第二章微生物发酵制药工艺

合集下载

生物制药工艺学第二章 微生物代谢产物的生物合成与控制

生物制药工艺学第二章 微生物代谢产物的生物合成与控制

第二节 次级代谢产物的构建单位与合成途径
碱基及其衍生物 ⚫ 正常核酸嘌呤碱基和嘧啶碱基,或由合成核酸的嘌 呤和嘧啶碱基经过化学修饰而形成的非核酸嘌呤碱 基,均可作为核酸与核苷类药物的构建单位。
⚫ 腺嘌呤核苷酸直接被 产生菌作为前体并入 嘌呤毒素分子中
第二节 次级代谢产物的构建单位与合成途径
莽草酸及其衍生物
第二节 次级代谢产物的构建单位与合成途径
聚酮体及其衍生物

聚酮体产物与脂肪酸的生物合成过程

起始单位
延伸单位

链 合
乙酰辅酶A ⚫ 缺丙少二KR酰、辅D酶H、A ER三种酶

⚫ 仍可合成简单聚酮体 聚合酮成体酶⚫ 不脂合完肪成全酸酶还原反应
6个酶域: KR-酮基还不原同酶聚:酮催体化和酮脂基肪还酸原成羟基
芳香环
第二节 次级代谢产物的构建单位与合成途径
吩噁嗪酮 构成某些次级代谢产物的基本结构
代表产物:放线菌素
合成前体:色氨酸、其他一些代谢物
第三节 次级代谢产物生物合成的调控
微生物对次级代谢活动的调控
酶合成调节
调节酶的合成量, 是一种“粗调”。
酶活力调节
调节已有酶的活 力,是一种“细 调”。
通过对自身系统的粗调和细调从而达到最佳调节效果
α-酮己二酸
α - 氨 基 己 二 酸 代谢出现分支
酵母氨酸 赖氨酸
初级代谢产物
α - A A A - C y s - Va l (ACV三肽)
异青霉素N 6-APA
次级代谢产物 青 霉 素 G
第一节 微生物的代谢产物
初级代谢的调控影响次级代谢产物的生物合成
α-酮戊二酸 + 乙酰辅酶A

2第二章--生物制药工艺基础

2第二章--生物制药工艺基础

第二节 微生物制药工艺技术基础
一、菌种的分离与筛选
1.含菌样品收集 2. 富集培养:“投其所好”,“取其所抗” 3. 菌种纯化:(1)平板划线法 (2)稀释平板法 4. 性能测定(菌种复筛)
(1)平板划线法
是将微生物样品在固体培养基表面多次作“由点到线”稀 释而达到分离的目的。固体培养基四区划法接种法步骤:
二、菌种的选育与保藏
1.自然选育
依据自发突变原理,通过不断分离、筛选,除去 衰变菌落,从中选择维持原有生产水平的菌株或高产 突变株,达到纯化、复壮、稳定生产目的。
单孢子菌悬液的制备→分离→单菌落培养→筛选
2.诱变育种
指有意识地将生物体暴露于物理的、化学的或生物的一种 或多种诱变因子,促使生物体发生突变,进而从突变体中 筛选具有优良性状的突变株的过程。
优点是生产规模大、蒸发温度低、速度快, 目的是除去挥发性溶剂,保持物料生物活性, 加速蒸发原理是使液体形成薄膜,增加气化表面
积。
世界上最大的具有80m2蒸发面 积的薄膜蒸发器。
实验室常用真空旋转蒸发仪。
薄膜蒸发器
2.干燥
使物质从固体或半固体状经除去存在的水分或它种 溶剂,从而获得干燥物品的过程。
第二章 生物制药工艺技术基础
Basis of biopharmaceutical technology
生化制药工艺技术基础 微生物制药工艺技术基础 生物技术制药工艺技术基础 生物制药中试放大工艺设计 生物药物的研究与新药申报
本章学习目标
掌握:生化活性物质的提取、分离和纯化; 微生物菌种选育和培养。
②pH;
③盐;
④表面活性剂。
四、生化活性物质浓缩与干燥
1.浓缩方法: 生化活性物质的热不稳定性 ①盐析,中性盐硫酸铵沉淀蛋白(酶); ②有机溶剂沉淀,生物大分子溶液

微生物发酵制药

微生物发酵制药
次级代谢产物:是比较复杂的化合物,不是细胞 生长必需的,对生命有意义(抗逆境条件)。抗 生物、毒素、色素。
整理课件
3
发酵罐发酵
整理课件
4
摇床发酵
立式
卧式
整理课件
5
静置发酵
整理课件
6
发酵制药
利用制药微生物的生长繁殖,通过发酵、代谢 合成药物,然后从中提取、精制纯化,获得药 品的过程。
整理课件
的缺失。还有慢化离子、移位原子和本底元素复合反
应造成的化学损伤以及电荷交换引起的生物分子电子
转移造成的损伤。离子注入生物学效应显示出一些不
同于辐射生物学的特征,相当于物理和化学诱变两者
相结合的复合诱变效应
(2)激光辐射诱变和微波电整理磁课件辐射诱变
整理课件
17
二、制药微生物菌种的选育
1、选育的目的
改善菌种的特性,使产量提高,改进质 量、降低成本、改革工艺、方便管理及综 合利用等
2、选育的方法:
A、自然选育;
B、诱变育种
C、杂交育种
整理课件
18
自然选育
定义:不经过人工诱变处理,根据菌种的自然突变 而进行的菌种筛选过程。
应用: 1)菌种的纯化 2)菌株的复壮。 2)选育高产菌株
菌体自溶期(cell autolysis phase)
整理课件
10
发酵前期特征
从接种至菌体达到一定临界浓度的时间,包括延 滞期、对数生长期和减速期。
代谢特征:碳源、氮源等基质不断消耗 生长特征:菌体不断地生长和繁殖,生物量增加。 溶氧变化:不断下降,菌体临界值时,浓度最低。 pH变化:先升后降-以氨基酸为碳源,释放氨,整理Βιβλιοθήκη 件22诱变方案设计

