对来估计变换参数;(4)对图像实行坐标变换和灰度插值;(5)对配准的效果进行评估。
所有图像配准方法都可以归纳为对三个元素选择问题,即特征空间、相似性准则和搜索策。
特征空间从图像中提取用于配准的信息,搜策略从图像转换集中选择用于匹配的变换方,相似性准则决定配准的相对价值,然后基于一结果继续搜索,直到找到能使相似性度量有人满意的结果的图像变换方式。