2016-2010数学花园探秘决赛试卷汇总——小中组

合集下载

2016年“数学花园探秘”科普活动决赛试题小中年级组A卷

2016年“数学花园探秘”科普活动决赛试题小中年级组A卷

2016年“数学花园探秘”科普活动决赛试题小中年级组A 卷一、填空题Ⅰ1.算式33333339876543++++++的计算结果是 .2.菲菲从一班转到了二班,蕾蕾从二班转到了一班.于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米.如果蕾蕾身高158厘米,菲菲身高140厘米,那么两个班共有学生 人.3.图中3个大三角形都是等边三角形,则图中共有 个三角形.4.今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面.于是得到:130、67、132、68……;那么这列数中第2016个数是 .二、填空题Ⅱ5.请将1~6分别填入右图的6个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有3条直线上各有3个圆圈,有两条直线上各有2个圆圈);那么两位数AB = .6.在A 、B 、C 三个连通的小水池中各放入若干条金鱼.若有12条金鱼从A 池游到C 池中,则C 池内的金鱼将是A 池的2倍.若有5条金鱼从B 池游到A 池中,则A 池与B 池的金鱼数将相等.此外,若有3条金鱼从B 池游到C 池中,则B 池与C 池的金鱼数也会相等.那么A 水池中原来有 条金鱼.7.如图,长方形ABCD的长AB为20厘米,宽BC为16厘米;长方形内放着两个重叠的正方形DEFG和BHIJ.已知三个阴影长方形的周长相等,那么长方形INFM的面积为平方厘米8.在下右图每个格子里填入数字1~5中的一个,使得每一行和每一列数字都不重复.每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(下左图给出了一个填1~4的例子,如下中图第3行从左到右四格依次是3,4,1,2).那么下右图中最下面一行的五个数字按照从左到右的顺序依次组成的五位数是.三、填空题Ⅲ9.用数字1至9组成一个没有重复数字的九位数ABCDEFGHI,要求AB、BC、CD、DE、EF、FG、GH、HI这八个两位数均能写成两个一位数的乘积;那么算式+的计算结果是.ABC+DEFGHI10.图③是由6个图①这样的模块拼成的.如果最底层已经给定一块的位置(如图②),那么剩下部分一共有种不同的拼法.11.甲、乙二人轮流从1~9这9个自然数中取不同的数,对方取过的数不能再取,谁取得的数中先有三个数成等差数列谁就获胜;甲先取了8,乙接着取了5;为了确保甲必胜,甲接下来取得一个数的所有可能的值的乘积是。

2016-2010数学花园探秘决赛试卷汇总——小中组

2016-2010数学花园探秘决赛试卷汇总——小中组

2016-2010数学花园探秘决赛试卷汇总——⼩中组2016年“数学花园探秘”科普活动决赛试题⼩中年级组A 卷⼀、填空题Ⅰ(每⼩题8分,共32分)1.算式33333339876543++++++的计算结果是.2.菲菲从⼀班转到了⼆班,蕾蕾从⼆班转到了⼀班。

于是⼀班学⽣的平均⾝⾼增加了2厘⽶,⼆班学⽣的平均⾝⾼减少了3厘⽶。

如果蕾蕾⾝⾼158厘⽶,菲菲⾝⾼140厘⽶,那么两个班共有学⽣⼈。

3.图中3个⼤三⾓形都是等边三⾓形,则图中共有个三⾓形.4.今天是1⽉30⽇,我们先写下130;后⾯写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后⾯,如果刚写下的数是奇数就把它乘以2再减去2写在后⾯。

于是得到:130、67、132、68;那么这列数中第2016个数是。

⼆、填空题Ⅱ(每⼩题10分,共40分)5.请将1~6分别填⼊右图的6个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有3条直线上各有3个圆圈,有两条直线上各有2个圆圈);那么两位数AB=.6.在A、B、C三个连通的⼩⽔池中各放⼊若⼲条⾦鱼.若有12条⾦鱼从A池游到C池中,则C池内的⾦鱼将是A池的2倍.若有5条⾦鱼从B池游到A池中,则A池与B池的⾦鱼数将相等.此外,若有3条⾦鱼从B池游到C池中,则B池与C池的⾦鱼数也会相等.那么A⽔池中原来有条⾦鱼.7.如图,长⽅形ABCD的长AB为20厘⽶,宽BC为16厘⽶;长⽅形内放着两个重叠的正⽅形DEFG和BHIJ.已知三个阴影长⽅形的周长相等,那么长⽅形INFM的⾯积为平⽅厘⽶。

8.在下右图每个格⼦⾥填⼊数字1~5中的⼀个,使得每⼀⾏和每⼀列数字都不重复.每个“L”状⼤格⼦跨了两⾏和两列,线上圆圈中的数表⽰相邻两个格⼦内数字的和(下左图给出了⼀个填1~4的例⼦,如下中图第3⾏从左到右四格依次是3,4,1,2).那么下右图中最下⾯⼀⾏的五个数字按照从左到右的顺序依次组成的五位数是.三、填空题Ⅲ(每⼩题12分,共48分)ABCDEFGHI,要求____AB、____BC、____CD、____DE、____EF、____FG、____GH、9.⽤数字1⾄9组成⼀个没有重复数字的九位数_______________________GHI的计算结果是.DEF+______ABC+______HI这⼋个两位数均能写成两个⼀位数的乘积;那么算式______10.图③是由6个图①这样的模块拼成的.如果最底层已经给定⼀块的位置(如图②),那么剩下部分⼀共有种不同的拼法.11.甲、⼄⼆⼈轮流从1~9这9个⾃然数中取不同的数,对⽅取过的数不能再取,谁取得的数中先有三个数成等差数列谁就获胜;甲先取了8,⼄接着取了5;为了确保甲必胜,甲接下来取得⼀个数的所有可能的值的乘积是。

2016年数学花园探秘五年级初赛(解析)_74

2016年数学花园探秘五年级初赛(解析)_74

2016年“数学花园探秘”科普活动五年级组初试试卷A 详解一.填空题Ⅰ(每小题8分,共32分)1. 算式()1912191912121219⎛⎫⨯-⨯÷- ⎪⎝⎭的计算结果是__________.【考点】计算,分数计算,整体约分 【难度】★ 【答案】228【分析】原式19191212(19191212)1219⨯-⨯=⨯-⨯÷⨯1219(19191212)19191212⨯=⨯-⨯⨯⨯-⨯1219228=⨯=2. 有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.如果经过8小时后细胞的个数为1284,那么,最开始的时候有__________个细胞. 【考点】计算,数列,递推 【难度】★★ 【答案】9【分析】方法一(逆推):128422644 ,64422324 ,32422164 ,1642284 ,842244 ,442224 ,242214 ,14229 .方法二(不动点/通项):若有4个细胞,则每小时细胞数目均不变,故知通项式为0(4)24n n a a ,故801284(4)24a ,09a .3. 如图,一道乘法竖式中已经填出了2、0、1、6,那么乘积是__________.×612【考点】数字谜,乘法竖式谜 【难度】★★ 【答案】6156【分析】第二个部分积小于第一个部分积,故第二乘数的十位比个位小,只能是1.进而第一部分积必为106□,第二部分积十位(即第一乘数十位)为0或1.若乘数为503,则503126036 ,百位不符合进位要求; 若乘数为508,则508126036 ,百位不符合进位要求; 若乘数为513,则513126156 ,符合要求;若乘数为518,则518126216 ,百位不符合进位要求. 综上,本题有唯一答案6156.4. 有一个数列,第一项为12,第二项为19,从第三项起,如果它的前两项和是奇数,那么该项就等于前两项的和,如果它的前两项和是偶数,该项就等于前两项的差(较大数减较小数).那么,这列数中第__________项第一次超过2016. 【考点】计算,数列,等差数列 【难度】★★★ 【答案】252【分析】即奇偶性不同求和,奇偶性相同求差.12、19、31、12、43、55、12、67、79、12、…可见凡是31n 项都是12,除去这些项,得到的数列即为首项为19,公差为12的等差数列.第167项1912(1671)2011 ,第168项1912(1681)2023 第一次超过2016,这个数列的第168项是原数列的第16823252 项.二.填空题Ⅱ(每小题10分,共40分)5. 四位数双成成双的所有因数中,有3个是质数,其它39个不是质数.那么,四位数成双双成有__________个因数.【考点】数论,因数个数定理及其逆用 【难度】★★★ 【答案】12【分析】由题意,双成成双恰有三种质因数,其中必有11,设11x y z p q 双成成双=⨯⨯,(1)(1)(1)42x y z +++=,得双成成双最小是12611326336⨯⨯=,其他可能值都至少是五位数,故有唯一解6336双成成双=,进而211366331137成双双成==⨯⨯,有(21)(11)(11)12+⨯+⨯+=个因数.6. 右图中,A 、B 、C 、D 、E 是正五边形各边的中点,那么,图中共有__________个梯形.ECBA【考点】计数,几何计数 【难度】★★★ 【答案】35【分析】图中有5组平行线,例如AB 、EC 及过D 的边(所在直线设为l )是一组平行线,AB 、EC 之间枚举知有2个梯形;AB 、l 之间没有梯形;EC 、l 之间枚举知有5个梯形,故这组平行线共有7个梯形.梯形总数为7535⨯=个.7.对于自然数N,如果在1~9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是__________.【考点】数论,分解质因数【难度】★★【答案】2016【分析】6个数中必有偶数,故“六合数”是偶数,枚举知:=⨯⨯⨯只能被1、2、7整除,不符要求;20022711132=⨯⨯只能被1、2、3、4、6整除,不符要求;200423167200621759=⨯⨯只能被1、2整除,不符要求;3=⨯只能被1、2、4、8整除,不符要求;20082251=⨯⨯⨯只能被1、2、3、5、6整除,不符要求;2010235672=⨯只能被1、2、4整除,不符要求;20122503201421953=⨯⨯只能被1、2整除,不符要求;52=⨯⨯能被1、2、3、4、6、7、8、9整除,符合要求.20162378.如图,魔术师在一个转盘上的16个位置写下来了1~16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式.魔术师睁开眼,说:“选到偶数的观众请举手.”这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们的选的数了!”,你认为甲和丁选的数的乘积是__________.【考点】组合,进位制,构造【难度】★★★【答案】120【分析】甲、乙、丙、丁四个人所选数分别为偶数、奇数、奇数、偶数,图中连续的位置只有10、11、9、12符合要求,所以甲、丁所选的数必为10和12,其积为1012120⨯=.其实连续四个数有16种取法,恰好连续四个数的奇偶情况也是16种,此图的任何连续四个数的奇偶情况都不同,这是魔术的数学原理.三.填空题Ⅲ(每小题12分,共48分)9. 正八边形边长是16,那么阴影部分的面积是__________.【考点】几何,正八边形 【难度】★★★★ 【答案】512【分析】如图,连接正八边形的对角线,可知其中12S S =,34S S =,所以图中左、右两个阴影部分的面积之和等于中间正方形的面积,也就是1616256⨯=.同理,上、下两个阴影部分的面积之和也等于256.所以阴影部分的总面积是2562512⨯=.10. 某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A 、B 两地同时出发,相向而行,在距离A 地24千米的地方相遇.如果乙早出发20分钟,两人将在距离A 地20千米的地方相遇;如果甲晚出发20分钟,两人恰好在AB 中点相遇.那么,AB 两地相距__________千米. 【考点】行程,方程行程 【难度】★★★★ 【答案】42【分析】同时出发的情况中,由于两人要减速也是同时减速(当然也许两人并未减速过),故无论哪个时段,甲乙的速度比是固定的,所以任意时段行走的距离比也是固定的.总之,相遇点左、右距A 、B 的距离比代表了两人的初始速度比.乙先行的情况中,乙所先行的20分钟是以原速运动的,之后的过程类似上一段分析.故设甲、乙原速分别为x 、y 千米每分,全长S 千米,有方程:2420242020x y S S y ==---,得120S y =. 甲晚行的情况中,乙先以原速独行了10分钟,又以原速的一半独行了10分钟,之后的过程类似第一段分析.有方程:240.5241050.5x S y S S y y S ==----,即242430S S S y=--,将120S y =代入,得14513y =-,故207y =,12042S y ==.11.在空格里填入数字1~5,使得每行和每列数字不重复.每个除法从上向下或者从左到右运算都能够整除.问:第二行的前三个数依次是__________.【考点】数独【难度】★★【答案】531【分析】首先确定下图1中的数字;再确定出下图2中的数字;最终填出此图中所有的数字(如图3).所以所求的三个数依次为531.图1 图2 图3。