生物制药学——第二章 生物制药工艺学基础

生物制药学——第二章  生物制药工艺学基础
原料药(精制品)经精细加工制成片剂、针剂、冻干剂、 粉剂等供临床应用的各种剂型。
一、生物材料与生化活性物质
(一)生物制药的生物材料来源
生物资源:主要有动物、植物、微生物的组织、器 官、细胞与代谢产物。
开发新途径: 动植物细胞培养、微生物发酵、 基因工程、细胞工程、酶工程等。
一、生物材料与生化活性物质
红霉素 杀念珠菌素 Bialaphos FK506
(约8700种)
放线菌产生的多种多样的次生代谢产物
Hygromycin B
Kanamycin B
Rifamycin SV
Cephamycin C
Erythromycin streptomycin
Spinosyn A
Abamectin
Validamycin A
人源性生化药物 动物生化药物 植物生化药物 微生物源生化药物 海洋生物生化药物
生化制药的六个阶段:
1.原料的选择和预处理 2.原料的粉碎 3.提取:
从原料中经溶剂分离有效成分,制成粗品的工艺过程。 4.纯化:
粗制品经盐析、有机溶剂沉淀、吸附、层析、 透析、超 离心 、膜分离、结晶等步骤进行精制的工艺过程。 5.浓缩、干燥及保存 6.制剂:
生化成分:氨基酸、蛋白质、酶、激素、糖类、 脂类、维生素等。
新的有效生物药物逐年增加:天花粉蛋白、木瓜 蛋白酶、天麻多糖等。
5、微生物—细菌
常用细菌发酵法生产乳酸、醋酸、丙酮、丁醇。主 要发展领域有: (1)氨基酸:
利用微生物酶可转化对应的α酮酸或羟基酸产生 氨基酸。 (2)有机酸:柠檬酸、苹果酸、乳酸
生物材料来源
1、动物脏器 2、血液、分泌物和其他代谢产物 3、海洋生物 4、植物 5、微生物

微生物发酵制药工艺

微生物发酵制药工艺
环类,多为酸性化合物。
3发酵制药的基本过程
菌种选育
孢子制备
实验室、种子库
种子制备
发酵工段
发酵车间
发酵控制
提炼工段
成品工段
预处理
分离提取
浓缩纯化
成品工段
提炼车间
包装车间
包装
原料药
2.2 微生物的生长特征
微生物发酵基本过程特征(批式)菌体生长与产物生成的特征,
三个阶段






发酵前期(fermentation prophase)
甲羟戊酸、糖类、不常见的氨基酸(如D-氨基酸、
β-氨基酸等)、环多醇和氨基环多醇等。
次级代谢产物的生物合成的基本过程

次级代谢产物的合成基本过程包括构建单位
的聚合—再修饰—装配。在此过程中,次级
代谢产物的累积受合成途径中某些酶活性的
限制,这些关键酶活性大小与产量正相关。
(1)前体聚合

微生物合成生源后,通过缩合反应形成聚酮体、寡肽、聚乙
菌体生长期(cell
发酵中期(fermentation metaphase)
产物合成(生产)期(product synthesis phase)
growth phase)
发酵后期(fermentation anaphase)
菌体自溶期(cell autolysis phase)
发酵前期特征




往往在静止期,加入诱导物,基因转录和产物表达,
所以产物生成速率和比速率分别为:
代谢产物的生物合成

代谢(metabolism)是生物体内进行的生理生化反应的统称。

生物制药工艺学教案

生物制药工艺学教案

第一章生物药物概述定义:利用生物体、生物组织或其成分,综合应用多门学科的原理和方法进行加工、制造而成的一大类药物。

广义的生物药物包括:1、从动植物和微生物中制取的各种天然生物活性物质。

2、人工合成或半合成的天然物质类似物。

生物制药的重点研究方向:应用基因工程、酶工程、发酵工程及细胞工程技术研究开发各类新型药物;应现代生物技术改造传统制药工业。

生物药物的特点与要求—特点:在化学构成上十分接近于体内的正常生理物质,容易为机体吸收利用;在药理上具有更高的生化机制合理性和特异治疗有效性;在医疗上具有药理活性高、针对性强、毒性低、副作用小、疗效可靠;化学与生物学性质不稳定,对各种理化因素敏感,生物活性易受影响。

