常微分方程选择题及答案.doc

合集下载

常微分期末试题及答案

常微分期末试题及答案

常微分期末试题及答案[正文开始]第一部分:选择题1. 若函数 f(x) = 3x^2 + 2x + c 在区间 [0, 1] 上是增函数,则实数 c 的取值范围是:A) c > 1/4B) c > -1/4C) c < 1/4D) c < -1/4答案:A) c > 1/4解析:当 f(x) 是增函数时,f'(x) > 0。

对于 f(x) = 3x^2 + 2x + c,求导得到 f'(x) = 6x + 2。

显然当 x > -1/3 时,f'(x) > 0,即 c > 1/4。

2. 解微分方程 dy/dx = x^2 + 1 的通解为:A) y = (1/3)x^3 + x + CB) y = (1/3)x^3 + CC) y = (1/3)x^2 + x + CD) y = (1/3)x^2 + C答案:A) y = (1/3)x^3 + x + C解析:对方程 dy/dx = x^2 + 1 进行积分,得到 y = (1/3)x^3 + x + C,其中 C 为积分常数。

3. 设三角函数f(x) = sin(2x + π/3),则 f'(x) = ?A) 2cos(2x + π/3)B) 2cos(2x - π/3)C) 2cos(2x)D) 2cos(2x + π/6)答案:B) 2cos(2x - π/3)解析:根据链式法则,对sin(2x + π/3) 求导,得到 f'(x) = 2cos(2x +π/3) * 2 = 2cos(2x - π/3)。

4. 设 f(x) = e^x,g(x) = ln(x),则 f(g(2)) = ?A) e^2B) e^3C) 2D) ln(2)答案:A) e^2解析:首先求 g(2) = ln(2),然后将结果代入 f(x) = e^x 中计算,得到 f(g(2)) = f(ln(2)) = e^ln(2) = 2。

常微分方程试题及答案

常微分方程试题及答案

常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

常微分方程期末选择题试题库

常微分方程期末选择题试题库

选 择 题1、下列方程中为常微分方程的是( )(A) 2-210x x += (B) 2'y xy =(C) 2222u u u t x y∂∂∂=+∂∂∂ (D) 2 y x c =+(c 为常数)2、下列微分方程是线性的是( )(A)22' y x y =+ (B)2" xy y e +=(C)2"0 y x += (D)2'-y y xy =3、方程2-2 "3' 2xy y y x e++=特解的形状为( )(A)2-2 1 x y ax ey = (B) 2-21 () x y ax bx c e =++ (C)22-21 ()x y x ax bx c e =++ (D) 22-21 ()x y x ax bx c e =++4、下列函数组在定义域内线性无关的是( )(A) 4, x (B) 2,2, x x x (C)225,cos ,sin x x (D) 21,2,,x x5、微分方程2-yxdy ydx y e dy =的通解是( )(A)(-) yx y c e = (B)()yx y e c =+ (C)()xy x e c =+ (D) (-)yy x c e =6、下列方程中为常微分方程的是( )(A)20 t dt xdx += (B)sin 1x =(C) 1 y x c =++(c 为常数) (D) 22220u ux y ∂∂+=∂∂7、下列微分方程是线性的是( )(A)2'1y y =+ (B)11dy dx xy=+ (C)2 ' y by cx += (D) 4'0y xy += 8、方程 "-2' 2(cos 2sin )xy y y e x x x +=+特解的形状为( )(A) 1[()cos sin ]x y e Ax B x C x =++ (B) y e Ax x C x x1=+[cos sin ](C)y e Ax B x Cx D x x1=+++[()cos ()sin ] (D)y xe Ax B x Cx D x x1=+++[()cos ()sin ]9、下列函数组在定义域内线性无关的是( )(A)31, , x x (B)222,,x x x(C)21,sin ,cos2x x (D)225,sin (1),cos (1)x x ++10、微分方程2-ydx xdy y exdx =的通解是( )(A)() x y x e c =+ (B)( ) x x y e c =+ (C)(-) x x y c e = (D)(-)xy x e c =11、下列方程中为常微分方程的是( )(A)22-10 x y += (B) 2' x y y=(C) 222222u u u x y∂∂∂=+∂∂∂ (D) 2x y c +=(c 为常数)12、下列微分方程是线性的是( )(A) dy dx y x = (B)2y '+6y '=1 (C)y '=y 3+sin x (D)y '+y =y 2cos x13、方程y ''+y =2sin x 特解的形状为( )(A) )sin cos (1x B x A x y += (B) y Ax x 1=sin (C)y Bx x 1=cos (D)y Ax x x 12=+(cos sin )14、下列函数组在定义域内线性无关的是( )(A) 0,1, t (B) e t,2e t,e -t(C)e t e t t t --3322sin ,cos (D) t t t t ,||,242+15、微分方程ydx-xdy=x 2e xdx 的通解是( )(A) y=x(c+e x ) (B) x=y(c+e x ) (C) x=y(c-e x ) (D) y=x(c-e x)16、下列方程中为常微分方程的是( )(A) x 2+y 2-z 2=0 (B) y ce x=(C)∂∂∂∂u t ux=22 (D) y=c 1cost+c 2sint (c 1,c 2为常数) 17、下列微分方程是线性的是( )(A) )(t x ' -x=f(t) (B)3y '+y=cos x (C) x +2y '=y '' (D) y '+(1/3)y =y 418、方程y ''-2y '+3y =e -xcos x 特解的形状为( )(A)y A x B x 1=+cos sin (B) y Aex1=-(C)y e A x B x x1=+-(cos sin ) (D)y Axe x x1=-cos19、下列函数组在定义域内线性无关的是( )(A)23,,t t t e e e (B) 20,, t t(C) )22cos(),1(sin 12++t t ,(D) 4-t,2t-3,6t+820、微分方程xdx-ydy=y 2e ydy 的通解是( )(A) x=y(e y + c) (B) x=y(c-e y ) (C) y=x(e x +c) (D) y=x(c-e y)21、下列方程中为常微分方程的是( )(A) x 3+1=0 (B) y ce x= (C)∂∂∂∂u t ux=22 (D) ''+=y y e x 2'22、下列微分方程是线性的是( )(A)y ''+y 2=1+x (B)y '2+y=cosx (C)y '-2y=2x 2(D) xdx+ydy=023、方程''-+=-y y y e x69163'特解的形状为( )(A) 31x y Ae = (B)y Ax e x123=(C) y Axe x 13= (D) y e A x B x x1333=+(sin cos )24、下列函数组在定义域内线性无关的是( )(A)2,,xxxe xe x e (B) 222,cos , cos x x (C) 2 1,2,x (D) 5420,,x x e x e x25、微分方程ydx-xdy=2x 2e xdx 的通解是( )(A) y=x(c-2e x ) (B) x=y(c+2e x ) (C) x=y(c-2e x ) (D) y=x(c+2e x) 26、微分方程dy dx y x tg yx=+的通解为( ) (A) 1sin y xcx = (B) sin y x =x +c (C) sin yx =c x (D) sin x y =c x27、微分方程2y y ''=(y ')2的通解()(A) (x-c )2(B) c 1(x -1)2+c 2(x +1)2(C) c 1+(x -c 2)2(D) c 1(x -c 2)228、微分方程xdy-ydx=y 2e ydy 的通解为()(A) y=x(e x +c) (B) x=y(e y +c) (C) y =x(c-e x ) (D) x=y(c-e y)29、微分方程y ''-2y '-3y =0的通解*y 为()(A)c x c x 123+ (B) c x cx123+ (C) c e c e x x 123+- (D) c e c e x x 123-+30、微分方程y ''-3y '+2y =2x -2e x的特解y *的形式是()(A) (ax+b)e x (B) (ax+b)xe x (C) (ax+b)+ce x (D) (ax+b)+cxe x31、通过坐标原点且与微分方程dydxx =+1的一切积分曲线均正交的曲线方程是( ) (A) e x y-=+1 (B) e x y ++=10 (C) e x y =+1 (D) 222y x x =+32、设y(x)满足微分方程(cos 2x)y ¹+y=tgx 且当x=π/4时y=0,则当x =0时y =( )(A) π/4 (B) -π/4 (C) -1 (D) 133、已知y=y(x) 的图形上点M(0,1)处的切线斜率k=0,且y(x)满足微分方程''=+y y 12('),则y(x)=( )(A) sin x (B)cos x (C) shx (D) chx 34、微分方程y ''-2y '-3y =0的通解是y =( )(A)33x x ++ (B) c x c x123+(C) c e c e x x 123+- (D) c e c e x x123-+ 35、设y x y x y x 123(),(),()是线性非齐次方程d y dxa x dydx b x y f x 22++=()()()的特解, 则y c c y x c y x c y x =--++()()()()11211223(A) 是所给微分方程的通解 (B) 不是所给微分方程的通解 (C) 是所给微分方程的特解(D) 可能是所给微分方程的通解 也可能不是所给微分方程的通解,但肯定不是特解36、设 y(x)满足 y 'sinx=yLny ,且y (π/2)=e ,则y (π/4)=( )(A) e /2 (B)-1e (C) e 21- (D) e 23-37、微分方程2cos 0yn ytgx y x -+=的通解是( )(A) arctgx c + (B)1x ()arctgx c + (C) 1arctgx c x + (D) 1arctgx c x++38、微分方程(1+y 2)dx=(arctgy-x)dy 的通解为( )(A) x arctgy ce arctgy=-+-1 (B) x arctgy cearctgy=-++1(C) x arctgy cec arctgy=-++ (D) x arctgy ce c arctgy =-+39、微分方程''+=y y x 4212cos 的通解为y=( )(A) e c x c x c x +++1223 (B) c x c x c 1223++ (C) c e c x c x 123++ (D) c x c x c 13223++40、微分方程''-''+=y y y x 76sin 的通解是 y =( )(A) e x x x-++574774sin cos (B) c e c x c e c x x x 1234+++-sin cos(C) ()()c c x e c c x e x x1233+++- (D) ()sin ()cos c c x x c c x x 1233+++41、通过坐标原点且与微分方程dydxx =+1的一切积分曲线均正交的曲线方程是( )(A) e x y -=+1 (B) e x y ++=10 (C) e x y =+1 (D) 222y x x =+42、设y(x)满足微分方程xy ¹+y-y 2Lnx=0且当y(1)=1,则y(e)=( )(A) 1/e (B) 1/2 (C) 2 (D) e 43、已知()y y x =满足()()x xy y dx y xy x dy 2222220+-++-=,且(1)1y =则y 122+⎛⎝ ⎫⎭⎪=( ) (A) 1 (B) 1/2 (C) 22 (D) 122+ 44、微分方程''=+y xy x 212'满足初始条件y x ==01, y x '==03的特解是y=( ) (A)x x 33++ (B) x x 331++ (C) x x 23++ (D) x x 231++45、微分方程''++=y y y 6130'的通解是y=( )(A) ec x c x x -+31222(cos sin ) (B) e c x c x x 21233(cos sin )-(C) e c x c x x31222(cos sin )- (D) e c x c x x-+21233(cos sin )46、微分方程y yxc '++=20满足y x ==20的特解y =( )(A) 4422x x - (B)x x 2244- (C))2ln (ln 2-x x (D))2ln (ln 12-x x47、微分方程y ytgx y x 'cos -+=20的通解是( )(A)1()cos x c x y =+ (B) ()cos y x c x =+ (C) 1cos x x c y=+ (D) cos y x x c =+48、微分方程(y 2-6x )y ' +2y=0的通解为( )(A) 2x-y 2+cy 3=0 (B) 2y-x 3+cx 3=0 (C) 2x-cy 2+y 3=0 (D) 2y-cx 3+x 3=049、微分方程''+=y y x 4212cos 的特解的形式是y=( ) (A) cos2a x (B) cos2ax x(C)sin2cos2 a x b x + (D)sin2cos2 ax x bx x +50、满足微分方程''-''+=y y y x 76sin 的一个特解 y*=( )(A)ex x x-++574774sin cos (B)e x x x ++574774sin cos(C)ex x x-++6574774sin cos (D)e e x x x x --+++6574774sin cos51、初值问题"40,(0)0,'(0)1y y y y +===的解是()y x =( )(其中其通解为1212()sin 2cos2,,y x c x c x c c =+为任意常数)(A)1sin 23x (B)1sin 22x (C)1sin33x (D )1sin32x52、下列方程中为常微分方程的是( )(A)42310x x x +-+= (B) 2"'y y x +=(C) 2222u u u t x y∂∂∂=+∂∂∂ (D)2u v w =+53、下列微分方程是线性的是( )(A)2"'y xy y x ++= (B)22'y x y =+ (C)2"()y xy f x -= (D)3"'y y y -= 54、已知(,)F x y 具有一阶连续偏导,且(,)()F x y ydx xdy +为某一函数的全微分,则( )(A) F F x y ∂∂=∂∂ (B)F F x y x y ∂∂=∂∂ (C)F F x y x y ∂∂-=∂∂ (D)F Fy x x y∂∂=∂∂55、设123(),(),()y x y x y x 是二阶线性非齐次微分方程"()'()()y P x y Q x y f x ++=的三个线性无关解,12,c c 是任意常数,则微分方程的解为( )(A)11223c y c y y ++ (B)1122123(1)c y c y c c y ++-- (C)1122123()c y c y c c y +-+ (D)1122123(1)c y c y c c y +--- 56、若连续函数()f x 满足关系式20()ln 22xt f x f dt ⎛⎫=+ ⎪⎝⎭⎰,则()f x 为( ) (A)2x e ln (B)22x e ln (C)2x e ln + (D)22xe ln +57、若3312,x xy e y xe ==,则它们所满足的微分方程为( )(A)"6'90y y y ++= (B)"90y y -= (C)"90y y += (D)"6'90y y y -+=58、设123,,y y y 是二阶线性微分方程"()'()()y p x y q x y r x ++=的三个不同的特解,且1223y y y y --不是常数,则该方程的通解为( )(A)11223c y c y y ++ (B)1122231()()c y y c y y y -+-+(C)11232c y c y y ++ (D)112223()()c y y c y y -+- 59、设()f x 连续,且满足方程()1()()f tx dt nf x n N =∈⎰,则()f x 为( )(A)1n ncx- (B)(c c 为常数) (C)sin c nx (D)s cco nx60、设12,y y 是方程"()'()0y p x y q x y ++=的两个特解,则1122y c y c y =+(12,c c 为任意常数)( )(A)是此方程的通解 (B)是此方程的特解 (C)不一定是该方程的解 (D)是该方程的解 61、方程22(2)"(2)'(22)0x x y x y x y ---+-=的通解为( )(A)12x y c e c =+ (B)12x x y c e c e -=+ (C)212x y c e c x =+ (D)12xy c e c x =+62、微分方程"'1xy y e -=+的一个特解形式为( )(A)x ae b + (B)x axe bx + (C)x ae bx + (D)xaxe b + 63、方程22()(2)0pxy y dx qxy x dy --+=是全微分的充要条件是( )(A)4,2p q == (B)4,2p q ==- (C)4,2p q =-= (D)4,2p q =-=-64、表达式22[cos()][cos()3]x y ay dx by x y x dy +++++是某函数的全微分,则( )(A)2,2a b == (B)3,2a b == (C)2,3a b == (D)3,3a b ==65、方程"'"'xy y y y xe -+++=是特解形式为( )(A)()xax b e-+ (B)()xx ax b e -+(C)2()xx ax b e -+ (D)[()cos 2()sin 2]xe ax b x cx d x +++66、方程"2'xy y y xe -+=的特解*y 的形式为( )(A) xaxe (B)()x ax b e + (C)()x x ax b e + (D)2()xx ax b e + 67、已知1cos y wx =与23cos y wx =是微分方程2"0y w y +=的解,则1122y c y c y =+是( )(A) 方程的通解 (B)方程的解,但不为通解 (C)方程的特解 (D)不一定是方程的解68、方程"3'232xy y y x e -+=-的特解*y 的形式为( )(A) ()x ax b e + (B)()x ax b xe + (C)()x ax b ce ++ (D)()xax b cxe ++69、方程22"3'2xy y y x e-++=特解的形式为( )(A) 22xy ax e-= (B)22()xy ax bx c e-=++(C)22()xy x ax bx c e -=++ (D)222()xy x ax bx c e -=++70、下列函数在定义域内线性无关的是( )(A) 4x (B)22x x x ⋅⋅ (C)225cos sin x x ⋅⋅ (D)212x x ⋅⋅⋅71、微分方程2yxdy ydx y e dy -=的通解是( )(A)()yx y c e =- (B)()yx y e c =+ (C)()xy x e c =+ (D)()yy x c e =-72、方程5,3dx dyx y x dt dt=-+-=-的奇点为( ) (A)(0,0) (B) (0,5) (C) (5,5) (D) (5,0)73、(0,0)为系统,23dx dyy x y dt dt==--的( ) (A) 鞍点 (B) 结点 (C) 中心 (D) 焦点74、方程dx dy dz xz yz xy==的首次积分是( ) (A)2xy z c -= (B)2x c y= (C)2x yz c -= (D)2xz x c -=75、方程22222dx dy dzx y z xy xz==--的首次积分是( ) (A) 2x y z c x ++= (B)222x y z cy++= (C)y c x = (D)z c x =76、系统22dxx y dtdy x y dt⎧=-+⎪⎪⎨⎪=--⎪⎩的奇点类型为( )(A) 稳定结点 (B) 不稳定结点 (C) 稳定焦点 (D) 不稳定焦点77、系统3474dxx y dt dy x y dt⎧=-⎪⎪⎨⎪=-⎪⎩的奇点类型为( )(A) 鞍点 (B) 焦点 (C) 中心 (D) 结点78、方程"xy y xe-+=有形如( )特解(A)xy Axe -= (B)21()x y Ax Bx c e -=++(C)1()x y Ax B e -=+ (D)xAe -79、方程2"6'13(512)t x x x e t t ++=-+特解形状为( )(A)21()t x At Bt c e =++ (B)1()tx At B e =+(C)1t x Ate = (D)1tx Ae =80、方程"2'2cos xy y y e x --+=的特解形状为( )(A)1cos x y A xe -= (B)1sin xy A xe -=(C)1(cos sin )x y e A x B x -=+ (D)1xy Ae -=81、方程"2'2cos tx x x te t -+=的特解形状为( )(A)21()cos tx At Bt c e t =++ (B)21()sin t x At Bt c e t =++(C)1(cos sin )t x e A t B t =+ (D)221()cos ()sin t tx At Bt c e t Dt Et F e t =++++82、微分方程()()0xyyx ye e dx xee dy ---++=的通解为( )(A)xyye xe c -= (B)yxye xe c -= (C)x y ye xe c --= (D)x yye xe c --=83、微分方程(sin 2sin )(cos 2cos )0x xe y y x dx e y x dy -++=的通解为( )(A)sin 2cos xe y y x c += (B)s 2cos xe co y y x c += (C)sin cos xe y y x c += (D)s 2cos xe co y y x c +=84、微分方程(2)0yye dx x xy e dy -+=的通解为( )(A)2yxe y c += (B)2y e y c x += (C)y xe xy c += (D)y y e c x+=85、方程2(3)20xe y dx xydy ++=的通解为( )(A)32x xe x y c += (B)232(2)xx x e x y c -+=(C)232(22)x x x e x y c --+= (D)232(2)x x e x y c -+=86、下列方程为常微分方程的是( )(A)2220x y z ++= (B)22u u ux y y∂∂∂+=∂∂∂ (C)sin sin y A t B t =+ (D)'x y Ae =87、方程432422(22)(3)0y y xy e xy y dx x y e x y x dy +++--=的积分因子为( )(A)21()x x μ= (B)1()x xμ= (C)41()y y μ= (D)21()y y μ=88、方程(2)0y ye x xy e dy -+=的积分因子为( )(A)21()x x μ=(B) 1()x xμ= (C)21()y y μ= (D) 1()y y μ=89、方程2(3)20xe y dx xydy ++=的积分因子为( )(A) 1()x xμ=(B)2()x x μ= (C) 1()y y μ= (D) 2()y y μ=90、方程(1)0y xy dx xdy --+=的积分因子为( )(A)()x x e μ= (B)()xx e μ-= (C)()y y e μ= (D)()yy eμ-=91、方程23(225)(22)0x y y dx x x dy ++++=的积分因子为( )(A) 1()x x μ=(B)21()1x x μ=+ (C) 1()y y μ= (D)21()1y y μ=+92、方程3222(1)0xy dx x y dy +-=的积分因子为( )(A) 1()x x μ=(B) 21()x xμ= (C) 1()y y μ= (D) 21()y y μ=93、方程(2cos )0xxe dx e ctgx y y dy ++=的积分因子为( )(A)()sin x x μ= (B)()s x co x μ= (C)()sin y y μ= (D)()s y co y μ=94、方程22()0ydx x y x dy -++=的积分因子为( )(A) 21()x x μ= (B) 21()y y μ= (C)221(,)x y x y μ=+ (D)1(,)x y x y μ=+95、方程3222()0y dx x xy dy +-=的积分因子为( )(A) 21x μ= (B)1xy μ= (C)221x y μ= (D)21x y μ=96、方程36330x y x dx dy y y x ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭的积分因子为( )(A)x μ= (B)y μ= (C)xy μ= (D)2x y μ=97、下列方程中为常微分方程的是( )(A) 2-210x x += (B) 2'y xy =(C) 2222u u u t x y∂∂∂=+∂∂∂ (D) 2 y x c =+(c 为常数)98、下列微分方程是线性的是( )(A)22' y x y =+ (B)2" xy y e +=(C)2"0 y x += (D)2'-y y xy =。