“迎春杯”数学花园探秘决赛试卷(小高组d卷)

“迎春杯”数学花园探秘决赛试卷(小高组d卷)

2016年“迎春杯”数学花园探秘决赛试卷(小高组D卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016×+的计算结果是.2.(8分)一个三位数,在适当位置加上小数点后得到一个小数,这个小数比原来的三位数减少了201.6;那么原三位数是.3.(8分)帅帅七天背了一百多个单词,前三天所背单词比后四天所背单词量少20%,前四天所背单词量比后三天所背单词量多20%;那么帅帅七天一共背了个单词.4.(8分)在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.二、填空题(共5小题,每小题10分,满分50分)6.(10分)商店有大白和小黄两种玩具,共60个,已知大白与小黄的单价比是6:5(单价均为整数元),把它们全部卖出后共得2016元.那么大白有个.7.(10分)有6块砖如图所放,当某块砖上方没有砖压着它时才能被拿走;明明要把所有砖拿走,拿砖的顺序一共有种.8.(10分)有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是.9.(10分)如图,一个凹五边形有四条边的长度已经标出(单位:厘米),其中有三个角是直角;那么五边形的面积是平方厘米.10.(10分)郭老师有一块蛋糕要分给4或5名小朋友,于是郭老师把蛋糕切成若干块,其中每块不一定一样大;这样无论是来4名小朋友还是5名小朋友,都可以取其中的若干块使得每个人分得的一样多,那么郭老师至少把蛋糕分成块.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,一个正18边形的面积是2016平方厘米,那么图中的阴影长方形的面积是平方厘米.12.(12分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是.13.(12分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是.14.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走分钟到达B地.2016年“迎春杯”数学花园探秘决赛试卷(小高组D卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016×+的计算结果是2015 .【解答】解:2016×+=(2015+1)×+=2015×++=2014+(+)=2014+1=2015;故答案为:20152.(8分)一个三位数,在适当位置加上小数点后得到一个小数,这个小数比原来的三位数减少了201.6;那么原三位数是224 .【解答】解:201.6÷(10﹣1)=201.6÷9=22.4224×10=224,答:这个三位数是224.故答案为:224.3.(8分)帅帅七天背了一百多个单词,前三天所背单词比后四天所背单词量少20%,前四天所背单词量比后三天所背单词量多20%;那么帅帅七天一共背了198 个单词.【解答】解:根据分析,设前三天背的单词量x,第四天背的单词量y,和后三天背的单词量z,则:x=;x+y=,解得:9y=2z,5x=22y⇒x:y:z=44:10:45 又100<x+y+z<200,设x=44k,则y=10k,z=45k100<44k+10k+45k<200⇒100<99k<200只有当k=2时,才能满足题意,此时七天一共背的单词量为:x+y+z=99k =99×2=198故答案为:1984.(8分)在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是53036 .【解答】解:依题意可知乘积的结果的个位数字分别是2,1,7.根据尾数是1的共有1×1,3×7,9×9.再根据尾数是7的乘积是1×7,3×9,两次都有数字3,那么优先考虑除数的尾数是3的情况.那么商分别是4079.再根据除数与7的积是两位数,那么首位数字只能是1,即13×4079+9=53036故答案为:530365.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601 .【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A =n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.二、填空题(共5小题,每小题10分,满分50分)6.(10分)商店有大白和小黄两种玩具,共60个,已知大白与小黄的单价比是6:5(单价均为整数元),把它们全部卖出后共得2016元.那么大白有36 个.【解答】解:依题意可知极端法:如果全是6元和5元,那么最大是360元不够2016.再扩大5倍.如果是30和25元那么最大是1800元不够2016;如果是36元和30元,最大正好是2160元.符合题意;设大白有x个,小黄有60﹣x个.36x+30(60﹣x)=2016解得:x=36故答案为:367.(10分)有6块砖如图所放,当某块砖上方没有砖压着它时才能被拿走;明明要把所有砖拿走,拿砖的顺序一共有16 种.【解答】解:如图,,首先要拿走1号砖,然后可以拿走2号砖或3号砖,(1)拿走2号砖,接着拿走3号砖时,拿走4号、5号、6号砖的顺序有:=3×2×1=6(种)(2)拿走2号砖,接着拿走4号砖时,有两种拿砖的顺序:2号→4号→3号→5号,2号→4号→3号→6号.(6+2)×2=8×2=16(种)答:拿砖的顺序一共有16种.故答案为:16.8.(10分)有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是120 .【解答】解:根据分析,先确定A,∵一位数为完全平方数的只有1,4,9,而其中能构成平方数的两位数只有49,∴A=49;∵质数B的两个数字之和为质数且每个数字都是质数,∴B的十位上数字只能是2,而个位只能是3,故B=23;∵合数C的两数字之差是合数且每个数字都是合数,则这个数字只能是:4,6,8,9,C介于A、B之间即,∴C=48,故A+B+C=49+23+48=120,故答案是:120.9.(10分)如图,一个凹五边形有四条边的长度已经标出(单位:厘米),其中有三个角是直角;那么五边形的面积是81 平方厘米.【解答】解:根据凹五边形中由3厘米和9厘米的线段组成的角是直角,可知是把一个长方形沿一个对折后形成的图形(12+9)×9÷2﹣3×9÷2=21×9÷2﹣3×9÷2=94.5﹣13.5=81(平方厘米)答:这个五边形的面积是81平方厘米.故答案为:81.10.(10分)郭老师有一块蛋糕要分给4或5名小朋友,于是郭老师把蛋糕切成若干块,其中每块不一定一样大;这样无论是来4名小朋友还是5名小朋友,都可以取其中的若干块使得每个人分得的一样多,那么郭老师至少把蛋糕分成8 块.【解答】解:由题意,把蛋糕切三刀,横竖纵各一刀,四大块各占,四小块的和占,答:郭老师至少把蛋糕分成8块.故答案为8.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,一个正18边形的面积是2016平方厘米,那么图中的阴影长方形的面积是448 平方厘米.【解答】解:2016÷18×4=112×4=448(平方厘米)答:图中的阴影长方形的面积是448平方厘米.故答案为:448.12.(12分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是7 .【解答】解:根据丙说:“我拿到的两个数都是合数,但它们互质”可得,是4、8、9、10中的两张,丙抽取的两张是9和4、8、10中的一张;根据乙说:“我拿到的两个数不互质,也不是倍数关系”可得,肯定没有2,那么只能是4、6、8、10中的两个,即4和6、4和10、6和8、6和10、8和10;先假设,丙抽取的两张是9和4;乙抽取的两张是8和6,还剩下,2、3、5、7、10,此时,先满足甲说:“我拿到的两个数互质,因为它们相邻”,满足此条件的是2、3;则,还剩下5、7、10,其中满足丁说:“我拿到的两个数是倍数关系,它们也不互质”是5和10,所以,最后还剩下数字7.答:剩下的一张卡片上写的数是7.故答案为:7.13.(12分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是46123 .【解答】解:依题意可知:首先是第二行第二列的数字只能是5,第三行第四列只能是6.继续推理可知答案如图所示:故答案为:46123.14.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走12 分钟到达B地.【解答】解:设甲、乙的速度分别为v甲、v乙,当甲走了全程的时被乙追上,时间为t小时,则,v甲(t+)=v乙t=S,∴v甲=,v乙=,又v甲(t+++)+v乙=S代入整理可得t=小时=24分钟,所以甲行全程需要108分钟,又相遇后乙再次来到追上甲的地点的时间为24分钟,即又甲行了24分钟,总共行了72+24=96分钟,所以甲还要走108﹣96=12分钟.故答案为12分钟.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:15:23;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

2016年“迎春杯”数学花园探秘决赛试卷(小高组a卷)(20200531140335)

2016年“迎春杯”数学花园探秘决赛试卷(小高组a卷)(20200531140335)

2016年“迎春杯”数学花园探秘决赛试卷(小高组A卷)一、填空题(共5小题,每小题8分,满分40分)
1.(8分)算式的计算结果是.
2.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高%.
3.(8分)小明发现今年的年份2016是一个非常好的数,它既是6的倍数,又是8的倍数,还是9的倍数,那么下一个既是6的倍数,又是8的倍数,还是9的倍数的年份是年.
4.(8分)在电影《大圣归来》中,有一幕孙悟空大战山妖,有部分山妖被打倒,打倒的比站着的多三分之一;过了一会了再有2个山妖打倒,但是又站起来了10个山妖,此时站着的比打倒的多四分之一,那么现在站着的山妖有个.
5.(8分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五
位数是.
二、填空题(共5小题,每小题10分,满分50分)
6.请将0﹣9分别填入下面算式的方框中,每个数字恰用一次,或已将“1”、“3”、“0”填入,若等式成立,那么等式中唯一的四位被减数是.
7.2016名同学排成一排,从左到右依次按照1,2…,n报数(n≥2),若第2016名同学所报的数恰是n,则给这轮中所有报n的同学发放一件新年礼物.那么无论n取何值,有名同学将不可能得到新年礼物.
第1页(共13页)。

全国“数学花园探秘”(原迎春杯)数学竞赛(2016)

全国“数学花园探秘”(原迎春杯)数学竞赛(2016)

全国“数学花园探秘”(原“迎春杯”)数学竞赛(2016年)一、填空题I (每小题8分,共32分)1.算式210×6-52×5的计算结果是 。

2.传说,能在三叶草中找到四叶草的人,都是幸运之人。

一天,佳佳在大森林中摘取三叶草,当她摘到第一棵四叶草时,发现摘到的草刚好共有1000片叶子。

那么,她已经有 棵三叶草。

3.再过12天就到2016年了,昊昊感慨地说:“我到目前只经过2个闰年,并且我出生的年份是9的倍数。

”那么2016年昊昊是 岁。

4.如图是上幼儿园的小毛球写的“中国”两个字,图中一共能数出 个长方形。

二、填空题Ⅱ(每小题10分,共40分)5.在下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字:2015=+探秘数学花园,探秘+1+2+3+…+10=花园,那么四位数数学花园= 。

6.有一棵神奇的树上长了63个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个。

但如果某天树上的果子数量少于这一天本应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按原规律进行新的一轮。

如此继续,那么第 天树上的果子会都掉光。

7.库克叔叔的帽子落在大门前,还冒着烟。

原来有人从窗户扔出来一根爆竹,掉下来的爆竹把帽子点燃了。

事故发生的时候有5个男孩都向外探出了脑袋,当然这5个男孩谁也不愿意承认是自己干的,现在其中四个男孩说的都是真话,有一个人说的都是谎话,说谎的人就是扔爆竹的。

那么说谎者的房间号是 。

巴斯特:“不是我,库克叔叔大叫的时候我才知道发生了什么。

奥克:“不是我,马尔科可以为我作证,我什么也没扔。

”马尔科:“不是奥克,不是从上面扔下去的,我什么也没看见,也没扔东西。

”科诺比:“但是我看到了,上面有人扔了东西。

”马尔夫:“是的,有人从上面扔了东西,从我头顶飞过,紧贴着我的头皮。

”8.在算式1口2口3口6口12的口中填入“+”或“-”号,共可得到 种不同的自然数结果。

数学花园探秘科普活动小中年级组决赛试题答卷A

数学花园探秘科普活动小中年级组决赛试题答卷A

数学花园探秘科普活动小中年级组决赛试题答卷A文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]2017年“数学花园探秘”科普活动小中年级组决赛试卷A(测评时间:2017年1月1日10:30—11:30)1.算式67×67—34×34+67+34的计算结果是________.2.在横式ABC×AB+C+D=2017中相同的字母代表相同的数字,不同的字母代表不同的数字.若等式成立,那么AB代表的两位数是_____.3.右图中有_________个平行四边形.4.小兔与蜘蛛共50名学员参加踢踏舞训练营.一段时间后,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔_____只.(注:蜘蛛有8只脚)5.一组由两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差_________.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7.现在从空间一点看一个骰子,能看到的所有点数之和最小是1,最大是15(4+5+6=15),那么在1~15中,不可能看到的点数和是________.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子.几名同学依次轮流向格子中放棋子,每人每次只放一枚且都必须放在相邻两个棋子正中间的格子中(如从左到右第3格、第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但如第4格、第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有________名同学.8.蕾蕾买了一些山羊和绵羊.如果她多买2只山羊,那么每只羊的平均价格会增加60元;如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了____只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班3天,每天恰有3位安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙了,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是(如A第2、6、10次值班分别在12月3、12、17日,则答案为31217)(17年第9题) 10.下图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为________平方厘米.(17年第10题)11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道.开始时,一个警察和一个小偷在两个不同房间中.每一次警察从所在房间沿着地上通道转移到相邻的房间;同时小偷从所在房间沿着地下通道转移到相邻的房间.如果警察和小偷转移了3次都没有在任何房间相遇,那么,他们有______种不同的走法.(2017年第11题)12.你认为本试卷中一道最佳试题是第__________题(答题范围为01~11);你认为本试卷整体的难度级别是__________(最简单为“1”,最难为“9”,答题范围为1~9);你认为本试卷中一道最难试题是第__________题;(答题范围为01~11).(所有答题范围内的作答均可得分,所有的评定都将视为本人对本试卷的有效评定,不作答或者超出作答范围不得分.)。