必须有严格的制造管理要求(GMP)质量管理要求;对制品的有效期、贮存条件、使用方法必须做出明确规定;对有效成分应拟定其生物活性检测方法;对制品的均一性、有效性、安全性和稳定性等都有严格要求。

生物药物制备的不同阶段:第一代:利用生物材料加工制成的含有某些天然活性物质与混合成分的粗制剂。

第二代:根据生物化学和免疫学原理,应用近代生化分离纯化技术从生物体制取的具有针对性治疗作用的特异生化成分。

第三代:应用生物工程技术生产的天然生物活性物质以及通过蛋白质工程原理设计制造的具有比天然物质更高活性的类似物或与天然品结构不同的全新的药理活性成分。

二、现代生物药物分5大类:天然生化药物(氨基酸类药物、多肽蛋白质类药物、酶类药物、核酸类药物、多糖类药物、脂类药物);微生物药物(抗生素、酶抑制剂、免疫调节剂);基因工程药物;基因药物;生物制品(详见书本)细胞生长因子与组织制剂:细胞生长因子,是在体内对动物细胞的生长有调节作用,并在靶细胞上具有特异受体的一类物质,为多肽或蛋白质,如神经生长因子、血小板生长因子等。

组织制剂,指将动植物组织经过加工处理、制成符合药品标准并具有一定疗效的制剂。

这类制剂未经纯化,有效成分不完全清楚。

微生物发酵制药技术基础—培养基和设备的灭菌

微生物发酵制药技术基础—培养基和设备的灭菌

K1
K `1
ln( K 2 ) ln( K`2 )
K1
K `1
即随着温度的上升,微生物的死亡速率常数增加倍数要
大于培养基成分破坏速率的增加倍数。
从上述的分析可知,在热灭菌过程中,同时会发生微生 物死亡和培养基破坏这两种过程。温度升高,菌体死亡 速率大于培养基成分破坏的速率。
不同灭菌温度、时间与培养基成分破坏情况(Ns/No=10-3)
缺点: • 设备较庞大; • 维持罐直径较大,不能保证物料先进先出,易发生
局部过热或灭菌不足的现象; • 喷淋冷却管道很长,对于黏度较高、固形物含量较
多的培养基极易堵塞。
2.喷射加热器加热的连续灭菌流程
优点:能保证培养液在喷射加热器和维持管中的先进 先出,避免了培养基过热和灭菌不彻底现象,培养基 总的受热时间短,营养物质的损失不严重。
依设备和工艺条件的不同,连续灭菌分:
• 连消塔加热的连续灭菌流程 • 喷射加热器加热的连续灭菌流程 • 薄板换热器加热的连续灭菌流程
1.连消塔加热的连续灭菌流程
这是国内味精厂普遍采用的连续灭菌流程。培养基用泵打入连 消塔与蒸汽直接混合,在连消塔内的停留时间为20~30s,达 到灭菌温度132℃。再送入维持罐保温,时间8~25min,最后 由喷淋冷却器冷却至后续的发酵或培养温度。
连续灭菌的优缺点
优点 • 短时间内加热到保温温度且能快速冷却,减少养分的损失 • 操作条件恒定,灭菌质量稳定 • 易于实行管道化和自动化控制 • 避免反复加热和冷却,提高了热利用率 • 发酵设备利用率高
缺点 • 设备要求高,需另外设置加热冷却装置 • 操作比较麻烦 • 染菌机会多 • 对蒸汽要求高 • 不适合大量固体物料的灭菌
(二)对数残留定律

生物制药工艺学第二章+生物制药工艺技术基资料教程

生物制药工艺学第二章+生物制药工艺技术基资料教程
(3)抑制水解酶的作用
(4)其它保护措施(冷、热、酸、碱)
二、物质的性质与溶解度
(一)物质溶解度的一般规律
相似相溶
(二)水在生化物质提取中的作用
水是提取生化物质的常用溶剂。水分子的存在可使其它 生物分子之间的氢键减弱,而与水分子形成氢键,水 分子还能使溶质分子的离子键解离,这就是所谓的水 合作用。水合作用促使蛋白质、核酸、多糖等生物大 分子与水形成了水合分子或水合离子从而促使它们溶 解于水或水溶液中。
(3)超声波法 (4)反复冻融法 2.化学法 用稀酸、稀碱、浓盐、有机溶剂或表面活性剂处理细胞,
可破坏细胞结构释放出内容物。
3.生物法 (1)组织自溶法
利用组织中自身溶解酶的作用改变、破坏细胞结构, 释放出目的物称为组织自溶法。
(2) 酶解法 用外来酶处理生物材料,如用溶菌酶处理某些细菌, 蜗牛酶等
砂土管法—取普通黄沙,洗净过60目筛,晒干,另取普 通圆土研碎,过筛,晒干。两者以6:4混合。分装于安 醅瓶或小试管中,然后在60℃干热灭菌2小时,连续灭 菌三次后即可使用。装管时可吸取少许孢子悬浮液加 入,待干燥后抽真空封口或用棉花塞紧后蜡封,低温 保藏。
冷冻干燥法:将菌种悬浮于脱脂消毒牛奶中,快速冷冻, 真空干燥。
甘油冷冻保存法:将对数期菌体悬浮于新鲜培养基中, 加入15%消毒甘油,混匀速冻,冻存于-70~-80℃.
(五)组织与细胞的破碎
组织与细胞的破碎方法有物理法、化学法与生物法。
1.物理法 (1)磨切法
工业上常用的有绞肉机,刨胰机,球磨机、磨粉机。 实验室常用的有匀浆机,研钵,高速组织捣碎机。
(2)压力法 有压榨法、高压法和减压法,渗透压法。
(1)pH 在萃取操作中正确选择pH值很重要。因为在水溶液中某些酸、 碱物质会解离,在萃取时改变了分配系数,直接影响提取效率。

