高三数学理(函数的定义域和值域)共50页

合集下载

2021届高三数学一轮复习——函数的定义域与值域

2021届高三数学一轮复习——函数的定义域与值域

2021届高三数学一轮复习——函数的定义域与值域函数的定义域求下列函数的定义域:(1)y =12-|x |+x 2-1; (2)y =25-x 2+lg cos x ;(3)y =x -12x-log 2(4-x 2); (4)y =1log 0.5(x -2)+(2x -5)0. 解 (1)由⎩⎪⎨⎪⎧ 2-|x |≠0,x 2-1≥0,得⎩⎪⎨⎪⎧x ≠±2,x ≤-1或x ≥1.所以函数的定义域为{x |x ≤-1或x ≥1且x ≠±2}. (2)由⎩⎪⎨⎪⎧ 25-x 2≥0,cos x >0,得⎩⎪⎨⎪⎧-5≤x ≤5,2k π-π2<x <2k π+π2(k ∈Z ). 所以函数的定义域为⎣⎡⎭⎫-5,-32π∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5. (3)要使函数有意义,必须⎩⎨⎧x -12x ≥0,x ≠0,4-x 2>0,解得-2<x <0或1≤x <2,∴函数的定义域为(-2,0)∪[1,2).(4)由⎩⎪⎨⎪⎧ log 0.5(x -2)>0,2x -5≠0得⎩⎪⎨⎪⎧2<x <3,x ≠52, ∴函数的定义域为⎝⎛⎭⎫2,52∪⎝⎛⎭⎫52,3. 思维升华 (1)给定函数的解析式,求函数的定义域的依据是使解析式有意义,如分式的分母不等于零,偶次根式的被开方数为非负数,零指数幂的底数不为零,对数的真数大于零且底数为不等于1的正数以及三角函数的定义域等.(2)求函数的定义域往往归结为解不等式组的问题.在解不等式组时要细心,取交集时可借助数轴,并且要注意端点值或边界值.函数的值域例1 (2019·长沙月考)求下列函数的值域:(1)y =x 2-2x +3,x ∈[0,3);(2)y =2x +1x -3; (3)y =2x -x -1;(4)y =x +1+x -1.解 (1)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图①所示),可得函数的值域为[2,6).(2)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3, 显然7x -3≠0,∴y ≠2. 故函数的值域为(-∞,2)∪(2,+∞).(3)(换元法)设t =x -1,则x =t 2+1,且t ≥0,∴y =2(t 2+1)-t =2⎝⎛⎭⎫t -142+158,由t ≥0,再结合函数的图象(如图②所示),可得函数的值域为⎣⎡⎭⎫158,+∞.(4)函数的定义域为[1,+∞),∵y =x +1与y =x -1在[1,+∞)上均为增函数, ∴y =x +1+x -1在[1,+∞)上为单调递增函数,∴当x =1时,y min =2,即函数的值域为[2,+∞).结合本例(4)求函数y =x +1-x -1的值域. 解 函数的定义域为[1,+∞),y =x +1-x -1=2x +1+x -1, 由本例(4)知函数y =x +1+x -1的值域为[2,+∞), ∴0<1x +1+x -1≤22, ∴0<2x +1+x -1≤2,∴函数的值域为(0,2].思维升华 求函数值域的一般方法(1)分离常数法;(2)反解法;(3)配方法;(4)不等式法;(5)单调性法;(6)换元法;(7)数形结合法;(8)导数法.跟踪训练1 求下列函数的值域:(1)y =1-x 21+x 2; (2)y =x +41-x ;(3)y =2x 2-x +12x -1⎝⎛⎭⎫x >12.。

2.1函数的解析式及定义域与值域

2.1函数的解析式及定义域与值域

科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。

2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)

2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)

答案:B
2019/4/12
5.函数y=f(x)的值域是[-2,2],定义域是R,则函数y=f(x-2)的值域是( )
A.[-2,2]
C.[0,4]
B.[-4,0]
D.[-1,1]
答案:A
2019/4/12
类型一
函数的定义域
解题准备:(1)已知解析式求定义域的问题,应根据解析式中各部分
的要求,首先列出自变量应满足的不等式或不等式组,然后解这
2019/4/12
③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其
对应关系唯一确定; ④当函数由实际问题给出时,函数的值域由问题的实际意义确定.
2019/4/12
考点陪练
2019/4/12
2019/4/12
考点陪练
1.(2010 湖北)函数 3 A. ,1 4 C.(1, )
2019/4/12
⑨抽象函数f(2x+1)的定义域为(0,1),是指x∈(0,1)而非0<2x+1<1;已
知函数f(x)的定义域为(0,1),求f(2x+1)的定义域时,应由0<2x+1<1 得出x的范围即为所求.
2019/4/12
【典例 1】求函数f x
lg ( x 2 2 x) 9 x
∴要使f(x2)有意义,则必有0≤x2≤1,
解得-1≤x≤1.
∴f(x2)的定义域为[-1,1].
2019/4/12
②由0≤ x 1≤1得1≤ x≤2.1≤x≤4(x≥0时, x才有意义) 函数f ( x 1)的定义域为1, 4 2 f lg x 1 的定义域为 0,9 , 0≤x≤9,1≤x 1≤10, 0≤lg x 1 ≤1 f x 的定义域为 0,1.由0≤2 x ≤1, 解得x≤0. f 2 x 的定义域为 , 0 .