高等数学题库常微分方程

高等数学题库常微分方程

高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。

2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。

3、通解为xce y =(c 为任意常数)的微分方程是___________。

4、满足条件()()=+?dx x f x f x2的微分方程是__________。

5、 y y x 4='得通解为__________。

6、1+=y dxdy的满足初始条件()10=y 的特解为__________。

7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。

8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。

二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。

(完整版)常微分方程试题库.(最新整理)

(完整版)常微分方程试题库.(最新整理)

常微分方程一、填空题1.微分方程的阶数是____________0(22=+-+x y dxdy dx dy n 答:12.若和在矩形区域内是的连续函数,且有连续的一阶偏导数,则),(y x M ),(y x N R ),(y x 方程有只与有关的积分因子的充要条件是 0),(),(=+dy y x N dx y x M y _________________________答:)()1(y Mx N y M φ=-∂∂-∂∂3._________________________________________ 称为齐次方程.答:形如的方程(xy g dx dy =4.如果 ___________________________________________ ,则存在),(y x f ),(y x f dx dy =唯一的解,定义于区间 上,连续且满足初始条件 ,其中)(x y ϕ=h x x ≤-0)(00x y ϕ=_______________________ .=h 答:在上连续且关于满足利普希兹条件 R y ),min(mb a h =5.对于任意的 , (为某一矩形区域),若存在常数使 ),(1y x ),(2y x R ∈R )0(>N N ______________________ ,则称在上关于满足利普希兹条件.),(y x f R y 答: 2121),(),(y y N y x f y x f -≤-6.方程定义在矩形区域:上 ,则经过点 的解的22y x dxdy +=R 22,22≤≤-≤≤-y x )0,0(存在区间是 ___________________ 答:4141≤≤-x 7.若是齐次线性方程的个解,为其伏朗斯基行列式,则满足),.....2,1)((n i t x i =n )(t w )(t w 一阶线性方程 ___________________________________答:0)(1'=+w t a w 8.若为齐次线性方程的一个基本解组,为非齐次线性方程的一个),.....2,1)((n i t x i =)(t x 特解,则非齐次线性方程的所有解可表为_____________________答:xx c x ni i i +=∑=19.若为毕卡逼近序列的极限,则有 __________________)(x ϕ{})(x n ϕ≤-)()(x x n ϕϕ答:1)!1(++n n h n ML 10.______________________称为黎卡提方程,若它有一个特解 ,则经过变换 )(x y ___________________ ,可化为伯努利方程.答:形如的方程 )()()(2x r y x q y x p dx dy ++=y z y +=11.一个不可延展解的存在区间一定是区间.答:开12.方程满足解的存在唯一性定理条件的区域是 .1d d +=y x y 答:,(或不含x 轴的上半平面)}0),{(2>∈=y R y x D 13.方程的所有常数解是 .y x x y sin d d 2=答:,2,1,0,±±==k k y π14.函数组在区间I 上线性无关的 条件是它们的)(,),(),(21x x x n ϕϕϕ 朗斯基行列式在区间I 上不恒等于零.答:充分15.二阶线性齐次微分方程的两个解为方程的基本解组充分必要条件)(),(21x y x y 是. 答:线性无关(或:它们的朗斯基行列式不等于零)16.方程的基本解组是.02=+'-''y y y 答:xx x e ,e17.若在上连续,则方程的任一非零解 )(x y ϕ=),(∞+-∞y x xy )(d d ϕ=与轴相交.x 答:不能18.在方程中,如果,在上连续,那么它的0)()(=+'+''y x q y x p y )(x p )(x q ),(∞+-∞任一非零解在平面上 与轴相切.xoy x 答:不能19.若是二阶线性齐次微分方程的基本解组,则它们 共)(),(21x y x y ϕϕ==同零点.答:没有20.方程的常数解是 .21d d y x y -=答:1±=y 21.向量函数组在其定义区间上线性相关的 条件是)(,),(),(21x x x n Y Y Y I 它们的朗斯基行列式,.0)(=x W I x ∈答:必要22.方程满足解的存在唯一性定理条件的区域是 .22d d y x x y +=答: 平面xoy 23.方程所有常数解是 .0d )1(1)d (22=-+-y x y x y x 答:1,1±=±=x y 24.方程的基本解组是.04=+''y y 答:xx 2cos ,2sin 25.一阶微分方程的通解的图像是 维空间上的一族曲线. 答:2二、单项选择题1.阶线性齐次微分方程基本解组中解的个数恰好是( A )个.n(A ) (B )-1 (C )+1 (D )+2n n n n 2.如果,都在平面上连续,那么方程的任一解的存在),(y x f y y x f ∂∂),(xoy ),(d d y x f x y =区间( D ).(A )必为 (B )必为),(∞+-∞),0(∞+ (C )必为(D )将因解而定)0,(-∞3.方程满足初值问题解存在且唯一定理条件的区域是( D ).y x xy +=-31d d (A )上半平面 (B )xoy 平面(C )下半平面 (D )除y 轴外的全平面4.一阶线性非齐次微分方程组的任两个非零解之差( C ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解5. 方程过点共有( B )个解.21d d y x y -=)1,2(π (A )一(B )无数 (C )两 (D )三6. 方程( B )奇解.2d d +-=y x xy (A )有三个 (B )无 (C )有一个 (D ) 有两个7.阶线性齐次方程的所有解构成一个( A )线性空间.n (A )维 (B )维 (C )维 (D )维n 1+n 1-n 2+n 8.方程过点( A ).323d d y x y = (A )有无数个解 (B )只有三个解 (C )只有解 (D )只有两个解0=y 9. 连续是保证对满足李普希兹条件的( B )条件.),(y x f y '),(y x f y (A )充分 (B )充分必要 (C )必要 (D )必要非充分10.二阶线性非齐次微分方程的所有解( C ).(A )构成一个2维线性空间 (B )构成一个3维线性空间(C )不能构成一个线性空间 (D )构成一个无限维线性空间11.方程的奇解是( D ).y x y =d d (A ) (B ) (C ) (D )x y =1=y 1-=y 0=y 12.若,是一阶线性非齐次微分方程的两个不同特解,则该方程的)(1x y ϕ=)(2x y ϕ=通解可用这两个解表示为( C ).(A ) (B ))()(21x x ϕϕ-)()(21x x ϕϕ+(C ) (D ))())()((121x x x C ϕϕϕ+-)()(21x x C ϕϕ+13.连续是方程初值解唯一的( D )条件.),(y x f y '),(d d y x f xy =(A )必要 (B )必要非充分 (C )充分必要 (D )充分14. 方程( C )奇解.1d d +=y x y (A )有一个 (B )有两个 (C )无 (D )有无数个15.方程过点(0, 0)有( A ).323d d y x y = (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、求下列方程的通解或通积分1.3y x y dx dy +=解: ,则 所以 23y y x y y x dy dx +=+=)(121⎰+⎰⎰=-c dy e y e x dy y dy y cy y x +=23另外 也是方程的解 0=y 2.求方程经过的第三次近似解2y x dxdy +=)0,0(解:0)(0=x ϕ[]2020121)()(x dx x x x x =+=⎰ϕϕ[]52021220121)()(x x dx x x x x +=+=⎰ϕϕ[]81152022316014400120121)()(x x x x dx x x x x +++=+=⎰ϕϕ3.讨论方程 ,的解的存在区间 2y dx dy =1)1(=y 解:dx y dy =2两边积分 c x y+=-1所以 方程的通解为 cx y +-=1故 过的解为 1)1(=y 21--=x y 通过点 的解向左可以延拓到,但向右只能延拓到 2,)1,1(∞-所以解的存在区间为 )2,(-∞4. 求方程的奇解01(22=-+y dxdy 解: 利用判别曲线得p 消去得 即 ⎩⎨⎧==-+020122p y p p 12=y 1±=y 所以方程的通解为 , 所以 是方程的奇解)sin(c x y +=1±=y 5.0)1()1(cos 2=-++dy yx y dx y x 解: =, = , = , 所以方程是恰当方程.y M ∂∂2--y xN ∂∂2--y y M ∂∂x N ∂∂ 得 ⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂211cos yx y y v y x x u )(sin y y x x u ϕ++= 所以)('2y xy yu ϕ+-=∂∂-y y ln )(=ϕ故原方程的解为 c y yx x =++ln sin6. xx x y y y 22'sin cos sin 2-=-+解: 故方程为黎卡提方程.它的一个特解为x x x y y y 22'sin cos sin 2-++-= ,令 , 则方程可化为, x y sin =x z y sin +=2z dx dz -=cx z +=1即 , 故 c x x y +=-1sin c x x y ++=1sin 7.0)37()32(232=-+-dy xy dx y xy 解: 两边同除以得2y 037322=-+-xdy dy y ydx xdx 0732=--yd xy d dx 所以 , 另外 也是方程的解c y xy x =--7320=y 8.21d d x xy x y +=解 当时,分离变量得0≠y x x x y y d 1d 2+=等式两端积分得C x y ln )1ln(21ln 2++= 即通解为 21x C y +=9. xy xy 2e 3d d =+ 解 齐次方程的通解为x C y 3e -= 令非齐次方程的特解为xx C y 3e )(-=代入原方程,确定出 C x C x +=5e 51)( 原方程的通解为+ x C y 3e -=x 2e 5110. 5d d xy y xy +=解 方程两端同乘以,得5-yx y x y y +=--45d d 令 ,则,代入上式,得z y =-4xz x y y d d d d 45=-- x z x z =--d d 41 通解为 41e 4+-=-x C z x 原方程通解为41e 44+-=--x C y x 11.0)d (d 222=-+y y x x xy 解 因为,所以原方程是全微分方程. x N x y M ∂∂==∂∂2 取,原方程的通积分为)0,0(),(00=y xC y y x xy y x =-⎰⎰020d d 2 即C y y x =-323112.y y x y ln d d =解:当,时,分离变量取不定积分,得0≠y 1≠y通积分为C x y y y +=⎰⎰d ln d x C y e ln =13.03)(22=+'+''x y y y解 原方程可化为0)(2='+'x y y 于是 12d d C x xy y =+ 积分得通积分为23123121C x x C y +-=14.xy x y x y +-=2)(1d d 解:令,则,代入原方程,得xu y =x u x u x y d d d d +=21d d u xu x -= 分离变量,取不定积分,得() C x x u uln d 1d 2+=-⎰⎰0≠C 通积分为: Cx xy ln arcsin=15. xy x y x y tan d d +=解 令,则,代入原方程,得u x y =xu x u x y d d d d += , u u x u x u tan d d +=+u x u x tan d d = 当时,分离变量,再积分,得0tan ≠u C x x u u ln d tan d +=⎰⎰ Cx u ln ln sin ln +=即通积分为:Cx x y =sin 16. 1d d +=xy x y 解:齐次方程的通解为Cx y = 令非齐次方程的特解为x x C y )(=代入原方程,确定出 C x x C +=ln )( 原方程的通解为+Cx y =x x ln 17. 0d d )e (2=+-y x x y x y 解 积分因子为21)(x x =μ 原方程的通积分为1012d d (e C y x x y y x x =+-⎰⎰ 即 1e ,e C C C xy x +==+18.0)(2='+''y y y 解:原方程为恰当导数方程,可改写为0)(=''y y 即1C y y =' 分离变量得x C y y d d 1= 积分得通积分21221C x C y +=19.1)ln (='-'y x y 解 令,则原方程的参数形式为p y ='⎪⎩⎪⎨⎧='+=p y p p x ln 1 由基本关系式 ,有y xy '=d dp p pp x y y )d 11(d d 2+-⋅='= p p )d 11(-=积分得 C p p y +-=ln 得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=C p p y p p x ln ln 120.022=+'+''x y y y 解 原方程可化为0)(2='+'x y y 于是 12d d C x xy y =+ 积分得通积分为 23123121C x x C y +-=21. 0)d (d )(3223=+++y y y x x xy x 解:由于,所以原方程是全微分方程. x N xy y M ∂∂==∂∂2 取,原方程的通积分为)0,0(),(00=y x103023d d )(C y y x xy x y x =++⎰⎰即C y y x x =++42242四、计算题1.求方程的通解.x y y e 21=-''解 对应的齐次方程的特征方程为:12=-λ特征根为:1,121-==λλ故齐次方程的通解为: x x C C y -+=e e 21 因为是单特征根.所以,设非齐次方程的特解为1=αx Ax x y e )(1=代入原方程,有 , 可解出 . x x x x Ax Ax A e 21e e e 2=-+41=A 故原方程的通解为 x xx x C C y e 41e e 21++=-2.求下列方程组的通解. ⎪⎪⎩⎪⎪⎨⎧+=--=y x t y y x t x 43d d 2d d 解 方程组的特征方程为04321=----=-λλλE A 即 0232=+-λλ特征根为 ,11=λ22=λ 对应的解为11=λt b a y x e 1111⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡其中是对应的特征向量的分量,满足11,b a 11=λ ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡----0014321111b a 可解得.1,111-==b a 同样可算出对应的特征向量分量为 .22=λ3,212-==b a 所以,原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡t t t t C C y x 2221e 32e e e 3.求方程的通解.x y y 5sin 5='-''解:方程的特征根为,01=λ52=λ齐次方程的通解为 x C C y 521e += 因为不是特征根。

