模电实验报告

合集下载

元件模拟电路实验报告(3篇)

元件模拟电路实验报告(3篇)

一、实验目的1. 理解并掌握基本模拟电路元件(电阻、电容、电感)的特性及其在电路中的作用。

2. 掌握模拟电路的测试方法,包括伏安特性曲线的测量、阻抗测量等。

3. 培养实验操作技能,提高分析问题、解决问题的能力。

二、实验原理1. 电阻元件:电阻元件是模拟电路中最基本的元件之一,其特性表现为对电流的阻碍作用。

电阻元件的伏安特性曲线为直线,其斜率即为电阻值。

2. 电容元件:电容元件的特性表现为储存电荷的能力。

电容元件的伏安特性曲线为非线性,其斜率与电容值和电压值有关。

3. 电感元件:电感元件的特性表现为储存磁场能量的能力。

电感元件的伏安特性曲线为非线性,其斜率与电感值和电流值有关。

4. 电路测试方法:伏安特性曲线的测量方法为在电路中施加一定的电压,测量通过电路的电流,然后绘制电压与电流的关系曲线。

阻抗测量方法为测量电路的电压和电流,然后根据欧姆定律计算电路的阻抗。

三、实验器材1. 电阻元件:R1、R2、R3(不同阻值)2. 电容元件:C1、C2、C3(不同容量)3. 电感元件:L1、L2、L3(不同电感值)4. 直流稳压电源5. 电压表6. 电流表7. 示波器8. 电路实验板四、实验步骤1. 测量电阻元件的伏安特性曲线(1)将电阻元件R1、R2、R3分别接入电路,测量通过电阻元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电阻元件的伏安特性曲线。

2. 测量电容元件的伏安特性曲线(1)将电容元件C1、C2、C3分别接入电路,测量通过电容元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电容元件的伏安特性曲线。

3. 测量电感元件的伏安特性曲线(1)将电感元件L1、L2、L3分别接入电路,测量通过电感元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电感元件的伏安特性曲线。

4. 测量电路阻抗(1)将待测电路接入电路实验板,测量电路的电压和电流值。

(2)根据测量的电压和电流值,计算电路的阻抗。

大学模电实验报告

大学模电实验报告

一、实验目的1. 理解模拟电子技术的基本概念和基本原理。

2. 掌握模拟电路的搭建和调试方法。

3. 培养实验操作能力和数据分析能力。

二、实验原理模拟电子技术是研究模拟信号处理和模拟电路设计的学科。

本实验主要涉及以下原理:1. 基本放大电路:包括共射放大电路、共集放大电路、共基放大电路等。

2. 运算放大器:包括反相比例放大、同相比例放大、加法运算、减法运算等。

3. 滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

三、实验仪器与设备1. 模拟电子技术实验箱2. 函数信号发生器3. 示波器4. 数字多用表5. 绝缘导线6. 插头四、实验步骤1. 搭建共射放大电路:- 根据实验指导书,连接共射放大电路。

- 调整偏置电阻,使晶体管工作在放大区。

- 使用函数信号发生器输入正弦波信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

2. 搭建运算放大器电路:- 根据实验指导书,连接运算放大器电路。

- 输入不同电压信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

3. 搭建滤波电路:- 根据实验指导书,连接滤波电路。

- 输入不同频率的信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

五、实验结果与分析1. 共射放大电路:- 输入信号频率为1kHz,输出信号频率为1kHz,放大倍数为20。

- 当输入信号频率为10kHz时,输出信号频率为10kHz,放大倍数为10。

2. 运算放大器电路:- 反相比例放大电路:输入电压为1V,输出电压为-2V。

- 同相比例放大电路:输入电压为1V,输出电压为2V。

- 加法运算电路:输入电压分别为1V和2V,输出电压为3V。

- 减法运算电路:输入电压分别为1V和2V,输出电压为-1V。

3. 滤波电路:- 低通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.5V;当输入信号频率为10kHz时,输出信号幅度为0.1V。

- 高通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.1V;当输入信号频率为10kHz时,输出信号幅度为0.5V。

模电综合设计实训报告

模电综合设计实训报告

模电综合设计实训报告一、实验目的本次实验旨在通过模拟电路的设计和实现,加深对模拟电路原理的理解,并掌握相关的设计方法和技巧。

具体目标如下:1. 了解模拟电路的基本概念和常用器件的特性;2. 掌握模拟电路的基本设计方法和步骤;3. 进一步了解运放的工作原理和相关应用;4. 实践并巩固模拟电路的设计和调试能力。

二、实验设备本次实验所用的器件和设备有:1. 电源供应器2. 可变电阻器3. 电容器4. 电感器5. 非线性电阻器6. 示波器7. 麦克风8. 背光液晶显示器三、实验内容及步骤本实验主要分为三个部分:集成运放的基本特性测试、信号处理电路(语音放大电路)设计和实现、以及显示电路设计和实现。

1. 集成运放的基本特性测试首先进行了对集成运放的基本特性进行测试。

通过分别连接电源和示波器,验证了运放的放大倍数、输入电阻、输入偏置电流等性能参数。

实验结果表明运放的性能参数较为理想,符合设计需求。

2. 信号处理电路(语音放大电路)设计和实现在此部分,我们需要设计一个能够将麦克风输入的语音信号放大的电路。

首先进行了信号处理电路的设计,确定了运放的增益、电容和电阻等参数。

然后进行了电路的实现,连接了麦克风、运放等器件,并使用示波器对输出信号进行检测。

经过调试和优化,成功实现了对输入语音信号的放大。

3. 显示电路设计和实现最后一部分是设计一个显示电路,可以将放大后的信号通过背光液晶显示器进行显示。

我们根据液晶显示器的特性和需求,选择了适当的电阻和电容值,成功地将放大的信号传递到了显示器上,并完成了整体的电路设计。

四、实验结果与分析经过实验,我们成功地完成了模拟电路的综合设计实训任务。

基于对模拟电路原理和器件特性的理解,我们完成了集成运放的基本特性测试、语音放大电路的设计和实现,以及显示电路的设计和实现。

通过实验,我们进一步加深了对模拟电路设计方法和步骤的理解,并掌握了一些相关的设计技巧。

此外,我们还学会了使用示波器等仪器进行电路参数测量和信号观测。

模电实验实训结果分析报告

模电实验实训结果分析报告

一、实验目的本次模电实验实训旨在通过实际操作和理论分析,加深对模拟电子技术基本原理的理解,提高电路分析和设计能力。

通过实验,学生能够熟练掌握基本模拟电路的设计、搭建、测试和分析方法,为后续的专业学习和实践打下坚实基础。

二、实验内容本次实训主要包含以下几个实验:1. 晶体二极管伏安特性实验2. 晶体三极管共射极放大电路实验3. 集成运算放大器基本应用实验4. 滤波电路实验5. 电源电路实验三、实验结果以下是对各个实验结果的分析:1. 晶体二极管伏安特性实验实验中,我们使用了Multisim软件对二极管进行伏安特性仿真,并使用示波器观察实际电路中的伏安特性。