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.已知函数f(x)=(a≠1).(1)若a>0,则f(x)的定义域是________;(2)若f(x)在区间(0,1]上是减函数,则实数a的取值范围是________.【答案】(1)(-∞,](2)(-∞,0)∪(1,3]【解析】(1)当a>0且a≠1时,由3-ax≥0得x≤,即此时函数f(x)的定义域是(-∞,].(2)当a-1>0,即a>1时,要使f(x)在(0,1]上是减函数,则需3-a×1≥0,此时1<a≤3.当a-1<0,即a<1时,要使f(x)在(0,1]上为减函数,则需-a>0,此时a<0.综上a的取值范围(-∞,0)∪(1,3].2.已知函数f(x)= (a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()<.其中正确命题的所有序号是________.【答案】①③④【解析】作出函数f(x)的图象如图所示,显然f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的最小值为f(0)=-1,故命题①正确;显然,函数f(x)在R上不是单调函数,②错误;因为f(x)在(0,+∞)上单调递增,故函数f(x)在[,+∞)上的最小值为f()=2a×-1=a-1,所以若f(x)>0在[,+∞)上恒成立,则a-1>0,即a>1,故③正确;由图象可知,在(-∞,0)上,对任意x1<0,x2<0且x1≠x2,恒有f()<成立,故④正确.3.函数的定义域是________.【答案】【解析】得.【考点】函数的定义域.4. (2014·荆州模拟)函数y=ln(2-x-x2)+的定义域是()A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)【答案】C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1).5.某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低?【答案】(1)y=+,定义域(2)32个【解析】(1)设转盘上总共有n个座位,则x=即n=,y=+,定义域.(2)y=f(x)=k2,y′=k2,令y′=0得x=.当x∈时,f′(x)<0,即f(x)在x∈上单调递减,当x∈时,f′(x)>0,即f(x)在x∈上单调递增,y的最小值在x=时取到,此时座位个数为=32个.6.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.7.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.8.已知则的值为【解析】由题意有,解得,∴原式=.【考点】函数的定义域.9.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>110.求下列函数的值域:(1) y=x-;(2) y=x2-2x-3,x∈(-1,4];(3) y=,x∈[3,5];(4) y= (x>1).【答案】(1)(2)[-4,5].(3)(4)[2-2,+∞).【解析】(1) (换元法)设=t,t≥0,则y= (t2+2)-t=2-,当t=时,y有最小值-,故所求函数的值域为.(2) (配方法)配方,得y=(x-1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y==2-,结合图象知,函数在[3,5]上是增函数,所以ymax =,ymin=,故所求函数的值域是.(解法2)由y=,得x=.因为x∈[3,5],所以3≤≤5,解得≤y≤,即所求函数的值域是.(4) (基本不等式法)令t=x-1,则x=t+1(t>0),所以y==t+-2(t>0).因为t+≥2=2,当且仅当t=,即x=+1时,等号成立,故所求函数的值域为[2-2,+∞).11.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.已知集合,则= .【答案】【解析】因为,所以,即=.【考点】函数的定义域,集合的运算.2.函数的定义域为()A.B.C.D.【答案】C【解析】由已知,解得,故选C.【考点】函数的定义域,对数函数的性质.3.以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当,时,,.现有如下命题:①设函数的定义域为,则“”的充要条件是“,,”;②函数的充要条件是有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数(,)有最大值,则.其中的真命题有 .(写出所有真命题的序号)【答案】①③④【解析】对①,若对任意的,都,使得,则的值域必为R;反之,的值域为R,则对任意的,都,使得.故正确.对②,比如函数属于B,但是它既无最大值也无最小值.故错误.对③,因为,而有界,故,所以.故正确.对④,.当或时,均无最大值.所以若有最大值,则,此时,.故正确【考点】1、新定义;2、函数的定义域值域.4.已知函数,.若存在使得,则实数的取值范围是.【答案】【解析】方程变形为,记函数的值域为,函数的值域为,设的取值范围为,则,作出函数和的图象,可见在上是增函数,在上是减函数,且,而函数的值域是,因此,因此.【考点】函数的图象,方程的解与函数的值域问题.5.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.6.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式7.设函数若是的三条边长,则下列结论正确的是_____ _.(写出所有正确结论的序号)①②,使不能构成一个三角形的三条边长;③若【答案】①②③【解析】由题意得.令,则是单调递减函数.对①,..②,令,因为是单调递减函数,所以在上一定存在零点,即,此时不能构成三角形的三边.③,为钝角三角形,则由余弦定理易知,即,又,且连续,所以使.故①②③都正确.【考点】1、函数的单调性;2、三角形.8.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.9.设函数若,则实数( )A.4B.-2C.4或D.4或-2【答案】C【解析】因为,所以得到或所以解得或.所以或.当可时解得.当时可解得.【考点】1.复合函数的运算.2. 分类讨论的思想.10.函数的定义域是( )A.B.C.D.【答案】A【解析】根据题意可得,所以该函数定义域为,故选A.【考点】定义域二次不等式11.如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;(2)当AP为多少时,“总噪音影响度”最小?【答案】(1)y=(≤x≤)(2)AP=km【解析】(1)(解法1)如图,连结OP,设∠AOP=α,则≤α≤.在△AOP中,由余弦定理得x2=12+22-2×1×2cosα=5-4cosα,在△BOP中,由余弦定理得BP2=12+22-2×1×2cos(π-α)=5+4cosα,∴BP2=10-x2,∴y=.∵≤α≤,∴≤x≤,∴y=(≤x≤).(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m,n),则PA2=(m+1)2+n2,PB2=(m-1)2+n2.∵m2+n2=4,PA=x,∴PB2=10-x2(后面解法过程同解法1).(2)(解法1)y==[x2+(10-x2)]=(5+)≥(5+2)=,当且仅当,即x=∈[,]时取等号.故当AP=km时,“总噪音影响度”最小.(解法2)由y=,得y′=-.∵≤x≤,∴令y′=0,得x=,且当x∈时,y′<0;当x∈(,]时,y′>0.∴x=时,y=取极小值,也即最小值.故当AP=km时,“总噪音影响度”最小12.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>113.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].14.已知函数f(x)=-的定义域为R,则f(x)的值域是.【答案】【解析】∵2x>0,∈(0,1),∴-<-<,故函数值域为.15.函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【答案】D【解析】要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).16.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.17.函数f(x)=的定义域为________.【答案】(-1,0)∪(0,2]【解析】根据使函数有意义的条件求解.由得-1<x≤2,且x≠0.18.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.19.函数f(x)=e x sin x在区间上的值域为 ().【答案】A【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)=minf(0)=0,f(x)=f=.max20.设函数,若和是函数的两个零点,和是的两个极值点,则等于( )A.B.C.D.【答案】C【解析】,若和是函数的两个零点,即和是方程的两根,得到,,,由已知得和是的两根,所以,故选C.【考点】1.函数的零点;2.函数的极值点.21.函数的定义域为______________.【答案】【解析】为使有意义,须解得,所以函数的定义域为【考点】函数的定义域,对数函数的性质,简单不等式的解法.22.函数的定义域为( )A.;B.;C.;D.;【答案】C【解析】函数的定义域包含三个要求,由不等式组解得.所以选C.本题要注意的解法将不等式化为.由于函数是递增的,所以结合另两个的式子可得结论.【考点】1.偶次方根的定义域.2.分母的定义域.3.对数的定义域.23.函数的定义域是( )A.(-¥,+¥)B.[-1,+¥)C.[0,+¥]D.(-1,+¥)【答案】B【解析】依题意可得.故选B.本小题是考查函数的定义域问题;函数的偶次方根的被开方数要大于或等于零这种情况.函数的定义域是函数三要素之一,也是研究函数的首要组成部分,大致情况有四种.在接触函数的题型时就得考虑函数的定义域.【考点】函数的定义域.24.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.25.已知函数.(1)求函数的定义域;(2)若函数在上单调递增,求的取值范围.【答案】(1)若即时,;若即时,;若即时,.(2).【解析】(1)对数函数要有意义,必须真数大于0,即,这是一个含有参数的不等式,故对m分情况进行讨论;(2)根据复合函数单调性的判断法则,因为是增函数,要使得若函数在上单调递增,则函数在上单调递增且恒正,据些找到m满足的不等式,解不等式即得m的范围.试题解析:(1)由得:若即时,若即时,若即时,(2)若函数在上单调递增,则函数在上单调递增且恒正。