2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)

2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)

2016年“迎春杯”数学花园探秘决赛试卷(小中组C 卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(分)算式(1+3+5+1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63)的计算结果是)的计算结果是)的计算结果是. 2.(8分)沿长方形ABCD 中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,厘米,EF=GH=2EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为成的“凹凸”两部分的周长和为厘米. 3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生厘米,那么两个班共有学生人. 4.(8分)大正方形ABCD 的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB 边从A 滑动到B ,再从B 沿着对角线BD 滑动到D ,再从D 沿着DC 边滑动到C ;小正方形经过的面积是;小正方形经过的面积是平方厘米.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130130;后面写数的规则是:如果刚写;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:写在后面,于是得到:130130130、、6767、、132132、68…,那么这列数、68…,那么这列数中第2016个数是个数是. 6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是能得到的最小结果是 .7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐倍,那么仙山上共有九尾狐只. 8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有,那么剩下部分一共有种不同的拼法.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是的顺序依次组成的四位数是.1010..(12分)自然数1、2、3、…、、…、201420142014、、20152015、、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉1010、、1111、、1212、、1313,保留,保留1414;…;;…;即第几步操作就先依次划掉几个数,即第几步操作就先依次划掉几个数,再保留再保留1个数,个数,这样操作,这样操作,这样操作,直到将所有的数直到将所有的数划掉为止,那么最后一个被划掉的数是划掉为止,那么最后一个被划掉的数是. 1111..(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A 、B 、C 、D 、E ,那么五位数ABCDE= ABCDE=.2016年“迎春杯”数学花园探秘决赛试卷(小中组C 卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(分)算式(1+3+5+1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63)的计算结果是)的计算结果是)的计算结果是 9 9 ..【分析】首先根据等差数列的求和公式,分别求出1+3+5+1+3+5+……+89+89、、1+2+3+1+2+3+……+63的值各是多少;然后把它们相减,求出算式(1+3+5+1+3+5+……+89+89))﹣(1+2+3+1+2+3+……+63+63))的计算结果是多少即可.【解答】解:(1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63))=(1+891+89)×)×)×[[(8989﹣﹣1)÷)÷2+1]2+1]2+1]÷÷2﹣(﹣(1+631+631+63)×)×)×636363÷÷2=90=90××4545÷÷2﹣6464××6363÷÷2=2025=2025﹣﹣2016=9故答案为:故答案为:99.【点评】此题主要考查了加减法中的巧算问题,此题主要考查了加减法中的巧算问题,要熟练掌握,要熟练掌握,要熟练掌握,解答此题的关键是解答此题的关键是要明确等差数列的求和公式:和要明确等差数列的求和公式:和==(首项(首项++末项)×项数÷末项)×项数÷22.2.(8分)沿长方形ABCD 中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,厘米,EF=GH=2EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为成的“凹凸”两部分的周长和为 52 52 厘米.厘米.【分析】观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2(ME+FH+GN ME+FH+GN))+2+2((EF+GH EF+GH)). 【解答】解:观察图象可知:剪成的“凹凸”两部分的周长和解:观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2=AB+CD+AD+BC+2(ME+FH+GN ME+FH+GN))+2+2((EF+GH EF+GH))=6+6+10+10+2=6+6+10+10+2××6+26+2××4=52cm =52cm,,故答案为52【点评】本题考查剪切和拼接、本题考查剪切和拼接、长方形的性质等知识,长方形的性质等知识,长方形的性质等知识,解题的关键是学会用整体解题的关键是学会用整体的思想思考问题.3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生厘米,那么两个班共有学生 15 15 人.人.【分析】首先用蕾蕾的身高减去蓉蓉的身高,首先用蕾蕾的身高减去蓉蓉的身高,求出两人的身高的差是多少;求出两人的身高的差是多少;求出两人的身高的差是多少;然后然后分别用两人的身高的差除以2、3,求出一班、二班的人数各是多少,再把一班、二班的人数相加,求出两个班共有学生多少人即可.【解答】解:解:158158158﹣﹣140=18140=18(厘米)(厘米), 1818÷÷2+182+18÷÷3=9+6=15=15(人)(人)答:两个班共有学生15人.故答案为:故答案为:151515..【点评】此题主要考查了平均数问题,此题主要考查了平均数问题,要熟练掌握,要熟练掌握,要熟练掌握,解答此题的关键是分别求出解答此题的关键是分别求出一班、二班的人数各是多少.4.(8分)大正方形ABCD 的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB 边从A 滑动到B ,再从B 沿着对角线BD 滑动到D ,再从D 沿着DC 边滑动到C ;小正方形经过的面积是;小正方形经过的面积是 36 36 平方厘米.平方厘米.【分析】可以将图画出,可以将图画出,用虚线表示小正方形经过的区域,用虚线表示小正方形经过的区域,用虚线表示小正方形经过的区域,可以用大正方形的面可以用大正方形的面积减去其它空白部分的面积,而其它空白部分是两个相等的直角三角形,刚好可以拼接成一个边长为1010﹣﹣2=8厘米的正方形,故不难求得小正方形经过的区域的面积.【解答】解:根据分析,如图所示,a 和b 部分的面积刚好可以拼接成一个边长为:部分的面积刚好可以拼接成一个边长为:101010﹣﹣2×1=8厘米的正方形, 小正方形经过的区域的面积小正方形经过的区域的面积=10=10=10××1010﹣﹣8×8=368=36(平方厘米)(平方厘米). 故答案是;故答案是;363636..【点评】本题考查剪切和拼接,突破点是:利用剪切和拼接,将图形简化,不难求得小正方形经过的区域的面积.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130130;后面写数的规则是:如果刚写;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:写在后面,于是得到:130130130、、6767、、132132、68…,那么这列数、68…,那么这列数中第2016个数是个数是 6 6 ..【分析】首先发现数字求的是2016项,那么一定是有规律的计算,找到周期规律即可.【解答】解:依题意可知:数字规律是130130、、6767、、132132、、6868、、3636、、2020、、1212、、8、6、5、8、6、5、8、6、5、 去掉钱7项是循环周期数列20162016﹣﹣7=20097=2009..每3个数字一个循环20092009÷3=667…2÷3=667…2 循环数列的第二个数字就是6.故答案为:故答案为:66【点评】本题考查对数字规律的理解和运用,关键问题是根据枚举法找到周期规律.问题解决.6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是能得到的最小结果是 342 342 ..【分析】要使得数最小,由于有乘法,所以两个两位数,要用最小的四个数字1、2、3、4组成,且最高位放最小的数字;剩下的为5×6;据此解答即可.【解答】解:最小的1和2,分别放在十位上,剩下的3与1组成1313,,2和4组成2424,最后,最后5和6组成算式5×6,所以得数最小是:1313××24+524+5××6=312+30=342答:能得到的最小结果是答:能得到的最小结果是 342 342. 故答案为:故答案为:342342342..【点评】本题重点是理解,要使两个数的积最小,尽量把小的数字放在最高位上.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐倍,那么仙山上共有九尾狐 14 14 只.只.【分析】首先根据题意,设仙山上共有九尾狐x 只,九头鸟y 只,然后根据:九尾狐的数量×尾狐的数量×9+9+9+九头鸟的数量﹣九头鸟的数量﹣九头鸟的数量﹣1=[1=[1=[(九头鸟的数量﹣(九头鸟的数量﹣(九头鸟的数量﹣11)×)×9+9+9+九尾狐的数量九尾狐的数量九尾狐的数量]]×4,(九尾狐的数量﹣(九尾狐的数量﹣11)×)×9+9+9+九头鸟的数量九头鸟的数量九头鸟的数量=[=[=[九头鸟的数量×九头鸟的数量×九头鸟的数量×9+9+9+九尾狐的数九尾狐的数量﹣量﹣1]1]1]××3,列出二元一次方程组,求出仙山上共有九尾狐多少只即可.【解答】解:设仙山上共有九尾狐x 只,九头鸟y 只, 则由(由(11),可得:,可得:x x ﹣7y+7=07y+7=0((3)由(由(22),可得:,可得:3x 3x 3x﹣﹣13y 13y﹣﹣3=03=0((4)(4)×)×77﹣(﹣(33)×)×131313,可得,可得8x ﹣112=08x 8x﹣﹣112+112=0+1128x=1128x ÷8=1128=112÷÷8x=14答:仙山上共有九尾狐14只.故答案为:故答案为:141414..【点评】此题主要考查了差倍问题,考查了分析推理能力的应用,要熟练掌握,首先要把题意弄清,再根据等量关系列出方程组解答即可.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有,那么剩下部分一共有 2 2种不同的拼法.【分析】因最底层已经给定两块的位置,因最底层已经给定两块的位置,且拼成生图③是上下两层的,且拼成生图③是上下两层的,且拼成生图③是上下两层的,所以剩下所以剩下部分的拼法有只能是把图①立起来拼,且两个一组的在上面,从一个缺口处两块的位置有两种拼法,所以共有两种拼法.【解答】解:如图:答:剩下部分一共有2种不同的拼法.故答案为:故答案为:22.【点评】本题主要考查了学生对图形拼法的掌握情况,重点是根据最底层给定的两块的位置,再进行拼.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是的顺序依次组成的四位数是 2143 2143 ..【分析】按照题目要求,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和填入具体的数字,即可得出结论.【解答】解:如图所示,根据每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和,由于1+2=31+2=3,,4+2=64+2=6,,3+2=53+2=5,结合每一行,结合每一行和每一列数字都不重复,可得最下面一行的两个数字按从左到右的顺序依次组成的四位数是21432143..故答案为21432143..【点评】本题考查凑数字,考查学生的动手能力,正确理解题意,得出图形是关键.1010..(12分)自然数1、2、3、…、、…、201420142014、、20152015、、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉1010、、1111、、1212、、1313,保留,保留1414;…;;…;即第几步操作就先依次划掉几个数,即第几步操作就先依次划掉几个数,再保留再保留1个数,个数,这样操作,这样操作,这样操作,直到将所有的数直到将所有的数划掉为止,那么最后一个被划掉的数是划掉为止,那么最后一个被划掉的数是 2015 2015 ..【分析】首先分析题意首项数字保留的是2,可分析出保留的数字的规律,进而得出最后一个保留的数字是多少.【解答】解:依题意可知:第一轮保留的数字是2,5,9,…那么第一轮保留的最大数字为:2+3+4+2+3+4+……+n=当n=63时,数列和是20152015.说明.说明2015是保留的数字.此时数字没有全部划掉还需要继续划.此时数字没有全部划掉还需要继续划.但由于是圆圈,但由于是圆圈,但由于是圆圈,继续划掉的话,继续划掉的话,继续划掉的话,划掉的顺划掉的顺序是20162016,,2,5,9…,这次是第63次操作,次操作,20152015是最后一个被划掉的. 故答案为:故答案为:201520152015..【点评】本题考查对数字问题的理解和运用,关键问题是理解数字和的规律即运用.问题解决.1111..(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A 、B 、C 、D 、E ,那么五位数ABCDE= ABCDE= 25649 25649 25649 ..【分析】首先分析新二只和新三只能放在哪一个狗舍,推理出原来的不相邻的狗舍位置继续推理即可求解.【解答】解:依题意可知:①首先第一只小狗在2号狗舍.第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;说明第2只小狗旁边进来2只小狗.小狗入住时都恰好有2只小狗喊一声,所以新2号小狗不能在角落1,3,6,7,8,9狗舍.只能在5号狗舍.②第4只新入住的小狗住4号狗舍,它没喊过;小狗入住时都恰好有2只小狗喊一声说明1和7是有一个是空的,如果是1空那么小狗舍会相邻.只能是7空.③新2号小狗喊2声,那么说明在6号或者8号入住一只小狗原来也是有1只小狗.那么只能是8号是原来的,号是原来的,66号是新入住的.④那么原来的三个不相邻的狗舍就是在1,3,8狗舍.第五只在9号. 故答案为:故答案为:2564925649【点评】本题考查对逻辑推理的理解和运用,关键问题是找到新2和新3的位置.问题解决.。