实验结果显示,二极管的伏安特性曲线符合理论分析,即在正向电压作用下,电流随电压增加而迅速增大;在反向电压作用下,电流几乎为零。

通过实验,我们验证了二极管单向导通的特性。

2. 晶体三极管共射极放大电路实验在共射极放大电路实验中,我们搭建了基本放大电路,并使用示波器观察输入信号和输出信号的变化。

实验结果显示,放大电路能够将输入信号放大,且放大倍数与电路参数相关。

通过调整电路参数,我们可以实现不同的放大倍数和带宽。

实验过程中,我们还分析了电路的输入阻抗、输出阻抗和增益带宽等特性。

3. 集成运算放大器基本应用实验在集成运算放大器实验中,我们搭建了基本的运算电路,如反相比例放大器、同相比例放大器、加法器和减法器等。

实验结果显示,这些运算电路能够实现相应的数学运算,且运算精度较高。

通过实验,我们掌握了集成运算放大器的基本应用方法。

4. 滤波电路实验滤波电路实验中,我们搭建了低通滤波器和高通滤波器,并使用示波器观察滤波效果。

实验结果显示,滤波电路能够有效滤除高频或低频信号,实现对信号的分离。

通过调整电路参数,我们可以实现不同的滤波效果。

5. 电源电路实验电源电路实验中,我们搭建了简单稳压电路和开关稳压电路,并使用示波器观察输出电压的稳定性。

实验结果显示,稳压电路能够有效稳定输出电压,使其不受输入电压波动的影响。

模拟电子技术实验报告

模拟电子技术实验报告

一、实验目的1. 熟悉模拟电子技术实验的基本操作流程;2. 掌握模拟电子技术实验的基本测量方法;3. 理解模拟电子电路的基本原理,提高电路分析能力;4. 培养实验操作技能,提高动手实践能力。

二、实验内容1. 常用电子仪器的使用:示波器、万用表、信号发生器等;2. 晶体管共射极单管放大器实验;3. 射极跟随器实验;4. 差动放大器实验。

三、实验原理1. 常用电子仪器使用:示波器、万用表、信号发生器等是模拟电子技术实验中常用的测量工具,掌握这些仪器的使用方法对于进行实验至关重要。

2. 晶体管共射极单管放大器:晶体管共射极单管放大器是一种基本的模拟放大电路,其原理是利用晶体管的电流放大作用,将输入信号放大。

3. 射极跟随器:射极跟随器是一种具有高输入阻抗、低输出阻抗、电压放大倍数接近1的放大电路,常用于信号传输和阻抗匹配。

4. 差动放大器:差动放大器是一种能有效地抑制共模干扰的放大电路,广泛应用于测量、通信等领域。

四、实验步骤1. 常用电子仪器使用:熟悉示波器、万用表、信号发生器的操作方法,并进行基本测量。

2. 晶体管共射极单管放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

3. 射极跟随器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

4. 差动放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

五、实验数据及分析1. 常用电子仪器使用:根据实验要求,使用示波器、万用表、信号发生器等仪器进行测量,并记录数据。

2. 晶体管共射极单管放大器实验:(1)输入信号频率为1kHz,幅值为1V;(2)输出信号频率为1kHz,幅值为5V;(3)放大倍数为5。

模电的实验报告

模电的实验报告

模电的实验报告模电的实验报告模电这门课程,它是一门综合应用相关课程的知识和内容来解决书本上定理的课程以及锻炼学生们的动手操作能力。

下面是模电的实验报告,欢迎阅读!模电的实验报告1在本学期的模电实验中一共学习并实践了六个实验项目,分别是:①器件特性仿真;②共射电路仿真;③常用仪器与元件;④三极管共射级放大电路;⑤基本运算电路;⑥音频功率放大电路。

实验中,我学到了PISPICE等仿真软件的使用与应用,示波器、信号发生器、毫伏表等仪器的使用方法,也见到了理论课上学过的三极管、运放等元件的实际模样,结合不同的电路图进行了实验。

当学过的理论知识付诸实践的时候,对理论本身会有更具体的了解,各种实验方法也为日后更复杂的实验打下了良好的基础。

几次的实验让我发现,预习实验担当了不可或缺的作用,一旦对整个实验有了概括的了解,对理论也有了掌握,那实验做起来就会轻车熟路,而如果没有做好预习工作,对该次实验的内容没有进行详细的了解,就会在那里问东问西不知所措,以致效率较低,完成的时间较晚。

由于我个人对模电理论的不甚了解,所以在实验原理方面理解起来可能会比较吃力,但半学期下来发现理论知识并没有占过多的比例,而主要是实验方法与解决问题的方法。

比如实验前先要检查仪器和各元件(尤其如二极管等已损坏元件)是否损坏;各仪器的地线要注意接好;若稳压源的电流示数过大,证明电路存在问题,要及时切断电路以免元件的损坏,再调试电路;使用示波器前先检查仪器是否故障,一台有问题的示波器会给实验带来很多麻烦。

做音频放大实验时,焊接电路板是我新接触的一个实验项目,虽然第一次焊的不是很好,也出现了虚焊的情况,但技术都是在实践中成熟,相信下次会做的更好些。

而这种与实际相结合的`电路,在最后试听的环节中,也给我一种成就感,想来我们的实验并非只为证实理论,也可以在实际应用上小试身手。

对模电实验的建议:①老师在讲课过程中的实物演示部分,可以用幻灯片播放拍摄的操作短片,或是在大屏幕上放出实物照片进行讲解,因为用第一排的仪器或元件直接讲解的话看的不是很清楚。

模电的实验报告

模电的实验报告

模电的实验报告摘要:该实验是关于模拟电子电路的实验,主要在于学习基本的模拟电路的分析方法和设计方法,并且在实验中观察电路的性能,理解模拟电路中的基本物理概念。

实验设备包括模拟电路实验箱、双踪示波器、信号发生器和数字万用表。

实验内容包括放大电路实验、滤波电路实验和振荡电路实验,通过实验观察和数据记录,对模拟电路的工作原理和性能进行分析和解释。

关键词:模拟电路、放大电路、滤波电路、振荡电路一、实验原理1、放大电路放大电路是用来增大信号的电路,放大电路主要应用于电信、电视、音响、计算机等各个领域。

放大器主要有两个核心部件,一个是NPN/PNP晶体管,一个是放大电阻。

通过晶体管的控制,电路可以放大电压或电流,从而达到输出比输入更大的效果。

放大电路的分类:按功率可分为小功率放大电路和大功率放大电路;按频率可分为低频放大电路和高频放大电路;按放大形式可分为直接耗散型放大电路和类A、类B、类C等放大电路。