制药工艺学--微生物发酵制药工艺 ppt课件

制药工艺学--微生物发酵制药工艺  ppt课件

ppt课件
24/207
4、真实的生物学过程模拟与举例
tL:延滞期; tmax:最大比速率期
ppt课件
25/207
一种芽孢杆菌的生长曲线
ppt课件
26/207
Vero细胞在16%血清中生长曲线
ppt课件
27/207
5、生长与生产关系的模型
Gaden把生长与生产分为三种: I型:生长与生产偶联型 II型:生长与生产半偶联型 III型:生长与生产非偶联型
Monod方程:
μmax
μ =μmax S/(Ks + S)


S很低,浓度与比生长 长
速率成正比。
速 率
1/2μmax
S很高,菌体以最大比
生长速率进行生长。
Ks
基质浓度
μmax:各种基质对菌体的生长效率,不同基质之间比较。
Ks:为饱和常数,菌体对基质亲和力,Ks越小,亲和力越大,利用越好。
注意:与酶反ppt课应件 动力学MM方程的区别。
2发酵制药基本工艺过程9207菌种选育种子制备发酵培养分离纯化产品菌种选育发酵工段种子制备菌种活化发酵控制实验室种子库发酵车间10207原料药包装成品检验提炼工段预处理分离提取浓缩纯化成品工段包装车间提炼车间发酵制药过程工段岗位操作与车间流程关系库存间162微生物的生长与生产的关系微生物动力学研究微生物生长动力学11207基质利用的动力学生长与生产关系的动力学模型微生物发酵过程特征1发酵动力学研究概念
围。
ppt课件
13/207
发酵制药
已建立动力学模型的类型
发酵的反应过程与速度:
r S(底物) ─→ X(菌体) + P(产物)
机制模型:根据反应机制建立,几乎没有 现象模型:经验模型,目前大多数

第二章发酵工业微生物菌种ppt课件

第二章发酵工业微生物菌种ppt课件
第二章 发酵工业微生物菌 种制备原理和技术
2019
-
1
第一节 发酵工业微生物菌种的选育
一、工业微生物的特点 1. 能够利用廉价的原料,或使用来源丰富的原料. 2.菌体温度应适应较高的温度. 3. 遗传性能要相对稳定 4.菌对所采用的设备和生产过程的适应性 5.菌的产物得率和产物在培养基中的浓度 6.产物容易从发酵液(细胞)中提取
2019
-
6
(3) 放线菌 霉菌 放线菌是由不同长短的纤细菌丝所形成 霉菌与人类日常生活密切相关。除了用于传 的单细胞微生物。放线菌是抗生素的主 统的酿酒、制酱油外,近代广泛用于发酵工 要产生菌。除抗生素外,放线菌在甾体 业和酶制剂工业。工业上常用的霉菌,有子 激素生物合成和酶制剂生产上也有广泛 囊菌纲的红曲霉、藻状菌纲的毛霉、根霉和 应用。 犁头霉,以及半知菌纲的曲霉及青霉等
2019 17
自然选育在工业生产上的意义 问题: 高产菌株是正突变高,还是负突变高? 回复突变:高产菌株在传代的过程中,由于自然突变导致 高产性状的丢失,生产性能下降,这种情况我们称为回复 突变 自然选育虽然突变率很低,但却是工厂保证稳产高产的 重要措施。
2019
-
18
自然选育操作步骤: 一般习惯上将自然选育称为菌种的分离纯化。 单细胞(孢子)悬液的制备 平板分离 挑选单菌落(注意形态的观察) 发酵试验
7. 产生菌及其产物的毒性必须考虑(在分类学上最好与致病 201)细菌 发酵工业上常用的细菌大多是杆菌,如枯草芽 孢杆菌、醋酸杆菌、棒状杆菌、乳酸杆菌、梭 状芽孢杆菌大肠杆菌等。 (1) 醋酸杆菌(Acetobacter):用于酿 醋,把乙醇氧化成乙酸。 (2) 假单胞菌(Pseudomonas)
2019 8