专题05 函数 5.1函数的三要素 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题05 函数 5.1函数的三要素 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题四《函数》讲义5.1函数的三要素知识梳理.函数的概念1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的三种表示法解析法图象法列表法就是把变量x,y之间的关系用一个关系式y=f(x)来表示,通过关系式可以由x的值求出y的值.就是把x,y之间的关系绘制成图象,图象上每个点的坐标就是相应的变量x,y的值.就是将变量x,y的取值列成表格,由表格直接反映出两者的关系.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.题型一.定义域考点1.具体函数定义域1.函数f(x)=(1﹣)−12+(2x﹣1)0的定义域是()A.(﹣∞,1]B.(−∞,12)∪(12,1)C.(﹣∞,1)D.(12,1)2.函数op=M,g(x)=ln(x2+3x+2)的定义域为N,则M∪∁R N=A.[﹣2,1)B.(﹣2,1)C.(﹣2,+∞)D.(﹣∞,1)考点2.抽象函数定义域3.若函数f(3﹣2x)的定义域为[﹣1,2],则函数f(x)的定义域是.4.函数y=f(x)的定义域为[﹣1,2],则函数y=f(1+x)+f(1﹣x)的定义域为()A.[﹣1,3]B.[0,2]C.[﹣1,1]D.[﹣2,2]考点3.已知定义域求参5.已知函数f(x)=lg(ax2+3x+2)的定义域为R,则实数a的取值范围是.6.若函数f(x)=(2a2+5a+3)x2+(a+1)x﹣1的定义域、值域都为R,则实数a满足()A.a=﹣1或a=−32B.−139<<−1C.a≠﹣1或a≠−32D.a=−32题型二.解析式考点1.待定系数法1.已知函数f(x)是一次函数,且f[f(x)]=9x+4,求函数f(x)的解析式.2.已知f(x)是二次函数,且满足f(0)=1,f(x+1)﹣f(x)=2x,则f(x)的解析式是.考点2.换元法3.已知o−1)=−2,则函数f(x)的解析式为.4.已知f(1−1+)=1−21+2,求f(x)的解析式.考点3.凑配法5.(1)已知f(1)=1−2,求f(x)的解析式;(2)已知f(x+1)=x2+12,求f(x).6.已知f(3x)=4x log23+10,则f(2)+f(4)+f(8)+…+f(210)的值等于.考点4.方程组法7.已知函数f(x)满足f(x)+2f(﹣x)=3x,则f(1)=.8.已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,f(x)+g(x)=2•3x,则函数f(x)=.考点5.求谁设谁9.已知函数f(x)为奇函数,当x∈(0,+∞)时,f(x)=log2x,(1)求f(x)的解析式;(2)当f(x)>0时.求x的取值范围.10.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2﹣x,则当x∈(﹣1,0]时,f(x)的值域为()A.[−18,0]B.[−14,0]C.[−18,−14]D.[0,14]考点6.利用对称求解析式11.下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)12.设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1B.1C.2D.4题型三.值域考点1.利用单调性求值域1.下列函数中,与函数op=(15)的定义域和值域都相同的是()A.y=x2+2x,x>0B.y=|x+1|C.y=10﹣x D.=+12.已知函数f(x)=log3(x﹣2)的定义域为A,则函数g(x)=(12)2﹣x(x∈A)的值域为()A.(﹣∞,0)B.(﹣∞,1)C.[1,+∞)D.(1,+∞)考点2.换元法3.函数=2+41−的值域为()A.(﹣∞,﹣4]B.(﹣∞,4]C.[0,+∞)D.[2,+∞)4.函数f(x)=log2(x2﹣2x+3)的值域为()A.[0,+∞)B.[1,+∞)C.R D.[2,+∞)考点3.分离常数5.函数=2r1r1在x∈[0,+∞)上的值域是.6.已知函数op=2+4,则该函数在(1,3]上的值域是()A.[4,5)B.(4,5)C.[133,5)D.[133,5] 7.函数=2+2r2r1的值域是.8.下列求函数值域正确的是()A.函数=5K14r2,x∈[﹣3,﹣1]的值域是{U≠54}B.函数=2−3r1的值域是{U≤−1,≥−15}C.函数=sB+1K2,∈[2,2)∪(2,p的值域是{U≤4K4,≥1K2} D.函数=+1−2的值域是{U−1≤≤2}课后作业.函数的三要素1.函数op=−2+9+10−2B(K1)的定义域为()A.[1,10]B.[1,2)∪(2,10]C.(1,10]D.(1,2)∪(2,10]2.已知函数f(x)=l2,>03,<0,则no14)]的值为()A.19B.13C.﹣2D.3 3.已知o p=2−2,则函数f(x)的解析式为()A.f(x)=x4﹣2x2(x≥0)B.f(x)=x4﹣2x2C.op=−2o≥0)D.op=−24.已知函数f(x)满足2f(x﹣1)+f(1﹣x)=2x﹣1,求:f(x)解析式.5.已知f(x)=(1−2p+3o<1)Bo≥1)的值域为R,那么a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,12)C.[﹣1,12)D.(0,1)6.用min{a,b,c}表示a,b,c三个数中的最小值设f(x)=min{2x,x+2,10﹣x}(x≥0),则f(x)的最大值为.。