2、滤波电路滤波电路是指去除电源中的噪声和干扰,使信号输出清晰、稳定、纯净的电路。

根据过滤的信号波形,滤波电路又被分为低通滤波电路、高通滤波电路、带通滤波电路和带阻滤波电路。

在实际应用中,滤波电路经常被用于音频放大电路中,从而滤除低频或高频的杂音,使声音更加清晰、纯净。

3、振荡电路振荡电路是指将电能转换为振动能并不断地跳动的电路,振荡电路实现了将某种能量转化为规律的波形输出。

振荡电路主要应用于电子钟表、无线电通讯、音频放大电路等领域。

振荡电路分类:根据振荡输出波形的不同,振荡电路可分为正弦波振荡电路、方波震荡电路、锯齿波振荡电路等。

二、实验内容本次实验的内容包括放大电路实验、滤波电路实验、振荡电路实验。

本次实验选取的放大电路为共射放大器,实验步骤如下:(1)调整信号发生器,信号频率为1kHz,信号电平0.5Vp-p。

(2)拨动实验箱内开关,选取Ube差动放大电路。

(3)调节不同量级的调节器,测量输入、输出的电平以及21倍增益下的输入阻抗和输出阻抗。

模电实验报告常用电子仪器的使用

模电实验报告常用电子仪器的使用

第3章 模拟电子技术实验3.1 实验一 常用电子仪器的使用一、实验目的1. 学习电子电路实验中常用的电子仪器——数字示波器,函数信号发生器、交流毫伏表的主要技术指标、性能及正确使用方法。

2. 初步掌握用数字示波器观察信号波形和读取波形参数的方法;初步掌握函数信号发生器的正确使用;掌握交流毫伏表的使用。

3. 学习并掌握仿真软件Multisim 中基本仪器的使用。

二、实验原理与实验电路设计为了顺利开展模拟电路实验,必须掌握常用电子仪器的正确使用方法。

本实验将通过对示波器校准信号的测量、函数信号发生器输出信号的测量,学习三种电子仪器的基本使用方法。

本实验也将学习Multisim 模拟电路实验中经常使用的仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表、数字万用表等。

应用这些仪器可以完成对模拟电路的调试和测试工作。

模拟电路静态测试时,常用数字万用表直流电压档测静态工作点。

进行动态测试时,常需加入输入信号;函数信号发生器用来产生输入信号(例如正弦交流信号);示波器用于显示并测量输出信号;交流毫伏表用来测量正弦信号有效值。

仿真软件中虚拟仪器的使用。

在实验过程中,为方便调试、观察与读数,对电子测量仪器与被测实验电路之间进行合理的布局,常见的布局如图3.1.1所示。

图3.1.1 实验电路的测量示意图在实验中,所有测试仪器的接地端应与实验电路的接地端连接在一起,如图3.1.1所示,否则引入的干扰不仅会使实验电路的工作状态发生变化,而且将使测量结果出现误差。

注意:测试仪器的信号端绝不能与接地端相连,否则发生短路。

1. Multisim 四、实验过程、步骤及内容中虚拟仪器的使用使用Multisim 的示波器、万用表测量信号发生器输出信号,电路连接如图所示。

信号发生器 1(XFG1)输出 1.0KHz ,幅值为 2.0V 的正弦波。

设置 XFG1 的 Frequency (频率) 为 1kHz ,Amplitude (幅值)为 2V ,Offset (直流偏量)为 0V 。

模电实验报告(一)

模电实验报告(一)

模电实验报告(一)模电实验报告背景介绍电子科学与技术专业的学生通常会在模电实验课程中进行各种实验。

这些实验旨在帮助学生了解和掌握模拟电子电路的基本原理和设计方法。

模电实验报告是对实验结果进行总结和分析的重要环节,为了满足实验报告的要求,以下是一些编写报告的建议和规则。

实验目的在每份实验报告中,首先应明确实验的目的。

可以简要描述实验所涉及的主题、问题或目标。

例如:•掌握放大电路的基本原理•了解运算放大器的特性和应用•学习使用示波器和信号发生器进行测量实验原理在实验原理部分,可以以标题的形式列出实验所涉及的原理和理论知识。

例如:放大电路基本原理•放大电路的分类•放大电路的基本模型•放大电路的增益计算方法运算放大器特性和应用•运算放大器的基本性质•运算放大器的输入输出特性•运算放大器在比较器和反相运算等电路中的应用示波器和信号发生器的使用•示波器的基本操作•信号发生器的基本操作•测量电压、频率和相位的方法实验步骤在实验步骤部分,可以按照时间顺序或者操作顺序列出实验的具体步骤。

可以使用有序列表来清晰地呈现每个步骤。

例如:1.连接电路板上的电路元件2.打开示波器和信号发生器并进行基本设置3.测量电路的输入输出特性4.记录实验数据和观察结果实验结果与分析在实验结果与分析部分,可以使用无序列表或表格的形式来呈现实验的结果和数据。

对于每个实验结果,应给出相应的分析和解释。

例如:•测量电路的输入电压为3V时,输出电压为6V,增益为2倍。

说明该放大电路为2倍放大电路。

•在反相运算电路中,输入电压为正时,输出电压为负,反之亦然。

这是因为运算放大器的反相输入端与非反相输入端的特性决定的。

实验总结在实验总结部分,可以对整个实验进行总结和评价。

可以描述实验所达到的目标,总结实验结果和分析的重点,并提出一些改进的建议。

例如:通过本次模电实验,我对放大电路的基本原理有了更深入的了解,并学会了使用示波器和信号发生器进行测量。

然而,对于某些实验步骤或数据处理方法还有一些疑惑,希望在之后的实验中能够进一步探索和学习。

模电技术实验报告

模电技术实验报告

一、实验目的1. 理解模拟电子技术的基本原理和实验方法。

2. 掌握晶体管放大电路的基本搭建和调试方法。

3. 学习信号的产生、传输和处理的实验技能。

4. 提高对电路性能指标的理解和测试能力。

二、实验原理模拟电子技术是研究模拟信号处理和传输的理论和技术。

本次实验主要涉及以下内容:1. 晶体管放大电路:利用晶体管的放大作用,将微弱的输入信号放大到所需的幅度。

2. 信号发生器:产生不同频率和幅度的正弦波信号,用于测试电路的性能。

3. 示波器:观察和分析信号的波形,测量信号的幅度、频率和相位等参数。

4. 万用表:测量电路中的电压、电流和电阻等参数。

三、实验内容及步骤1. 晶体管共射放大电路(1)搭建共射放大电路,包括输入端、放大电路和输出端。

(2)调整电路参数,使放大电路工作在最佳状态。

(3)使用信号发生器产生输入信号,观察输出信号的波形和幅度。

(4)测量放大电路的增益、带宽和失真等性能指标。

2. RC正弦波振荡器(1)搭建RC正弦波振荡器电路,包括RC振荡网络和放大电路。

(2)调整电路参数,使振荡器产生稳定的正弦波信号。

(3)使用示波器观察振荡信号的波形和频率。

(4)测量振荡器的振荡频率、幅度和相位等性能指标。

3. 差分放大电路(1)搭建差分放大电路,包括两个共射放大电路和公共发射极电阻。

(2)调整电路参数,使差分放大电路抑制共模信号,提高电路的共模抑制比(CMRR)。

(3)使用信号发生器产生差模和共模信号,观察输出信号的波形和幅度。

(4)测量差分放大电路的增益、带宽和CMRR等性能指标。

四、实验数据记录与分析1. 晶体管共射放大电路| 电路参数 | 测量值 || --- | --- || 输入信号幅度 | 0.1V || 输出信号幅度 | 5V || 增益 | 50 || 带宽 | 10kHz || 失真 | <1% |2. RC正弦波振荡器| 电路参数 | 测量值 || --- | --- || 振荡频率 | 1kHz || 振荡幅度 | 2V || 相位| 0° |3. 差分放大电路| 电路参数 | 测量值 || --- | --- || 差模增益 | 20 || 共模抑制比(CMRR) | 60dB |五、实验结论1. 通过本次实验,加深了对模拟电子技术基本原理的理解。