2016年“数学花园探秘”决赛小中D卷

2016年“数学花园探秘”决赛小中D卷

2016年“数学花园探秘”科普活动小学中年级组决赛试卷D(测评时间:2016年1月30日10:30—11:30)一.填空题Ⅰ(每小题8分,共32分)1. 若2016=+++A A AAA AAA ,则数字A 是 .2. 沿长方形ABCD 中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”,已知长方形长AD=10厘米,宽AB =6厘米,EF=GH =2厘米;那么剪成的“凹凸”两部分的周长和为厘米.3. 构成等差数列的16个自然数从小到大排成一列,其中前9个的和与后7个的和都是2016;那么这列自然数中,最大的是.4. 老师给孩子们发水果;苹果数量是梨的2倍多5个,桃子是苹果的3倍,桃子是梨的7倍;那么苹果、梨、桃子共有 个.二.填空题Ⅱ(每小题10分,共40分)5. 如图,一张A4纸的长为29厘米,宽为21厘米;将四个角如图进行折叠(图中给出的是一个角的折叠,每次折完后都打开),最后四条折痕会围成一个正方形,那么这个正方形的面积是 平方厘米.6. 今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面.于是得到:130、67、132、68……;那么这列数中第2016个数是 .7. 图③是由6个图①这样的模块拼成的.如果最底层已经给定两块的位置(如图②),那么剩下部分一共有种不同的拼法.8.在如图的乘法竖式中,每一个“□”和英文字母都代表一个数字;其中相同的字母代表相同的数字,不同的字母代表不同的数字,而“□”中可以填写任意的数字.已知P=6,那么五位数HAPPY是.三.填空题Ⅲ(每小题12分,共48分)9.甲、乙、丙、丁四人今年的年龄是互不相同的两位整数,都不到16岁.他们每人说了如下的三句话,老大、老二、老三、老四(按年龄算)依次说了3句、2句、1句、0句真话.甲:“丁今年15岁,丙是老三,我们四人去年的年龄奇偶性全相同.”乙:“甲今年的年龄是偶数,我和丙差奇数岁,明年我们四人的年龄和不到50岁.”丙:“丁是老大,我是老二,甲是老三.”丁:“我们四人前年的年龄恰好是2个奇数2个偶数,乙年龄最小,甲比丙大”那么丙今年岁.10.12个边长为1厘米的等边三角形拼成右图,从点A出发,到点B,不允许走重复路线,最多能走厘米.11.在下右图每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复.每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(下左图给出了一个填1~3的例子,如下中图第3行从左到右三格依次为2,3,1).那么下右图中最下面一行的四个数字按从左到右的顺序依次组成的四位数是.26。

2016数学花园探秘五年级网赛试题解析

2016数学花园探秘五年级网赛试题解析

2016年“数学花园探秘”网络评选活动五年级组详解一.填空题(每小题8分,共24分)1. 为了预防雾霾,老师给班上的同学平均分发口罩,共发下了720个.如果每个人多发2个,那么将会有5个同学领不到口罩,那么班上有__________名同学.【答案】45【解析】即720的因数中满足720(2)(5)a b a b =⨯=+⨯-的一对.枚举知16451840⨯=⨯满足要求.2. 右图中,两个边长为8的正方形如图摆放,A 、B 为正方形的中心.那么,正方形CDEF 的面积是__________.【答案】80【解析】观察图形最左边的直角三角形,根据勾股定理,所求面积为228480+=.3. 右面乘法算式的乘积是__________.×621【答案】10260【解析】两个乘数至少有一个的个位是5,但若第一乘数的个位是5,25□的倍数的十位不可能是1,故只能第二乘数的个位是5,第一乘数的个位是偶数,且第二乘数的十位小于个位. 20□无法得到十位为1的部分积;22□只有乘以5才能得到十位为1的部分积,可两个部分积位数不同不能乘数都是5; 249□⨯能得到十位为1的部分积,但95>不符要求; 26□无法得到十位为1的部分积;284□⨯能得到十位为1的部分积,符合要求.故乘法算式为284516□□□□⨯=,为了满足部分积的位数需求(或者通过估算分析亦可),只能228451140912010260⨯=+=.二.填空题(每小题10分,共30分)4. 如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如:3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.现在有一对孪生质数,它们数字和的最大公因数大于2,那么,这对孪生质数的和最小是__________. 【答案】120【解析】两数差2,若加2不进位,则两数数字和也差2,依题意这是不可能的,故必然进位,这两数分别是109a +和10(1)1a ++,若只进一位(为了找最小值,也应该优先考虑进1位),则数字和相差7(加2再减9),故数字和的最大公因数为7.个位是1且数字和是7的倍数的数,最小是61,考察59和61,满足要求.5961120+=.5. 在一个圆上依顺时针方向,写了268个数(可以相同),如果位置连续的20个数的和都是75,并且第17个数是3,第83个数是4,第144个数是6,求第210个数是__________. 【答案】2【解析】设第n 个数为n a ,若n 大于268,则n k a a =,其中k 是n 除以268的余数.由题意,2040n n n a a a ++=== .两条规则结合可知:凡是编号能表示成26820a b -形式或20268x y -形式的数都相等,根据最大公因数性质,这样的数其实就是(268,20)即4的倍数. 故159172653a a a a a ======= ; 3711832674a a a a a ======= ; 48121442686a a a a a ======= .设2610210266a a a a a m ======= ,则5(346)75m +++=,解得2m =.6. 如图所示,一只小虫子沿着六边形的边从A 爬到B ,图中标箭头的边沿箭头单向通过,未标箭头的边双向均可通过,不能走重复路线,那么,共有__________条不同路径. 【答案】100【解析】若去掉两个反箭头,易知方法数为2242264⨯⨯⨯⨯=种.若只走左边的反箭头,有2种走到反箭头的方法,之后又有222⨯⨯种方法,共222216⨯⨯⨯=种方法;若只走右边的反箭头,根据起止点的对称性,亦有16种方法,共32种方法.若两个反箭头都走,走到左边的反箭头,有2种方法,然后过中间乘以2,但是再走到右边的反箭头的方法唯一,之后走到B 的方法也唯一,有22114⨯⨯⨯=种方法. 综上,共64324100++=种方法.三.填空题(每小题15分,共30分)7. 如图,一个面积为2016的长方形中放了8个同样大小的正十二边形,那么红色部分面积之和是__________平方厘米.【答案】189【解析】红色部分即为右图中正方形面积与正十二边形面积差的3倍,易求正方形面积为20168252÷=.设正十二边形外接圆半径的长度为r 即OA OB OC r ===,则24252r =,263r =.根据正十二边形的角度性质可知三角形OAC 是正三角形,AC r =,且AC 与OB 垂直,故266(2)3189OABC S S r r r 正十二边形==⨯⨯÷==.所以,红色部分面积为 (252-189)×3=1898. 甲从A 地出发匀速去B 地,在AB 中点C 地被从A 地晚出发10分钟的乙追上;乙又行了280米,立即调头,再行一段与甲迎面相遇,这时甲已离开C 地6分钟;结果当甲到B 地时,乙恰好回到A 地.如果乙的速度也始终未变,那么A 、B 两地间的路程为__________米. 【答案】2240 【解析】如图,乙行AC 比甲行AC 少用10分钟; 因为AC =BC ,那么乙行CA 比甲行CB 也少用10分钟,这10分钟内乙C →D →C ;甲C →E 用6分钟,那么乙C →D →E 也用6分钟,从而乙E →C 用10-6=4分钟;所以CE : (CD+DE)=4:6=2:3,即甲乙速度比为2:3,从而同行AC 的时间比为3:2, 那么,乙A →C 用10÷(3-2)×2=20分钟;而乙速为280×2÷10=56(米/分) 所以,AC =56×20=1120(米),AB =1120×2=2240(米) .四.亲子互动操作题(每小题18分,共36分)9. 大家剪出6张卡片,并在在卡片上分别写上数字1、2、3、4、5、6,从左到右依次摆放:123456现在按照以下规则进行变换:(1)每次选择连续若干张卡片(可以是一张或多张),整体插入任一位置(可以是排头、排尾或间隙),称为一次操作;(2)整体段内不能改变原有顺序;最后将卡片顺序变为6、5、4、3、2、1.下面是具体的操作方法:【嵌入“卡片题目动画”】 以上一共花了4步.现在再多剪一张卡片,标上数字“7”,从左到右排列:1234567那么,按上述规则变换成7、6、5、4、3、2、1至少需要__________步.【答案】4【解析】4步构造:1234567→1256734→1673254→7321654→7654321.【嵌入“卡片解答动画”】OCB Ar A10.用下面给出的6块长方形挡板分别遮住图一六宫数独的某一个宫,其中被阴影盖住的格,格内的数字会被挡住,白格内的数字会露出来,请用露出来的数字完成一道六宫数独,使得每行、每列和每个宫数字不重复.完成后,最后一行前五个数字依次组成的五位数是__________.图一【答案】26145【解析】六个纸片分别编号1~6,易见6号纸片必然盖住左列中间宫,否则露出的数字重复;进而3号纸片必然盖住左上宫;进而2号纸片必然盖住右列中间宫(不能盖左下宫,否则会出现一列里有两个2);进而5号纸片必然盖住右上宫(不能盖左下宫,否则会出现一列里有两个3),此时的数独有两所求答案为26145.。