高考数学复习考点知识讲解课件6 函数的定义域与值域

高考数学复习考点知识讲解课件6 函数的定义域与值域
知识梳理 1.函数的定义域 (1)求定义域的步骤 ①写出使函数式有意义的不等式(组). ②解不等式(组). ③写出函数定义域.(注意用区间或集合的形式写出)
— 返回 —
— 4—
(新教材) 高三总复习•数学
(2)基本初等函数的定义域 ①整式函数的定义域为 R. ②分式函数中分母_不___等__于__0__. ③偶次根式函数被开方式__大__于__或__等__于___0___. ④一次函数、二次函数的定义域均为 R. ⑤函数 f(x)=x0 的定义域为__{_x_|x_≠__0_}__. ⑥指数函数的定义域为____R______. ⑦对数函数的定义域为_(_0_,__+__∞__)_.
0<2-x<1, ⇒x≠32
1<x<2, ⇒x≠32.
所以函数的定义域为1,32∪32,2.
— 14 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:求抽象函数的定义域 【例 2】 已知函数 f(2x+1)的定义域为(0,1),则 f(x)的定义域是___(1_,_3_)__. [思路引导] 由已知得 x∈(0,1)→求 2x+1 的范围→得 f(x)的定义域.
2
— 返回 —
— 13 —
(新教材) 高三总复习•数学
— 返回 —
[解析] (1)要使原函数有意义,
-x2+9x+10≥0, 则x-1>0,
x-1≠1,
解得 1<x≤10 且 x≠2,所以函数 f(x)= -x2+9x+10-
lnx2-1的定义域为(1,2)∪(2,10],故选 D.
(2)要使函数有意义,则log12 2-x>0, 2x-3≠0
— 11 —
— 返回 —

6函数的概念、定义域、值域求法-教师版

6函数的概念、定义域、值域求法-教师版

教学内容概要教学内容【知识精讲】一、函数的概念1、函数的定义:设A B 、是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。

记作:(),y f x x A =∈。

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。

2、函数的三要素分别指函数的定义域、值域、对应法则;当两个函数的定义域、对应法则分别相同时,那么这两个函数是同一函数。

3、函数的表示方法一般有解析法、列表法、图像法当图像满足和,x a a R =∈的图像最多只有一个交点时才可作为函数图像。

分段函数:在用解析法表示函数的时候,往往在其定义域的不同子集上,因对应法则不同而用几个式子来表示的函数即分段函数。

分段函数是一个函数,而不是几个函数。

在解决问题过程中,要处理好整体与局部的关系。

4、函数的运算:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,设φ≠⋂=21D D D 把函数()()()D x x g x f ∈+叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的和函数 把函数()()()D x x g x f ∈叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的积函数 6、复合函数:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,若满足()1D x g ∈的x 的取值范围为E ,设φ≠⋂=2D E D ,把函数()()x g f y =叫做函数()()1D x x f y ∈=,()()2D x x g y ∈=的复合函数,x 是复合函数()()x g f y =的自变量,定义域为D ,()x g 叫做内函数,()x f 叫做外函数。

第2课时 函数的定义域与值域

第2课时 函数的定义域与值域

x=11-+yy.
∵ x≥0,∴11-+yy≥0,∴-1<y≤1,即函数值域为(-1,1].
(2)配方法:y=3x2+x22x+1=x12+2x+3,
令1x=t∈ [-2,-12],∴y=t2+2t+3=(t+1)2+2,
∴2≤y≤3,∴值域为[2,3].
第31页
高考调研 ·高三总复习·数学(理)
第29页
高考调研 ·高三总复习·数学(理)
【解析】 (1)方法一:分离常数法:
y=11-+
xx=-1+1+2
, x
∵ x≥0,∴ x+1≥1,∴0< x2+1≤2.
∴-1<-1+1+2 x≤1.
即函数值域为(-1,1].
第30页
高考调研 ·高三总复习·数学(理)
方法二:反解法:由 y=11-+
x,得 x
第13页
高考调研 ·高三总复习·数学(理)
方法二:分离常数法 y=x2+x+x+1 1=(x+1)2-x+(1x+1)+1=(x+1)+x+1 1-1, 又(x+1)+x+1 1≥2 或(x+1)+x+1 1≤-2, ∴y≥1 或 y≤-3. ∴函数的值域为(-∞,-3]∪[1,+∞).
第14页
高考调研 ·高三总复习·数学(理)
C.[0,2 018]
D.[-1,1)∪(1,2 018]
第9页
高考调研 ·高三总复习·数学(理)
答案 B 解析 要使函数 f(x+1)有意义,则 0≤x+1≤2 018,解得- 1≤x≤2 017,故函数 f(x+1)的定义域为[-1,2 017],所以函数 g(x) 有意义的条件是-x-1≤1≠x≤0 2 017,解得-1≤x<1 或 1<x≤2 017.故函 数 g(x)的定义域为[-1,1)∪(1,2 017].

5:函数的定义域和值域高三复习数学知识点总结(全)

5:函数的定义域和值域高三复习数学知识点总结(全)

(二)函数的定义域(1)解决函数问题,优先考虑定义域.若没有标明定义域,则认为定义域是使得函数解析式有意义的x 的取值范围.实际问题中还要考虑自变量的实际意义.(2)分式中分母0≠;偶次根式中被开方数应为非负数;)0(10≠==x x y ;)10(≠>=a a a y x 且;,log x y a =真数,0>x 底数10≠>a a 且;x y sin =定义域为,R x y cos =定义域为,R x y tan =定义域为x {|},2Z k k x ∈+≠ππ.(3)复合函数的定义域方法:①定义域是输入值x 的集合;②同一对应法则下的括号内整体范围一样.例:已知)1(+=x f y 的定义域为],3,2[-则)12(-=x f y 的定义域为.答案:]25,0[小结:①若已知)(x f 的定义域为],,[b a 则复合函数))((x g f 的定义域可由b x g a ≤≤)(解出;②若已知))((x g f 的定义域为],,[b a 则)(x f 的定义域即为],[b a x ∈时)(x g 的值域.(三)函数的值域(数形结合)常用方法法一:图象法(形)1.)10(22≤<+-=x x x y 2..30,113<≤+-=x x x y 3..14,4-≤≤-+=x xx y 法二:换元法+图象法(形)4.3212++=x x y 5.x x y 21-+= 6.1212+-=x x y 7.)0(422>+=x x x y 8.).1(1542>-+-=x x x x y 9.)10(210212≤≤++=x x xy 法三:单调性(导数和单调性的性质)(数)10.x x y 21--=11.2,0[,sin π∈+=x x x y 12.]3,3[,8123-∈+-=x x x y 法四:几何意义(形)13.2cos 1sin --=x x y 答案:1.]81,1[-;2.)2,1[-;3.]4,5[--;4.]21,0(;5.]1,(-∞;6.)1,1(-;7.]21,0(;8.),222[+∞-;9.]10103,22[;10.21,(-∞;11.]12,0[+π;12.]24,8[-;13.34,0[。