模电实验报告

模电实验报告

模电实验报告引言:模拟电子技术是电子工程中的重要分支,通过对电压、电流、电子元器件等进行模拟仿真,实现电子系统的设计、分析和测试。

本实验旨在通过实际操作,加深对模拟电子技术的理解和掌握,以及培养实验能力和动手能力。

一、实验目的本实验的主要目的是通过以下几个方面的实验,掌握模拟电子技术的基本原理和实际应用:1. 学习并掌握放大器的工作原理及其电路结构;2. 理解并掌握放大器的特性参数,如增益、带宽等;3. 了解并掌握反馈电路对放大器性能的影响;4. 学习并掌握滤波器的工作原理和电路结构;5. 理解并掌握滤波器的频率响应和滤波特性。

二、实验内容本实验分为两个部分,第一部分为放大器实验,第二部分为滤波器实验。

1. 放大器实验1.1 非反馈放大器实验通过搭建非反馈放大器电路,测量并计算其电压增益,并对其频率响应进行分析。

1.2 反馈放大器实验通过搭建反馈放大器电路,测量并计算其电压增益,并对其频率响应进行分析。

2. 滤波器实验通过搭建低通滤波器和高通滤波器电路,测量并计算其频率响应,并分析其滤波特性。

三、实验步骤以下为放大器实验和滤波器实验的基本步骤,具体实验步骤请参考实验手册。

1. 放大器实验1.1 非反馈放大器实验步骤:a) 搭建非反馈放大器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算电压增益;d) 分析电路的频率响应。

1.2 反馈放大器实验步骤:a) 搭建反馈放大器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算电压增益;d) 分析电路的频率响应。

2. 滤波器实验步骤:a) 搭建低通滤波器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算频率响应;d) 分析滤波器的滤波特性。

四、实验结果与分析根据实验步骤所得的测量数据,进行数据处理和分析。

计算放大器的电压增益、带宽等参数,并绘制频率响应曲线和滤波特性曲线。

模电实验报告

模电实验报告

模拟电路实验报告一使用示波器测量函数信号发生器产生的信号【原始数据】选做思考题:观察不同频率下,函数信号发生器输出信号的波型和幅度,并分析信号在高频和低频下失真的原因。

(10MHz档括号里的小数表明该次峰-峰值与最大一次峰-峰值的比值)1)在1Hz-1MHz档,输出的波形最大/最小的峰-峰值基本保持稳定,只是在10MHz档三种波的峰-峰值突都然减小。

其中三角波衰减最厉害,正弦波次之,方波衰减最少。

2)通过观察波形发现,在频率为1HZ至1MHZ左右的信号都能在示波器上显示出正常的波形,但是在频率为10MHZ左右的方波,三角波,均不能正常显示,方波波形已经趋向正弦波,但不对称,仍保留部分陡增的特性。

三角波更趋向于正弦波。

我觉得这是由于实验室中使用的示波器采样频率有限,而输出信号频率过高。

在一个周期中,示波器要至少采集到2个点才能无失真地还原信号,但此时无法在一个周期中采集到足够样点,所以信号失真。

三角波、方波都趋向与正弦波,三角波更像。

是由于在信号发生器里,三角波和方波可根据傅里叶变化表示为基频为w倍数的多个正弦、余弦波之和。

因为本身在10MHz时,w值已经很大,频率过高(nw)的那部分正弦信号输出后,示波器采样频率不够无法还原,造成失真,使方波、三角波趋向于正弦波样式。

由于三角波傅里叶变换后频谱比方波分散,三角波更像前面一部分正弦波的波形,更趋向。

二.掌握函数信号发生器上AMPL、OFFSET、DUTY的功能,测量按下ATT-20dB键后信号的变化,并计算实际衰减值。

1、AMPL:信号幅度微调,逆时针,(转向MIN),幅度减小,顺时针(转向MAX)幅度增加。

拔出,信号衰减为原来的十分之一(衰减20dB);数据如下:2、Offset:当Offset拔出后:在直流耦合下,波形位置会发生变化,随着Offset移动,波形上下移动,但是不变形。

3、DUTY:对称性(占空比)调节旋钮,可以改变输出波形的对称度。

模电实验三实验报告

模电实验三实验报告

差动放大电路一、 实验原理差动放大电路是一种特殊的直接耦合放大电路,要求电路两边的元器件完全对称,即两管的型号相同特性相同,各对应电阻值相同。

它是一种有效的放大差模(有用)的信号,抑制共模信号和零点漂移的直流放大器。

二、实验电路图三、 元器件清单 元件NPN 晶体三级管9013100Ω电位器503Ω电阻982KΩ电阻 240K Ω电阻 10.1K Ω电阻 26.8K Ω电阻 信号发生器 12.15V 直流电源-11.86V 直流电源数量 2 1 22 2 2 11 1 1四、 静态测量数据记录将两个输入端接地,使ui1=ui2=0,调节W ,使Vc1=Vc2,即uo=0。

此时测量静态工作点的参数。

测量的结果和理论值如下:静态测量记录(Vcc=12.15V ,VEE=-11.86V )1B V (V) 2B V (V) 1C V (V) 2C V (V) 1E I (mA )2E I (mA) E I (mA )β理论值 0.049 0.048 9.89 9.89 0.21 0.21 0.42 228 230测量0.074 0.074 10.03 10.01 2.112 2.096 0.423 228 230值五、 动态测量数据记录1、双端输入时差模电压放大倍数用信号发生器产生1KHZ 、30mV 的正弦波接入Ui ,用示波器观察Uo1、Uo2的波形,示波器采用“CH2反向”然后“叠加”的方法实现Uo 波形,比较它们的相位关系,然后把所测得的数据填入下面的表格中。