考研数学一常微分方程

考研数学一常微分方程

考研数学一常微分方程1. 【单项选择题】A. x2+y2=C2B. x2-y2=C2C. x2+y2=CD. x2-y2=C正确答案:A参考解析:2. 【单项选择题】微分方程y”+2y'-3y=e-x+x的一个特解形式为().A. ae-x+bx+cB. axe-x+x(bx+c)C. axe-x+bx+cD. ae x+x(bx+c)正确答案:A参考解析:3. 【单项选择题】下列方程中,以y=C1e x+C2cosx+C3sinx(C1,C2,C3为任意常数)为通解的是().A. y'''-y''+y'-y=0B. y'''+y''+y'-y=0C. y'''+y''-y'-y=0D. y'''-y''-y'-y=0正确答案:A参考解析:由通解y=C1e x+C2cosx+C3sinx,知其特征根为r1=1,r2=i,r3=-i,故对应的特征方程为(r-1)(r2+1)=0,即r3-r2+r-1=0,故对应的微分方程为y'''-y''+y'-y=0,A正确。

4. 【单项选择题】若二阶常系数线性齐次微分方程y"+py'+qy=0的通解为y=C1e x+C2xe x,则非齐次微分方程y"+py'+qy=x满足y(0)=2,y’(0)=0的特解为y=().A. xe x-x-2B. xe x-x+2C. -xe x+x+2D. -xe x-x+2正确答案:C参考解析:y由齐次微分方程通解为y=C1e x+C2xe x,知对应特征方程的根为r1=r2=1,其特征方程为(r-1)2=0,即r2-2r+1=0,故p=-2,q=1,所以非齐次微分方程为y"-2y'+y=x ①令特解y*=ax+b,代入上式,得-2a+ax+b=x,解得a=1,b=2,故①的通解为y=C1e x+C2xe x+x+2。

常微分方程期末试题答案

常微分方程期末试题答案

一、填空题(每空2 分,共16分)。

1、方程满足解的存在唯一性定理条件的区域是 xoy 平面 .22d d y x x y+=2. 方程组的任何一个解的图象是 n+1 维n x x xR Y R Y F Y∈∈=,),,(d d 空间中的一条积分曲线.3.连续是保证方程初值唯一的 充分 条件.),(y x f y '),(d d y x f xy=4.方程组的奇点的类型是 中心⎪⎪⎩⎪⎪⎨⎧=-=x ty y txd d d d )0,0( 5.方程的通解是2)(21y y x y '+'=221C Cx y +=6.变量可分离方程的积分因子是()()()()0=+dy y q x p dx y N x M ()()x P y N 17.二阶线性齐次微分方程的两个解,成为其基本解组的充要)(1x y ϕ=)(2x y ϕ=条件是 线性无关8.方程的基本解组是440y y y '''++=x x x 22e ,e--二、选择题(每小题 3 分,共 15分)。

9.一阶线性微分方程的积分因子是( A ).d ()()d yp x y q x x+=(A )(B )(C )(D )⎰=xx p d )(e μ⎰=xx q d )(e μ⎰=-xx p d )(e μ⎰=-xx q d )(e μ10.微分方程是( B )0d )ln (d ln =-+y y x x y y (A )可分离变量方程(B )线性方程(C )全微分方程(D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A)(B)1±=x 1±=y (C ), (D ), 1±=y 1±=x 1=y 1=x12.阶线性非齐次微分方程的所有解( D ).n (A )构成一个线性空间(B )构成一个维线性空间1-n(C )构成一个维线性空间(D )不能构成一个线性空间1+n 13.方程( D )奇解.222+-='x y y (A )有一个 (B )有无数个 (C )只有两个(D )无三、计算题(每小题8分,共48分)。

自考常微分方程试题及答案

自考常微分方程试题及答案

自考常微分方程试题及答案一、选择题(每题2分,共10分)1. 以下哪一项是一阶微分方程?A. dy/dx + 2y = x^2B. d^2y/dx^2 + y = 0C. dy/dx = 0D. d^3y/dx^3 - y = x答案:A2. 常数变易法主要用于求解什么类型的二阶线性微分方程?A. 欧拉方程B. 伯努利方程C. 线性齐次方程D. 线性非齐次方程答案:D3. 以下哪个解是微分方程y'' - y' - 2y = 0的一个特解?A. y = e^(2x)B. y = e^(-x)C. y = e^(x)D. y = e^(x/2)答案:A4. 微分方程y' = y/x 表示的曲线族是:A. 一系列直线B. 一系列抛物线C. 一系列双曲线D. 一系列椭圆答案:C5. 如果一个函数满足微分方程y'' + y' + y = 0,那么它是:A. 一个奇函数B. 一个偶函数C. 一个周期函数D. 一个非周期函数答案:D二、填空题(每题3分,共15分)6. 解微分方程dy/dx = x^2 - y^2,当y(0) = 1时,y(1)的值为_________。

答案:07. 微分方程的通解为y = C1 * e^x + C2 * e^(-x),其中C1和C2是任意常数,该方程是_________阶线性齐次方程。

答案:一8. 微分方程y'' - 2y' + y = 0的特征方程为_________。

答案:r^2 - 2r + 1 = 09. 微分方程dy/dx = sin(x) + cos(y)满足初始条件y(0) = 0的解是y =_________。

答案:arccos(cos(x))10. 微分方程y' = y^2的解是y =_________。

答案:C/x + C^2,其中C是任意常数。

三、解答题(共75分)11. (15分)求解微分方程dy/dx - y = e^x,并给出通解。

考研数学一-高等数学常微分方程(一)

考研数学一-高等数学常微分方程(一)