函数的定义域、值域--高考数学【解析版】

函数的定义域、值域--高考数学【解析版】

专题06 函数的定义域、值域函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f (x )=|x |,x ∈[0,2]与函数f (x )=|x |,x ∈[-2,0]. 2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 3.常见函数定义域的求法类型x 满足的条件2()nf x (n ∈N *) f (x )≥0 21()n f x (n ∈N *)f (x )有意义 1()f x 与[f (x )]0 f (x )≠0 log a f (x )(a >0且a ≠1) f (x )>0 a f (x )(a >0且a ≠1)f (x )有意义 tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一 已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可. 【详解】因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤.即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .22⎡⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B 【解析】 【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313x f x =-+,()30,x∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈2⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<, 所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.某同学为研究函数f(x)=+(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的极值点是________;函数f(x)的值域是________.【答案】x= [,+1]【解析】显然当点P为线段BC的中点时,A,P,F三点共线,此时AP=PF,且函数f(x)取得最小值,函数f(x)的图像的对称轴为x=;当x∈[0,]时,函数f(x)单调递减,且值域为[,+1];当x∈[,1]时,函数f(x)单调递增,且值域为[,+1],∴函数f(x)的值域为[,+1].2.已知函数f(x)=x2-1,g(x)=(1)求f[g(2)]和g[f(2)]的值;(2)求f[g(x)]和g[f(x)]的表达式.【答案】(1)0 2(2)f[g(x)]=g[f(x)]=【解析】解:(1)由已知,g(2)=1,f(2)=3,∴f[g(2)]=f(1)=0,g[f(2)]=g(3)=2.(2)当x>0时,g(x)=x-1,故f[g(x)]=(x-1)2-1=x2-2x;当x<0时,g(x)=2-x,故f[g(x)]=(2-x)2-1=x2-4x+3;∴f[g(x)]=当x>1或x<-1时,f(x)>0,故g[f(x)]=f(x)-1=x2-2;当-1<x<1时,f(x)<0,故g[f(x)]=2-f(x)=3-x2.∴g[f(x)]=3. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].4.函数的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2]D.(﹣1,2]【答案】B【解析】要使函数有意义,必须:,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选B.5.函数的单调增区间为()A.B.(3,+∞)C.D.(﹣∞,2)【答案】D【解析】由题意知,x2﹣5x+6>0∴函数定义域为(﹣∞,2)∪(3,+∞),排除A、C,根据复合函数的单调性知的单调增区间为(﹣∞,2),故选D6.函数f(x)=x2﹣4x﹣6的定义域为[0,m],值域为[﹣10,﹣6],则m的取值范围是()A.[0,4]B.[2,4]C.[2,6]D.[4,6]【答案】B【解析】函数f(x)=x2﹣4x﹣6的图象是开口朝上,且以直线x=2为对称轴的抛物线故f(0)=f(4)=﹣6,f(2)=﹣10∵函数f(x)=x2﹣4x﹣6的定义域为[0,m],值域为[﹣10,﹣6],故2≤m≤4即m的取值范围是[2,4]故选B7.函数的值域是____________.【答案】【解析】函数在区间是增函数,因此当时,.【考点】函数的值域.8.函数的定义域为 .【答案】【解析】由,得.【考点】函数的定义域.9.若函数的定义域是[0,4],则函数的定义域是()A.[ 0,2]B.(0,2)C.[0,2)D.(0,2]【答案】D【解析】根据题意,得,即,故选D.【考点】函数的定义域.10.设函数若是的三条边长,则下列结论正确的是_____ _.(写出所有正确结论的序号)①②,使不能构成一个三角形的三条边长;③若【答案】①②③【解析】由题意得.令,则是单调递减函数.对①,..②,令,因为是单调递减函数,所以在上一定存在零点,即,此时不能构成三角形的三边.③,为钝角三角形,则由余弦定理易知,即,又,且连续,所以使.故①②③都正确.【考点】1、函数的单调性;2、三角形.11.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.12.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.13.设函数若,则实数( )A.4B.-2C.4或D.4或-2【答案】C【解析】因为,所以得到或所以解得或.所以或.当可时解得.当时可解得.【考点】1.复合函数的运算.2. 分类讨论的思想.14.已知的定义域为,则函数的定义域为 ( )A.B.C.D.【解析】因为,的定义域为,所以,由,得,,所以,函数的定义域为,选B.【考点】函数的定义域15.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为________.【答案】【解析】由-1<2x+1<0,得-1<x<-,所以函数f(2x+1)的定义域为16.已知函数f(x)=(-|x|+3)的定义域是[a,b](a、b∈Z),值域是[-1,0],则满足条件的整数对(a,b)有________对.【答案】5【解析】由f(x)=(-|x|+3)的值域是[-1,0],易知t(x)=|x|的值域是[0,2],∵定义域是[a,b](a、b∈Z),∴符合条件的(a,b)有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.17.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】由题意f(x)===所以当x∈(-∞,-1)∪(2,+∞)时,f(x)的值域为(2,+∞);当x∈[-1,2]时,f(x)的值域为,故选D.18.函数的定义域为()A.B.C.D.【解析】由题意可得,解得,故函数的定义域为,故选C.【考点】函数的定义域19.函数f(x)=的定义域为________.【答案】(0,10]【解析】由题意得所以0<x≤10.20.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x·f(x)>e x+1的解集为______.【答案】(0,+∞)【解析】构造函数g(x)=e x·f(x)-e x,因为g′(x)=e x·f(x)+e x·f′(x)-e x=e x[f(x)+f′(x)]-e x>e x-e x=0,所以g(x)=e x·f(x)-e x为R上的增函数.