2、单端输入时的差模电压放大倍数 讲其中的一个输入端接地,信号发生器接入令一端与地之间,用1同样的方法观察波形并记录所测得的数据。

动态测量记录(Ui=30mv ,有效值,f=1KHZ 正弦波)电压(mV )(有效值) 放大倍数1o u 2o u o u 1VD A 2VD A VD A双端输入 720 755 1475 理论值 28 29 57 测量值 24 25.2 49.2 单端输入 708 698 1406 理论值 28 29 57 测量值 23.6 23.3 46.93、共模抑制比Kcmr 测量讲两个输入端短接为一段,信号发生器产生约1V 的正弦波,接入到该端和地之间,此时输入共模信号。

模电实验报告答案

模电实验报告答案

实验名称:晶体管共射极单管放大器实验日期:2023年10月25日一、实验目的1. 理解晶体管共射极单管放大器的工作原理。

2. 掌握晶体管共射极单管放大器的静态工作点设置方法。

3. 研究静态工作点对放大器性能的影响。

4. 学习使用示波器和万用表等仪器进行实验测量。

二、实验原理晶体管共射极单管放大器是一种基本的模拟电子电路,其工作原理是利用晶体管的放大特性,将输入信号放大到所需的幅度。

共射极放大器具有电压增益高、输入阻抗低、输出阻抗高、输入输出相位相反等特点。

三、实验内容1. 电路搭建:按照实验指导书的要求,搭建晶体管共射极单管放大器电路,包括晶体管、电阻、电容等元件。

2. 静态工作点设置:通过调节偏置电阻,使晶体管工作在放大区,设置合适的静态工作点。

3. 输入信号接入:使用函数信号发生器产生正弦波信号作为输入信号,接入放大器电路。

4. 测量放大器输出:使用示波器观察放大器输出波形,记录输出信号的幅度和相位。

5. 分析静态工作点对放大器性能的影响:改变静态工作点,观察输出波形的变化,分析静态工作点对放大器性能的影响。

四、实验结果与分析1. 静态工作点设置根据实验指导书的要求,调节偏置电阻,使晶体管工作在放大区。

通过测量晶体管的发射极电压和集电极电流,确定静态工作点。

2. 输入信号接入将函数信号发生器产生的正弦波信号接入放大器电路,观察输入信号波形。

3. 测量放大器输出使用示波器观察放大器输出波形,记录输出信号的幅度和相位。

4. 静态工作点对放大器性能的影响通过改变静态工作点,观察输出波形的变化。

当静态工作点过低时,输出波形失真严重;当静态工作点过高时,输出波形振幅减小。

因此,需要设置合适的静态工作点,以保证放大器正常工作。

五、实验结论1. 成功搭建了晶体管共射极单管放大器电路,并实现了放大功能。

2. 通过调节偏置电阻,可以设置合适的静态工作点,保证放大器正常工作。

3. 静态工作点对放大器性能有显著影响,需要合理设置。

模电实验报告

模电实验报告

模电实验报告模拟电子实验报告一、引言模拟电子实验是电子信息工程类专业中一门非常重要的课程,通过这门实验课程,我们可以更加深入地了解模拟电路的基本原理和特性。

本次实验我们将学习并掌握一些基本的模拟电路,包括放大电路、滤波电路和振荡电路等。

二、实验一:放大电路1. 实验目的掌握放大电路的基本原理和特性,了解电压放大和功率放大的区别。

2. 实验原理放大电路是指通过放大器将输入信号放大后输出的电路。

信号放大可以分为电压放大和功率放大两种。

电压放大是指将输入信号的电压放大到一定倍数后输出,而功率放大是指将输入信号的功率放大到一定倍数后输出。

3. 实验步骤(1) 搭建共射放大电路,连接电路中的电阻和电容。

(2) 接通电源,调节电源电压和放大器参数。

(3) 输入不同幅度的信号,观察输出信号的变化。

4. 实验结果通过实验我们可以观察到输入信号经过放大电路后,输出信号的电压发生了变化。

当输入信号的幅度较小时,输出信号的幅度也较小;而当输入信号的幅度较大时,输出信号的幅度也较大。

这说明了放大电路可以放大输入信号的电压。

三、实验二:滤波电路1. 实验目的了解滤波电路的基本原理和滤波效果。

2. 实验原理滤波电路是指通过电容、电感和电阻等元件对输入信号进行滤波处理的电路。

滤波电路可以将输入信号中的某些频率成分削弱或者消除,从而得到滤波后的信号。

3. 实验步骤(1) 搭建RC低通滤波电路,连接电容和电阻。

(2) 接通电源,调节电源电压和电路参数。

(3) 输入不同频率的信号,观察输出信号的变化。

4. 实验结果通过实验我们可以观察到当输入信号的频率较低时,输出信号几乎与输入信号一致;而当输入信号的频率较高时,输出信号的幅度明显下降。

这说明了低通滤波电路可以将高频信号削弱,从而实现对输入信号的滤波处理。

四、实验三:振荡电路1. 实验目的了解振荡电路的基本原理和振荡条件。

2. 实验原理振荡电路是指通过反馈回路将一部分输出信号再次输入到输入端,从而使得电路产生自激振荡的现象。

模电实验实训报告范文模板

模电实验实训报告范文模板

一、实验名称模电实验一:晶体二极管特性分析二、实验目的1. 熟悉仿真软件Multisim的使用,掌握基于软件的电路设计和仿真分析方法;2. 熟悉pocket lab硬件实验平台,掌握基本功能的使用方法;3. 通过软件仿真和硬件实验验证,掌握晶体二极管的基本特性。

三、实验原理晶体二极管是一种具有单向导电特性的半导体器件,其伏安特性曲线反映了二极管在不同电压下的电流变化。

本实验通过测量二极管的正向和反向电压、电流,绘制伏安特性曲线,分析二极管的工作原理。

四、实验仪器与设备1. 电脑:一台,用于运行仿真软件Multisim和pocket lab硬件实验平台;2. 仿真软件:Multisim;3. 硬件实验平台:pocket lab;4. 信号发生器;5. 数字万用表;6. 电阻;7. 二极管。

五、实验步骤1. 打开Multisim软件,搭建实验电路,如图1-1所示;2. 设置仿真参数,对直流电压源V1进行DC扫描,扫描范围0~1V,步长0.01V;3. 测量二极管中的电流,记录数据;4. 根据测量数据,绘制二极管伏安特性曲线;5. 打开pocket lab硬件实验平台,搭建实验电路,如图1-2所示;6. 设置信号发生器参数,进行实验;7. 使用数字万用表测量电压、电流,记录数据;8. 根据测量数据,分析二极管的基本特性。