生物制药工艺基础知识

生物制药工艺基础知识

任务一 基因工程制药技术认知
1.基因工程概念
在分子水平上按照人们的设计方案将DNA片段(目的基因)插入载体DNA分子 (如病毒、质粒等),从而实现DNA分子体外重组,然后再将之导入特定的宿 主细胞进行扩增和表达,使宿主细胞获得新的遗传性状的技术。
基因工程=
重组DNA技术 分子克隆技术 基因的无性繁殖 基因操作 基因克隆技术
项目一 生物制药工艺基础知识
三、生物药物的原料来源
(一)人体组织来源的生物药物 (二)动物组织来源的生物药物 (三)微生物来源的生物药物 (四)植物来源的生物药物 (五)海洋生物来源的生物药物 (六)人工制备的生物原料
项目一 生物制药工艺基础知识
四、生物药物的特点
(一)药理学特性 1、治疗的针对性强、疗效高 2、营养价值高、毒副作用小 3、免疫性副作用常有发生
③ 在障碍物、凹坑和死角处,应局部提高爆炸危险区域等级。 ④ 利用堤或墙等障碍物,限制比空气重的爆炸性气体混合物的扩散,可缩小 爆炸危险区域的范围。
2. 爆炸性粉尘环境 对于爆炸性粉尘环境,其危险区域的范围应按爆炸性粉尘的量、爆炸极限和通 风条件确定。 ⅢA 级:可燃性飞絮,如棉花纤维、麻纤维、丝纤维、毛纤维、木质纤维、人 造纤维等。 ⅢB级:非导电性可燃粉尘,如聚乙烯、苯酚树脂、小麦、玉米、砂糖、染料、 可可、木质、米糠、硫黄等粉尘。 ⅢC级:可燃性导电粉尘,石墨、炭黑、焦炭、煤、铁、锌、钛等粉尘。
定义:能够将外源DNA载入宿主细胞进行复制、整合或表达的工具称为载体。 本质是DNA,分为克隆载体和表达载体。 (1)基因克隆载体 适用于外源基因在受体细胞中复制扩增。
➢ 质粒 ➢ 噬菌体 ➢ 柯斯质粒 ➢ 人工染色体等
任务一 基因工程制药技术认知

微生物发酵制药技术分析

微生物发酵制药技术分析

微生物发酵制药技术分析摘要:微生物中包括细菌以及病毒等,它被用到多个领域,比如食品领域、医药领域,有着广泛的用途。

微生物发酵主要是通过微生物代谢的方式,使其可以达到人类的需求。

文章对微生物在制药领域上面的应用进行了探讨,以期为有关人士提供参考。

关键词:微生物;发酵;制药技术引言我们所说的微生物,就是小型生物,现如今它被用在多个领域。

对于微生物发酵技术而言,要求应在一定的环境里,通过微生物的代谢,使其形成人们所需独特物质,当前在我国的制药领域,该技术也有着较广泛的应用,是非常关键的技术手段。

1微生物药物分类微生物药物指的是,通过微生物技术以及化学技术研发出来的药物。

根据临床经验,微生物药能够被用在治疗以及预防多种多样的疾病上面。

微生物发酵技术可以被用到微生物制药领域,且使用范围也比较大。

比如我们所知道的青霉素,它就是利用发酵技术制成的微生物药物。

还有很多抗生素,大部分都是微生物药物。

2微生物发酵制药技术微生物制药技术具有多种类型,现阶段,大部分是按照其发酵环境,以及利用的设备类型进行区分的。

按照发酵环境的区别,可以将其划分成三类,不但有好氧以及厌氧型,还有兼性厌氧型。

基于好氧发酵技术,对于其发酵环境而言,应当有氧气的加入,而厌氧类发酵技术,则不需氧气。

对于兼性厌氧技术,它则是有无氧气都能进行发酵。

按照运用的设备类型进行发酵,可以将其分成四类,即散口形式、密闭形式、浅盘形式以及深层发酵。

散口形式的发酵通常运用的设备类型都比较简单,而且还好操作。

而深层发酵却要使用专业的培育设备,才可以完成微生物的发酵过程。

但是对于深层发酵技术而言,它比较适合进行机械化运作,可以同工厂化生产达成一致。

临床中使用的青霉素就是深层发酵制成的。

3常用发酵用微生物种类能够进行发酵的微生物类型是比较多的。

大部分的天然要素,都能用于发酵,可当作其催化物。

通常都会运用其突变株来进行发酵。

而且微生物发酵的原料比较容易获取,所需成本也不高。

生物制药工艺

生物制药工艺

生物制药工艺第一章绪论第二章微生物发酵制药工艺第三章基因工程制药工艺第四章动物细胞培养制药工艺生物制药工艺第一章绪论制药工艺学1.1.1 制药工艺学的研究对象制药工艺学是研究药物的工业生产过程共性规律及其应用,包括制备原理、工艺路线、质量控制。

现代制药的特点是技术含量高、智力密集,发展方向是全封闭自动化、全程质量控制,大规模反应器生产和新型分离技术综合利用。

制药工艺学的工程性和实用性较强,加之药品种类繁多,生产工艺流程多样,过程复杂。

即使进行仿制药物的生产,也必须要有自主知识产权的工艺。

制药工艺作为把药物产品化的一种技术过程,贯穿于药物研发的整个过程,是现代医药行业的关键技术领域。

制药工艺是药物产业化的桥梁与瓶颈,对工艺的研究是加速产业化的一个重要方面。

因此,学习掌握制药工艺学具有重要意义。

1.1.2 制药工艺学的内容制药工艺学是综合应用化学系列、生物系列、机械设备与工程单元操作等课程的专门知识,深化理解并掌握工艺原理,充分考虑药品的特殊性,针对生产条件、所需环境等的具体要求,研究药物制造原理、工艺路线与过程优化、中试放大、生产技术与质量控制,从而分析和解决生产过程的实际问题。