小学【真题】2016年迎春杯决赛高年级-含答案

小学【真题】2016年迎春杯决赛高年级-含答案

2016“数学花园探秘”科普活动总决赛小学五年级组一试一、 填空题(每题10分,共30分)1. 某次考试共有20道题,其中选择题每题4分,填空题每题6分,所有题目的平均正确率是53%,其中填空题的正确率是45%,所有人的平均得分是53.2分,那么这次考试选择题的正确率是__________%. 【答案】65【分析】设有x 道选择题,正确率为y ,列方程组45%(20)2053%4 6.45%(20)53.2xy x xy x +-=⨯⎧⎨+-=⎩,解得865%x y =⎧⎨=⎩.2. 右图是一个小镇的道路,标有箭头的道路只能按箭头方向单向行驶.如果将所有的道路不重复的走过一遍,共有__________种不同的路线.【答案】96【分析】“一笔画问题”,又称“哥尼斯堡城'七桥问题’”,大数学家欧拉对于这个问题的研究是数学史上的一段佳话.他指出,一个图形要能一笔画完成,必满足:①图形是封闭联通 ②图形中的奇点(与奇数条边相连的点)个数为0或2.③当奇点为2时,必定以一个奇点为起点,另外一个奇点为终点.这幅图中有A 、B 两个奇点,一定以这两点做为起点和终点.考虑A→B ,那么其他线的方向也就固定了,可以看出要想画出此图需从A 至B 走3次,从B 回到A 走2次.从A 到B 可以选择走斜线,也可以走折线,斜线只有一条,折线分为两段,第一次走折线有2×2=4种选法,但是走过一次折线后,剩下的折线只有1种.B 至A 的折线同样要求①先走斜线有1(斜线)×4(B→A 折线)×4(A→B 折线)×1(B→A )×1(A→B )=16种②先走折线有4(A→B 折线)×4(B→A 折线)×2(A→B 选折或斜)×1×1=32种 所以A→B 共有16+32=48种画法同理B→A 也有48种画法,共96种画法3. 甲乙二人进行如下操作:甲选出6个互不相同的非零自然数写成一圈,然后先由乙任意指定一个位置,甲再定顺时针或逆时针,从乙指定的位置开始,依次将这些数标记上1号,2号,……,6号,使得每个数能被其号码整除.为了让乙可以任意指定,甲写的6个数之和最小__________.【答案】276【分析】方法1:分别考虑乙指定这6个数,若乙指定A ,那么只要顺时针分别填1、2、3、4、5、6即可,在此基础上, 若乙指定B ,则在逆时针方向上,F 和C 已经是3的倍数,在此基础上A×2,E×4,D×5,C×2即可.若乙指定C 逆时针需A×3,F×2,D×3,顺时针需E×3,F×2,A×5,B×3,显然若使和最小,应选择逆时针.若乙指定D ,顺时针需A×2,B×5. 若乙指定E ,顺时针需B×2,C×5. 若乙指定F ,逆时针需C×2,此时A ,B ,C ,D ,E ,F 分别为12,20,60,60,20,12,各数互不相同,则扩大2倍,如图所示,和为276.方法2:把1号当成定位位置,则4号一定在1号的对面,所以每个数均是4的倍数;3号与6号相对,且距离1号分别为1格和2格,所以只需要下面4个位置为3的倍数即可;5号与1号相距2格,所以只需要下面4个位置为5的倍数即可,综上所述,和最小为()1530510364276+++++⨯=.FEDC BA 122060120402465432144444433335555二、解答题(每题15分,共30分)4. 已知21最多可以表示成4个互不相等的自然数平方和:2222210124=+++,那么2016最多能表示成多少个互不相等的自然数平方和,请构造出一种方法. 【答案】18【分析】自然数越多,应使自然数尽量小,考虑22221123(1)(21)6n n n n +++=++估算11(1)(21)(1)(0.5)201663n n n n n n ++=++≈,所以(1)(0.5)6048n n n ++≈3317604818<<,所以最多18个自然数(加上20) 而222211231717183517856+++=⨯⨯=,22201617852313372013-==⨯=-构造如下2222222222016012121415161720=+++++++++5. 如下图,一块耕地被分成了9块长方形的菜地.其中两块阴影的面积都是18.如果MC= 3DM ,4AN = 3NB ,那么,整块耕地的面积是多少? 【答案】81【分析】方法1:按下图所示设边长和连接辅助线,则可列方程:()()()()18183413x b c a y z xb y b c ay b y z ⎧+=⎪+=⎪⎪⎪=⎨+⎪⎪⎪=+⎪⎩①②③④,⨯③④得,()()14xa b c y z =++,结合①②,可得2221188194x a xa =⨯=⇒=,即左上角面积为9,则右下角面积为36.综上所述,长方形面积为81.方法2:梅涅劳斯定理:1AN BP DM CQNB PD MC QA ⨯⨯⨯=,则44BP CQ BP CQ PD QA PD QA⨯=⇒⨯=⨯,即右下角面积为左上角面积的4倍,进一步可以求出这两块面积分别为9和36,长方形面积为81.Acba2016“数学花园探秘”科普活动总决赛小学五年级组二试一、填空题(每题10分,共30分)1. 正六边形的面积是2016.A 、B 、C 是三边的中点,那么,阴影部分的面积是__________.【答案】630【分析】方法1:如下左图所示,连接DE ,因为AB DE ∥,A 为DF 中点,所以1124FM FO FG ==,12FN FE =,则18FMN EFG S S ∆∆=,所以15201663028S =⨯⨯=阴.方法2:按下右图分割,共24个小三角形,阴影占7.5个,所以7.5201663024S =⨯=阴.2. 某人用相同大小的黑白两种小正方体积木在桌子上堆成了一个4×4×4的大正方体,使得任何两列的各四块积木从上到下对应的颜色都不完全相同;更巧的是:任何相邻(有公共面)两列积木中,都恰有一组(共两块)水平相邻的积木颜色不同.那么,这种大正方体的搭建方法共有________种(不允许将大正方体旋转). 【答案】384【分析】这道题对学生把实际问题转化为数学模型有较高要求,考察排列组合。

2016年数学花园探秘科普活动四年级组初试试卷A(解析)

2016年数学花园探秘科普活动四年级组初试试卷A(解析)

2016年“数学花园探秘”科普活动四年级组初试试卷A一、填空题1.算式(1124239)33⨯-⨯÷+的计算结果是__________. 【答案】22【分析】(1124239)338869322⨯-⨯÷+=-+=. 2.杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两棵树之间的距离都是1米. 杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等,那么梧桐树与桦树之间的距离是__________米. 【答案】2【分析】依次为槐桦杨梧柳. 3.如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是__________平方厘米.【答案】6【分析】19118-=,1183-=,8322-⨯=,236⨯=.4.有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个. 但如果某天树上的果子数量少于这一天本应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按原规律进行新的一轮. 如此继续,那么第__________天树上的果子会都掉光. 【答案】17【分析】1215120+++= ,1231203-=,123+=,15217+=二、填空题5.如右图,图中正方形的边长依次是2,4,6,8,10,阴影部分的面积是__________.【答案】40 【分析】()21102224681010060402-⨯⨯⨯++++=-=. 6.甲、乙、丙、丁四人参加了一次考试. 甲、乙的成绩和比丙、丁的成绩和高17分. 甲比乙低4分,丙比丁高5分. 四人中最高分比最低分高__________分.【答案】13【分析】设乙的分数为b ,丁的分数为d ,()()4517b b d d -+-++=,所以13b d -=. 7.一副扑克牌去除大小王后有4种花色共52张牌,每种花色各有13张,牌面分别是1至13. 菲菲从中取出2张红桃,3张黑桃,4张方块,5张梅花. 如果菲菲取出的这14张扑克牌中,黑桃的牌面之和是红桃的牌面之和的11倍、梅花的牌面之和比方块的牌面之和多45,那么这14张牌的牌面之和是__________. 【答案】101【分析】因为黑桃的牌面之和是红桃的牌面之合的11倍,所以红桃牌面之和是123+=,黑桃牌面之和是33;因为梅花的牌面之和比方块的牌面之和多45,所以方块牌面之和是123410+++=,梅花的牌面之和91011121355++++=.3331055=101+++. 8.100只老虎和100只狐狸分为100组,每组2只动物.老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸么?”,结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有 组. 【出处】2016年数学花园探秘初赛四年级第8题 【答案】18【分析】如果两只老虎一组,则每只老虎都回答“不是”,如果一只老虎一只狐狸一组,则它们都会回答“是”,如果两只狐狸一组,它们都会回答“不是”,所以老虎与狐狸的混合组有128264÷=组,其中有64只狐狸,所以同组2只动物都是狐狸的共有()10064218-÷=组.三、填空题9.如图,6×6的表格被分成了9块;若某块中恰有N 个格子,则该块所填数字恰好1~N ;且任意相邻的两个格子(有公共点的两个小正方形称为相邻格子)所填数字不同. 那么四位数ABCD 是__________.【答案】4252 【分析】如图A BC D10. 有一种新型的解题机器人,它会做题,但是有智商余额的限制. 每次做题都会用它的智商余额减去这个题的分值,消耗掉与它分值相同的智商余额. 当它做对一道题的时候,它的智商余额就会增加1,当它的智商余额小于正在做的题的分值时,将解题失败. 那么如果小鹏用一台初始智商上限为25的解题机器人,做一套分值分别为1~10的题,最多能得到__________分. 【答案】31【分析】12621+++= ,还剩2521610-+=智商余额.做分值为10的题.211031+=.11. 如图,甲、乙两人从A 沿最短路线走到B ,两人所走路线不会出现交叉(除AB 两点外没有其他公共点)的走法共有__________种.【出处】2016年数学花园探秘初赛四年级第11题 【答案】38【分析】标数法,如下左图所示,甲乙出发时一定一上一右,情况相同,这里讨论甲向上、乙向右情形,如果甲走ACB 、乙走ADB ,乙有9种走法(下右图),同理甲走ADB 、乙走AEB ,也是9种走法,还有一种走法是,甲走ACB 、乙走AEB ,共92119⨯+=种,所以一共有19238⨯=种走法.12. 请参考《2016年“数学花园探秘”科普活动初赛试题评选方法》作答.132423243211111112345BA。

迎春杯2016年中年级复赛解析_00

迎春杯2016年中年级复赛解析_00

【考点】 图形计数 【难度】 【答案】30 【分析】分别有如下三种三角形,个数分别为 9 个、18 个、3 个. 所以图中共有 30 三角形.
4.
今天是 1 月 30 日,我们先写下 130;后面写数的规则是;如果刚写下的数是偶数就把它除以 2 再 加上 2 写在后面,如果刚写下的数是奇数就把它乘以 2 再减去 2 写在后面. 于是得到:130、67、 132、68……;那么这列数中第 2016 个数是__________.
【考点】填数游戏、整体分析问题 【难度】 【答案】63 【分析】在总算和时, A 、 C 、 D 、 E 、 F 分别算了两次, B 算了三次 . 所以五条直线的总和为
2 ( A C D E F ) 3 B 2 (1 2 3 4 5 6) B 42 B . 又由于这五条直线上的数和都
相等,所以这五条直线的总和应该为 5 的倍数,所以 B 只能等于 3, 且这五条直线的总和为 45. 所 以每条直线上的数和为 9.所以 A=6,所以 AB 63 . 下面给出一种填法:
6.
在 A、B、C 三个连桶的小水池中各放入若干条金鱼,若有 12 条金鱼从 A 池游到 C 池中,则 C 池 内的金鱼将是 A 池的 2 倍,若有 5 条金鱼从 B 池游到 A 池中,则 A 池与 B 池的金鱼数将相符. 此 外,若有 3 条金鱼从 B 池游到 C 池中,则 B 池与 C 池中的金鱼数也会相等,那么 A 水池中原来有 __________条金鱼.
【考点】 周期问题 【难度】 【答案】6 【分析】从 130 开始:130、67、132、68、36、20、12、8、6、5、8、6、5、8、6、5……后面是 8、6、 5 的循环,2016-7=2009,2009 除以 3 的余数是 2,所以第 2016 个数是 6. 5. 请将 1~6 分别填入右图的 6 个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有 3 条直线上各有 3 个圆圈,有 2 条线上各有 2 个圆圈);那么两位数 AB ________【答案】1440 【分析】先考虑 9,9 不能出现在十位,所以 I 9 ,且 9 前面只能是 4,所以 H=4;再考虑 7,和 7 相 关的只有 27、72 两种,若以 27 的形式出现,则 7 后面又只能是 2,矛盾,所以必须是以 72 的形 式出现,且放在首位,即 A=7,B=2;再考虑 8,8 作为十位,只能组成 81,8 作为个位,可以组 成 18、28、48,但是 1 必须放在 8 后面,且 4 已经放在 9 前面,所以 8 作为个位,只能组成 28, 所以 C=8,D=1;还剩下 3、5、6 三个数,1 的后面和 4 的前面都不能是 3,所以只有唯一的排列 635,即 E=6、F=3、G=5. 所以这九位数字为 728163549,728+163+549=1440. 10. 图③是由 6 个图①这样的模块拼成的,如果最底层已经给定一块的位置(如图②),那么剩下部 分一共有__________种不同的拼法.