考研数学一-高等数学常微分方程(一)(总分:178.00,做题时间:90分钟)一、选择题(总题数:11,分数:11.00)1.以下可以看作某个二阶微分方程的通解的函数是(A) y=C1x2+C2x+C3. (B) x2+y2=C.(C) y=ln(C1x)+ln(C1sinx). (D) y=C1sin2x+C2cos2x.(分数:1.00)A.B.C.D. √解析:[解析] 由二阶微分方程的通解需含两个任意的独立常数可知,仅(D)符合要求,故应选(D).2.微分方程y"+2y'+y=3xe-x的特解形式为(A) axe-x. (B) (ax+b)e-x. (C) (ax+b)xe-x. (D) (ax+b)x2e-x.(分数:1.00)A.B.C.D. √解析:[解析] 由于方程对应的特征方程为λ2+2λ+1=0,故特征根为重根λ1=λ2=-1,方程的非齐次项为Q(x)e-x且Q(x)=3x为一次多项式,因此待定特解的形式为(ax+b)x2e-x.故应选(D).3.微分方程y"-3y'+2y=3x-2e x的特解形式为(A) (ax+b)e x. (B) (ax+b)xe x.(C) (ax+b)+ce x. (D) (ax+b)+cxe x.(分数:1.00)A.B.C.D. √解析:[解析] 由于特征方程为λ2-3λ+2=0,所以特征根为λ1=1,λ2=2.从而方程y"-3y'+2y=3x待定特解形式为;方程y"-3y'+2y=-2e x待定特解形式为,是原方程的一个特解,故选(D).4.微分方程y"+2y'+y=(x+1)e-x+2x+1有一个特解y*形式为(A) y*=x(ax+b)e-x+(cx+d). (B) y*=(ax+b)e-x+x2(cx+d).(C) y*=x2(ax+b)e-x+(cx+d). (D) y*=(ax+b)e-x+x(cx+d).(分数:1.00)A.B.C. √D.解析:[解析] 因为特征方程为λ2+2λ+1=0,特征根为重根λ1=λ2=-1,所以对应于非齐次项(x+1)e-x应设特解,对应非齐次项2x+1,再由迭加原理知应设特解y*=x2(ax+b)e-x+(cx+d),故应选(C).5.若A,B为非零常数,c1,c2为任意常数,则微分方程y"+k2y=cosx的通解应具有形式(A) c1coskx+c2sinkx+Asinx+Bcosx. (B) c1coskx+c2sinkx+Axsinx.(C) c1coskx+c2sinkx+Axcosx. (D) c1coskx+c2sinkx+Axsinx+Bxcosx.(分数:1.00)A.B. √C.D.解析:[解析] 由于对应的齐次方程的通解为c1coskx+c2sinkx.这样需验证的是哪一个是非齐次方程的特解.如果非齐次方程的特解有形式Asinx+Bcosx,说明此时k≠1,经验证可知特解为,即A=0,.而根据题设,A,B均为非零常数,说明它不符合题意,故选项(A)错误.如果k=1,则特解应具有形式Axsinx+Bxcosx,B=0,由此可见,应选(B).6.设y1(x),y2(x),y3(x)是二阶线性非齐次微分方程y"+p(x)y'+q(x)y=f(x)的三个线性无关解,C1,C2是任意常数,则此微分方程的通解是(A) C1y1+C2y2+y3. (B) C1y1+C2y2+(1-C1-C2)y3.(C) C1y1+C2y2-(C1+C2)y3. (D) C1y1+C2y2-(1-C1-C2)y3.(分数:1.00)A.B. √C.D.解析:[解析] 因为y1(x),y2(x),y3(x)是线性微分方程y"+p(x)y'+q(x)y=f(x)的解,所以y1-y3和y2-y3都是相应的二阶齐次微分方程的解.由于y1(x),y2(x),y3(x)线性无关,若令k1(y1-y3)+k2(y2-y3)=0,即 k1y1+k2y2-(k1+k2)y3=0,则必有k1=k2=0,故y1-y3和y2-y3线性无关.所以原方程的通解为y=C1(y1-y3)+C2(y2-y3)+y3=C1y1+C2y2+(1-C1-C2)y3,故正确选项为(B).7.已知y1=xe x+e2x,y2=xe x+e-x是二阶非齐次线性微分方程的解,则此方程为(A) y"-y'-2y=e x-2xe x. (B) y"+y'+2y=e x-2xe x.(C) y"-y'-2y=-e x+2xe x. (D) y"+y'+2y=-e x+2xe x.(分数:1.00)A. √B.C.D.解析:[解析] 因y1-y2=e2x-e-x为对应齐次方程的解,故特征方程为(λ-2)(λ+1)=λ2-λ-2=0,从而对应齐次方程为y"-y'-2y=0.把特解y1代入方程得y"1-y'1-2y1=e x-2xe x,因此所求方程为y"-y'-2y=e x-2xe x.所以应选(A).8.设y1(x),y2(x)为二阶常系数齐次线性方程y"+py'+qy=0的两个特解,则c1y1(x)+c2y2(x)(c1,c2为任意常数)是该方程通解的充分必要条件是(A) y1(x)y'2(x)-y2(x)y'1(x)=0. (B) y1(x)y'2(x)-y2(x)y'1(x)≠0.(C) y1(x)y'2(x)+y2(x)y'1(x)=0. (D) y1(x)y'2(x)+y2(x)y'1(x)≠0.(分数:1.00)A.B. √C.D.解析:[解析] 根据题设,y1(x)与y2(x)应线性无关,也就是说(常数).反之若这个比值为常数,即y1(x)=λy2(x),则y1(x)与y2(x)线性相关.由y1(x)=λy2(x)可得:y'1(x)=λy'2(x),所以y1(x)y'2(x)-y2(x),y'1(x)=0,因此应选(B).9.下列结论不正确的是(A) 若已知y'=P(x)+Q(x)y+R(x)y2的一个特解,则必定可将该方程化为伯努利方程.(B) 若微分方程P(x,y)dx+Q(x,y)dy=0有积分因子μ(x,y),则μ(x,y)必定满足(C) 是微分方程y'+y2=0的解,则y=Cy1也是该方程的解.(D) 方程y"-y'2+2y=0的任何积分曲线在下半平面内不能有拐点.(分数:1.00)A.B.C. √D.解析:[解析] 对于(A):设y*是微分方程y'=P(x)+Q(x)y+R(x)y2的一个特解.令y=z+y*,代入方程化简得z'=[Q(x)+2R(x)y*]z+R(x)z2,这正是伯努利方程,故(A)正确.对于(B):函数μ=μ(x,y)是微分方程Pdx+Qdy=0的积分因子的充分必要条件是即.故(B)正确.对于(C)不满足方程y'+y2=0,故(C)不正确.对于(D):用反证法.假设下半平面(y<0)的点(x0,y0)是积分曲线的拐点,则y"(x0)=0,于是与题设条件矛盾.故(D)正确.综上分析,应选(C).10.在下列微分方程中,以y=C1e x+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是(A) y'"+y"-4y'-4y=0. (B) y'"+y"+4y'+4y=0.(C) y'"-y"-4y'+4y=0. (D) y'"-y"+4y'-4y=0.(分数:1.00)A.B.C.D. √解析:[解析] 从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是:1方程是(λ-1)(λ+2i)(λ-2i)=(λ-1)(λ2+4)=λ3-λ2+4λ-4=0,因此所求的微分方程是y'"-y"+4y'-4y=0.选(D).11.具有特解y1=e-x,y2=2xe-x,y3=3e x的三阶常系数齐次线性微分方程是(A) y'"-y"-y'+y=0. (B) y'"+y"-y'-y=0.(C) y'"-6y"+11y'-6y=0. (D) y'"-2y"-y'+2y=0.(分数:1.00)A.B. √C.D.解析:[解析] 首先,由已知的三个特解可知特征方程的三个根为r1=r2=-1,r3=1,从而特征方程为(r+1)2(r-1)=0,即r3+r2-r-1=0,由此,微分方程为y'"+y"-y'-y=0.应选(B).二、填空题(总题数:22,分数:22.00)12.______.(分数:1.00)填空项1:__________________ (正确答案:解析:[解析] 原方程可化为,这是一阶线性微分方程,所以其通解为13.______.(分数:1.00)填空项1:__________________ (正确答案:y(x-1)=Cx)解析:[解析]y(x-1)=Cx.14.______.(分数:1.00)填空项1:__________________ (正确答案:解析:[解析] 此微分方程既不是齐次微分方程也不是可分离变量的微分方程.若以y为未知函数也不是一阶线性微分方程.但注意到其特点,把它改写成以x为未知函数的微分方程,即这是以x为未知函数的一阶线性微分方程,由通解公式得:15.微分方程2x3y'=y(2x2-y2)的通解为______.(分数:1.00)填空项1:__________________ 是不为零的任意常数))解析:[解析] 原方程可改写为,从而是齐次微分方程,令得方程(*)是变量可分离的,其通解为(C是不为零的任意常数).16.微分方程x3yy'=1-xyy'+y2的通解为______.(分数:1.00)填空项1:__________________解析:[解析] 原方程经整理后化成可分离变量的方程两边积分得17.微分方程3e x tanydx+(1-e x)sec2ydy=0的通解是______.(分数:1.00)填空项1:__________________ (正确答案:tany=C(e x-1)3)解析:[解析] 在原方程两边同乘以,经分离变量可化为积分得 ln|tany|=3ln|e x-1|+ln|C|,所以方程有通解为tany=C(e x-1)3.18.微分方程(2y-x)dy=ydx的通解是 1.(分数:1.00)填空项1:__________________ (正确答案:y2-xy=C)解析:[解析] 题设方程可变形为2ydy-(xdy+ydx)=0即d(y2-xy)=0,故通解为y2-xy=C.19.y(0)=1的特解为 1.(分数:1.00)填空项1:__________________ (正确答案:[*])解析:[解析] 方程是齐次微分方程,令,则原方程变为,由此可得方程的通解为,由y(0)=1可得C=1.20.______.(分数:1.00)填空项1:__________________解析:[解析] 因为,令,则原方程可化为这是一个一阶线性微分方程,解得所以原微分方稗的通解为21.______.(分数:1.00)填空项1:__________________ (正确答案:siny=Ce-x+x-1.)解析:[解析] 因为y'cosy=(siny)',令u=siny,则原微分方程化为u'+u=x.这是关于未知函数u(x)的一个一阶线性非齐次微分方程,其通解为所以原微分方程的通解为siny=Ce-x+x-1.22.设函数y1(x),y2(x),y3(x)是二阶线性微分方程y"+a(x)y'+b(x)y=f(x)该微分方程的通解为______.(分数:1.00)填空项1:__________________ (正确答案:y=y1(x)+C1[y2(x)-y1(x)]+C2[y3(x)-y1(x)])解析:[解析] 根据线性微分方程解的叠加原理及题中条件知函数y2(x)-y1(x)和y3(x)-y1(x)都是原方程所,所以函数y2(x)-y1(x)和y3(x)-y1(x)线性无关.根据线性微分方程解的结构知原方程的通解为y=y1(x)+C1[y2(x)-y1(x)]+C2[y3(x)-y1(x)].23.已知(x-1)y"-xy'+y=0的一个解是y1=x,又知y=e x-(x2+x+1),y*=-x2-1是(x-1)y"-xy'+y=(x-1)2的两个解,则此方程的通解是y=______.(分数:1.00)填空项1:__________________ (正确答案:y=C1x+C2e x-x2-1)解析:[解析] 由非齐次方程(x-1)y"-xy'+y=(x-1)2①的两个特解与y*可得它的相应的齐次方程(x-1)y"-xy'+y=0②的另一特解.事实上 y2=(e x-x)+x=e x也是②的一个解,又e x与x线性无关,因此非齐次方程①的通解为y=C1x+C2e x-x2-1.24.已知y1=3,y2=3+x2,y3=3+x2+e x都是微分方程(x2-2x)y"-(x2-2)y'+(2x-2)y=6x-6的解,则此方程的通解为______.(分数:1.00)填空项1:__________________ (正确答案:y=C1(y2-y1)+C2(y3-y2)+y1=C1x2+C2e x+3)解析:[解析] 根据解的结构定理,方程的通解为y=C1(y2-y1)+C2(y3-y2)+y1=C1x2+C2e x+3.25.设二阶线性微分方程y"+p(z)y'+q(x)y=f(x)有三个特解y1=e x,y3=e x+e-x,则该方程为______.(分数:1.00)填空项1:__________________解析:[解析] 因为y2-y1,y3-y1是对应的齐次方程的解,代入齐次方程可求得,q(x)=,再将y1代入原方程可得f(x)=e x..26.______.(分数:1.00)填空项1:__________________ (正确答案:y"-4y'+7y=0)解析:[解析] 由给定的两个线性无关的特解可知:该二阶常系数线性齐次方程对应的特征方程的特征根为.由根与系数的关系知:相应的特征方程为λ2-4λ+7=0.因此该二阶常系数线性齐次方程为:y"-4y'+7y=0.27.以y=(C1+C2x)e-x+x2e-x(其中C1,C2为任意常数)为通解的微分方程为______.(分数:1.00)填空项1:__________________ (正确答案:y"+2y'+y=2e-x)解析:[解析] 设所求微分方程为y"+py'+qy=f(x),其对应的齐次微分方程的特征方程的根为r1=r2=-1,因而特征方程为(r+1)2=0,即r2+2r+1=0,其对应的齐次微分方程为y"+2y'+y=0.非齐次微分方程对应的特解为y*=x2e-x,代入微分方程即得=2e-x.故所求微分方程为y"+2y'+y=2e-x.28.以y=C1e-x+C2e2x+sinx为通解的二阶常系数非齐次微分方程为______.(分数:1.00)填空项1:__________________ (正确答案:y"-y'-2y=-3sinx-cosx)解析:[解析] 由所给通解知二阶常系数线性微分方程的二特征根分别为λ1=-1与λ2=2,从而特征方程为(λ+1)(λ+2)=0,即λ2-λ-2=0,又方程的非齐次项f(x)=(sinx)"-(sinx)'-2sinx=-sinx-cosx-2sinx=-3sinx-cosx.故以y=C1e-x+C2e2x+sinx为通解的二阶常系数非齐次微分方程为y"-y'-2y=-3sinx-cosx.29.微分方程y"+2y'=12x2-10的通解是______.(分数:1.00)填空项1:__________________ (正确答案:y=C1+C2e-2x+2x3-3x2-2x)解析:[解析] 方程对应的齐次方程的特征方程为λ2+2λ=0,所以特征根为λ=-2,λ=0.从而对应的齐次方程有二线性无关特解y*1=1与y*2=e-2x.设原方程的一个特解为y*=x(ax2+6x+c),代入原方程得6ax+2b+2(3ax2+2bx+c)=12x2-10,不难求得:a=2,b=-3,c=-2.故非齐次方程有一个特解y*=2x3-3x2-2x.因此原方程的通解为:y=C1+C2e-2x+2x3-3x2-2x.30.微分方程y"+4y=cos2x的通解为y=______.(分数:1.00)填空项1:__________________解析:[解析] 方程对应的齐次方程的特征方程为λ2+4=0,它的特征根为λ1,2=±2i.因此对应齐次方程二线性无关的特解为.设原非齐次方程的一个特解为y*=x(Acos2x+Bsin2x),代入原方程得-4Asin2x+4Bcos2x=cos2x.所以A=0,.因此原方程的通解为.31.微分方程y"-3y'+ay=e-x有一特解为Axe-x,则a=______.(分数:1.00)填空项1:__________________ (正确答案:-4)解析:[解析] 将y=Axe-x代入方程y"-3y'+ay=e-x得A(a+4)xe-x-5Ae-x=e-x.所以a=-4.32.微分方程(2xsiny+3x2y)dx+(x3+x2cosy+y2)dy=0的通解是______.(分数:1.00)填空项1:__________________解析:[解析] 令P(x,y)=2xsiny+3x2y,Q(x,y)=x3+x2cosy+y2,则它们在整个平面上都有一阶连续偏导数,且,故方程是全微分方程,它的通解为33.已知,及相应的齐次方程,分别有特解则方程满足y(0)=1的特解是y=______.(分数:1.00)填空项1:__________________解析:[解析] 由一阶线性方程通解的结构得该一阶线性非齐次方程的通解为由y(0)=1C=-1.因此特解为三、解答题(总题数:29,分数:145.00)34.求微分方程xy'=y(1+lny-lnx)的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(方程可变形为,是一阶齐次微分方程.令,则原方程变为(*)(*)是变量可分离的微分方程,分离变量得.上式两端求不定积分得u=e Cx.从而原方程的通解为y=xe Cx.)解析:35.求微分方程(1+y2)dx+(x-arctany)dy=0的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(原微分方程可变形为,这是一阶线性微分方程,其通解为)解析:36.(分数:5.00)__________________________________________________________________________________________ 正确答案:(原微分方程两边同除以x,得当x>0时,这是齐次微分方程.作变换,有,即.解之,得arcsinu=lnCx.再以代回,便得原方程的通解:,即y=xsin(lncx).)解析:37.(分数:5.00)__________________________________________________________________________________________ 正确答案:(方程变形为,是齐次微分方程.令,则,两边积分得所以有即代回即得原方程通解为)解析:38.设求微分方程y(0)=0的连续解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(当0≤x≤1时,微分方程为,这是一阶线性微分方程,通解为y=C1e-x+2;当x>1时,微分方程为,这是变量可分离的微分方程,通解为y=C2e-x.根据y(x)的连续性知:,所以C2=C1+2e.故原方程的通解为由于y(0)=0,所以C=-2,故满足条件的特解为)解析:39.求微分方程y"-2y'-3y=3x+1+e-x+sin2x的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(将方程右端作变形,得(1)特征方程λ2-2λ-3=0,特征根λ1=-1,λ2=3,则相应齐次微分方程通解(2)求原方程一个特解y*.因为有特解=ax+b;y"-2y'-3y=e-x有特解有特解=dcos2x+esin2x,所以其中a,b,c,d,e为待定系数.将y*代入原方程得待定系数于是(3)原方程通解为)解析:40.求微分方程y"+4y'+4y=cos2x满足条件y(0)=y'(0)=0的特解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(先求方程对应的齐次方程的通解.特征方程为λ2+4λ+4=0,特征根为λ1=λ2=-2,所以对应的齐次方程的通解为Y=(C1+C2x)e-2x.再求原方程的一个特解.设y*=acos2x+bsin2x是原方程的一个特解,代入原方程得:a=0,,因此是原方程的一个特解.从而原方程的通解为.又因为y(0)=y'(0)=0,代入通解可得C1=0,.所以满足初始条件的特解为)解析:41.求微分方程y"+4y=3|sinx|在[-π,π](分数:5.00)__________________________________________________________________________________________ 正确答案:(当-π≤x≤0时,方程为y"+4y=-3sinx,可求得该方程的通解为y=C1cos2x+C2sin2x-sinx.当0<x≤1T时,方程为y"+4y=3sinx,可求得此方程的通解为y=C3cos2x+C4sin2x+sinx.由于方程的解y(x)及其导函数y'(x)都在分段点x=0处连续,所以从而C1=C3,C2=C4+1.故原方程通解为又因为因此所求特解为)解析:42.求常数a,b,c,d的值,使得微分方程y"+ay'+by=(cx+d)e2x有一个解是y=e x+x2e2x.(分数:5.00)__________________________________________________________________________________________ 正确答案:(将y=e x+x2e2x代入原方程得(1+a+b)e x+[2+(8+2a)x+(4+2a+b)x2]e2x≡(cx+d)e2x,从而)解析:43.求微分方程3y'-ysecx=y4tanx的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(这是伯努利方程.令z=y-3,于是原方程化为一阶线性方程上述方程的通解为因此原方程的通解为)解析:44.已知方程(6y+x2y2)dx+(8x+x3y)dy=0的两边乘以y3f(x)后便成为全微分方程,试求出可导函数f(x),并解此微分方程.(分数:5.00)__________________________________________________________________________________________正确答案:(设P(x,y)=(6y4+x2y5)f(x),Q(x,y)=(8xy3+x3y4)f(x),由得(8y3+3x3y4)f(x)+(8xy3+x3y4)f'(x)=(24y2+5x2y4)f(x).消去y3得 16f(x)-8xf'(x)+y[2x2f(x)-x3f'(x)]=0,有且全微分方程为(6y4+x2y5)C1x2dx+(8xy2+x3y4)C1x2dy=0,故微分方程的通解为 10x3y4+x5y5=C.)解析:45.(分数:5.00)__________________________________________________________________________________________正确答案:(这是欧拉方程,令x=±e t即t=ln|x|,方程变成(*)特征方程λ2+2λ+1=0,特征根λ1=λ2=-1.(*)的通解为y=e-t(C1t+C2).因此,原方程的通解为,C1,C2常数.)解析:46.设f(x)在(-∞,+∞)上满足对任意x,y恒有f(x+y)=e2y f(x)+f(y)cosx,又f(x)在x=0处可导,且f'(0)=1,求f(x).(分数:5.00)__________________________________________________________________________________________正确答案:(由于对任意x∈(-∞,+∞),由于f(x+y)=e2y f(x)+f(y)cosx,所以f(0)=0,因此=2f(x)+f'(0)cosx=2f(x)+cosx.从而得到f(x)满足的微分方程f'(x)-2f(x)=cosx.这是一阶线性微分方程,其通解为记所以从而.由f(0)=0,可得,所以)解析:47.设函数f(x)在[0,+∞)上可导,且f(1)=3,若f(x)的反函数g(x)满足求f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(这是含变上限定积分的方程,两端对x求导得因为f(x)与g(x)互为反函数,所以gf(u)]=u,从而上式变为令x=e t-1,且f'(t)=e t-1,积分得f(t)=e t-1+C.由f(1)=3可得C=2,故f(x)=e x-1+2.)解析:48.设f(x)f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(这是含变上限积分的方程,且被积函数中含有参变量,所以应首先去掉被积函数中的参变量,化为被积函数中不含参变量的情况.令x-t=u,原方程变为,即.将以上方程求导两次可转化为微分方程为f"(x)=2+f(x)且f(1)=0,f'(1)=0.方程f"(x)=2+f(x)的通解为f(x)=C1e-x+C2e x-2.由f(1)=0,f'(1)=0可得:C1=e,C2=e-1.因此f(x)=e1-x+e x-1-2.) 解析:49.若y(x)是[0,1]上的连续可微函数,且满足条件求y(x)的表达式.(分数:5.00)__________________________________________________________________________________________ 正确答案:(原方程两边关于x求导两次,得到分离变量后再积分,得.因为函数y(x)在点x=0处右连续,则所以方程的通解为将初始条件y(1)=2代入,得C=2e,故所求函数为)解析:50.设函数f(x)在(-∞,+∞)内有连续导数,且满足求f(t).(分数:5.00)__________________________________________________________________________________________ 正确答案:(令x=rcosθ,r=sinθ,由可得所以f'(t)=4πt3f(t)+4t3,且f(0)=0,即,且f(0)=0.因此,将,f(0)=0代入可得C=0)解析:51.设函数u的全微分du=[e x+f'(x)]ydx+f'(x)dy,其中f在(-∞,+∞)内具有二阶连续的导数,且f(0)=4,f'(0)=3,求f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(,且由于f有二阶连续的导数,则u,即f"(x)-f'(x)=e x.方程的通解为 f(x)=C1+C2e x+xe x,由条件f(0)=4,f'(0)=3求得C1=2,C2=2.因而 f(x)=2+(2+x)e x.)解析:52.设f(x)在区间[0,+∞)上连续,且,求证:微分方程x→+∞时都趋于1.(分数:5.00)__________________________________________________________________________________________ 正确答案:(这是一阶非齐次线性微分方程,其通解为因为,所以存在X>0,当x>X时,.因此当x>X时,.于是)解析:53.设f(x)二阶连续可导,且f(0)=0,f'(0)=1,求u(x,y),使du=y[f(x)+3e2x]dx+f'(x)dy.(分数:5.00)__________________________________________________________________________________________正确答案:(,由Pdx+Qdy是u(x,y)的全微分知:,从而f"(x)-f(x)=3e2x,解此微分方程得f(x)=-e x+e2x.于是)解析:54.设当x>0时,f(x)存在一阶连续导数,且f'+(0)存在,并设对于半空间x>0内的任意光滑封闭曲面∑,恒有求f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(根据高斯公式可得即 f(x)+xf'(x)-y+f(x)+2yz+y-2yz-x2=0,解得:.由于f'+(0)存在,所以C=0.)解析:55.作变换t=tanx y关于t的微分方程,并求原微分方程的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:(由于,,解之得:y=(C1+C2t)e-t+t-2.故原方程的通解为y=(C1+C2tanx)e-tanx+tanx-2.)解析:56.若一曲线上任一点M(x,y)处的切线斜率为,且过点,求此曲线方程.又当x取何值时,.(分数:5.00)__________________________________________________________________________________________ 正确答案:(所求曲线方程为如下齐次微分方程定解问题的特解令,方程可化为,其通解为从而原方程的通解为,由得,故所求曲线方程为欲使即,解得y=x,代入曲线方程程得,即当时,切终斜率为1/4.)解析:57.在xOy平面的第一象限求一曲线,使由其上任一点P处的切线,x轴与线段OP所同成的三角形的面积为常数k,且曲线通过点(1,1).(分数:5.00)__________________________________________________________________________________________ 正确答案:(设P点坐标为(x,y),曲线方程为y=y(x),该曲线在点P的切线方程为Y-y=y'(X-x),它与x轴交点Q坐标为,从而所围成三角形的面积为这是以x为未知函数,并以y.由初始条件y(1)=1,可确定C=1-k,于是所求曲线为xy=(1-k)y2+k.)解析:58.对任意实数x>0,设曲线y=f(x)上点(x,f(x))处的切线在y[0,x2]上的平均值,求f(x).(分数:5.00)__________________________________________________________________________________________ 正确答案:(25,曲线y=f(x)上点(x,f(x))处的切线方程为Y-f(x)=f'(x)(X-x),它在y轴上的截距等于f(x)-f'(x)x.由题设可得:,即.上式两端求导数可得-x3f"(x)一2x2J。

第四章常微分方程参考答案(1)

第四章常微分方程参考答案(1)

爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。

常微分方程期末选择题题库

常微分方程期末选择题题库

..选 择 题1、下列方程中为常微分方程的是( )(A) 2-210x x += (B) 2' y xy =(C) 2222u u u t x y∂∂∂=+∂∂∂ (D) 2 y x c =+(c 为常数)2、下列微分方程是线性的是( )(A)22 ' y x y =+ (B)2 " xy y e += (C)2"0 y x += (D)2'-y y xy =3、方程2-2 "3' 2xy y y x e++=特解的形状为( )(A)2-2 1 x y ax ey = (B) 2-21 () x y ax bx c e =++ (C)22-21 ()x y x ax bx c e =++ (D) 22-21 ()x y x ax bx c e =++4、下列函数组在定义域内线性无关的是( )(A) 4, x (B) 2,2, x x x (C)225,cos ,sin x x (D) 21,2,,x x5、微分方程2-yxdy ydx y e dy =的通解是( )(A)(-) yx y c e = (B)()yx y e c =+ (C)()xy x e c =+ (D) (-)yy x c e =6、下列方程中为常微分方程的是( )(A)20 t dt xdx += (B)sin 1x =(C) 1 y x c =++(c 为常数) (D) 22220u ux y ∂∂+=∂∂7、下列微分方程是线性的是( )(A)2'1y y =+ (B)11dy dx xy=+ (C)2 ' y by cx += (D) 4'0y xy += 8、方程 "-2' 2(cos 2sin )xy y y e x x x +=+特解的形状为( )(A) 1[()cos sin ]x y e Ax B x C x =++ (B) y e Ax x C x x1=+[cos sin ](C)y e Ax B x Cx D x x1=+++[()cos ()sin ] (D)y xe Ax B x Cx D x x1=+++[()cos ()sin ]9、下列函数组在定义域内线性无关的是( )(A)31, , x x (B)222,,x x x(C)21,sin ,cos 2x x (D)225,sin (1),cos (1)x x ++10、微分方程2-ydx xdy y exdx =的通解是( )(A)() xy x e c =+ (B)( ) xx y e c =+ (C)(-) xx y c e = (D)(-)xy x e c =11、下列方程中为常微分方程的是( )(A)22-10 x y += (B) 2' x y y=(C) 222222u u u x y∂∂∂=+∂∂∂ (D) 2x y c +=(c 为常数)12、下列微分方程是线性的是( )(A) dy dx y x = (B)2y '+6y '=1 (C) y '=y 3+sin x (D)y '+y =y 2cos x13、方程y ''+y =2sin x 特解的形状为( )(A) )sin cos (1x B x A x y += (B) y Ax x 1=sin (C)y Bx x 1=cos (D)y Ax x x 12=+(cos sin )14、下列函数组在定义域内线性无关的是( )(A) 0,1, t (B) e t ,2e t ,e -t (C)e t e t t t --3322sin ,cos (D)t t t t ,||,242+15、微分方程ydx-xdy=x 2e x dx 的通解是( )(A) y=x(c+e x ) (B) x=y(c+e x ) (C) x=y(c-e x ) (D) y=x(c-e x )16、下列方程中为常微分方程的是( )(A) x 2+y 2-z 2=0 (B) y ce x=(C) ∂∂∂∂u t u x =22(D) y=c 1cost+c 2sint (c 1,c 2为常数) 17、下列微分方程是线性的是( )(A) )(t x ' -x=f(t) (B)3y '+y=cos x (C) x +2y '=y '' (D) y '+(1/3)y =y 418、方程y ''-2y '+3y =e -x cos x 特解的形状为( )(A)y A x B x 1=+cos sin (B) y Ae x1=-(C)y e A x B x x1=+-(cos sin ) (D)y Axe x x1=-cos19、下列函数组在定义域内线性无关的是( )(A)23,,t t t e e e (B) 20,, t t(C) )22cos(),1(sin 12++t t ,(D) 4-t,2t-3,6t+820、微分方程xdx-ydy=y 2e y dy 的通解是( )(A) x=y(e y + c) (B) x=y(c-e y ) (C) y=x(e x +c) (D) y=x(c-e y )21、下列方程中为常微分方程的是( )(A) x 3+1=0 (B) y ce x= (C)∂∂∂∂u t ux=22 (D) ''+=y y e x 2'22、下列微分方程是线性的是( )(A)y ''+y 2=1+x (B)y '2+y=cosx (C) y '-2y=2x 2 (D) xdx+ydy=023、方程''-+=-y y y e x69163'特解的形状为( )(A) 31x y Ae = (B)y Ax e x123=(C) y Axe x 13= (D) y e A x B x x1333=+(sin cos )24、下列函数组在定义域内线性无关的是( )(A)2,,xxxe xe x e (B) 222,cos , cos x x (C) 2 1,2,x (D) 5420,,x x e x e x25、微分方程ydx-xdy=2x 2e x dx 的通解是( )(A) y=x(c-2e x ) (B) x=y(c+2e x ) (C) x=y(c-2e x ) (D) y=x(c+2e x ) 26、微分方程dy dx y x tg yx=+的通解为( ) (A) 1sin y xcx = (B) sin y x =x +c (C) sin yx =c x (D) sin x y =c x27、微分方程2y y ''=(y ')2的通解()(A) (x-c )2 (B) c 1(x -1)2+c 2(x +1)2 (C) c 1+(x -c 2)2 (D) c 1(x -c 2)228、微分方程xdy-ydx=y 2e y dy 的通解为()(A) y=x(e x +c) (B) x=y(e y +c) (C) y =x(c-e x ) (D) x=y(c-e y )29、微分方程y ''-2y '-3y =0的通解*y 为()(A) c x c x 123+ (B) c x cx123+ (C) c e c e x x 123+- (D) c e c e x x 123-+30、微分方程y ''-3y '+2y =2x -2e x 的特解y *的形式是()(A) (ax+b)e x (B) (ax+b)xe x (C) (ax+b)+ce x (D) (ax+b)+cxe x31、通过坐标原点且与微分方程dydxx =+1的一切积分曲线均正交的曲线方程是( ) (A) e x y -=+1 (B) e x y ++=10 (C) e x y =+1 (D) 222y x x =+32、设y(x)满足微分方程(cos 2x)y ¹+y=tgx 且当x=π/4时y=0,则当x =0时y =( )(A) π/4 (B) -π/4 (C) -1 (D) 133、已知y=y(x) 的图形上点M(0,1)处的切线斜率k=0,且y(x)满足微分方程''=+y y 12('),则y(x)=( )(A) sin x (B)cos x (C) shx (D) chx34、微分方程y ''-2y '-3y =0的通解是y =( )(A)33x x ++ (B) c x c x123+(C) c e c e x x 123+- (D) c e c e x x123-+ 35、设y x y x y x 123(),(),()是线性非齐次方程d y dxa x dydx b x y f x 22++=()()()的特解, 则y c c y x c y x c y x =--++()()()()11211223(A) 是所给微分方程的通解 (B) 不是所给微分方程的通解 (C) 是所给微分方程的特解(D) 可能是所给微分方程的通解 也可能不是所给微分方程的通解,但肯定不是特解36、设 y(x)满足 y 'sinx=yLny ,且y (π/2)=e ,则y (π/4)=( )(A) e /2 (B)-1e (C) e21- (D) e 23-37、微分方程2cos 0yn ytgx y x -+=的通解是( )(A) arctgx c + (B)1x ()arctgx c + (C) 1arctgx c x + (D) 1arctgx c x++38、微分方程(1+y 2)dx=(arctgy-x)dy 的通解为( )(A) x arctgy ce arctgy =-+-1 (B) x arctgy cearctgy=-++1(C) x arctgy cec arctgy=-++ (D) x arctgy ce c arctgy =-+39、微分方程''+=y y x 4212cos 的通解为y=( ) (A) e c x c x c x +++1223 (B) c x c x c 1223++ (C) c e c x c x 123++ (D) c x c x c 13223++40、微分方程''-''+=y y y x 76sin 的通解是 y =( )(A) e x x x-++574774sin cos (B) c e c x c e c x x x 1234+++-sin cos(C) ()()c c x e c c x e x x1233+++- (D) ()sin ()cos c c x x c c x x 1233+++41、通过坐标原点且与微分方程dydxx =+1的一切积分曲线均正交的曲线方程是( ) (A) e x y-=+1 (B) e x y ++=10 (C) e x y =+1 (D) 222y x x =+42、设y(x)满足微分方程xy ¹+y-y 2Lnx=0且当y(1)=1,则y(e)=( )(A) 1/e (B) 1/2 (C) 2 (D) e43、已知()y y x =满足()()x xy y dx y xy x dy 2222220+-++-=,且(1)1y =则y 122+⎛⎝ ⎫⎭⎪=( ) (A) 1 (B) 1/2 (C) 22 (D) 122+ 44、微分方程''=+y xy x 212'满足初始条件y x ==01, y x '==03的特解是y=( )(A)x x 33++ (B) x x 331++ (C) x x 23++ (D) x x 231++45、微分方程''++=y y y 6130'的通解是y=( )(A) ec x c x x -+31222(cos sin ) (B) e c x c x x 21233(cos sin )-(C) e c x c x x31222(cos sin )- (D) e c x c x x-+21233(cos sin )46、微分方程y yxc '++=20满足y x ==20的特解y =( )(A) 4422x x - (B)x x 2244- (C))2ln (ln 2-x x (D))2ln (ln 12-x x47、微分方程y ytgx y x 'cos -+=20的通解是( )(A)1()cos x c x y =+ (B) ()cos y x c x =+ (C) 1cos x x c y=+ (D) cos y x x c =+48、微分方程(y 2-6x )y ' +2y=0的通解为( )(A) 2x-y 2+cy 3=0 (B) 2y-x 3+cx 3=0 (C) 2x-cy 2+y 3=0 (D) 2y-cx 3+x 3=049、微分方程''+=y y x 4212cos 的特解的形式是y=( ) (A) cos2a x (B) cos2ax x(C)sin2cos2 a x b x + (D)sin2cos2 ax x bx x +50、满足微分方程''-''+=y y y x 76sin 的一个特解 y*=( )(A)e x x x -++574774sin cos (B)e x x x ++574774sin cos(C)e x x x-++6574774sin cos (D)e e x x x x --+++6574774sin cos51、初值问题"40,(0)0,'(0)1y y y y +===的解是()y x =( )(其中其通解为1212()sin 2cos2,,y x c x c x c c =+为任意常数)(A)1sin 23x (B)1sin 22x (C)1sin33x (D )1sin32x52、下列方程中为常微分方程的是( )(A)42310x x x +-+= (B) 2"'y y x +=(C) 2222u u u t x y∂∂∂=+∂∂∂ (D)2u v w =+53、下列微分方程是线性的是( )(A)2"'y xy y x ++= (B)22'y x y =+ (C)2"()y xy f x -= (D)3"'y y y -=54、已知(,)F x y 具有一阶连续偏导,且(,)()F x y ydx xdy +为某一函数的全微分,则( )(A) F F x y ∂∂=∂∂ (B)F F x y x y ∂∂=∂∂ (C)F F x y x y ∂∂-=∂∂ (D)F Fy x x y∂∂=∂∂55、设123(),(),()y x y x y x 是二阶线性非齐次微分方程"()'()()y P x y Q x y f x ++=的三个线性无关解,12,c c 是任意常数,则微分方程的解为( )(A)11223c y c y y ++ (B)1122123(1)c y c y c c y ++-- (C)1122123()c y c y c c y +-+ (D)1122123(1)c y c y c c y +--- 56、若连续函数()f x 满足关系式20()ln 22xt f x f dt ⎛⎫=+ ⎪⎝⎭⎰,则()f x 为( ) (A)2x e ln (B)22x e ln (C)2x e ln + (D)22xe ln +57、若3312,x xy e y xe ==,则它们所满足的微分方程为( )(A)"6'90y y y ++= (B)"90y y -= (C)"90y y += (D)"6'90y y y -+=58、设123,,y y y 是二阶线性微分方程"()'()()y p x y q x y r x ++=的三个不同的特解,且1223y y y y --不是常数,则该方程的通解为( )(A)11223c y c y y ++ (B)1122231()()c y y c y y y -+-+ (C)11232c y c y y ++ (D)112223()()c y y c y y -+- 59、设()f x 连续,且满足方程()1()()f tx dt nf x n N =∈⎰,则()f x 为( )(A)1n ncx - (B)(c c 为常数) (C)sin c nx (D)s cco nx60、设12,y y 是方程"()'()0y p x y q x y ++=的两个特解,则1122y c y c y =+(12,c c 为任意常数)( )(A)是此方程的通解 (B)是此方程的特解 (C)不一定是该方程的解 (D)是该方程的解61、方程22(2)"(2)'(22)0x x y x y x y ---+-=的通解为( )(A)12x y c e c =+ (B)12x x y c e c e -=+ (C)212x y c e c x =+ (D)12xy c e c x =+62、微分方程"'1xy y e -=+的一个特解形式为( )(A)x ae b + (B)x axe bx + (C)x ae bx + (D)xaxe b + 63、方程22()(2)0pxy y dx qxy x dy --+=是全微分的充要条件是( )(A)4,2p q == (B)4,2p q ==- (C)4,2p q =-= (D)4,2p q =-=-64、表达式22[cos()][cos()3]x y ay dx by x y x dy +++++是某函数的全微分,则( )(A)2,2a b == (B)3,2a b == (C)2,3a b == (D)3,3a b ==65、方程"'"'xy y y y xe -+++=是特解形式为( )(A)()xax b e-+ (B)()xx ax b e -+(C)2()xx ax b e -+ (D)[()cos 2()sin 2]xe ax b x cx d x +++66、方程"2'xy y y xe -+=的特解*y 的形式为( )(A) xaxe (B)()x ax b e + (C)()x x ax b e + (D)2()xx ax b e + 67、已知1cos y wx =与23cos y wx =是微分方程2"0y w y +=的解,则1122y c y c y =+是( )(A) 方程的通解 (B)方程的解,但不为通解 (C)方程的特解 (D)不一定是方程的解68、方程"3'232xy y y x e -+=-的特解*y 的形式为( )(A) ()x ax b e + (B)()x ax b xe + (C)()x ax b ce ++ (D)()xax b cxe ++69、方程22"3'2xy y y x e-++=特解的形式为( )(A) 22x y ax e -= (B)22()xy ax bx c e-=++(C)22()xy x ax bx c e -=++ (D)222()xy x ax bx c e-=++70、下列函数在定义域内线性无关的是( )(A) 4x (B)22x x x ⋅⋅ (C)225cos sin x x ⋅⋅ (D)212x x ⋅⋅⋅71、微分方程2yxdy ydx y e dy -=的通解是( )(A)()yx y c e =- (B)()yx y e c =+ (C)()xy x e c =+ (D)()yy x c e =- 72、方程5,3dx dyx y x dt dt=-+-=-的奇点为( ) (A)(0,0) (B) (0,5) (C) (5,5) (D) (5,0)73、(0,0)为系统,23dx dyy x y dt dt==--的( ) (A) 鞍点 (B) 结点 (C) 中心 (D) 焦点 74、方程dx dy dz xz yz xy==的首次积分是( ) (A)2xy z c -= (B)2x c y= (C)2x yz c -= (D)2xz x c -=75、方程22222dx dy dzx y z xy xz==--的首次积分是( ) (A) 2x y z c x ++= (B)222x y z cy++= (C)y c x = (D)z c x =76、系统22dxx y dtdy x y dt⎧=-+⎪⎪⎨⎪=--⎪⎩的奇点类型为( )(A) 稳定结点 (B) 不稳定结点 (C) 稳定焦点 (D) 不稳定焦点77、系统3474dxx y dt dy x y dt⎧=-⎪⎪⎨⎪=-⎪⎩的奇点类型为( )(A) 鞍点 (B) 焦点 (C) 中心 (D) 结点78、方程"xy y xe-+=有形如( )特解(A)xy Axe -= (B)21()x y Ax Bx c e -=++(C)1()x y Ax B e -=+ (D)xAe -79、方程2"6'13(512)t x x x e t t ++=-+特解形状为( )(A)21()t x At Bt c e =++ (B)1()tx At B e =+(C)1t x Ate = (D)1tx Ae =80、方程"2'2cos xy y y e x --+=的特解形状为( )(A)1cos x y A xe -= (B)1sin xy A xe -= (C)1(cos sin )x y e A x B x -=+ (D)1xy Ae -=81、方程"2'2cos tx x x te t -+=的特解形状为( )(A)21()cos tx At Bt c e t =++ (B)21()sin t x At Bt c e t =++(C)1(cos sin )t x e A t B t =+ (D)221()cos ()sin t tx At Bt c e t Dt Et F e t =++++82、微分方程()()0xyyx ye e dx xee dy ---++=的通解为( )(A)xyye xe c -= (B)yxye xe c -= (C)x y ye xe c --= (D)x yye xe c --=83、微分方程(sin 2sin )(cos 2cos )0xxe y y x dx e y x dy -++=的通解为( )(A)sin 2cos xe y y x c += (B)s 2cos xe co y y x c += (C)sin cos xe y y x c += (D)s 2cos xe co y y x c +=84、微分方程(2)0yye dx x xy e dy -+=的通解为( )(A)2yxe y c += (B)2y e y c x += (C)y xe xy c += (D)y y e c x+=85、方程2(3)20xe y dx xydy ++=的通解为( )(A)32x xe x y c += (B)232(2)xx x e x y c -+=(C)232(22)x x x e x y c --+= (D)232(2)x x e x y c -+=86、下列方程为常微分方程的是( )(A)2220x y z ++= (B)22u u ux y y∂∂∂+=∂∂∂ (C)sin sin y A t B t =+ (D)'x y Ae =87、方程432422(22)(3)0y y xy e xy y dx x y e x y x dy +++--=的积分因子为( )(A)21()x x μ=(B)1()x xμ= (C)41()y y μ= (D)21()y y μ= 88、方程(2)0yye x xy e dy -+=的积分因子为( )(A)21()x x μ=(B) 1()x xμ= (C)21()y y μ= (D) 1()y y μ= 89、方程2(3)20xe y dx xydy ++=的积分因子为( )(A) 1()x xμ=(B)2()x x μ= (C) 1()y y μ= (D) 2()y y μ=90、方程(1)0y xy dx xdy --+=的积分因子为( )(A)()x x e μ= (B)()x x eμ-= (C)()y y e μ= (D)()y y e μ-=91、方程23(225)(22)0x y y dx x x dy ++++=的积分因子为( ) (A) 1()x x μ=(B)21()1x x μ=+ (C) 1()y y μ= (D)21()1y y μ=+ 92、方程3222(1)0xy dx x y dy +-=的积分因子为( ) (A) 1()x x μ=(B) 21()x x μ= (C) 1()y y μ= (D) 21()y y μ= 93、方程(2cos )0x x e dx e ctgx y y dy ++=的积分因子为( )(A)()sin x x μ= (B)()s x co x μ= (C)()sin y y μ= (D)()s y co y μ=94、方程22()0ydx x y x dy -++=的积分因子为( ) (A) 21()x x μ=(B) 21()y y μ= (C)221(,)x y x y μ=+ (D)1(,)x y x y μ=+95、方程3222()0y dx x xy dy +-=的积分因子为( ) (A) 21x μ=(B)1xy μ= (C)221x y μ= (D)21x y μ= 96、方程36330x y x dx dy y y x ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭的积分因子为( ) (A)x μ= (B)y μ= (C)xy μ= (D)2x y μ=97、下列方程中为常微分方程的是( )(A) 2-210x x += (B) 2' y xy = (C) 2222u u u t x y∂∂∂=+∂∂∂ (D) 2 y x c =+(c 为常数)98、下列微分方程是线性的是( )(A)22 ' y x y =+ (B)2 " x y y e += (C)2"0 y x += (D)2'-y y xy =。