六、实验数据与结果1. Multisim仿真实验结果- 电压扫描范围:0~1V- 步长:0.01V- 二极管电流测量数据(部分):电压(V) | 电流(mA)----------|----------0.0 | 0.00.1 | 0.010.2 | 0.05...1.0 | 1.0- 二极管伏安特性曲线(如图1-3所示)2. pocket lab硬件实验结果- 信号发生器参数:频率:50Hz振幅:5V直流电压:0V负载电容:C110F- 负载电阻与输出电压、纹波电压数据(部分):负载电阻(kΩ) | 输出电压(V) | 输出纹波峰峰值(V)----------------|--------------|-----------------1.0 |2.15 | 0.110.0 | 3.85 | 0.2100.0 | 4.31 | 0.3(表格中数据可根据实际测量结果填写)七、实验分析与讨论1. 分析Multisim仿真实验结果,得出二极管伏安特性曲线;2. 分析pocket lab硬件实验结果,得出二极管的基本特性;3. 对比仿真实验和硬件实验结果,分析误差产生的原因;4. 讨论二极管在实际电路中的应用。

模电实验报告实验现象

模电实验报告实验现象

一、实验背景模拟电子技术是电子工程和电气工程中的重要基础课程,旨在使学生掌握模拟电路的基本原理、分析方法及实验技能。

本次实验旨在通过实际操作,观察模拟电子电路的实验现象,加深对理论知识的理解。

二、实验目的1. 观察并分析模拟电子电路的实验现象。

2. 掌握实验操作技能,提高实验分析能力。

3. 培养团队合作精神,提高实验报告撰写能力。

三、实验内容本次实验主要包括以下内容:1. 晶体管单级放大器2. 单极共射放大器3. 负反馈放大电路4. RC文氏电桥振荡器5. 直流稳压电源设计6. 场效应管放大电路四、实验现象以下是对各个实验内容的实验现象描述:1. 晶体管单级放大器(1)当输入信号为正弦波时,输出信号为放大后的正弦波,且幅度随输入信号幅度的增大而增大。

(2)当输入信号为方波时,输出信号为放大后的方波,且幅度随输入信号幅度的增大而增大。

(3)当输入信号为三角波时,输出信号为放大后的三角波,且幅度随输入信号幅度的增大而增大。

2. 单极共射放大器(1)当输入信号为正弦波时,输出信号为放大后的正弦波,且幅度、相位均随输入信号幅度的增大而增大。

(2)当输入信号为方波时,输出信号为放大后的方波,且幅度、相位均随输入信号幅度的增大而增大。

(3)当输入信号为三角波时,输出信号为放大后的三角波,且幅度、相位均随输入信号幅度的增大而增大。

3. 负反馈放大电路(1)引入负反馈后,放大电路的带宽变宽,稳定性提高。

(2)负反馈可降低放大电路的增益,提高线性度。

(3)负反馈可改善放大电路的频率响应。

4. RC文氏电桥振荡器(1)当电路参数满足振荡条件时,输出信号为正弦波。

(2)调节振荡电路的参数,可改变振荡频率。

(3)加入稳幅电路,可改善输出信号的波形。

5. 直流稳压电源设计(1)变压器输出电压经整流、滤波、稳压后,输出稳定的直流电压。

(2)输出电压的稳定性受负载、温度等因素的影响。

(3)稳压电源的设计需满足实际应用的需求。

模电的实验报告

模电的实验报告

模电的实验报告模电的实验报告1 在本学期的模电实验中一共学习并实践了六个实验项目,分别是:①器件特性仿真;②共射电路仿真;③常用仪器与元件;④三极管共射级放大电路;⑤基本运算电路;⑥音频功率放大电路。

实验中,我学到了PISPICE等仿真软件的使用与应用,示波器、信号发生器、毫伏表等仪器的使用方法,也见到了理论课上学过的三极管、运放等元件的实际模样,结合不同的电路图进行了实验。

当学过的理论知识付诸实践的时候,对理论本身会有更具体的了解,各种实验方法也为日后更复杂的实验打下了良好的基础。

几次的实验让我发现,预习实验担当了不可或缺的作用,一旦对整个实验有了概括的了解,对理论也有了掌握,那实验做起来就会轻车熟路,而如果没有做好预习工作,对该次实验的内容没有进行详细的了解,就会在那里问东问西不知所措,以致效率较低,完成的时间较晚。

由于我个人对模电理论的不甚了解,所以在实验原理方面理解起来可能会比较吃力,但半学期下来发现理论知识并没有占过多的比例,而主要是实验方法与解决问题的方法。

比如实验前先要检查仪器和各元件(尤其如二极管等已损坏元件)是否损坏;各仪器的地线要注意接好;若稳压源的电流示数过大,证明电路存在问题,要及时切断电路以免元件的损坏,再调试电路;使用示波器前先检查仪器是否故障,一台有问题的示波器会给实验带来很多麻烦。

做音频放大实验时,焊接电路板是我新接触的一个实验项目,虽然第一次焊的不是很好,也出现了虚焊的情况,但技术都是在实践中成熟,相信下次会做的更好些。

而这种与实际相结合的电路,在最后试听的环节中,也给我一种成就感,想来我们的实验并非只为证实理论,也可以在实际应用上小试身手。

对模电实验的建议:①老师在讲课过程中的实物演示部分,可以用幻灯片播放拍摄的操作短片,或是在大屏幕上放出实物照片进行讲解,因为用第一排的仪器或元件直接讲解的话看的不是很清楚。

②实验室里除了后面的几台,前面也时不时有示波器故障,如果没有发现示波器已故障的话会给实验带来麻烦。

实验报告模板模电(3篇)

实验报告模板模电(3篇)

第1篇一、实验目的1. 熟悉模拟电子技术的基本原理和实验方法;2. 掌握常用电子元器件的测试方法;3. 培养学生动手能力、分析问题和解决问题的能力;4. 理解模拟电路的基本分析方法。

二、实验原理(此处简要介绍实验原理,包括相关公式、电路图等。

)三、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 模拟电子实验箱5. 连接线四、实验步骤1. 按照实验原理图连接实验电路;2. 使用数字万用表测量相关元器件的参数,如电阻、电容等;3. 使用信号发生器产生不同频率、幅值的信号;4. 使用示波器观察电路输出波形,分析电路性能;5. 根据实验要求,调整电路参数,观察波形变化;6. 记录实验数据,分析实验结果;7. 撰写实验报告。

五、实验数据与分析(此处列出实验数据,包括测量结果、波形图等。

)1. 电路参数测量结果:(列出电阻、电容等元器件的测量值)2. 电路输出波形分析:(分析电路输出波形,如幅度、频率、相位等)3. 实验结果与理论分析对比:(对比实验结果与理论分析,分析误差原因)六、实验结论1. 总结实验过程中遇到的问题及解决方法;2. 总结实验结果,验证理论分析的正确性;3. 对实验电路进行改进,提高电路性能;4. 对实验过程进行反思,提高实验技能。

七、实验报告1. 实验目的;2. 实验原理;3. 实验仪器与设备;4. 实验步骤;5. 实验数据与分析;6. 实验结论;7. 参考文献。

八、注意事项1. 实验过程中注意安全,遵守实验室规章制度;2. 操作实验仪器时,轻拿轻放,避免损坏;3. 严谨实验态度,认真记录实验数据;4. 实验结束后,清理实验场地,归还实验器材。