【更新版终审版】2016数学花园探秘答案详解1.1

【更新版终审版】2016数学花园探秘答案详解1.1

2016“数学花园探秘”科普活动(小低组)——参考答案视听题(注:具体题意请参看视听题动画演示)第一关看谁算得快答案:见题目解析.【命题人】学而思培优.况雯【难度】★【题目解析】此题考察加减法计算基础,涉与巧算方法和小括号的理解与使用.1)1+2+3+4+5+3+2=202)32+13+18=633)76+35-66=454)27+5+5+5+5+3=505)47+(103-46-54)=50【考察知识】速算巧算第二关唯一的指纹答案: C【命题人】学而思培优.商雪君【难度】★★【题目解析】观察指纹中心,明显排除A和B;观察指纹四周,排除D,正确答案为C.【考察知识】观察力第三关记忆大考验(具体请参看视听题动画演示)答案:A【命题人】学而思培优.商雪君【难度】★★【题目解析】短时间内仔细观察并快速记忆图形的变化,记录数字块闪动的先后顺序(闪动先后顺序需看视听题演示),正确答案为A.【考察知识】记忆力第四关愤怒的小鸟答案:D【命题人】学而思培优.肖俊艺【难度】★★【题目解析】通过空间想象将正方体平面展开图折成正方体,发现A、B和C是一样的,而D选项的头和头上羽毛的折起后与其他三个正方体对应的位置不一样,故答案为D.【考察知识】立体图形.第五关我来拼一拼答案:B【命题人】资优教育培训中心.陈平【难度】★★★【题目解析】通过观察发现,需要从选项中选取图形和A组合成每层9个,共3层的正方体,观察A的缺口,第二层左边那排不缺少小方块,中间一排缺少相邻的2个小方块,右边那排左右各缺少1个小方块,依次判断答案为B.【考察知识】立体图形第六关旋转的指针答案:C【命题人】桦树湾教育.袁晓慧【难度】★★★【题目解析】仔细观察图形发现指针的位置发生改变,每次指针沿着十二边形的顶点顺时针旋转,依次顺时针旋转过1个格、2个格、3个格、4个格、5个格.依此判断答案为C.【考察知识】图形找规律第七关对面看是几乐乐欢欢答案:9102【命题人】学而思培优.孙佳俊【难度】★★★【题目解析】根据题目中欢欢和乐乐的位置,欢欢和乐乐坐在对面,乐乐看见的数与欢欢看见的数会左右相反和上下相反,所以答案为9102,小朋友也可以直接在草稿纸上写出电子数2016,然后倒过来观察.【考察知识】生活能力第八关 展开的真相(具体请参看视听题动画演示)答案:D【命题人】资优教育培训中心.陈平【难度】★★★【题目解析】通过正方形的对折发现剪出的图形应该是左右对称、上下对称、并沿着对角线对称,而且由于缺口剪出的图形的尖角正对着正方形纸的4个直角,由此判断答案为D.【考察知识】动手能力和空间想象第九关 绳子变几段(具体请参看视频演示)答案:6【命题人】学而思培优.章梦昱【难度】★★【题目解析】这是一根完整的绳子,根据题目的图形可知当从两手中间剪开绳子的时候,绳子会有6个刀口,数数可以发现会有6段. 【考察知识】动手能力A B C D第十关神奇转转转答案:A【命题人】学而思培优.肖俊艺【难度】★★★★【题目解析】根据题目演示左上角的图形旋转进入大正方形可排除选项C,再根据左下角图形的旋转进入大正方形可排除B和D选项,空间想象依次将周围的4个正方形转入中心正方形后,分别确定黑色圆形的位置,得到正确答案为A.【考察知识】空间想象展开图笔试题答案:1.【命题人】学而思培优.章梦昱【难度】★★★【题目解析】数、学、花、园这四个汉字,分别代表2、0、1、6这四个数字,因此“数+学+花+园=2+0+1+6=9”,因为结果为“学学”,说明“学”不为0,数字6太大也不可能,通过尝试得到答案为1,2+0+1+6+1+1=11.【考察知识】数字谜答案:6.【命题人】顺天府学.黄璜【难度】★★★【题目解析】通过题目得出,6个面的数字为1、2、3、4、5、6,观察给出的图,小云看到的数字是1、2、5,根据题目给出的两人看到的数字和为16,且小天在对面,也能看到1,判断出小天看到的数字应该为1、3、4,则能确定正方体底面的数字应为6.【考察知识】逻辑推理和空间想象答案:20.【命题人】学而思培优.吴正昊【难度】★★★【题目解析】十位上的数字“8”用了7根火柴棒,因此拿掉3根火柴棒不可能变成一个一位数,答案为一个两位数,要得到最小的两位数,应该先让十位最小,其次再让个位最小.通过拿掉2根火柴棒十位最小为2,个位去掉1根火柴棒最小为0,则得出最小的自然数为20.【考察知识】火柴棒谜题答案:2016.【命题人】学而思培优.肖俊艺【难度】★★★【题目解析】通过观察表格中的图形,突破口为第二行,○+□+□+□=1,则判断□=0,○=1;第四行□+□+○+☆=7=0+0+1+☆,图形代入推断☆=6;第三行☆+△+□+△=10=6+△+0+△,图形代入推断△=2;第一行进行图形验证△+△+☆+○=11=2+2+6+1;则得出△□○☆所代表的四位数是2016.【考察知识】数字推理和等量代换答案:10.【命题人】资优教育培训中心.陈平【难度】★★★【题目解析】对比两种折法,判断第一次折法的下面那半截绳子与第二幅图虚线对齐后右边的长度为3厘米,也就是说第二种折法中第三条半截绳子长度为3厘米,则根据第二幅图通过计算绳子的长度为:3+3+3+1=10厘米.【考察知识】观察力答案:如图【命题人】学而思培优.韩旭东【难度】★★★【题目解析】本题目的突破口为箭头经过三个格子的圆圈,所有格子中数字最大为4,每行每列每个粗框区域内含有1、2、3、4且不重复,因为箭头经过的三个格子中有两个格子在同一列,不能重复,最小为1和2,另一个格子经过的数字必为1,则此圆圈填入的数字为4,另外两个箭头所经过的格子,由于上面的那个格子和填数字1的格子在同一宫,所以不能为1,只能为2,则下面的格子填入数字1,然后根据规则可得出所有答案.【考察知识】数独答案:31【命题人】桦树湾教育.袁晓慧【难度】★★★【题目解析】观察这列数字,8、9是连续的数字,可以作为个位;另外2出现2次,十位数选择2,组成28、29,剩下的数字继续往下枚举依次为30、31,则28、29、30、31这个连续数数列中,最大数为31. 【考察知识】枚举答案:C【命题人】学而思培优.孟星【难度】★★★【题目解析】通过平面图形计数,可得图1中共有15个三角形,图2中共有15个三角形,因此两幅图的三角形数量一样多.【考察知识】平面图形计数答案:3【命题人】学而思培优.肖俊艺【难度】★★★【题目解析】根据题目中的“9”判断,“9”上面两个圆圈分别填“10”和“1”,根据推断,这两个数必须填在第一行的中间的两个圆圈内,左右圆圈均可,接下来确定8的位置(因1在第一行已经使用,则第二行与再往下都不可能出现8),则数字7和2也的位置就推理出来,会发现数字6也只能填入第一行的圆圈,则可推断出4和5的位置,最后根据5和2得出最后一个圆圈的答案为3(下图示范答案以8在1的一侧为例,8和6的位置调整,最终“玩”等于“3”的结果不变).【考察知识】巧填数谜答案:6【命题人】顺天府学.郝田田【难度】★★★★【题目解析】从两个天平的情况可以得出,A+B=C,C+D=E,一般我们的思路是从左到右推算,1+2=3,3+4=7,得出E最小是7,这是错误的,我们应该转换一下思路,从E最小入手,如果E再小一点E=6可不可以?发现1+3=4,4+2=6,可以成立,那么E=5是否可行?发现E=5时,只能是C+D=2+3或3+2或1+4或4+1,经过证明都不可能,所以E最少为6克.【考察知识】等量代换答案:15【命题人】学而思培优.肖俊艺、谢楠楠【难度】★★★★【题目解析】突破口在第一行的两个3,根据题目要求,得知5连接的数字分别为:2、3、3、3、4,则这些数字和为15.【考察知识】逻辑推理答案:如图【命题人】学而思培优.刘旭阳【难度】★★★★【题目解析】这道题的突破口是左下角和右上角这两只距离最远的兔子,尽量用一个饲养员,沿着兔子的位置倒推只有①、②两个位置;当饲养员在①的时候,第一行第四个兔子不可能再被喂养到,所以第一只饲养员放到②的位置。

2016年“数学花园探秘”科普活动小学高年级组决赛试卷A

2016年“数学花园探秘”科普活动小学高年级组决赛试卷A

14.将一个固定好的正方形分割成 3 个等腰三角形,有如图的 4 种不同方式;如果将一个固 定好的正方形分割成 4 个等腰三角形,那么共有 种不同方式.
3 / 10
2016 年“数学花园探秘”科普活动
小学高年级组决赛试卷 A 参考答案
一、填空题Ⅰ(每小题 8 分,共 40 分) 1.下面算式的计算结果是_______. 2015 2016 3 2015 + + + + 1 2 3 2015 1+ 2+ 3+ 2015+ 2016 2016 2016 2016 1 2 【考点】计算繁分数运算 【难点】☆☆☆ 【答案】 2017 【解析】原式=
那么图中阴影部分的面积是 8. 如图, 正十二边形的面积是 2016 平方厘米,
平方厘米.
9.四位数 好事成双 除以两位数 成双 的余数恰好为 好事 ;如果不同的汉字表示不同的数字 且 好事 和 成双 不互质,那么四位数 好事成双 最大是 .
10.老师用 0 至 9 这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数 分别给了 A 、 B 、 C 、 D 、 E 这五名聪明且诚实的同学,每名同学只能看见自己的两 位数,并依次发生如下对话: A 说:“我的数最小,而且是个质数.” B 说:“我的数是一个完全平方数.”
C 说:“我的数第二小,恰有 6 个因数.”
D 说:“我的数不是最大的,我已经知道 A 、 B 、C 三人手中的其中两个数是多少了.” E 说:”我的数是某人的数的 3 倍.” 那么这五个两位数之和是 .
三、简答题(1、先给出答案;2、再同解答过程.每小题 15 分,共 60 分) 11.如图,直角三角形 ABC 中, AB 的长度是 12 厘米, AC 的长度是 24 厘米, D 、 E 分别 在 AC 、 BC 上,那么等腰直角三角形 BDE 的面积是 平方厘米.

2020年“春笋杯”数学花园探秘决赛试卷(小中组c卷)

2020年“春笋杯”数学花园探秘决赛试卷(小中组c卷)

2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(1+3+5+…+89)﹣(1+2+3+…+63)的计算结果是.2.(8分)沿长方形ABCD中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为厘米.3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生人.4.(8分)大正方形ABCD的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB边从A滑动到B,再从B沿着对角线BD滑动到D,再从D沿着DC边滑动到C;小正方形经过的面积是平方厘米.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:130、67、132、68…,那么这列数中第2016个数是.6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐只.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有种不同的拼法.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是.10.(12分)自然数1、2、3、…、2014、2015、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉10、11、12、13,保留14;…;即第几步操作就先依次划掉几个数,再保留1个数,这样操作,直到将所有的数划掉为止,那么最后一个被划掉的数是.11.(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A、B、C、D、E,那么五位数ABCDE=.2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(1+3+5+...+89)﹣(1+2+3+...+63)的计算结果是9.【解答】解:(1+3+5+...+89)﹣(1+2+3+ (63)=(1+89)×[(89﹣1)÷2+1]÷2﹣(1+63)×63÷2=90×45÷2﹣64×63÷2=2025﹣2016=9故答案为:9.2.(8分)沿长方形ABCD中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为52厘米.【解答】解:观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2(ME+FH+GN)+2(EF+GH)=6+6+10+10+2×6+2×4=52cm,故答案为523.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生15人.【解答】解:158﹣140=18(厘米),18÷2+18÷3=9+6=15(人)答:两个班共有学生15人.故答案为:15.4.(8分)大正方形ABCD的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB边从A滑动到B,再从B沿着对角线BD滑动到D,再从D沿着DC边滑动到C;小正方形经过的面积是36平方厘米.【解答】解:根据分析,如图所示,a和b部分的面积刚好可以拼接成一个边长为:10﹣2×1=8厘米的正方形,小正方形经过的区域的面积=10×10﹣8×8=36(平方厘米).故答案是;36.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:130、67、132、68…,那么这列数中第2016个数是6.【解答】解:依题意可知:数字规律是130、67、132、68、36、20、12、8、6、5、8、6、5、8、6、5、去掉钱7项是循环周期数列2016﹣7=2009.每3个数字一个循环2009÷3=667 (2)循环数列的第二个数字就是6.故答案为:6黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是342.【解答】解:最小的1和2,分别放在十位上,剩下的3与1组成13,2和4组成24,最后5和6组成算式5×6,所以得数最小是:13×24+5×6=312+30=342答:能得到的最小结果是342.故答案为:342.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐14只.【解答】解:设仙山上共有九尾狐x只,九头鸟y只,则由(1),可得:x﹣7y+7=0(3)由(2),可得:3x﹣13y﹣3=0(4)(4)×7﹣(3)×13,可得8x﹣112=08x﹣112+112=0+1128x=1128x÷8=112÷8x=14答:仙山上共有九尾狐14只.故答案为:14.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有2种不同的拼法.【解答】解:如图:答:剩下部分一共有2种不同的拼法.故答案为:2.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是2143.【解答】解:如图所示,根据每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和,由于1+2=3,4+2=6,3+2=5,结合每一行和每一列数字都不重复,可得最下面一行的两个数字按从左到右的顺序依次组成的四位数是2143.故答案为2143.10.(12分)自然数1、2、3、…、2014、2015、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉10、11、12、13,保留14;…;即第几步操作就先依次划掉几个数,再保留1个数,这样操作,直到将所有的数划掉为止,那么最后一个被划掉的数是2015.【解答】解:依题意可知:第一轮保留的数字是2,5,9,…那么第一轮保留的最大数字为:2+3+4+…+n=当n=63时,数列和是2015.说明2015是保留的数字.此时数字没有全部划掉还需要继续划.但由于是圆圈,继续划掉的话,划掉的顺序是2016,2,5,9…,这次是第63次操作,2015是最后一个被划掉的.故答案为:2015.11.(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A、B、C、D、E,那么五位数ABCDE=25649.【解答】解:依题意可知:①首先第一只小狗在2号狗舍.第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;说明第2只小狗旁边进来2只小狗.小狗入住时都恰好有2只小狗喊一声,所以新2号小狗不能在角落1,3,6,7,8,9狗舍.只能在5号狗舍.②第4只新入住的小狗住4号狗舍,它没喊过;小狗入住时都恰好有2只小狗喊一声说明1和7是有一个是空的,如果是1空那么小狗舍会相邻.只能是7空.③新2号小狗喊2声,那么说明在6号或者8号入住一只小狗原来也是有1只小狗.那么只能是8号是原来的,6号是新入住的.④那么原来的三个不相邻的狗舍就是在1,3,8狗舍.第五只在9号.故答案为:25649。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年“数学花园探秘”科普活动决赛试题小中年级组A 卷一、填空题Ⅰ(每小题8分,共32分)1.算式33333339876543++++++的计算结果是.2.菲菲从一班转到了二班,蕾蕾从二班转到了一班。