第七章常微分方程练习题(含答案)

第七章常微分方程练习题(含答案)

第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。

(完整版)常微分方程试题及答案

(完整版)常微分方程试题及答案

第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。

( X )2.微分方程的通解中包含了它所有的解。

( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。

( O )4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。

( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21(C 为任意常数)。

(O ) 6.y y sin ='是一阶线性微分方程。

( X )7.xy y x y +='33不是一阶线性微分方程。

( O )8.052=+'-''y y y 的特征方程为0522=+-r r 。

( O )9.221xy y x dx dy+++=是可分离变量的微分方程。

( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。

②()()022=-++dy y x y dx x xy 是可分离变量微分方程。

③x yy dx dyx ln ⋅=是齐次方程。

④x x y y x sin 2+='是一阶线性微分方程。

⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。

2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。

3.x e y 2-=''的通解是21241C x C e x ++-。

4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。

5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。

6.微分方程()06='-''⋅y y y 是 2 阶微分方程。

(完整版)常微分方程期末试题答案

(完整版)常微分方程期末试题答案

一、填空题(每空2 分,共16分)。

1、方程22d d y x xy +=满足解的存在唯一性定理条件的区域是 xoy 平面 . 2. 方程组n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线.3.),(y x f y '连续是保证方程),(d d y x f xy =初值唯一的 充分 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x ty y t x d d d d 的奇点)0,0(的类型是 中心 5.方程2)(21y y x y '+'=的通解是221C Cx y += 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是()()x P y N 1 7.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是 线性无关8.方程440y y y '''++=的基本解组是x x x 22e ,e-- 二、选择题(每小题 3 分,共 15分)。

9.一阶线性微分方程d ()()d y p x y q x x +=的积分因子是( A ). (A )⎰=xx p d )(e μ (B )⎰=x x q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( B )(A )可分离变量方程 (B )线性方程(C )全微分方程 (D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A) 1±=x (B)1±=y(C )1±=y , 1±=x (D )1=y , 1=x12.n 阶线性非齐次微分方程的所有解( D ).(A )构成一个线性空间 (B )构成一个1-n 维线性空间(C )构成一个1+n 维线性空间 (D )不能构成一个线性空间13.方程222+-='x y y ( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D )无三、计算题(每小题8分,共48分)。

常微分方程选择题及答案.docx

常微分方程选择题及答案.docx

湖北师范学院优质课程《常微分方程》试题库及试题解答课程负责人:李必文数学系2005 年 3 月 18 日选择题(每小题 4 分)1、下列方程中为常微分方程的是()(A)x2 - 2x10(B)y'xy2(C)u2u2u(D)y x2 c (c为常数)t x2y22、下列微分方程是线性的是()(A)y 'x2y2(B)y" y2e x(C)y"x20(D)y'- y xy 23、方程y "3y ' 2 y x2e-2 x特解的形状为 ()(A)y1ax2ey-2 x(B)y1(ax2bx c)e-2 x(C)y1x2 ( ax2bx c)e-2 x(D)y1x2 (ax2bx c)e-2x4、下列函数组在定义域内线性无关的是()(A)4, x(B)x,2 x, x2(C)5,cos 2 x,sin 2 x(D)1,2, x, x25、微分方程xdy - ydx y2 e y dy 的通解是()(A)x y(c - e y )(B)x y(e y c)(C)y x(e x c)(D) y x(c - e y )6、下列方程中为常微分方程的是()(A)t2 dt xdx 0(B)sin x1(C) y x 1 c (c为常数)2u2u0(D)2y2x7、下列微分方程是线性的是()(A)y' 1y2(B)dy1(C) y '2by cx(D)dx 1 xyy ' xy408、方程y "- 2 y ' 2y(A)y1e x[( Ax(C)y1e x[( Ax(D)y1xe x[( Axe x (x cos x2sin x) 特解的形状为()B)cos x C sin x](B)y1e x [ Ax cos x C sin x] B) cosx( Cx D ) sin x]B) cos x(Cx D ) sin x]9、下列函数组在定义域内线性无关的是()(A) 1, x, x 3(B)2x 2 , x, x 2(C)1,sin 2 x,cos2 x(D)5,sin 2 (x 1),cos 2 (x1)10、微分方程 ydx - xdyy 2exdx 的通解是 ()(A)y x(e x c)(B)x y( e xc)(C)x y(c - e x )(D) y( x - ) x e c11、下列方程中为常微分方程的是()(A) x 2y 2 -1(B)y 'x 2y(C)2u 2u 2u(D)xy 2 c (c 为常数)2x 2y 212、下列微分方程是线性的是()y 2y =y 3+sin xy +y =y 2cos x(A)(B)+6 y =1(C)(D)13、方程 y+y =2sin x 特解的形状为 ()(A) y 1 x( A cos x B sin x)(B)(C)(D)14、下列函数组在定义域内线性无关的是()(A) 0,1,t(B)e t , 2e t ,e -t(C) (D)15、微分方程 ydx-xdy=x 2e x dx 的通解是 ( )(A) y=x(c+e x ) (B) x=y(c+e x )(C)x=y(c-e x )(D)y=x(c-e x )16、下列方程中为常微分方程的是()(A)x 2+y 2-z 2=0(B) yce x(C) u u(D)y=c 1 cost+c 2sint (c 1,c 2 为常数)tx17、下列微分方程是线性的是()3x + y 2y +(1/3) y4 (A)x (t ) -x=f(t)(B)y +y=cos x(C)= y(D)=y18 、方程 yy-xx 特解的形状为( )-2 y +3 =e cos(A) y 1 Acosx B sin x(B)y 1 Ae x(C) y 1e x ( Acos x B sin x)(D)y 1Axe x cosx19、下列函数组在定义域内线性无关的是()(A)e t ,e 2t ,e 3t(B)0,t ,t 2(C) 1 sin 2 (t1),cos( 2 2)(D) 4-t,2t-3,6t+8,t20、微分方程xdx-ydy=y 2e y dy 的通解是 ( )(A) x=y(ey+ c) (B) x=y(c-ey)(C) y=x(ex+c)(D)y=x(c-e y )21、下列方程中为常微分方程的是()(A)x 3+1=0(B) y ce x(C)u u (D)t xy 2y'e x22、下列微分方程是线性的是()(A) y +y 2=1+x(B)y' 2 +y=cosx(C)y - 2y=2x 2(D)xdx+ydy=023、方程 yy9 y16e 3x6 '特解的形状为 ( )(A) y 1 Ae 3x(B) y 1 Ax 2 e 3x(C)y 1Axe 3x(D)y 1e 3x ( A sin 3x B cos3x)24、下列函数组在定义域内线性无关的是()(A) xx2e x(B)22(C)1,2, x 2(D)0,e 5x4 x 2e , xe , x2,cosx, cos xx, e x25、微分方程 ydx-xdy=2x 2e x dx 的通解是 ()(A) y=x(c-2e x )(B)x=y(c+2e x )(C)x=y(c-2ex)(D)y=x(c+2e x )26、微分方程dyytg y的通解为()1 dxxxy=x +cy=c xx=c x(A)cx(B) sin(C) sin(D) sinyxxysinx27、微分方程 2y y =(y ) 2的通解()(A) ( x-c ) 2(B)c 1222(C)122(D) c12 ) 2( x -1) +c ( x +1)c +( x -c )( x -c28、微分方程 xdy-ydx=y 2e y dy 的通解为()(A) y=x(ex+c)(B)x=y(e y +c)(C) y=x(c-e x )(D)x=y(c-e y )29、微分方程 y -2 y-3 y =0 的通解 y为()(A)c 1 c 2 x 3(B)c 1 xc 2 (C)c 1e xc 2 e 3x(D)c 1e x c 2 e 3 xxx 330、微分方程 y ''-3y '+2 y =2x -2 e x 的特解 y *的形式是()(A) (ax+b)e x(B) (ax+b)xe x (C) (ax+b)+ce x(D) (ax+b)+cxe x31、通过坐标原点且与微分方程dy x 1 的一切积分曲线均正交的曲线方程是()dx(A) e yx1e yx 1 0(C) e yx 1(B)(D)2 yx 22x32、设 y(x) 满足微分方程 ( cos 2x)y 1 +y=tgx 且当 x=/4 时 y=0,则当 x =0 时 y =()(A) /4 (B) -/4 (C) -1 (D) 133 、 已 知 y=y(x) 的 图 形 上 点 M(0,1) 处 的 切 线 斜 率 k=0 , 且 y(x) 满 足 微 分 方 程y1 ( y') 2,则 y(x)= ( )(A) sin x(B) cosx(C)34、微分方程y -2 y -3 y =0 的通解是 y =( )shx(D)chx(A) x 3x3(B) c 1 xc 2 (C) c 1 e xc 2 e 3 x(D)c 1 exc 2 e3xx 335、设 y 1 ( x), y 2 ( x), y 3 ( x) 是线性非齐次方程 d 2 ya(x)dyb( x) yf ( x) 的特解,dx 2 dx则 y (1 c 1c 2 ) y 1 ( x) c 1 y 2 (x) c 2 y 3 ( x)(A) 是所给微分方程的通解 (B)不是所给微分方程的通解(C) 是所给微分方程的特解(D) 可能是所给微分方程的通解也可能不是所给微分方程的通解,但肯定不是特解36、设 y(x) 满足y sinx=yLny ,且 y ( /2)= e ,则 y ( /4)=()(A) e /2(B)e -1(C)e 21(D)e 2337、微分方程 ynytgxy 2 cos x0 的通解是( )(A)arctgx c(B)1 ( arctgx c)(C)1arctgx c(D)1xxarctgxcx38、微分方程 ( 1+y 2)dx=(arctgy-x)dy的通解为()(A)x arctgy 1ce arctgy (B) x arctgy 1 ce arctgy (C) xarctgy ce arctgyc(D)xarctgyce arctgyc39、微分方程 y4 y 21 cos2 x 的通解为 y=( )(A) e xc x 2c x c 3(B) c x 2 c x c31212(C) c 1e xc 2 x c 3(D)c 1 x 3 c 2 x 2 c 340、微分方程 y7 y6ysin x 的通解是 y =()(A) e x 745sin x747cosx(B)c 1e x c 2 sin x c 3e xc 4 cos x (C)( cc x)e x(c c x)ex(D)(cc x) sin x (cc x) cosx41、通过坐标原点且与微分方程dy x 1 的一切积分曲线均正交的曲线方程是( )dx(A)e yx 1(B)e yx 1 0(C)e yx 1 (D)2 yx 2 2x42、设 y(x) 满足微分方程 xy 1 +y-y 2Lnx=0 且当 y(1)=1, 则 y(e)=( )(A) 1/e (B) 1/2 (C) 2 (D) e43 、 已 知 yy(x) 满 足 ( x 22xyy 2 )dx( y 22xy x 2 )dy0 , 且 y(1)1 则y12 ( )2(A)1(B) 1/2(C)2(D) 122244、微分方程 y2xy' 满足初始条件 y 01 , y' 0 3 的特解是 y=()x 2 1x x(A)x 3x 3(B)x 3 3x 1(C)x 2 x 3(D)x 23x145、微分方程 y6y' 13y 0 的通解是 y=( )(A) e 3 x ( c 1 cos2x c 2 sin 2 x) (B) e 2x (c 1 cos3x c 2 sin 3x) (C)e 3x (c 1 cos2x c 2 sin 2x)(D)e 2 x (c 1 cos3x c 2 sin 3x)46、微分方程 y'2 yc0 满足 y0 的特解 y =()xx2(A)4 x 2x 24x 2(ln xln 2) 1(ln x ln 2)x24(B)4 x2(C)(D) x 247、微分方程 y' ytgxy 2 cosx0 的通解是()(A)1 ( x c)cos x(B)y ( xc)cos xy1 x cos xc(D)yx cosx c(C)y48、微分方程 ( y 2-6x ) y+2y=0 的通解为()(A) 2x-y2+cy 3=0(B) 2y-x3+cx 3=0 (C) 2x-cy2+y 3=0 (D) 2y-cx3+x 3=049、微分方程 y 4 y21cos2 x 的特解的形式是 y=()bcos2 x50、满足微分方程 y7 y 6y(A) e x 745 sin x 747cosx (C) e 6x745sin x747cos x(B)axcos2x(D)axsin2 x bx cos2xsin x 的一个特解y* =()(B)e x 745sin x 747cos x(D)exe 6x745 sin x 747 cosx51、初值问题 y" 4y 0, y(0) 0, y'(0) 1 的解是 y(x) ()(其中其通解为y(x)c 1 sin 2xc 2 cos2 x, c 1, c 2 为任意常数)(A)1sin 2 x(B)1sin 2x(C)1sin3 x(D )1sin3 x323252、下列方程中为常微分方程的是()(A) x 43x 2x 1 0(B) y" y ' x 2 (C)u 2u2u(D)u v 2wtx 2 y 253、下列微分方程是线性的是()(A) y"xy ' y x 2(B) y 'x 2 y 2 (C)y " xy 2f (x) (D)y " y 'y 354、已知 F ( x, y) 具有一阶连续偏导, 且 F (x, y)( ydxxdy) 为某一函数的全微分, 则( )(A)FF(B)F yF (C)x F y F y F Fxy xyx (D) x xxy y55、设 y ( x), y 2(x), y (x) 是二阶线性非齐次微分方程y" P(x) y' Q ( x) yf ( x) 的三个线13性无关解,c 1 ,c 2 是任意常数,则微分方程的解为 ( )(A) c 1 y 1 c 2 y 2 y 3(B)c 1 y 1 c 2 y 2 (1 c 1 c 2 ) y 3(C) c 1 y 1 c 2 y 2(c 1 c 2 ) y 3(D)tc 1 y 1 c 2 y 2(1 c 1 c 2 ) y 3f (x) 满足关系式 f (x)2 x dtln 2 ,则 f ( x) 为(56、若连续函数 f2)(A) e xln 2(B)e 2x ln 2 (C)e x ln 2(D) e 2 xln 257、若 y 1e 3 x , y 2 xe 3 x ,则它们所满足的微分方程为()(A) y" 6 y' 9 y 0 (B) y" 9 y 0(C)y" 9 y 0 (D)y" 6 y' 9y 058 、设 y 1 , y 2 , y 3 是二阶线性微分方程 y" p(x) y ' q(x) yr ( x) 的三个不同的特解,且y 1 y 2 不是常数,则该方程的通解为( )y 2 y 3(A) c 1 y 1 c 2 y 2 y 3(B)c 1 ( y 1 y 2 ) c 2 ( y 2 y 3) y 1(A) a cos2x(C) asin2 x(C)c1 y1c2 y3 y2(D)c1 ( y1y2 )c2 ( y2y3 )59、设f ( x)连续,且满足方程1f tx dt nf ( x)( n N ) ,则 f (x)为()01 n(A)cx n(B)c(c 为常数)(C) c sin nx(D)ccosnx60、设y1, y2是方程y" p( x) y 'q( x) y0 的两个特解,则y c1 y1 c2 y2( c1,c2为任意常数)()(A) 是此方程的通解(B) 是此方程的特解(C) 不一定是该方程的解(D) 是该方程的解61、方程( x22x) y" ( x22) y '(2 x2) y0 的通解为()(A)y c1e x c2(B)y c1e x c2e x(C) y c1e x c2x2(D)y c1e x c2 x62、微分方程y" y 'e x1的一个特解形式为()(A)ae x b(B)axe x bx(C)ae x bx(D)axe x b63、方程( pxy y2) dx (qxy2x2 )dy0 是全微分的充要条件是()(A)p 4, q2(B)p4, q2(C)p4, q2(D)p4, q264、表达式[cos(x y2) ay]dx[bycos(x y2)3x]dy 是某函数的全微分,则()(A)a 2,b2(B)a3,b2(C)a2,b3(D)a3,b365、方程y"'y "y 'y xe x是特解形式为()(A)(ax b)e x(B)x(ax b)e x(C) x2(ax b)e x(D)e x[( ax b)cos 2x ( cx d )sin 2x]66、方程y" 2 y'y xe x的特解 y*的形式为()(A)axe x(B)(ax b)e x(C)x(ax b)e x(D)x2 (ax b)e x67、已知y1coswx 与 y23cos wx 是微分方程y"w2 y0 的解,则 y c1 y1c2 y2是()(A)方程的通解(B)方程的解,但不为通解(C)方程的特解(D)不一定是方程的解68、方程y"3y ' 2 y3x2e x的特解 y*的形式为()(A)( ax b)e x(B)(ax b) xe x(C)( ax b)ce x(D)(ax b)cxe x69、方程y"3y ' 2 y x2e 2 x(A)y ax2 e 2x(C) y x(ax2bx c)e 2 x 特解的形式为()(B)y( ax2bx c)e 2 x(D)y x2 (ax2bx c)e 2x70、下列函数在定义域内线性无关的是()(A)4x(B)x 2x x2(C)5cos2 x sin 2 x(D) 1 2x x271、微分方程xdy ydx y2e y dy 的通解是()(A)x y(c e y )(B)x y(e y c)(C)y x(e x c)(D)y x(c e y )72、方程dxx y 5,dy3)dt dt x 的奇点为((A) ( 0,0)(B) (0,5)(C) (5,5)(D)(5,0)73、( 0,0 )为系统dxy,dy2x 3y 的()dt dt(A)鞍点(B)结点(C)中心(D)焦点74、方程dxdydz的首次积分是()xz yz xy(A)xy z2c(B)x2c(C)x2yz c (D)xz x2cy75、方程x2dxz2dydz的首次积分是()y2 2 xy2xz(A)x y zc(B)x2y2z2c (C)y(D)zc x2ycxxdx2x ydt76、系统的奇点类型为()dyx2ydt(A)稳定结点(B)不稳定结点(C)稳定焦点(D)不稳定焦点dx3x y77、系统dt4的奇点类型为()dy4y7 xdt(A)鞍点(B)焦点(C)中心(D)结点78、方程y"y xe x有形如()特解(A) y Axe x(B)y1( Ax2Bx c)e x(C)y1(Ax B)e x(D)Ae x79、方程x"6x '13x e t (t25t 12) 特解形状为()(A) x 1 ( At 2 Bt c)e t(B)x 1 ( At B) e t ( C) x 1 Ate t(D)x 1 Ae t80、方程 y"2 y' 2y (A) y 1A cosxe x(C) y 1 e x( Acos xe x cos x 的特解形状为()(B)y 1 Asin xe xB sin x)(D)y 1 Ae x81、方程 x"2x ' 2x te t cost 的特解形状为()(A) x 1 ( At 2Btc)e t cost(B)x 1 (At 2 Bt c)e t sin t(C)x 1 e t ( Acost B sin t )(D) x 1( At 2 Bt c)e t cost (Dt 2Et F )e t sin t82、微分方程 ( ye xe y )dx (xe ye x )dy 0 的通解为()(A) ye xxe y c (B)ye y xe xc (C)ye x xe yc (D)ye xxe yc83、微分方程 (e x sin y 2 y sin x)dx(e x cos y 2cos x)dy0 的通解为( (A) e x sin y 2 y cos x c (B) e x co s y 2 ycos x c (C) e x sin yycos x c(D)e x cos y2y cos x c84、微分方程 e y dxx(2 xy e y )dy 0 的通解为( )(A) xeyy2c(B)e y y2c (C)xe yxy c(D)eyx85、方程 (e x3y 2 ) dx 2xydy 0的通解为()(A) xe x x 3 y 2 c(B)( x 22x)e x x 3 y 2 c (C) (x 22x 2)e xx 3 y 2c(D) ( x 22) e xx 3 y 2 c)y cx86、下列方程为常微分方程的是()(A) x 2y 2z 2 0 (B)u u 2u(C) y Asin tB sin t (D) y ' Ae xx yy 287、方程 (2 xy 4e y2xy 3 y)dx ( x 2 y 4e yx 2 y 2 3x) dy 0 的积分因子为()(A) ( x)1(B)(x) 1 (C)1 (D)1 x 2x( y)( y)y 4y 2 88、方程 e y x(2 xy e y )dy0 的积分因子为()(A) ( x)1(B) 1 (C) 1 (D)1x 2( x)( y) ( y)xy 2y89、方程 (e x3y 2 ) dx2xydy 0 的积分因子为()(A)( x)1(B)( x)x2(C)( y)1(D)( y)y2x y90、方程( y 1 xy)dx xdy0 的积分因子为()(A)( x)e x(B)( x) e x(C)( y)e y(D)( y) e y91、方程(2 x2y 2 y5) dx (2 x32x)dy0 的积分因子为((A)( x)1(B)( x)1(C)( y)1 x1x2y92、方程2 xy3dx ( x2y21)dy 0的积分因子为()(A)( x)1(B)(x)1(C)( y)1 x x2y93、方程e x dx(e x ctgx 2 ycos y)dy0 的积分因子为()(A)( x) sin x(B)(x)cos x(C)( y)sin y94、方程ydx(x2y2x)dy 0 的积分因子为()(A)( x)1(B)( y)1 x2y2(D) ( x, y)1yx)1 (D)( y)1y21 (D)( y)y2 (D)( y) cos y (C)( x, y)12y2x95、方程y3dx2( x2xy2 )dy 0的积分因子为()1(B)11(D)1(A)(C)x2 y2 2 y x2xy x96、方程6x3 3 y0 的积分因子为()3x dx dyy y x(A)x(B)y(C)xy(D)x2 y97、下列方程中为常微分方程的是()(A)x2 - 2x10(B)y'xy 2(C)u2u2u(D)y2c (c为常数)t x2y2x98、下列微分方程是线性的是()(A)y 'x2y2(B)y" y2e x(C) y"x20(D)y '- y xy2选择题答案1B2C3C4A5A 6A7B8D9A10B 10B12A13A14C15D 16B17A18C19A20B 21D22C23B24A25A 26C27D28D29D30D 31A32C33D34D35D 36C37B38A39C40C 41A42B43D44B45A 46A47C48A49D50B 51B52B53A54B55B 56B57D58B59A60D 61C62D63C64B65B 66D67B68D69C70C 71B72B73B74A75B 76C77D78C79A80C 81D82C83A84B85C 86D87C88A89B90B 91B92D93C94C95D 96C97B98C。