又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(x)>g(0),解得x>0.21.函数y=的定义域是 ( ).A.[-,-1)∪(1,]B.(-,-1)∪(1,)C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)【答案】A【解析】∵⇔⇔⇔⇔-≤x<-1或1<x≤.∴y=的定义域为[-,-1)∪(1,].22.函数的定义域为.【答案】【解析】由对数的真数为正知,两边取自然对数得,因为,所以,或由指数函数的图象可知,所以函数的定义域为.【考点】指数函数和对数函数的性质.23.函数()A.B.C.D.【答案】C【解析】由题意得,即,所以函数的定义域为,所以正确答案为C.【考点】对数函数的定义域24.已知的定义域为 .【答案】【解析】∵,∴,∴,∴,∴的定义域为.【考点】1.函数的定义域;2.对数不等式的解法.25.函数的定义域是_____________.【答案】【解析】函数的定义域是使函数式有意义的自变量的集合,求定义域时要注意基本初等函数的定义域.【考点】函数的定义域.26.函数的定义域为.【答案】【解析】函数的定义域一般是使函数式有意义的自变量的取值范围.本题中,因此,即.【考点】函数的定义域.27.设函数的定义域为,值域为,若的最小值为,则实数a的值为________ ;【答案】或【解析】函数的图像如图.由于值域为[0,1]所以定义域有三种情况.第一种..第二种.第三种.由第一种可得.由的最小值为.可得.由第二种情况可得.再由的最小值为.解得.第三种情况f(x)的最大值要只能是f(m),f(n)中一个.所以解出来的值只能是或.【考点】1.对数函数.2.分段函数的知识.3.定义域与值域的对应关系.28.已知不等式对于,恒成立,则实数的取值范围是____________.【答案】【解析】分离变量(其中),上式在,恒成立,说明不能小于右边的最大值,,故【考点】二次函数的值域,分离变量法,恒成立.29.已知函数,则()A.函数的定义域为,值域为B.函数的定义域为,值域为C.函数的定义域为,值域为D.函数的定义域为,值域为【答案】C【解析】显然为奇函数且.时,均为增函数,故也为增函数.当无限趋近于0时,无限趋近于,故也无限趋近于;当无限趋近于时,无限趋近于0,故也无限趋近于.所以值域为.选C.【考点】函数的定义域与值域.30.已知函数,则()A.函数的定义域为,值域为B.函数的定义域为,值域为C.函数的定义域为,值域为D.函数的定义域为,值域为【答案】C【解析】显然为奇函数且.时,均为增函数,故也为增函数.当无限趋近于0时,无限趋近于,故也无限趋近于;当无限趋近于时,无限趋近于0,故也无限趋近于.所以值域为.选C.【考点】函数的定义域与值域.31.设函数,则下列结论错误的是()A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数【答案】C【解析】因为,,所以,函数的值域为{0,1};因为,是有理数或无理数时,依然为有理数或无理数,所以,函数值不变,即D(x)是偶函数;因为,==,所以,为其一个周期,故C错,选C.【考点】函数的性质32.定义区间,,,的长度均为. 用表示不超过的最大整数,记,其中.设,,若用表示不等式解集区间的长度,则当时,有()A.B.C.D.【答案】A【解析】由,于是,显然,于是,又,所以,即.【考点】新定义.33.函数的定义域为()A.B.C.D.【答案】C.【解析】由得.【考点】函数的定义域.34.已知函数的值域为,则的取值范围是.【答案】【解析】函数,令,解得显然当时;当时,所以.【考点】二次函数的值域.35.定义在上的函数是增函数,且,则满足的的取值范围是 .【答案】【解析】.【考点】利用函数单调性解不等式.36.函数的定义域是( )A.(0,2)B.[0,2]C.[0,2)D.(0,2]【答案】D【解析】,故选D.【考点】函数的定义域,解不等式.37.已知函数,(a>0),若,,使得f(x1)= g(x2),则实数a的取值范围是()A.B.C.D.【答案】D【解析】由函数,当时,,,即函数的值域为,当时,函数,,若满足题意则,解得.【考点】基本函数的值域.38.函数的定义域是()A.B.C.D.【答案】C【解析】为使函数有意义,须,解得,且,即函数的定义域为,选C.【考点】函数的定义域39.对于任意实数,表示不超过的最大整数,如.定义在上的函数,若,则中所有元素的和为()A.65B.63C.58D.55【答案】C【解析】当时:,当时:,同理可得:时:;时:;时:;时:;时:;时:;时:,所以中所有元素的和为.【考点】1.取整函数;2.函数的值域.40.设函数的图像在处取得极值4.(1)求函数的单调区间;(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.【答案】(1)递增区间是和,递减区间是;(2)不存在.【解析】(1)求导,利用极值点的坐标列出方程组,解出,确定函数解析式,再求导,求单调区间;(2)先假设存在“正保值区间”,通过已知条件验证是否符合题意,排除不符合题意得情况.试题解析:(1), 1分依题意则有:,即解得 v 3分∴.令,由解得或,v 5分所以函数的递增区间是和,递减区间是 6分(2)设函数的“正保值区间”是,因为,故极值点不在区间上;①若极值点在区间,此时,在此区间上的最大值是4,不可能等于;故在区间上没有极值点; 8分②若在上单调递增,即或,则,即,解得或不符合要求; 10分③若在上单调减,即1<s<t<3,则,两式相减并除得:,①两式相除可得,即,整理并除以得:,②由①、②可得,即是方程的两根,即存在,不合要求. 12分综上可得不存在满足条件的s、t,即函数不存在“正保值区间”。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.函数的定义域是()A.B.C.D.【答案】D【解析】由得且,选.【考点】函数的定义域.2.函数的图像为【答案】D【解析】因为=,其图像为D.【考点】对数恒等式,分类整合思想,常见函数图像,分段函数3. f(x)=,f(x)的定义域是________.【答案】[,+∞)【解析】由已知得,∴∴x≥,∴f(x)的定义域为[,+∞).4. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].5.函数的定义域是.【答案】【解析】根据偶次根式下被开方数非负得:,因此函数的定义域是.【考点】函数定义域6.(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.【答案】(1)y=2π•,(0,2](2)【解析】(1)由体积V=,解得l=,∴y=2πrl×3+4πr2×c=6πr×+4cπr2=2π•,又l≥2r,即≥2r,解得0<r≤2∴其定义域为(0,2].(2)由(1)得,y′=8π(c﹣2)r﹣,=,0<r≤2由于c>3,所以c﹣2>0当r3﹣=0时,则r=令=m,(m>0)所以y′=①当0<m<2即c>时,当r=m时,y′=0当r∈(0,m)时,y′<0当r∈(m,2)时,y′>0所以r=m是函数y的极小值点,也是最小值点.②当m≥2即3<c≤时,当r∈(0,2)时,y′<0,函数单调递减.所以r=2是函数y的最小值点.综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=7. (2014·荆州模拟)函数y=ln(2-x-x2)+的定义域是()A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)【答案】C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1).8.函数的定义域为__________。