从工业生产角度,改造、设计和开发药物的生产工艺,制定相应的操作规程。

制药工艺学与其他基础课、专业课联系密切,而且与生产实践紧密相关。

通过设计、研究药物大规模生产的工艺条件与设备选型,从中选出最安全、最经济、最可行的工艺路线。

1.1.3 制药工艺的类别可根据典型的药物生产过程,把制药工艺过程分为4类,生物技术制药工艺学、化学制药工艺学、中药制药工艺学和制剂工艺学。

1.1.3.1 生物技术制药工艺以生物体和生物反应过程为基础,依赖于生物机体或细胞的生长繁殖及其代谢过程,利用工程学原理和方法对实验室所取得的药物研究成果进行开发放大,在反应器内进行生物反应合成,进而生产制造出商品化药物。

细胞生长和药物生产与培养条件之间的相互关系是过程优化的理论基础。

微生物发酵制药工艺

微生物发酵制药工艺

合子
虽然有成功报导,但多数效果不显著。
发酵制药
生产菌种的建立
(3)原生质体融合育种
概念 通过生物学、化学或物理学的方法,使两个不同 种类的体细胞融合在一起,从而产生具有两个亲 本遗传性状的新细胞.
发酵制药
操作过程
a. 原生质体制备: 用去壁酶处理将微生 物细胞壁除去,制成 原生质体。 e.高产菌株
发酵制药
生产菌种的建立
药物的筛选
琼脂扩散法——活性测定: 非致病菌为对象,筛选生物活性物质。 耐药和超敏菌种。 HPLC、LC-MS等,分析鉴定活性物质。 靶向筛选 高通量筛选 高内涵筛选
发酵制药
生产菌种的建立
2、菌种选育——自然选育(1)
定义:不经过人工诱变处理,根据菌种的自 然突变而进行的菌种筛选过程。 应用: (1)菌种的提纯复壮。(2)防止退 化,稳定生产水平。1年1次。 过程 菌 种 单孢 子 平板 单菌落 优良 分离 测活 菌株 效率低, 增产幅度小
dX r= dt
比生长速率μ:单位菌体浓度的生长速率 生长速率的标准化,菌体活力大小
dX ⎛ 1 ⎞ μ= ⎜ ⎟ dt ⎝ X ⎠
发酵制药
生长与生产的关系
菌体生物量与时间的关系是S形曲线。 分为五个阶段
减速期 dX/dt =μmax X dX/dt =μ X dX/dt = (μ - kd) X = 0 dX/dt = - kd X 延滞期 指数生长期 衰亡期 静止期
发酵前期(fermentation prophase) 菌体生长期(cell growth phase) 发酵中期(fermentation metaphase) 产物合成(生产)期(product synthesis phase) 发酵后期(fermentation anaphase) 菌体自溶期(cell autolysis phase)

微生物药物的发酵生产技术

微生物药物的发酵生产技术

铁离子的影响和控制:
Fe3+对青霉素生物合成有显著影响,一般当发酵液 中含量超过30-40μg/ml,则发酵单位增长缓慢。 铁制发酵罐在使用前必须进行处理,可在罐壁涂上 环氧树脂等保护层,使Fe3+含量控制在30 μg/ml以下。
5、几种重要抗生素的发酵工艺
(2)链霉素的发酵工艺
链霉素的产生菌——灰色链霉菌(Streptomyces griseus),比基尼链霉菌(Str.bikiniensis),灰肉 链霉菌(Str.griseocarneus)
(3)生产过程及参数控制
发酵生产中的常规工艺参数及其检测方法
工艺变量 符号
测量方法
生物量
X 细胞干重,浊度,细胞数
底物量
S 酶法分析-综合法(生物或化学需氧量)
产物量
P 酶法分析或特殊方法
氧量
O 氧电极,气体分析
二氧化碳量 C 发酵热量 HV
CO2电极,气体分析 温度,热平衡
5、几种重要抗生素的发酵工艺
醇类:甲醇,乙醇,多元醇
羧酸:醋酸,不饱和脂肪酸
碳氢化合物:甲烷,正丁烷,石蜡油
氮源
无机氮源:铵盐,硝酸盐
有机氮源:尿素,动植物粉类,玉米浆,酵母和蛋白水解液
无机盐
磷(KH2PO4),硫(硫酸盐) 其他:常量元素和微量元素
其他成分 前体(苯乙酸→青霉素,应注意对细胞的毒性) 促进/诱导剂(硫氰化苄→ 四环素) 消泡剂(植物油脂和动物油脂,聚醚类和硅油类合成消泡剂)
影响米孢子质量的因素:
米的质量——用优质品种、新米; 米的湿度——以灭菌后不结块为准; 营养液成分
营养液 调pH
大米/小米 水洗沥干 分装灭菌 摇匀培养