常微分方程A卷及答案

常微分方程A卷及答案

安 庆 师 范 学 院《常微分方程》A 卷 一、判断题(8分,每题2分)1、阶常微分方程的通解包含了它的所有解。

( )2、函数221c x e c y +=是微分方程02=-'-''y y y 的通解。

( )3、阶线性齐次微分方程的个解12(),(),,()n x t x t x t 在],[b a 上线性无关的充要条件是()0,[,]W t t a b ≠∈。

( )4、设)(t Φ为X t A X )(='的基解矩阵,则)(t ψ为其基解矩阵存在阶常数矩阵,使C t t )()(Φ=ψ。

( )二、选择题(10分,每题2分)1、 微分方程24()cos y y y y ''''''+-=是( )。

A 三阶非线性方程 B 三阶线性方程C 四阶非线性方程D 四阶线性方程2、 下列方程中为齐次方程的是 ( )。

A ()y xy y ϕ''=+B tany xy y x x '=+C ()y xy f y '''=+D cos cos ydx xdy = 3、阶齐次线性微分方程的所有解构成一个( )维线性空间。

AB 1n +C 1n -D 2n +4、Lipschitz 条件是一阶微分方程初值问题存在唯一解的( )条件。

A 充分条件B 必要条件C 充分必要条件D 既不是充分也不是必要条件 5. 方程dx y dt dy x dt⎧=-⎪⎪⎨⎪=⎪⎩的奇点(0,0)的类型是 ( )。

A 结点 B 焦点 C 中心 D 鞍点三、填空题(12分,每空2分)1、向量函数12(),(),,()n X t X t X t 是线性方程组()X A t X '=的基本解组的充要条件是:(1);(2)。

2、方程(,)(,)0M x y dx N x y dy+=存在只与有关而与无关的积 分因子的充分必要条件是。

常微分试题及答案

常微分试题及答案

常微分试题及答案一、选择题1. 若微分方程 dy/dx = 3x^2,则它的通解为:A. y = x^3 + CB. y = x^2 + CC. y = x^3/3 + CD. y = x^4/2 + C答案:C2. 设 y = e^x 是微分方程 dy/dx - y = 0 的解,则该微分方程的通解为:A. y = e^xB. y = e^(2x)C. y = e^(3x)D. y = e^(4x)答案:A3. 设 y = x^2 是齐次微分方程 y'' - y' - 2y = 0 的解,则该微分方程的通解为:A. y = x^2B. y = x^2 + CC. y = e^x + CD. y = e^(2x) + C答案:B二、计算题1. 解微分方程 dy/dx = 2x + 1,并求出满足初始条件 y(0) = 1 的特解。

解:对微分方程进行分离变量得:dy = (2x + 1)dx两边同时积分得:∫dy = ∫(2x + 1)dxy = x^2 + x + C代入初始条件 y(0) = 1 得:1 = 0^2 + 0 + CC = 1特解为:y = x^2 + x + 12. 求微分方程 y'' + 2y' + y = 0 的通解。

解:首先设通解为 y = e^(rx),带入微分方程得:r^2e^(rx) + 2re^(rx) + e^(rx) = 0化简得:e^(rx)(r^2 + 2r + 1) = 0由指数函数的性质可知,e^(rx) 不等于 0,因此:r^2 + 2r + 1 = 0求解这个二次方程得:r = -1 (二重根)所以,通解为 y = (C1 + C2x)e^(-x)三、应用题有一容器中装有某种细菌,已知初始时刻容器中有 1000 个细菌,随着时间的推移,细菌的数量的变化率与它们的数量成正比。