于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米。

如果蕾蕾身高158厘米,菲菲身高140厘米,那么两个班共有学生人。

3.图中3个大三角形都是等边三角形,则图中共有个三角形.4.今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面。

于是得到:130、67、132、68;那么这列数中第2016个数是。

二、填空题Ⅱ(每小题10分,共40分)5.请将1~6分别填入右图的6个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有3条直线上各有3个圆圈,有两条直线上各有2个圆圈);那么两位数AB=.6.在A、B、C三个连通的小水池中各放入若干条金鱼.若有12条金鱼从A池游到C池中,则C池内的金鱼将是A池的2倍.若有5条金鱼从B池游到A池中,则A池与B池的金鱼数将相等.此外,若有3条金鱼从B池游到C池中,则B池与C池的金鱼数也会相等.那么A水池中原来有条金鱼.7.如图,长方形ABCD的长AB为20厘米,宽BC为16厘米;长方形内放着两个重叠的正方形DEFG和BHIJ.已知三个阴影长方形的周长相等,那么长方形INFM的面积为平方厘米。

8.在下右图每个格子里填入数字1~5中的一个,使得每一行和每一列数字都不重复.每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(下左图给出了一个填1~4的例子,如下中图第3行从左到右四格依次是3,4,1,2).那么下右图中最下面一行的五个数字按照从左到右的顺序依次组成的五位数是.三、填空题Ⅲ(每小题12分,共48分)ABCDEFGHI,要求____AB、____BC、____CD、____DE、____EF、____FG、____GH、9.用数字1至9组成一个没有重复数字的九位数_______________________GHI的计算结果是.DEF+______ABC+______HI这八个两位数均能写成两个一位数的乘积;那么算式______10.图③是由6个图①这样的模块拼成的.如果最底层已经给定一块的位置(如图②),那么剩下部分一共有种不同的拼法.11.甲、乙二人轮流从1~9这9个自然数中取不同的数,对方取过的数不能再取,谁取得的数中先有三个数成等差数列谁就获胜;甲先取了8,乙接着取了5;为了确保甲必胜,甲接下来取得一个数的所有可能的值的乘积是。