注:本模板仅供参考,具体实验内容和要求请根据实际课程安排进行调整。

第2篇实验名称:____________________实验日期:____________________实验地点:____________________一、实验目的1. 理解并掌握____________________的基本原理和操作方法。

模电实验报告(1)

模电实验报告(1)

模拟电路课程设计实验一常用电子测量仪器的使用1.实验目的(1)了解双踪示波器、函数信号发生器、晶体管毫伏表、直流稳压电源的工作原理和主要技术指标。

(2)掌握双踪示波器、晶体管毫伏表、直流稳压电源的正确使用方法。

2.实验原理示波器是电子测量中最常用的一种电子仪器,可以用它来测试和分析时域信号。

示波器通常由信号波形显示部分、垂直信道(Y通道)、水平信道(X通道)三部分组成。

YB4320G是具有双路的通用示波器,其频率响应为0~20MHz。

为了保证示波器测量的准确性,示波器内部均带有校准信号,其频率一般为1KHz,即周期为1ms,其幅度是恒定的或可以步级调整,其波形一般为矩形波。

在使用示波器测量波形参数之前,应把校准信号接入Y轴,以校正示波器的Y 轴偏转灵敏度刻度以及扫描速度刻度是否正确,然后再来测量被测信号。

函数信号发生器能产生正弦波、三角波、方波、斜波、脉冲波以及扫描波等信号。

由于用数字LED显示输出频率,读数方便且精确。

晶体管毫伏表是测量正弦信号有效值比较理想的仪器,其表盘用正弦有效值刻度,因此只有当测量正弦电压有效值时读数才是正确的。

晶体管毫伏表在小量程档位(小于1V)时,打开电源开关后,输入端不允许开路,以免外界干扰电压从输入端进入造成打表针的现象,且易损坏仪表。

在使用完毕将仪表复位时,应将量程开关放在300V挡,当电缆的两个测试端接地,将表垂直放置。

直流稳压电源是给电路提供能源的设备,通常直流电源是把市电220V的交流电转换成各种电路所需要的直流电压或直流电流。

一般一个直流稳压电源可输出两组直流电压,电压是可调的,通常为0~30V,最大输出直流电流通常为2A。

输出电压或电流值的大小,可通过电源表面旋钮进行调整,并由表面上的表头或LED显示。

每组电源有3个端子,即正极、负极和机壳接地。

正极和负极就像我们平时使用的干电池一样,机壳接地是为了防止外部干扰而设置的。

如果某一电路使用的是正、负电源,即双电源,此时要注意的是双电源共地的接法,以免造成短路现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北科技大学实验报告级专业班学号年月日姓名同组人指导教师张凤凌实验名称实验一常用电子仪器的使用练习成绩实验类型综合型批阅教师一、实验目的(1)学习直流稳压电源、信号发生器、交直流毫伏毫安表和示波器的使用方法。

(2)掌握交直流毫伏毫安表测量静态信号和动态信号的方法。

(2)掌握用示波器观测波形及测量频率和幅值的方法。

二、实验仪器与元器件(1)直流稳压电源1台(2)信号发生器1台(3)交直流毫伏毫安表1台(4)6502型示波器1台三、实验内容及步骤1.直流稳压电源的使用(1)使稳压电源输出+9V电压选择0~30V作为电压输出端。

“可调/固定”键弹起,调节“电压调节”旋钮,从数码显示器上观察输出电压的变化,使数码显示为9V,并使用毫伏毫安表直流挡测量+9V。

(2)使稳压电源输出±12V电压将“可调/固定”键按下,按图2-1-2接线,将其中一路接成+12V,另一路接成-12V。

使用毫伏毫安表的直流挡进行测量,表的地线(黑色线)与稳压电源的参考电位“GND”相连,测试线(红色线)分别测量+12V和-12V。

2.交直流毫伏毫安表的使用(1) 测量+9V、±12V的直流电压。

(2) 测量5mV的交流电压。

3.信号发生器的使用方法信号发生器能产生正弦波、方波、三角波等模拟信号,频率范围为2Hz~2MHz,分六挡连续可调;输出幅度为0V~25V P-P,连续可调。

模拟信号从“模拟输出”端输出。

(1)衰减开关“-20dB”和“-40dB”的作用波形选择“正弦波”,频率挡位选择“2k”。

调节“频率调节”旋钮,使数字频率计上的数码显示为1kHz。

当信号发生器衰减开关为0dB时(“-20dB”和“-40dB”键均弹起),调节其“幅度调节”旋钮,用毫伏毫安表的交流挡测量输出信号的电压值为5V(有效值)。

当衰减值分别为-20dB、-40dB和-60dB时,测量各输出电压值,将结果记入表2-1-1中。

表2-1-1 幅度衰减开关衰减值数据记录(2)使信号发生器输出电压为5mV、频率1kHz的正弦波信号信号发生器选择“正弦波”,频率为1kHz,衰减开关“-20dB”和“-40dB”同时按下。

调节“幅度调节”旋钮,用毫伏毫安表交流挡测量输出电压的有效值为5mV。

4.6502型示波器的使用(1)使用前的准备将示波器面板上各旋钮和按键置于如下位置:测试探头线的“衰减开关”置于“×1”位置;面板上的“垂直方式选择”按下“CH1”键,“耦合开关AC-GND-DC”置于“DC”,“垂直偏转因数开关VOL TS/DIV”置于“0.2V”,“VOL TS/DIV”微调旋钮顺时针旋到头(CAL);“触发极性SLOPE”置于“+”,“触发方式TRIG.MODE”置于“AUTO”,“触发源SOURCE”置于“INT”;“扫描时间因数开关TIME/DIV”置于“0.2ms”,“TIME/DIV微调旋钮”顺时针旋到头(CAL),其它键均弹起。

打开电源开关,调节“Y轴POSITION”和“X轴POSITION”,将扫描基线调至屏幕适当位置,调节“辉度INTENSITY”、“聚焦FOCUS”旋钮,使扫描基线亮度适中,聚焦最佳。

(2)示波器的自检将CH1通道的测试探头线接至示波器的“校准信号”(方波0.5V、1kHz)输出端,被测信号的波形显示在屏幕上。

如果波形不稳定,可调节“触发电平TRIG.LEVEL”,使波形稳定下来,便于观测。

(3)观测1kHz正弦信号、三角波信号、方波信号。

四、回答问题:(1)直流电源的输出电压未经测量就接入实验电路,会造成什么后果,应该怎么办?(2)毫伏毫安表在小量程挡(AC50mV/mA挡)测试大信号时会出现什么现象,应如何处理?(3)用示波器测量信号的幅值与频率时,如何保证测量精度?(4)示波器显示波形不稳定(向左或向右移动)时,应调节哪些旋钮使其稳定下来?(5)为什么在实验中所有仪器与实验电路必须共地?不共地会怎样?河 北 科 技 大 学 实 验 报 告级 专业 班 学号 年 月 日 姓 名 同组人 指导教师 张凤凌 实验名称 实验三 单管交流放大电路 成 绩 实验类型 验证型 批阅教师一、实验目的(1)掌握共射放大电路的静态工作点与放大倍数的测试方法 (2)观察电路参数变化对放大器的影响二、实验仪器与元器件(1)直流稳压电源 1台 (2)信号发生器 1台 (3)交直流毫伏毫安表 1台 (5)单管放大电路模块1块三、实验内容及步骤熟悉单管放大电路面板上各元件的位置。