经实验测得 2 小时后细菌的数量增加到 2000 个。

常微分方程第四章答案

常微分方程第四章答案

常微分方程第四章答案【篇一:常微分方程习题及评分标准答案】一、选择题(每题3分)第一章:1.微分方程y?xy2?y?0的直线积分曲线为()(a)y?1和y?x?1 (b)y?0和y?x?1 (c)y?0和y?x?1 (d)y?1和y?x?1 第二章:2.下列是一阶线性方程的是()(a)dydx?x2?y (b)d2ydy3dx2?(dx)?xy?0(c)(dy2dydydx)?xdx?xy2?0(d)dx?cosy 3.下列是二阶线性方程的是()(a)d2ydydx2?xdx?x2?y (b)(dydx)3?(dydx)2?xy?0 (c)(x?1)dy2d2ydx?xy?0 (d)dx2?cosycosx4.下列方程是3阶方程的为()(a)y?x2?y3 (b)(dydx)3?xy?0 (c)(dydx)2?xd3ydydx3?y2?0(d)dx?cosy3 5.微分方程(dydx)4?x(dydx)3?dydx?0的阶数为()(a)1(b)2(c)3 (d)46.方程(dydx)3?xd2ydx2?2y4?0的阶数为()(a)1 (b)2 (c)3(d)4 7.针对方程dydx?x?yx?y,下列说法错误的是().(a)方程为齐次方程1(b)通过变量变换u?yx可化为变量分离方程(c)方程有特解y?0(d)可以找到方程形如y?kx的特解y?(?1x 8.针对方程y??sin2(x?y?1),下列说法错误的是().(a)为一阶线性方程?2(d)方程的通解为tan(x?y?1)?x?c 9.伯努利方程dy?p(x)y?q(x)yndx,它有积分因子为()(a)e?(n?1)p(x)dx(b)e?np(x)dx (c)xe?(n?1)p(x)dx(d)xe?np(x)dx10.针对方程dydx?y?y2(cosx?sinx),下列说法错误的是().(a)方程为伯努利方程(b)通过变量变换z?y2可化为线性方程(c)方程有特解y?0 (d)方程的通解为y?1cex?sinx11.方程dydx?xf(yx2)经过变量变换()可化为变量分离方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北师范学院优质课程《常微分方程》试题库及试题解答课程负责人:李必文数学系2005年 3月 18日选择题(每小题 4 分)1、下列方程中为常微分方程的是()(A) x2 - 2x 1 0 (B) y' xy2(C) u 2u 2u (D) y x2 c (c为常数)t x2 y22、下列微分方程是线性的是()(A)y ' x2 y2 (B) y" y2 e x (C) y" x2 0 (D) y'- y xy 23、方程y " 3y ' 2 y x2e-2 x特解的形状为( )(A) y1 ax2ey-2 x (B) y1 (ax2 bx c)e-2 x(C) y1 x2 ( ax2 bx c)e-2 x (D) y1 x2 (ax2 bx c)e-2x4、下列函数组在定义域内线性无关的是()(A)4, x (B)x,2 x, x2 (C)5,cos 2 x,sin 2 x (D) 1,2, x, x 25、微分方程xdy - ydx y2 e y dy 的通解是( )(A) x y(c - e y ) (B) x y(e y c) (C) y x(e x c)(D) y x(c - e y )6、下列方程中为常微分方程的是()(A) t2 dt xdx 0 (B) sin x 1(C) y x 1 c (c 为常数)2u 2u (D)2y2x7、下列微分方程是线性的是()(A)y' 1 y2(B)dy1(C)y '2by cx(D)dx 1 xyy ' xy408、方程y "- 2 y ' 2y e x (x cos x 2sin x) 特解的形状为( )(A) y1 e x[( Ax B)cos x C sin x] (B) y1 e x [ Ax cos x C sin x](C) y1 e x[( Ax B) cosx ( Cx D ) sin x](D) y1 xe x[( Ax B) cos x (Cx D ) sin x]9、下列函数组在定义域内线性无关的是()(A) 1, x, x3(B)2x2 , x, x2(C) 1,sin2x,cos2 x(D)5,sin 2 (x 1),cos2 (x1)10、微分方程ydx - xdy y2exdx 的通解是( )(A) y x(e x c) (B) x y( e x c) (C) x y(c - e x)(D)y( x - ) x e c11、下列方程中为常微分方程的是()(A) x2 y2 -1 0 (B) y ' x2y(C) 2u 2 u 2u (D) x y2 c (c为常数)2x2 y212、下列微分方程是线性的是()2(C)y =y3 +sin x (D)y +y=y2cos x(A)(B) y +6 y =113、方程y+y=2sin x特解的形状为( )(A) y 1x( A cos x B sin x)(B)(C)(D)14、下列函数组在定义域内线性无关的是()(A) 0,1, t (B)e t , 2e t ,e -t(C) (D)15、微分方程 ydx-xdy=x 2e x dx 的通解是 ( )(A) y=x(c+e x ) (B) x=y(c+e x )(C)x=y(c-e x )(D)y=x(c-e x )16、下列方程中为常微分方程的是()(A) x 2+y 2-z 2=0(B) y ce xuu (D)y=c cost+c sint (c ,c 为常数)(C)12tx1217、下列微分方程是线性的是( )32y +(1/3) y(A) x (t ) -x=f(t) (B) y +y=cos x (C) x + y = y(D)=y 4-x cos x 特解的形状为 ()18、方程 y -2 y +3y =e(A) y 1 Acosx B sin x (B) y 1 Ae x (C) y 1e x ( Acos x B sin x)(D)y 1 Axe x cosx19、下列函数组在定义域内线性无关的是()(A)e t ,e 2t ,e 3t(B)0,t ,t 2(C) 1 sin 2(t 1),cos( 2 2)(D) 4-t,2t-3,6t+8, t20、微分方程 xdx-ydy=y 2e y dy 的通解是 ( )(A) x=y(ey+ c) (B) x=y(c-ey) (C) y=x(ex+c) (D) y=x(c-e y )21、下列方程中为常微分方程的是( )(A)31(B)y ce xu u (D)x + =0(C)xty 2y'e x22、下列微分方程是线性的是()(A) y+y 2=1+x(B)y' 2 +y=cosx(C)y- 2y=2x2(D)xdx+ydy=023、方程 yy 9 y 16e 3x)6 '特解的形状为 ((A) y 1 Ae 3x(B) y 1 Ax 2 e 3x(C)y 1 Axe 3x(D)y 1 e 3x ( A sin 3x B cos3x)24、下列函数组在定义域内线性无关的是()xx2 e x22(C) 1,2, x20,e 5x4 x 2(A) e , xe , x (B)2,cosx, cos x (D)x, e x25、微分方程 ydx-xdy=2x 2e x dx 的通解是 ( )(A) y=x(c-2e x )(B) x=y(c+2e x ) (C)x=y(c-2e x )(D)y=x(c+2e x )26、微分方程dyy tg y的通解为()dxx x(A)1cx(B) siny=x +c(C) siny=c x(D) sinx=c xyxxysinx27、微分方程 2y y =( y ) 2的通解()(A) ( x-c ) 2(B)c 1( x -1) 2+c 2( x +1) 2 (C) c 1+( x -c 2) 2(D) c1(x -c 2) 228、微分方程 xdy-ydx=y 2e y dy 的通解为()(A) y=x(e x +c)(B)x=y(e y +c)(C) y=x(c-e x )(D)x=y(c-e y )29、微分方程y -2 y -3 y =0 的通解 y为()(A)c 1 c 2 x 3 (B)c 1 x c 2(C)c 1e xc 2 e 3x (D)c 1e xc 2 e 3 xxx 330、微分方程 y ''-3y '+2 y =2x -2 e x 的特解 y *的形式是()(A) (ax+b)e x (B) (ax+b)xe x(C)(ax+b)+ce x (D) (ax+b)+cxe x31、通过坐标原点且与微分方程dy 1 的一切积分曲线均正交的曲线方程是( )xdx(A)e yx 1(B) e yx 1 0(C) e yx 1(D)2 y x 22x32、设 y(x) 满足微分方程 ( cos 2x)y1+y=tgx 且当 x=/4 时 y=0,则当 x =0 时 y =()(A) /4 (B) - /4 (C) -1(D) 133 、 已 知 y=y(x) 的 图 形 上 点 M(0,1) 处 的 切 线 斜 率 k=0 , 且 y(x) 满 足 微 分 方 程y1 ( y')2 ,则 y(x)= ( )(A)sin x(B)cosx(C)34、微分方程y -2 y -3 y =0 的通解是 y =( )(A)x 3 x 3 (B) c 1 xc 2x 3c 1 e x c 2 e 3x2d y则 y(1 c 1 c 2 ) y 1 ( x) c 1 y 2 (x) c 2 y 3 ( x)(A) 是所给微分方程的通解 (B)(C) 是所给微分方程的特解shx(D)chx(C)c 1 e x c 2 e 3 x(D)a(x) dy b( x) yf ( x) 的特解,dx不是所给微分方程的通解(D) 可能是所给微分方程的通解也可能不是所给微分方程的通解,但肯定不是特解36、设 y(x) 满足y sinx=yLny ,且 y (/2)= e ,则 y ( /4)= ( )(A) e /2(B)e -1 (C)e 2 1(D) e 2 337、微分方程 yn ytgxy 2 cos x0 的通解是( )(A)arctgx c(B)1 ( arctgx c) (C)1arctgx c (D)xxarctgx1 cx38、微分方程 ( 1+2的通解为()y )dx=(arctgy-x)dy(A) x arctgy 1 ce arctgy (B) x arctgy1 ce arctgy (C) xarctgyce arctgyc(D)x arctgyce arctgyc39、微分方程 y4 y21cos2 x 的通解为 y=()(A) exc x 2c x c3(B)c x 2c x c31212(C) c 1exc 2 x c 3(D)c 1 x 3 c 2 x 2 c 340、微分方程 y7 y6ysin x 的通解是 y =()(A) ex745sin x747cosx(B)c 1e x c 2 sin x c 3e x c 4 cos x (C) ( cc x)e x (c c x)e x(D)(c c x) sin x(cc x) cosxdy41、通过坐标原点且与微分方程x 1 的一切积分曲线均正交的曲线方程是 ( ) dx(A)e yx1(B)e y x 1 0 (C) e y x 1 (D)2 yx22x42、设 y(x) 满足微分方程xy1+y -y 2Lnx=0 且当 y(1)=1, 则 y(e)=( )(A) 1/e(B) 1/2(C) 2(D) e43 、 已 知 yy(x) 满 足 ( x 2 2xy y 2 )dx ( y 22xy x 2 )dy0 , 且 y(1) 1 则y 1 2( )2(A) 1 (B) 1/2 (C) 2 (D) 1 22 244、微分方程y 2xy' 满足初始条件 y0 1 , y' 3 的特解是 y=( )x 2 1 x x 0(A) x3 x 3 (B) x 3 3x 1 (C) x 2 x 3 (D) x 2 3x 145、微分方程y 6y' 13y 0 的通解是y=( )(A) e 3 x ( c1 cos2x c2 sin 2 x) (B) e2x (c1 cos3x c2 sin 3x)(C) e3x (c1 cos2x c2 sin 2x) (D) e 2 x (c1 cos3x c2 sin 3x)46、微分方程y' 2 y c 0 满足 yx 0 的特解 y=()x 2(A)4 x 2 x 2 4 2 1x 2 4 (B) 4 x 2 (C) x (ln x ln 2) (D) x2 (ln x ln 2) 47、微分方程y' ytgx y 2 cosx 0 的通解是()(A) 1( x c)cos x (B) y ( x c)cos x y(C) 1x cos x c (D) y x cosx c y48、微分方程 ( y2-6x ) y +2y=0 的通解为()2 3(B) 2y-x 3 3(C)2 3 3 3(A) 2x-y +cy =0 +cx =0 2x-cy +y =0 (D) 2y-cx +x =049、微分方程y4 y 1 2 cos2 x 的特解的形式是y=()(A) a cos2x(B)axcos2x(C) asin2 x bcos2 x(D)axsin2 x bx cos2x50、满足微分方程y 7 y 6y sin x 的一个特解y* =()(A) e x 745 sin x 747 cosx (B) e x 745 sin x 747 cos x(C) e6x745sin x747cos x(D) e x e 6x745sin x747cosx51、初值问题y" 4y 0, y(0) 0, y'(0) 1 的解是 y(x)()(其中其通解为y(x) c1 sin 2x c2 cos2 x, c1, c2为任意常数)(A) 1 sin 2 x (B) 1 sin 2x(C)3 252、下列方程中为常微分方程的是()(A) x43x2x 1 0(B)u 2u 2u (C)x2 (D)t y253、下列微分方程是线性的是()(A) y"xy ' y x2(B)y ' x2y2(C)1 1sin3 x (D)sin3 x3 2y" y 'x2u v2wy " xy2 f (x)(D)y " y ' y354、已知F ( x, y) 具有一阶连续偏导,且 F (x, y)( ydx xdy) 为某一函数的全微分,则()(A)F F(B)xFyF(C)xFyF(D)yFx F x y x y x y x y55、设y1( x), y2(x), y3(x)是二阶线性非齐次微分方程y" P(x) y' Q ( x) y f ( x) 的三个线性无关解,c1 ,c2 是任意常数,则微分方程的解为( )(A) c1y1 c2 y2 y3 (B) c1 y1 c2 y2 (1 c1 c2 ) y3(C)c1 y1 c2 y2 (c1 c2 ) y3 (D) c1 y1 c2 y2 (1 c1 c2 ) y356、若连续函数f (x)满足关系式f (x) 2 xtdt ln 2 ,则 f ( x) 为()f2(A) e x ln 2 (B) e2x ln 2 (C) e x ln 2 (D) e2 x ln 257、若y1 e3 x, y2 xe3 x,则它们所满足的微分方程为()(A) y" 6 y' 9 y 0 (B) y" 9 y 0 (C) y" 9 y 0 (D)y" 6 y' 9y 058 、设y1, y2, y3是二阶线性微分方程y" p(x) y ' q(x) y r ( x) 的三个不同的特解,且y1 y2 不是常数,则该方程的通解为()y2 y3(A) c1 y1 c2 y2 y3 (B) c1 ( y1 y2 ) c2 ( y2 y3) y1(C) c1 y1 c2 y3 y2 (D) c1 ( y1 y2 ) c2 ( y2 y3 )59、设f ( x)连续,且满足方程1tx dt nf ( x)( n N ),则f (x)为(f )01 n(A) cx n (B) c(c 为常数)(C) c sin nx (D) ccosnx60、设y1, y2是方程y"p( x) y ' q( x) y 0 的两个特解,则y c1 y1c2 y2( c1,c2为任意常数)()(A) 是此方程的通解(B)是此方程的特解(C)不一定是该方程的解(D) 是该方程的解61、方程( x2 2x) y" ( x2 2) y ' (2 x 2) y 0 的通解为()(A) y c1e x c2 (B) y c1e x c2e x (C) y c1e x c2x2 (D) y c1e x c2 x62、微分方程y" y ' e x 1的一个特解形式为()(A) ae x b (B) axe x bx (C) ae x bx (D) axe x b63、方程( pxy y2 ) dx (qxy 2x2 )dy 0 是全微分的充要条件是()(A) p 4, q 2 (B) p 4, q 2 (C) p 4, q 2 (D) p4, q264、表达式[cos(x y2 ) ay]dx [bycos(x y2) 3x]dy 是某函数的全微分,则()(A) a 2,b 2 (B) a 3,b 2 (C) a 2,b 3 (D) a 3,b 365、方程y"' y " y ' y xe x是特解形式为()(A) (ax b)e x (B) x(ax b)e x(C) x2(ax b)e x(D)e x[( ax b)cos 2x ( cx d )sin 2x]66、方程y" 2 y' y xe x 的特解 y*的形式为()(A) axe x (B) (ax b)e x (C) x(ax b)e x (D)x2 (ax b)e x67、已知y1 coswx 与 y2 3cos wx 是微分方程y" w2 y 0 的解,则 y c1 y1 c2 y2是()(A)方程的通解(B)方程的解,但不为通解(C)方程的特解(D)不一定是方程的解68、方程y " 3y' 2y3 2 x *的形式为()x e 的特解 y(A) ( ax b)e x (B) (ax b) xe x (C)( ax b) ce x (D) (ax b) cxe x69、方程y"3y ' 2 y x2e 2 x(A)y ax2 e 2x(C) y x(ax2bx c)e 2 x 特解的形式为()(B) y ( ax2 bx c)e 2 x(D) y x2 (ax2 bx c)e 2x70、下列函数在定义域内线性无关的是()(A) 4x (B) x 2x x2 (C)5 cos2 x sin 2 x (D) 1 2 x x271、微分方程xdy ydx y2e y dy 的通解是()(A) x y(c e y) (B) x y(e y c) (C) y x(e x c) (D)y x(c e y )72、方程dxy 5,dy3 )xdt x 的奇点为(dt(A) ( 0,0 )(B) (0,5) (C) (5,5) (D) (5,0)73、( 0,0 )为系统dxy,dy2x 3y 的()dt dt(A)鞍点(B)结点(C)中心(D)焦点74、方程dxdydz的首次积分是( )xzyz xy(A) xy z2c(B)x 2c(C)x 2yz c (D)xz x 2 cy75、方程dx z 2 dy dz的首次积分是()x 2y 2 2 xy 2xzx y z(B)x 2y 2 z 2(C)y(D)z(A)x2cyc xcx cdx 2xydt76、系统的奇点类型为( )dyx 2ydt(A) 稳定结点(B) 不稳定结点(C)稳定焦点(D)不稳定焦点dx x3dty77、系统4 的奇点类型为()dy7 x 4ydt(A) 鞍点 (B) 焦点 (C) 中心 (D) 结点78、方程 y"y xe x 有形如( )特解(A) y Axe x (B)y 1 ( Ax 2 Bx c)e x(C) y 1(Ax B)e x(D)Ae x79、方程 x" 6x ' 13xe t (t 2 5t 12) 特解形状为()(A) x 1 ( At 2 Bt c)e t(B)x 1 ( At B) e t ( C) x 1 Ate t(D)x 1 Ae t80、方程 y" 2 y' 2ye x cos x 的特解形状为()(A) y1 A cosxe x (B) y1 Asin xe x(C) y1 e x ( Acos x B sin x) (D) y1 Ae x81、方程x" 2x ' 2x te t cost 的特解形状为()(A) x1 ( At 2 Bt c)e t cost (B) x1 (At 2 Bt c)e t sin t(C) x1 e t ( Acost B sin t )(D) x1 ( At 2Bt c)e t cost (Dt 2Et F )e t sin t82、微分方程( ye x e y )dx (xe y e x )dy 0 的通解为()(A) ye x xe y c (B) ye y xe x c (C) ye x xe y c (D) ye x xe y c83、微分方程(e x sin y 2 y sin x)dx (e x cos y 2cos x)dy 0 的通解为()(A) e x sin y 2 y cos x c (B) e x co s y 2 ycos x c(C) e x sin y ycos x c (D) e x cos y 2y cos x c84、微分方程e y dx x(2 xy e y )dy 0 的通解为()(A) xe y y2 c (B) e y y2 c (C) xe y xy c (D) e y ycx x85、方程(e x 3y2 ) dx 2xydy 0的通解为()(A) xe x x3 y2 c (B) ( x2 2x)e x x3 y 2 c(C) (x2 2x 2)e x x3 y2 c (D) ( x2 2) e x x3 y2 c86、下列方程为常微分方程的是()(A) x2 y2 z2 0 (B) u u 2u (C) y Asin t B sin t (D) y ' Ae xx y y287、方程(2 xy4e y 2xy 3 y)dx ( x2 y 4e y x2 y2 3x) dy 0 的积分因子为()(A) ( x) 1(B) (x)1(C) ( y)1(D) ( y)1 x2 x y4 y288、方程e y x(2 xy e y )dy 0 的积分因子为()(A) ( x) 1(B) ( x)1(C) ( y)1(D) ( y)1 x2 x y2 y89、方程(e x 3y2 ) dx 2xydy 0的积分因子为()(A) ( x) 1 (B) ( x) x2 (C) ( y) 1 (D) ( y) y2x y90、方程( y 1 xy)dx xdy 0 的积分因子为()(A) ( x) e x (B) ( x) e x (C) ( y) e y (D) ( y) e y91、方程(2 x2y 2 y 5) dx (2 x3 2x)dy 0 的积分因子为()(A) ( x) 1(B) ( x)1(C) ( y)1(D)1 x 1 x2 y( y)1 y292、方程2 xy3dx ( x2 y2 1)dy 0 的积分因子为()(A) ( x) 1(B) (x)1(C) ( y)1(D)1 x x y( y)2y293、方程e x dx (e x ctgx 2 ycos y)dy 0 的积分因子为()(A) ( x) sin x (B) (x) cos x (C) ( y) sin y (D) ( y) cos y94、方程ydx (x2 y2 x)dy 0 的积分因子为()(A)( x) 1 1(C)( x, y)1 x2(B)( y)2 2y2y x(D) ( x, y) 1yx95、方程y3dx2( x2xy2 )dy 0的积分因子为()(A)1(B)1 1(D)1 x2(C)x2 y2 2 yxy x96、方程3x 6 x3 3 y0 的积分因子为()dxydyy x(A)x (B) y (C) xy(D) x2 y97、下列方程中为常微分方程的是()(A) x2 - 2x 1 0 (B) y' xy 2(C) u 2u 2u (D) y x2 c (c为常数)t x2 y298、下列微分方程是线性的是()(A)y ' x2 y2 (B) y" y2 e x (C) y" x2 0 (D) y '- y xy2 选择题答案1 B2 C3 C4 A5 A6 A7 B8 D9 A 10 B10 B 12 A 13 A 14 C 15 D16 B 17 A 18 C 19 A 20 B21 D 22 C 23 B 24 A 25 A26 C 27 D 28 D 29 D 30 D31 A 32 C 33 D 34 D 35 D36 C 37 B 38 A 39 C 40 C41 A 42 B 43 D 44 B 45 A46 A 47 C 48 A 49 D 50 B51 B 52 B 53 A 54 B 55 B56 B 57 D 58 B 59 A 60 D 61 C 62 D 63 C 64 B 65 B 66 D 67 B 68 D 69 C 70 C 71 B 72 B 73 B 74 A 75 B 76 C 77 D 78 C 79 A 80 C 81 D 82 C 83 A 84 B 85 C 86 D 87 C 88 A 89 B 90 B 91 B 92 D 93 C 94 C 95 D 96 C 97 B 98 C。

相关文档
最新文档