高三数学函数的定义域

高三数学函数的定义域
认真听讲,及时总结,温故旧知 第十讲 函数的定义域
函数的独立元素:解析式;定义域 值域,性质
一、由函数解析式求定义域
非空
明晰函数的约束条件→细致
数集
求下列函数的定义域: 1、 y=lg(4x+3) 2、y=1/lg(4x+3) 3、y=(5x-4)0 4、y=x2/lg(4x+3)+(5x-4)0
课堂回顾: 求定义域的几种类型: 一类重要的数学问题:
;;
; /abcpkscum/ ; /abcfffse/ ; /abchyxd/ ; /abctitfzp/ ; /abczimow/ ; /abcfgsm/ ; /abctbe/ ; /abcjgkd/ ; /abcpfn/ ; /abcndt/ ; /abcnsughd/ ; /abckl/ ; /abcyrd/ ; /abcrxsytc/ ; /abcms/ ; /abcqsrhk/ ; /abcimmieg/ ; /abcfpla/ ; /abcpmbhmd/ ; /abccmivf/ ; /abcmuxjyp/ ; /abccj/ ; /abcfpuen/ ; /abcvluh/ ; /abcjkcn/ ; /abcfkosap/ ; /abcrg/ ; /abcvo/ ; /abcmunr/ ; /abcvupsw/ ; /abcysyy/ ; /abchndgr/ ; /abcuxmanc/ ; /abchvjnl/ ; /abckmx/ ; /abcvpa/ ; /abchuowrf/ ; /abcfm/ ; /abcwknkct/ ; /abcuge/ ; /abcrdr/ ; /abcun/ ; /abcvafdd/ ; /abclqumh/ ; /abcxkusm/ ; /abcdqgq/ ; /abcft/ ; /abctesyj/ ; /abcbkrdrq/ ; /abcmzx/ ; /abcsj/ ; /abcbyn/ ; /abcgjgj/ ; /abcjgcus/ ; /abccmw/ ; /abcas/ ; /abctc/ ; /abcus/ ; /abccfegd/ ; /abcngikt/ ; /abclk/ ; /abciozueq/ ; /abcnnyxq/ ; /abcmxhemg/ ; /abccnfxg/ ; /abcikar/ ; /abcshy/ ; /abcdmv/ ; /abciisd/ ; /abcpgtcsn/ ; /abcbecqtl/ ; /abcjmx/ ; /abcdnx/ ; /abcobm/ ; /abcngag/ ; /abcsmbish/ ; /abcbhzr/ ; /abckihtm/ ; /abcmm/ ; /abcaosc/ ; /abcmqoi/ ; /abcpdy/ ; /abclwebzs/ ; /abcwpapuq/ ; /abcmnz/ ; /abchm/ ; /abcbp/ ; /abcjnrosn/ ; /abcsedhwk/ ; /abcsvlsmm/ ; /abcsdtsmj/ ; /abcvdmbqx/ ; /abcgqmsug/ ; /abcdmdjo/ ; /abcje/ ; /abcqvv/ ; /abchsioyu/ ; /abcxor/ ; /abccyq/ ; /abcoaq/ ; /abcsqwmnl/ ; /abcmptzhk/ ; /abchn/ ; /abcbqezjk/ ; /abcfkonyv/ ; /abcav/ ; /abckshd/ ; /abcgmr/ ; /abcbzmpxo/ ; /abcjpkdm/ ; /abczso/ ; /abcvynbtn/ ; /abcyc/ ; /abceap/ ; /abcpizga/ ; /abcsefar/ ; /abcruonec/ ; /abctjh/ ; /abcavtz/ ; /abchf/ ; /abcrnone/ ; /abcim/ ; /abcsiuenk/ ; /abcpjtck/ ; /abcfp/ ; /abckdzxm/ ; /abcpxo/ ; /abczzw/ ; /abccnkobb/ ; /abcsp/ ; /abccs/ ; /abcxxsezo/ ;

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.函数的定义域为()A.B.C.D.【答案】D【解析】由1-x≥0且x>0可得0<x≤1,选D【考点】函数的定义域2.函数f(x)=e x(sinx+cosx)在区间[0,]上的值域为()【答案】A【解析】f′(x)=e x(sinx+cosx)+e x·(cosx-sinx)=e x cosx,当0≤x≤时,f′(x)≥0,且只有在x=时,f′(x)=0,∴f(x)是[0,]上的增函数,3.已知函数g(x)=+1,h(x)=,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)·h(x).(1)求函数f(x)的表达式,并求其定义域;(2)当a=时,求函数f(x)的值域.【答案】(1)x∈[0,a],(a>0)(2)[,]【解析】解:(1)f(x)=,x∈[0,a],(a>0).(2)函数f(x)的定义域为[0,],令+1=t,则x=(t-1)2,t∈[1,],f(x)=F(t)==,∵t=时,t=±2∉[1,],又t∈[1,]时,t+单调递减,F(t)单调递增,F(t)∈[,].即函数f(x)的值域为[,].4. f(x)=,f(x)的定义域是________.【答案】[,+∞)【解析】由已知得,∴∴x≥,∴f(x)的定义域为[,+∞).5.已知函数f(x)= (a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()<.其中正确命题的所有序号是________.【答案】①③④【解析】作出函数f(x)的图象如图所示,显然f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的最小值为f(0)=-1,故命题①正确;显然,函数f(x)在R上不是单调函数,②错误;因为f(x)在(0,+∞)上单调递增,故函数f(x)在[,+∞)上的最小值为f()=2a×-1=a-1,所以若f(x)>0在[,+∞)上恒成立,则a-1>0,即a>1,故③正确;由图象可知,在(-∞,0)上,对任意x1<0,x2<0且x1≠x2,恒有f()<成立,故④正确.6.若函数f(x)=x2-2x,g(x)=ax+2(a>0),∀x1∈[-1,2],∃x∈[-1,2],使g(x1)=f(x),则a的取值范围是()A.(0,]B.[,3]C.[3,+∞)D.(0,3]【答案】A【解析】由于函数g(x)在定义域[-1,2]内是任意取值的,且必存在x0∈[-1,2]使得g(x1)=f(x),因此问题等价于函数g(x)的值域是函数f(x)值域的子集.函数f(x)的值域是[-1,3],函数g(x)的值域是[2-a,2+2a],则有2-a≥-1且2+2a≤3,即a≤,又a>0,故a的取值范围是(0,].7.已知函数f(x)=- (a>0,x>0),若f(x)在上的值域为,则a=__________.【答案】【解析】由反比例函数的性质知函数f(x)=- (a>0,x>0)在上单调递增,所以,即解得a=.8. [2013·湖北荆门期末]函数f(x)=ln(+)的定义域为()A.(-∞,-4]∪(2,+∞)B.(-4,0)∪(0,1)C.[-4,0)∪(0,1]D.[-4,0)∪(0,1)【答案】D【解析】要使函数f(x)有意义,必须且只需解得-4≤x<0或0<x<1.故选D.9. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].10.函数的定义域是________.【答案】【解析】得.【考点】函数的定义域.11.函数的定义域为,其图像上任一点都位于椭圆:上,下列判断①函数一定是偶函数;②函数可能既不是偶函数,也不是奇函数;③函数可能是奇函数;④函数如果是偶函数,则值域是;⑤函数值域是,则一定是奇函数.其中正确的命题个数有()个A.1B.2C.3D.4【答案】C【解析】如图是椭圆的图象,去掉点后,椭圆上每一点都有可能是函数的图象上点,如图象是弧和弧,则不是偶函数;的图象可能取弧,另外在弧上取一段,在弧上取一段,这样既不是奇函数,也不是偶函数;当然也可能是奇函数,也有可能是偶函数;当为偶函数时,值域不一定是,也不一定是;由图象的对称性,及当值域是时,函数一定是奇函数,因此②③⑤正确,选C.【考点】函数的奇偶性的定义.12.函数的定义域为__________。