生物制药工艺教案

生物制药工艺教案

湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案
湖北生物科技职业学院课时教案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生长与生产的关系
I型:菌体生长与生产偶联型
dP rp = = YPdX / dt = YPμX dt
Yp=dP/dX
q p = μYp
时间
发酵制药
II型:生长与生产半偶联型 semi-coupling model
介于偶联和非偶联模型之 间,产物生成与基质消耗、 能量利用之间存在间接关 系。 生长期期内,无产物生成, 生长中后期生成大量的产物
单菌落初筛 稳定性 特性 放大 中试
稀释涂板
投入生产
发酵制药
生产菌种的建立
2、菌种选育——杂交育种(3)
概念: 两个不同基因型的菌株,通过结合或原生质体 融合,使遗传物质发生重新组合,从中分离筛 选出具有优良性状的新菌株。 特点:有一定的定向性。 种类: 体细胞重组 接合 原生质体融合
发酵制药
生产菌种的建立
发酵ቤተ መጻሕፍቲ ባይዱ段
种子制备 发酵控制
发酵车间
提炼工段
预处理 分离提取 浓缩纯化 成品检验 包装
提炼车间 包装车间 原料药
成品工段
发酵制药
生长与生产的关系
2.2 微生物的生长与生产的关系
微生物发酵过程特征 微生物生长动力学 影响动力学的因素 动力学模型
发酵制药
生长与生产的关系
1、微生物发酵基本过程特征(批 式) 菌体生长与产物生成的特征,三个阶段
发酵制药
3、影响生长动力学的因素 (1)基质浓度对菌体生长的影响
生长与生产的关系
菌体生长过程,基质逐渐被吸收利用,浓度呈现降低。 基质浓度的减少可用基质消耗速率和比消耗速率表示:
dS rS= − dt
dS ⎛ 1 ⎞ qS = − ⎜ ⎟ dt ⎝ X ⎠
发酵制药
生长与生产的关系
限制性基质浓度与比生长速率的关系
发酵制药
生产菌种的建立
1、生产菌的自然分离(1)
来源:大陆土壤、海洋水体 样品的采集:表层土壤(0-10cm),海洋 (0-100m) 预处理:根据分离目的和微生物的特性。 (1)温度; (2)SDS-酵母膏,CaCO3、NaOH处理, 减少细菌,有利于放线菌分离;乙酸乙酯、 氯仿、苯处理,除去真菌。 (3)离心、膜过滤
(1)体细胞重组殖育种
概念: 准性生殖 范围:放线菌,半知菌纲的真菌 过程 两条 菌丝 相互 结合 异核 体 二倍 体 重组单 倍体
产黄青霉:提高青霉素产量 灰黄链霉菌:灰黄霉素产量
对氟苯丙氨酸
发酵制药
生产菌种的建立
(2)接合育种
概念 范围:细菌、放线菌 过程: 两种细胞 混合培养 基因片段进 入另一细胞 重组单 倍体
生长与生产的关系
dP rp = = αμ X + β X dt
时间
产物:氨基酸的发酵,一部 分组成型表达的蛋白质药物
q p = αμ + β
发酵制药
生长与生产的关系
III型:生长与产物生成非偶联型, non-coupling model dP rp = = βX dt 生长期与生产期在独立的两个
阶段 先形成物质消耗和生长高峰 后菌体静止期,产物大量生 成,出现产物高峰。 抗生素等次级代谢产物 诱导型基因工程菌的生产
生产菌种的建立
诱变方案设计
出发菌种的选择:较高产,对诱变剂敏 感。 诱变剂的使用:交叉使用多种,合理组 合。中等剂量(80%致死率)。 选择压:施加一定的选择压,获得耐药菌 株。措施:添加抗生素,提高前体浓度, 增加产物浓度。
发酵制药
生产菌种的建立
诱变育种流程
出发菌种 单孢子悬液 诱变处理
高产菌株 复筛
发酵制药
生长与生产的关系
发酵前期特征
• 从接种至菌体达到一定临界浓度的时间,包括延滞 期、对数生长期和减速期。 • 代谢特征:碳源、氮源等基质不断消耗,减少 • 生长特征:菌体不断地生长和繁殖,生物量增加。 • 溶氧变化:不断下降,菌体临界值时,浓度最低。 • pH变化:先升后降-先氨基酸作为碳源,释放出 氨,而后氨被利用。先降后升-先用糖作为碳源, 释放出丙酮酸等有机酸,后又被利用。
第二章 微生物发酵制药工艺
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 微生物发酵与制药 微生物生长与生产的关系 制药微生物生产菌种建立 培养基制备 灭菌工艺 发酵培养技术 发酵工艺过程的控制 抗生素的生产工艺
发酵制药
发酵与制药
2.1 微生物发酵与制药
发酵 发酵制药 发酵制药的基本过程
发酵制药
发酵与制药
1、发酵概念