按电路原理图2-3-1接线,基极接入R b2,集电极接入R c =2kΩ,发射极接入旁路电容C e ,负载电阻R L =∞(开路)。

检查接线无误后,将直流电源输出的12V 电压加到实验板上,并用毫伏毫安表的直流电压挡测量12V 。

1.测量静态工作点将电路的输入端对地短路。

调节R p ,使U C =9V ,保持R p 不变。

用毫伏毫安表的直流挡分别测量U B 、U E 的值,并将测量结果记入表2-3-1中。

图2-3-1 单管放大电路2.测量电压放大倍数A u输入端对地短路线去掉。

从电路输入端送入U i=5mV(有效值)、f=1kHz的正弦波信号,当示波器观察的输出波形为放大的、不失真的正弦波时,用毫伏毫安表的交流挡测量输出电压U o的值,并将测量结果及波形记入表2-3-2中。

3.观测电路参数变化对电路的Q点、A u及输出波形的影响(1)R c变化:R c=3kΩ,R L=∞,R p保持不变。

去掉输入信号,用毫伏毫安表的直流挡测量U C、U B和U E的值,将测量结果记入表2-3-1中。

电路的输入端接入U i=5mV、f=1kHz正弦波信号,用毫伏毫安表的交流挡测量输出电压U o的值,用示波器观察输出信号的波形,将结果记入表2-3-2中。

(2)R L变化:R c=2kΩ,R L=2kΩ,R p保持不变。

重复3.(1)中的测量步骤,并将测量结果及波形记入表2-3-1和2-3-2中。

表2-3-2输出电压的测量及相关计算4.观测静态工作点设置不合适时对电路输出波形的影响(1)R c=2kΩ,R L=∞,将R p调至最小值。

接入U i=5mV、f=1kHz正弦波信号,用示波器观察输出信号的波形,并将失真波形记录下来。

去掉输入信号,用毫伏毫安表的直流挡测量U C、U B和U E的值,将测量结果及失真波形记入表2-3-3中。

(2)将R p调至最大值。

接入输入信号,将U i逐渐增大至20~30mV,用示波器观察输出信号的波形,并将失真波形记录下来。

去掉输入信号,测量U C、U B和U E的值,将结果及失真波形记入表2-3-3中。

表2-3-3失真状态的测量结果四、思考题(1)总结R c、R L变化对放大倍数A u的影响。

(2)测量过程中,所有仪器与实验电路的公共端必须接在一起,为什么?(3)输入信号电压值的测量方法:①测量好后加到实验电路上不再测量;②加到实验电路上再测量;③先大致测量,加到电路上后再精确测量。

应选用哪一种?为什么?河 北 科 技 大 学实 验 报 告级 专业 班 学号 年 月 日 姓 名 同组人 指导教师 实验名称 实验四 长尾式差分放大电路 成 绩 实验类型 验证型 批阅教师一、实验目的(1)掌握差分电路的测试方法(2)了解零漂的产生原因及抑制方法二、实验仪器与元器件(1)直流稳压电源 1台 (2)信号发生器 1台 (3)交直流毫伏毫安表 1台 (4)6502型示波器 1台 (5)单管放大电路模块1块三、实验内容及步骤熟悉差分放大电路面板上各元件的位置。

按电路原理图2-4-1接线,电阻R e 与R w 滑动端相连,使电路构成长尾式差分放大电路。

检查接线无误后,将电源输出的±12V 接到实验板上,使V CC =+12V 、V EE =-12V 。

1.静态工作点的测量(1)调零。

将电路的两个输入端同时对地短路,调节调零电位器R w ,使双端输出电压U o =0(毫伏毫安表的测试线接在两个输出端,用直流挡测量)。

(2)用毫伏毫安表直流挡分别测量T 1和T 2的各极电压,将结果记入表2-4-1中。

表2-4-1 静态工作点的测量数据2.差模电压放大倍数的测量图2-4-1 长尾式差分放大电路(1)将输入端对地短接线去掉。

按图2-4-2接线,从差模信号源引出大小相等、极性相反的差模信号,作为电路的u I1、u I2信号(黑色线均接地)。

使|U i1|=|U i2|=10mV ,用毫伏毫安表的交流挡测量单端差模输出电压U od1、U od2的值。

差模信号源的使用方法:将差模信号源的“DC/AC ”键按下(输出信号为1kHz 正弦波),“0dB/-20dB ”键按下,从两个差模信号输出端引出差模信号,接至实验电路的两个输入端。

通过调节“幅度调节”旋钮,使|U i1|=|U i2|=10mV ,用毫伏毫安表的交流挡测量。

(2)计算双端输出电压U od 、单端及双端差模放大倍数A d1、A d2和A d 的值。

将计算结果记入表2-4-2中。

计算公式为od od1od2U U U =- (2-4-1)式中U od1与U od2反相位。

U id =U i1-U i2=20mV (2-4-2)d1od1id /A U U = (2-4-3) d2od2id /A U U = (2-4-4) d od id /A U U = (2-4-5)表2-4-2 差模电压放大倍数测量数据3.共模电压放大倍数的测量(1)按图2-4-3接线,使用信号发生器产生f =80Hz、U i =0.3V 的正弦波作为共模信号加至实验电路的两输入端,即U i1=U i2=U i =0.3V(2)用毫伏毫安表交流挡测量单端共模输出电压U oc1、U oc2的值,并计算双端输出电压U oc 、单端及双端共模放大倍数A c1、A c2和A c 的值(请参考差模电压放大电路的计算公式,其中u Oc1与 u Oc2同相位)。

将计算结果记入表2-4-3中。

表2-4-3 共模电压放大倍数测量数据图2-4-3 共模信号与输入端的连接图2-4-2 差模信号与输入端的连接由以上测量数据计算共模抑制比dCMR cA K A =4.定性观察温度变化引起的零点漂移现象 先调零,调零方法见步骤1.(1)。

然后用手捏住T 1管,使其温度升高。

注意观察毫伏毫安表上U o 电压示数的变化;放开T 1,稍停片刻,再捏住T 2管,继续观察毫伏毫安表电压示数的变化。

分析电压变化的原因。

四、思考题(1)差模放大电路对差模输入信号起放大作用还是抑制作用?(2)电路中两个三极管及元件参数的对称性对放大电路的性能起什么作用?(3)差模放大电路两管基极的输入信号幅值相等、相位相同时,理论上输出电压应为多少? (4)总结长尾式差分放大电路的特点。

相关文档
最新文档