2015年“数学花园探秘”科普活动小学中年级组决赛试卷A一、填空题Ⅰ(每小题8 分,共32 分)1.算式5×13×(1+2+4+8+16)的计算结果是________.2.右图中7个小正方形拼成一个大长方形.如果这7个小正方形的边长从小到大依次是1、1、2、3、5、8、13,那么这个大长方形的周长是__________.3.小数、小学、小花、小园、探秘5人获得了跳远比赛的前5名(无并列),他们说:小数:“我的名次比小学好”;小学:“我的名次比小花好”;小花:“我的名次不如小园”;小园:“我的名次不如探秘”;探秘:“我的名次不如小学”.已知小数、小学、小花、小园、探秘分别获得第A、B、C、D、E名且他们都是从不说慌的好学生,那么五位数ABCDE=__________.4.有一根绳子,第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折.如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是__________厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)二、填空题Ⅱ(每小题10分,共40分)5.期末了,希希老师买来同样数量的签字笔、圆珠笔和橡皮发给班上学生.发给每位学生2支签字笔、3支圆珠笔和4块橡皮后,发现圆珠笔还剩下48支,剩下的签字笔数量恰好是剩下橡皮数量的2倍,聪明的你赶紧算一算,希希老师班上一共有__________名学生.6.右图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字.那么四位数ABCD =__________.2015A B C DE F G H -131P C B E F+7.小明和小强常去图书馆看书.小明在一月份的第一个星期三去图书馆,此后每隔4天去一次(即第2次去是星期一);小强是一月份的第一个星期四去图书馆,此后每隔3天去一次;如果一月份两人只有一次同时去了图书馆,那么这一天是1月__________号.8.请在下图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字,其中双向箭头表示箭头所指的两个方向的全部数字里有多少种不同的数字.那么下图中第二行从左到右所填数字依次组成的四位数是__________(右图是一个3×3的例子).三、填空题Ⅲ(每小题12分,共48分)9.一个骰子,各面点数已画好,分别为1~6;从空间一点看,能看到的不同点数的组合一共有__________种.10.二十世纪(1900年~1999年)的某一天,弟弟对哥哥说:“哥哥,你看,把你出生年份中的四个数字加起来,就是我的年龄.”哥哥接着说道:“亲爱的弟弟,你说得对!对我来说也是一样的,把你出生年份的四个数字加起来就是我的年龄.另外如果把我们各自年龄的两个数字对调一下就能得到对方的年龄.”已知兄弟俩出生的年份不同,那么这段对话发生在__________年.11.甲和乙在一张20×15的棋盘上玩游戏.开始时把一个皇后放在棋盘除了右上角外的某格内;从甲开始,两个人轮流挪动皇后,每次可以按直线或者斜线走若干格,但只能往右、上或右上走;谁把皇后挪到了右上角的格子,谁就获胜.那么在这个棋盘上,有__________个起始格是让甲有必胜策略的.12.作答要求:(1)请在答题卡第12题的万位+千位,填涂上你认为本试卷中一道最佳试题的题号;如认为本试卷第6题出得最好,那么请在万位填涂“0”,千位填涂“6”.(2)请在答题卡第12题的百位,填涂上你认为本试卷整体的难度级别;最简单为“0”,最难为“9”,总计十个级别.(3)请在答题卡第12题的十位+个位,填涂上你认为本试卷中一道最难试题的题号;如认为本试卷第10题最难,那么请在十位填涂“1”,个位填涂“0”.2014年“数学花园探秘”小学中年级组决赛试卷(时间:2014年2月8日19:30—20:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议签名:____________________一.填空题Ⅰ(每小题8分,共32分)1.中国公布测量“世界第一高峰”珠穆朗玛峰的高度约为8844米,而尼泊尔公布珠穆朗玛峰的高度约为8848米,是因为尼泊尔方面加算了山顶积雪的厚度;请计算下面的式子:.8848(88488844)(88444488)(884)2.20头驴与16匹马分成两队,共重11000千克.如果从两队中分别牵出4匹马和4头驴相交换,两队的体重就相等了,那么每匹马比每头驴重千克.3.图中有个平行四边形.4.红、橙、黄、绿、青、蓝、紫7个彩球依次排成一排.每次操作可将其中两个球交换位置.(例如,将橙球与蓝球交换,七个球的顺序变为红、蓝、黄、绿、青、橙、紫.)那么,将最初始七个球的顺序变为青、紫、红、蓝、黄、绿、橙,至少要操作次.二.填空题Ⅱ(每小题10分,共40分)5.便衣警察接到任务,在街上以每秒2米的步行速度接近前方100米处的逃犯.逃犯的步行速度是每秒1米.两人走了一会后,逃犯发觉到有人跟踪,以原来速度的3倍向前跑去,同时警察也立即以3倍的速度向前追去.最终警察抓住了逃犯,整个任务用时1分钟.那么,逃犯发现有人跟踪他时,已经走了米.6.如图,在10×10的棋盘内玩警察抓小偷的游戏.游戏开始时,小偷在第4行第4列,警察在第10行第10列.小偷和警察轮流走,小偷先行.小偷1步能走到与所在格子有公共边的格子中,轮到小偷时也可以选择不动.警察1步可走2次,每次能走到与所在格子有公共边的格子中.当警察和小偷在同一格子中时,警察就能抓住小偷.要确保抓住小偷,警察至少要走步.7. 有2014个正整数排成1排,每相邻的6个数的和都相等,每相邻9个数的和也都相等.如果第1个数与第100个数之间的98个数的和是226,那么这2014个数的总和是 .8. 小峰说:“我们几人的话中共有 A 个2.”小光说:“我们几人的话中共有 B 个0.”小叶说:“我们几人的话中共有 C 个1.”小健说:“我们几人的话中共有 D 个4.”现在分别用0~9中的数字替换A 、B 、C 、D (ABCD 可以相同),使得他们说的话都是真话,那么ABCD .三.填空题Ⅲ(每小题12分,共48分)9. 一个正方形和一个长方形如图摆放,M 、N 是正方形边长的中点,阴影面积是60平方厘米,那么,大长方形的面积是 平方厘米.10. 如图,在公园内铺设道路,如果按照第一种方案铺设,需要315万元,如果按照第二种方案铺设,需要300万元,如果按照第三种方案铺设,需要 万元(图中虚线表示水泥路,实线表示沥青路).11. 将一个正八面体的8个等边三角形表面涂上红、黄两种颜色,每种颜色各涂4个面.那么,一共有种不同的涂色方法(经过旋转、翻转可以重合的均算作同一种涂色方法).12. 请参考《2014年“数学花园探秘”决赛试题评选方法》作答.NM2013年“数学解题能力展示”网络评选活动小学中年级组复试试卷(测评时间:2013年2月2日11:00—12:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每小题8分,共32分)1.计算:2013÷(25×52-46×15)×10=.2.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.” 第二位说:“你胡说,你才不是疯子呢!”第三位说:“别吵了,我是疯子.”那么,这三个人中第位是疯子.3.红色礼盒5元1个,内有陀螺3个;黄色礼盒9元1个,内有陀螺5个.蕾蕾用600元买了72个礼盒,这些礼盒打开后,可以得到 个陀螺.4.将1~9填入3×3的表格中,要求同一行右面的数比左面的数大;同一列下面的数比上面的数大.其中1、4、9已经填好,那么其余6个整数有种不同的填法. 41 9二.填空题Ⅱ(每小题10分,共40分)5.如图1,“L ”形的宽度为3厘米.将4个这样的“L ”形贴放在九宫格的4个角上,形成的图形如图2.如果4个“L ”形的面积之和恰好等于图2中阴影部分的面积,那么,1个“L ”形的面积是 平方厘米. 6. 宴会邀请来了 44 位嘉宾.会场里有 15 张相同的正方形桌子,每张每边能坐 1 人.经适当“拼桌”(将几张正方形桌子拼成一张长方形或正方形桌子)后,恰好让所有嘉宾全部入座而且没有空位.那么最后会场里最少有 张桌子.7.甲、乙、丙、丁都参加了100米短跑决赛,在比赛前,他们如下预测:甲预测:“如果丙是第4,那我就是第2.”乙预测:“如果甲是第2,那我就是第1.”丙预测:“甲、乙两人的比赛成绩要么都高于我,要么都低于我.”丁预测:“甲、乙两人的比赛成绩肯定一人比我高,而另一人比我低.”比赛结束,他们获得了这项比赛的前4名(无并列),且每人都预测正确.如果甲、乙、丙、丁分别获得第A 、B 、C 、D 名,那么四位数ABCD = .3 3 图1 图28.《诗》、《书》、《礼》、《易》、《春秋》这5本书的页数各不相同:《诗》和《书》相差24页,《书》和《礼》相差17页,《礼》和《易》相差27页,《易》和《春秋》相差19页,《春秋》和《诗》相差15页.那么,这5本书中,页数最多的和页数最少的相差 页.三.填空题Ⅲ(每小题12分,共48分)9.甲、乙、丙、丁四人共有251张邮票.已知甲的邮票比乙的2倍多2张,比丙的3倍多 6 张,比丁的 4 倍少16 张,那么丁有 张邮票. 10.图3的3×3表格中已经填好了数,选择一个黑格为起点,如果对这个黑格和与它相邻的白格中所填数进行加、减、乘、除中的一次运算(计算时大数在前),计算结果是与白格相邻的另一个黑格所填数的整数倍,就能经过这个白格走到下一个黑格.要求每个格子恰好经过一次.(例如图4中,从7经过8可以走到5,并且图4中箭头走向是一种正确走法.)请在图3中找出正确走法.若图3中正确走法的前3个格子所填数依次为A 、B 、C ,那么三位数=.图3图4 ABC11.欢欢、迎迎和妮妮手中共有卡片2712张,桌子上还有一些卡片.他们3人进行了如下操作:第一次,欢欢从迎迎和妮妮手中各拿来1张卡片;第二次,妮妮从桌子上拿了2张卡片,并让欢欢和迎迎中,卡片数较少的人拿走卡片数较多的人一张卡片;第三次,迎迎从桌子上拿了4张卡片,如果手上卡片数是偶数,则将手中的一半卡片交给欢欢和妮妮中卡片数较少的那个人;如果是奇数,则游戏终止.我们把上述三次操作称为“一轮操作”.如果他们顺利地进行了50轮操作,而没有出现游戏终止的情况.此时他们手中卡片数按妮妮、欢欢、迎迎的顺序成等差数列.那么,原来欢欢有张卡片.12.请参考《2013年“数学解题能力展示”读者评选活动复试试题评选方法》作答.2012年“数学解题能力展示”读者评选活动小学中年级组复试试卷(测评时间:2012年2月4日11:0011:00——12:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议签名:____________________一.填空题Ⅰ(每小题8分,共40分)1.计算:(2012-284+135)×7÷69=.2.小明发现在2012年3月的日历某一列上的5个日期的数字之和是80,那么这一列上的第二个日期是号.3.40只脚的蜈蚣与9个头的龙同在一个笼子中,共有50个头和220只脚,如果每只蜈蚣有1个头,那么每条龙有只脚.4.在右面的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,使得算式成立.那么四位数“望子成龙”是.5.有一个奇妙的国家,叫“一○国”.他们只有1和0两个数字.所以,当遇到比较大的数时,他们就要用好多个1和0组合相加来表示.比如说:12可以表示成三个数的和10+1+1,也可以表示成两个数的和11+1.那么在“一○国”,20120204最少要用个数相加来表示.二.填空题Ⅱ(每小题10分,共50分)6.农历龙年的第一天(即大年初一)是01月23日,如果用四个数字来表示这天的日期,应该是0123.我们会发现,这四个数字正好是四个连续数字,类似的日期还有02月13日,03月12日等.那么2012年最后一个用四个连续数字表示的日期是农历龙年的第天.7.一串珠子共31个,正中间一个最贵.从一端算起,后一个比前一个贵3元,到中间那个为止.从另一端算起,后一个比前一个贵4元,到中间那个为止.这串珠子总价值2012元,那么中间的一颗珠子价值元.8.如右图,蕾蕾用12根小木棍摆成一个3×3的正方形,凡凡摆了9根小木棍将它切割成3个1×2的小长方形和3个1×1的小正方形.如果蕾蕾用40根小木棍摆成一个8×12的矩形,那么凡凡再摆根小木棍,才能将它切割成40个小长方形,使得每个小长方形要么是1×2的,要么是1×3的.9.某次考试,得分不超过30分的有153人,平均24分;得分不低于80分的有59人,平均92分;得分超过30分的平均62分,得分低于80分的平均54分.那么这次考试共有人参加.龙成龙子成龙+望子成龙201210.2012位同学排成一列依次报数.若某位同学报的是一位数,后面的同学就报这个数的2倍;若某位同学报的是两位数,后面的同学就报其个位数字与5的和.已知第一位同学报1,到了第100位同学,他却把前面那位同学报的数加上了另一个一位自然数,其他人都没有注意到,仍然按以前的规则继续报数,直到最后一位同学报的数是5.那么第100位同学所报的数是把前一位同学报的数加上了.三.填空题Ⅲ(每小题12分,共60分)11.桌面上放有四张大小不同的正方形纸片,边长分别为2、3、4、5.若分别取走边长为2、3、4、5的正方形纸片中的一个,则剩下的三张纸片覆盖的面积分别减少2、3、4、5.那么四张纸片覆盖的面积为.12.红、黄、蓝三种颜色的球共2012个排成一排,相邻2球之间的距离为1厘米.每相邻的4个球中都有1个红球、1个黄球和2个蓝球.左数第100个红球和右数第100个黄球之间的距离是1213厘米.那么左数第100个蓝球和右数第100个蓝球之间的距离是厘米.13.将给定的所有数字串填入方格内,每个数字串恰好用一次,每个格内恰好填一个数字,同一个数字串中的数字不能被阴影断开,数字串的方向都是从上到下或者从左到右的.下图中给出了一个例子,图2是图1的唯一填法.请根据以上的规则,将图3填写完整,那么ABCDE是.1515335315515135311120102212210102401220011021410010240002242222414.池塘中10片莲叶如右图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳4步,那么它有种不同的跳法.15.请参考《2012年“数学解题能力展示”读者评选活动复试试题评选方法》作答.2011“数学解题能力展示”网络评选活动复赛试卷小学中年级组(2011年1月30日)一、填空题(每题8分,共32分)1.计算:2011(911119911911)-⨯⨯+⨯⨯-⨯=_______.2.如右图,5个相同的小长方形拼成一个大正方形.已知大正方形的周长比一个小长方形的周长多10厘米,那么小长方形的周长是_______厘米.3.一个奥特曼与一群小怪兽在战斗,已知奥特曼有一个头、两条腿,开始时每只小怪兽有两个头、五条腿,在战斗过程中有一部分小怪兽分身了,一个小怪兽分成了两只,分身后的每只小怪兽有一个头、六条腿(不能再次分身),某个时刻战场上有21个头,73条腿,那么这时共有_______只小怪兽.4.在一个44的方格纸内按下面的要求放入糖块:(1)每个格内都要放入糖块;(2)相邻的格子中,左边格比右边格少放1块,上面格比下面格少放2块,(3)右下角的格子里放了20块糖,那么方格纸上共放了__________块糖.(相邻的格子是指有公共边的格)二、填空题(每题10分,共40分)5.乐乐把一些小正方形和等腰直角三角形不重叠地放在边长是7厘米的大正方形盒子的底层.如果小正方形的边长都是2厘米,等腰直角三角形的斜边长都是3厘米,那么两种图形他最多可以各放进__________个.6.如右图,四个三边长度分别为3厘米、4厘米、5厘米的直角三角形拼成一个大方形.从中去掉一些线段,使得改动后的图形可以一笔画出,那么去掉的线段长度之和最小是______厘米.7.有37个人排成一行依次报数,第一个人报1,以后每人报的数都是把前一人报的数加3.报数过程中有一个人报错了,把前一个人报的数减3报了出来,最后这37个人报的数加起来恰好等于2011.那么是第________个报数的人报错了.8.麦斯将9个不同的自然数填入右图的9个空格内,使每行、每列、每条对角线上3个数的和都相等.已知A和B的差为14,B和C的差也为14,那么D和E的差是________.三、填空题(每题12分,共48分)9.如右图,有一个48的棋盘,现将一枚棋子放在棋盘左下角格子A处,要求每一步只能向棋盘右上或右下走一步(如从C走一步可走到D或E),那么将棋子从A走到棋盘右上角B处共有_______种不同的走法.10.大小箱子共62个,小箱子5个一吨,大箱子3个一吨.现要用一辆卡车运走这些箱子.如果先装大箱子,大箱子装完后恰好还可装15个小箱子.如果先装小箱子,小箱子装完后恰好还可装15个大箱子.那么这些箱子中,大箱子有________个.11.一个新建5层楼房的一个单元每层有东西2套房:各层房号如右图所示,现已有赵、钱、孙、李、周五家入住,一天他们5人在花园中聊天;赵说:“我家是第3个入住的,第1个入住的就住我对门.”钱说:“只有我一家住在最高层.”孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.”李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.”周说:“我家住在106号,104号空着,108号也空着.”他们说的话全是真话,设第1、2、3、4、5家入住的房号的个位数依次为A 、B 、C 、D 、E ,那么五位数ABCDE =____________.12.在右图的每个圆圈中,各填入一个不为0的数字,使得所有有线段连接的相邻两个圆圈内数的差至少为2,而且每个数字都恰好出现两次.那么A B ⨯的值是____________.4A188452B2010“数学解题能力展示”读者评选活动小学中年级组复试试卷(测评时间:2010年2月6日11:00—12:00)一、填空题(每小题8分,共32分)1.=÷⨯+⨯+⨯14)2981918928(____________.2.张杰从27起写了26个连续奇数,王强从26起写了26个连续自然数,然后他们分别将自己写的26个数求和,那么这两个和的差是____________.3.某校三(1)班举办优秀少先队员评选活动.每位同学如果表现优秀,则可得一枚小红花,5枚小红花可换成一面小红旗,4面小红旗可换成一个奖章,3个小奖章可换成一个小金杯,一学期得2个小金杯,可评为优秀少先队员,那么要评为优秀少先队员,需要得________个小红花.4.3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A 和B 分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是__________平方厘米.二、填空题(每小题10分,共40分)5.国庆游园会上,有一个100人的方队.方队中每个人的左手要么拿红花,要么拿黄花;每人的右手要么拿红气球,要么拿绿气球.已知拿红花的有42人,拿红气球的有63人,左手拿黄花、右手拿绿气球的有28人.则左手拿红花.右手拿红气球的有________人.6.维尼熊和跳跳虎去摘苹果.维尼熊爬上树去摘,跳跳虎在地上跳着摘.跳跳虎每摘7个,维尼熊只能摘4个.维尼熊摘了80分钟,跳跳虎摘了50分钟就累了,不摘了.他们回来后数了一下,共摘2010个苹果,那么其中维尼熊摘的有________个.红气球绿气球红花339黄花287.老师带着佳佳、芳芳和明明做计算练习.老师先分别给他们一个数,然后让他们每人取3张写有数的卡片.佳佳取的是3、6、7,芳芳取的是4、5、6,明明取的是4、5、8.这时老师让他们分别取自己卡片上的两个数相乘,再加上开始老师给他们的数.如果老师开始时给他们的数依次是234、235、236,而且他们计算都正确,那么可能算出_________个不同的数.8.一天小张从甲镇出发去乙镇.同时,小王从乙镇出发去甲镇,两人出发后12分钟在丙村相遇.第二天,小张和小王又同时从乙、甲两镇出发,按原速返回甲、乙两镇.两人相遇后6分钟,小张到达丙村,那么再过________分钟,小王到达乙镇.三、填空题(每小题12分,共48分)9.用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有________种不同的涂法.(将正四面体任意旋转后仍然不同的涂色法,才被认为是不同的)10.下编号是1、2、3、……36号的36名学生按编号顺序面向里站成一圈.第一次,编号是1的同学向后转,第二次,编号是2、3的同学向后转,第三次,编号是4、5、6的同学向后转,……,第36次,全体同学向后转.这时,面向里的同学还有________名.。

相关文档
最新文档