• 概念:通过微生物培养而获得产物的过程 • 种类:用产品说明,冠以产物名而成,如青霉素 发酵,维生素发酵 • 初级代谢产物:在初级代谢过程中形成的产物, 包括各种小分子前体、单体和多糖、蛋白质、脂 肪、核酸等。生长所必须的。几乎所有生物初级 代谢基本相同。氨基酸,核苷酸,有机酸 • 次级代谢产物:比较复杂的化合物,不是细胞生 长必需的,对生命活动有意义(抗逆境条件)。 抗生素,毒素,色素
发酵制药
生长与生产的关系
发酵中期特征
• 以次级代谢产物或目标产物的生物合成为主的一 段时间。 • 菌体生长恒定就进入产物合成阶段 • 呼吸强度:无明显变化,不增加菌体数目 • 产物量:逐渐增加,生产速率加快,直至最大高 峰,随后合成能力衰退。 • 对外界变化敏感:容易影响代谢过程,从而影响 整个发酵进程。
合子
虽然有成功报导,但多数效果不显著。
发酵制药
生产菌种的建立
(3)原生质体融合育种
概念 通过生物学、化学或物理学的方法,使两个不同 种类的体细胞融合在一起,从而产生具有两个亲 本遗传性状的新细胞.
发酵制药
操作过程
a. 原生质体制备: 用去壁酶处理将微生 物细胞壁除去,制成 原生质体。 e.高产菌株
dX r= dt
比生长速率μ:单位菌体浓度的生长速率 生长速率的标准化,菌体活力大小
dX ⎛ 1 ⎞ μ= ⎜ ⎟ dt ⎝ X ⎠
发酵制药
生长与生产的关系
菌体生物量与时间的关系是S形曲线。 分为五个阶段
减速期 dX/dt =μmax X dX/dt =μ X dX/dt = (μ - kd) X = 0 dX/dt = - kd X 延滞期 指数生长期 衰亡期 静止期
第二章 微生物发酵制药工艺
2.1 微生物发酵与制药 2.2 微生物生长与生产的关系 2.3 制药微生物生产菌种建立
发酵制药
生产菌种的建立
2.3 制药微生物生产菌种的建立
生产菌的自然分离(出发菌的获取) 菌种选育 菌种保藏
发酵制药
生产菌种的建立
微生物药物与菌种的筛选流程 样品采集 微生物分离 筛选方法学建立 筛选鉴定 新 药 前药-新 化合物分离 研 阳性结果 化合物 纯化鉴定 究 与 开 生产出发菌 菌种鉴定与保藏 发 培养
发酵制药
发酵与制药
2、发酵制药
• 概念 • 利用制药微生物的生长繁殖,通过发 酵,代谢合成药物,然后从中分离提 取、精制纯化,获得药品的过程 • WWI:对抗细菌性感染药物的需求,使发 酵技术奇迹般应用成功。
发酵制药
菌种选育
发酵与制药
实验室、种子库 孢子制备
3 发 酵 制 药 的 基 本 过 程
发酵制药
生长与生产的关系
4、生长与生产关系的模型
• Gaden把生长与生产分为三种: • I型:生长与生产偶联型 • II型:生长与生产半偶联型 • III型:生长与生产非偶联型
发酵制药 coupling model
菌体生长与产物生成直接关联, 生长期与生产期是一致 菌体生长、基质消耗、能源利用 和产物生成动力学曲线几乎平 行,变化趋势同步,最大值出现 的时间接近. 产物:初级代谢的直接产物,如 有机酸,乳酸、醋酸等。
发酵制药
生产菌种的建立
2、菌种选育——组合生物合成(5)
概念: 将控制不同产物的生物合成基因进行有矢组 合,形成新的基因模块,从而合成新化合 物。 是基因工程育种的一种
发酵制药
生产菌种的建立
3、菌种保藏
原因:菌种经过多次传代,会发生遗传变异,导致退 化,从而丧失生产能力甚至菌株死亡。 目的:保持菌种原有优良特性,延长生命时限,长期 存活、不退化。 原理:使菌种代谢处于不活跃状态,即生长繁殖受抑 制的休眠状态。 措施:物理和化学方法(温度:低温;水分:干燥; 氧气:缺氧;营养;缺乏)
发酵制药
生产菌种的建立
2、菌种选育——诱变育种(2)
定义:人为创造条件(诱变剂处理),使菌 种发生变异,筛选优良个体,淘汰劣质个 体。 物理类:紫外线,快中子,激光,太空射 线。 化学类:碱基类似物,嵌合剂,亚硝酸。 生物类:噬菌体,转座子。 特点:快速,简单,效益大。 缺点:无定向性。
发酵制药
随温度升高而速率增加, 超过一定温度点后,随温 度升高,速率迅速下降。
生物量
生长与生产的关系
温度
在适宜的生长温度范围内,细胞生长速率和比生长速 率与温度关系分别为: dX/dt = (μ - kd) X ; μ =A exp(-Eg/RT)
发酵制药
(3) pH值
生长与生产的关系
生物量
pH
pH 值 对 菌 体 生 长 速 率 的 影 响 与 温 度 的 影 响 类 似,在适宜的pH值范围,生长速率最大
时间
q
p
= β
发酵制药 小结
微生物发酵过程特征:前、中、后期 微生物生长动力学:生长速率与比生长速率 影响动力学的因素:基质浓度(基质消耗、 Monod方程)、温度、pH 动力学模型:偶联、非偶联、半偶联,生长 与生产之间的关联
发酵制药
思考题
(1)微生物发酵过程可分为几个时期,各有何 特征? (2)描述微生物生长动力学过程,分析其影响 因素。 (3)分析微生物生长与生产之间的关联模型。
相关文档
最新文档