高三数学复习(一) 函数的定义域和值域

高三数学复习(一) 函数的定义域和值域

高三数学复习(一) 函数的定义域和值域例1.(Ⅰ)(1)B A R x x x y y B R x x x y y A ⋂∈-==∈-+-==:},,|{},,23|{22求.(2)B A R x x x y y x B R x x x y y x A ⋂∈-==∈-+-==:},,|),{(},,23|),{(22求.例2:求函数y x x x x =-+-22564lg()的定义域。

例3: ① 已知)(2x f 的定义域为[-1, 1],求f (x )的定义域.② 已知f (x )的定义域为(0,1),021<<-a 求函数g (x )=f (x +a )+f (x -a )的定义域.练习: 1.函数f (x )=的定义域为 .11(,)32-2.函数2y 5x 9x 4=-+的定义域为 .144[,)(,1)(1,)255-+∞ 3.函数f (x )=x21-的定义域是( A )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)4.函数)34(log 1)(22-+-=x x x f 的定义域( A )A .(1,2)∪(2,3)B .),3()1,(+∞⋃-∞C .(1,3)D .[1,3]5. 设函数f(x)的定义域为[0,1],求函数f(x 2) 的定义域 [1,1]-6.若y=f(x)的定义域是[-2,4],则函数g(x)=f(x)+f(-x)的定义域是( ) A.[-1,3] B.[-3,1] C.[-2,2] D.[-1,1]7. 已知f x x x ()lg()=-+232的定义域为F ,g x x x ()lg()lg()=-+-12 的定义域为G ,求F G 。

(2,)+∞8、设函数2()lg(1)f x ax ax =++分别满足下列条件,求实数a 的取值范围(1)()f x 的定义域是R ;(2)()f x 的值域是R ;(3)()f x 的定义域为(-2,1);例4.已知f(x)是一次函数,且 f[f(x)]=x+2,求f(x).()1f x x +例5.已知f x xx()112=-,求f(x)的解析式 2()1x f x x =-例6.求函数解析式 (1)已知221)1(xx xxx f ++=+,求f(x);(2)f(x)是奇函数,g(x)是偶函数,并且f(x)+g(x)=11-x ,求f(x)、g(x);例7.设函数f(x)满足xxx f x x f +=++-1)1()1(2,其中x ≠0,x ∈R ,求f(x).练习:1. 已知f(x+1)=x 2+6x+2,则f(x)等于( A )A. x 2+4x-3B.x 2+3x-4C. x 2 +8x+3D.x 2+3x-8 2.已知一次函数f(x)满足f[f(x)]=4x+1,则f(x)=( C ) A. 2x+31 B. -2x-1 C. 2x+31或-2x-1 D. 2x+1或-2x-13.若g(x)=1-2x ,f[g(x)]=221xx -(x ≠0),则f(21)=( C )A . 1 B. 3 C. 15 D. 30 4.若f(x)满足关系式f(x)+2f(x1)=3x ,则f(x)的解析式为( A )A.f(x)=x2-x(x ≠0) B. f(x)=2x 2-x C.f(x)=x3 -x(x ≠0) D. f(x)=3x 3-x5.设f(x)=2x+3,g(x+2)=f(x),则g(x)=( B ) A.2x+1 B. 2x-1 C. 2x-3 D. 2x+76.已知f(x +1)=x+1,则函数f(x)的解析式为( C )A.f(x)=x 2B.f(x)=x 2+1(x ≥1)C.f(x)=x 2-2x+2(x ≥1)D.f(x)=x 2-2x(x ≥1) 7.已知f(x)=ax 2+bx+c ,若f(0)=0,且f(x+1)=f(x)+x+1,则f(x)=_______.211.22x x +8.设定义在N 上的函数f (x )满足f (n )=⎩⎨⎧-+)]18([13n f f n),2000(),2000(>≤n n 试求f (2002)的值9.已知函数f (x )=⎩⎨⎧<-≥-),2(2),2(2x x x 则f (lg30-lg3)=________;不等式xf (x -1)<10的解集是___________例8.函数y=x 2+2x+3(x ≤-1)的反函数是( C ) A .12--=x yB .12--±=x y C .12---=x yD .12---=x y例9.函数1ln(2++=x x y )的反函数是 ( C )A .2xxee y -+= B .2xxee y -+-= C .2xx ee y --=D .2xx ee y ---=例10.若f (x )=21+-x x ,则f -1(2)的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档