角度调制讲义与解调

合集下载

第七章角度调制与解调要点

第七章角度调制与解调要点
第7章 角度调制与解调
角度调制:载波信号的瞬时相位按调制信号规律变化, 而幅度保持不变。简称调角。 频率调制(FM) 相位调制(PM) 1.调频(FM):载信号的频率变化量与调制信号成正比。
(振幅保持恒定)
调频信号的解调称为鉴频或频率检波。
2.调相(PM):载波信号的相位变化量与调制信号成正比。 (振幅保持不变) 调相信号的解调称为鉴相或相位检波。
2.FM波频谱的特点:
1.FM 为非线性调制:单音调制时,产生无数对边频(c n). 各频率分量的幅度随m f 变化,见图7.4。 2.m f 相同时,二者频谱包络的形状相同。 随着m f 的增大,FM 波的边频分量增多, 情况a的频谱要展宽,情况b的频谱不会展宽。 3.n为偶数时,上下边频分量的振幅相同,极性相同; n为奇数时,上下边频分量的振幅相同,极性相反; 4.m f 较小时(<0.5),由J n曲线(图7.3)可知: J1 ( J 2 、 J 3 、...), 此时可认为FM 波只由c 和c 构成,其他边频成分幅度相对 可忽略,称为窄带调频(NBFM)。
二、FM波的频谱(频域分析) 1.FM波的级数展开式 jm sin t uFM (t ) U c cos(ct m f sin t ) Re[U c e jct e f ]
其中e
Jn (mf) 1 .0 0 .8 0 .6 0 .4 0 .2 0 -0 .2 -0 .4 0 1 2 3 4 5 6 J0 J1 J2 J3 J4
mf= 1
mf= 1
c
mf= 2


c


mf= 2
c
mf= 5


c


mf= 5
c

角度调制及解调

角度调制及解调

软件开发环境选择
选择合适的软件开发环境,如MATLAB、C 等。
软件测试与验证
对软件程序进行测试和验证,确保软件工作 正常。
角度调制系统的优化建议
硬件优化
采用高性能的硬件设备,提高系统的处理能 力和稳定性。
系统集成优化
优化系统集成方案,降低系统复杂度和成本。
软件优化
优化软件算法,提高系统的处理速度和精度。
角度调制的基本原理
01
相位调制
通过改变载波信号的相位角度来传递信息。根据不同的相位偏移,可以
表示不同的信息符号。
02
调相方式
常见的调相方式有绝对调相和相对调相。绝对调相是指信号的相位与一
个参考相位之间的关系,而相对调相是指两个信号相位之间的差异。
03
解调方式
解调时需要将相位信息还原为原始的信息符号。常见的解调方式有鉴相
角度调制的应用场景
01
02
03
卫星通信
在卫星通信中,由于传输 距离远,信号衰减严重, 角度调制可以提高信号的 抗干扰能力和传输质量。
移动通信
在移动通信中,由于用户 数量多、环境复杂,角度 调制可以更好地满足用户 高速数据传输的需求。
军事通信
在军事通信中,由于通信 环境恶劣,抗干扰能力要 求高,角度调制是一种重 要的通信方式。
性能指标
衡量抗干扰性能的主要指标包括干扰抑制比(ISR)和共信道抑制能力。干扰抑制比表示系统抑制干扰信号的能 力,共信道抑制能力则表示系统在不同干扰环境下仍能保持正常工作的能力。提高抗干扰性能需要采取有效的抗 干扰措施和技术,如扩频技术、频域滤波等。
05 角度调制系统的实现
硬件实现方案
硬件设备选择
性能指标

角度调制与解调39页PPT

角度调制与解调39页PPT

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
角度调制与解调
51、没有哪个社会可以制订一部永远 适用的 法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿

角度调制与解调—频谱分析

角度调制与解调—频谱分析

(7-21)
af(t)=Vocos(ot+ mfsint)
=Vo[cos(mfsint)cosot–sin(mfsint)sinot (7-22)
函数cos(mfsint)和sin(mfsint),为特殊函数, 采用贝塞尔函数分析,可分解为 cos(mfsint)=J0(mf)+2J2(mf)cos2t+2J4(mf)cos4t +2Jn(mf)cost+… (n为偶数) (7-23)
n
可见,单频调制情况下,调频波和调相波可分解为载频 和无穷多对上下边频分量之和,各频率分量之间的距离均等 于调制频率,且奇数次的上下边频相位相反,包括载频分量 在内的各频率分量的振幅均由贝塞尔函数Jn(mf)值决定。
图7-5所示频谱图是根据式(7-25)和贝塞尔函数值画出 的几个调频频率(即各频率分量的间隔距离)相等、调制系数 mf不等的调频波频谱图。为简化起见,图中各频率分量均取 振幅的绝对值。
而在角度调制中,无论调频还是调相,调制指数均可大于1。
二、调角信号的频谱与有效频带宽度
由于调频波和调相波的方程式相似,因此要分析其中一种 频谱,则另一种也完全适用。 1. 调频波和调相波的频谱 前面已经提到,调频波的表示式为
af(t)=Vocos(ห้องสมุดไป่ตู้t+ mfsint) (Vm=Vo)
利用三角函数关系,可将(7-21)式改写成
率为0时的调频波和调相波。 根据式(7-7)可写出调频波的数学表达式为
K V a f ( t ) Vm cos 0 t f sin t Vm cos( 0 t m f sin t )
(7-14)
根据式(7-9)可写出调相波的数学表达式为

最新第6章角度调制与解调ppt课件

最新第6章角度调制与解调ppt课件
❖ 解:由(6-15)式可知,调相信号的频偏与调制信 号频率成正比,调相指数与调制信号频率无关。


❖ 6.3 调频电路 ❖ 实现频率调制的方式一般有两种:一种是直接调
频,另一种是间接调频,相应有直接调频电路和间 接调频电路两种电路形式。 ❖ 6.3.1 调频电路的主要性能指标 ❖ 1.调频线性 ❖ 调频电路输出信号的瞬时频偏与调制电压的关系 称为调频特性,理想调频特性应该是线性的。
❖ n为偶数时,上、下边频分量相位相同;n为奇数 时,上、下边频分量相位相反。
❖ (2)当M确定后, 各边频分量的振幅随n的增加 ,总趋势是减小,但不是单调减小,而有高低起伏 ,且有时候会为零。
❖ (3)载频分量的振幅有可能为正值也可能为负 值,在个别M 值(如M=2.405、5.520)时,载频 分量振幅为零。
产生频偏与相偏。 ❖ 区别在于: ❖ (1) 二者的频率和相位变化的规律不一样。 ❖ (2)调频信号的调频指数Mf与调制频率有关,调相
信号的最大频偏与调制频率有关。
表6-1 调频信号与调相信号时域参数比较
时域参数
调频信号
调相信号



❖ 图6-7给出了宗数为M的n阶第一类贝塞尔函数曲 线,表6-2给出了M为几个离散值时的贝塞尔函数值 。
第6章角度调制与解调
❖ 6.1 从导频制立体声调频广播谈起 ❖ 6.2 角度调制与解调原理 ❖ 6.3 调频电路 ❖ 6.4 鉴频电路 ❖ 6.5 数字信号调制与解调 ❖ 6.6 实训
❖ 6.1从导频制立体声调频广播谈起 ❖ 调频(FM),是用调制信号控制高频载波的瞬
时频率,使其按调制信号的变化规律变化,振幅 保持不变化。
❖ L+R信号和L-R信号送入矩阵电路加减运算输出 L左声道信号和R右声道信号。

《角度调制及解调》课件

《角度调制及解调》课件

四进制相移键控(QPSK)
解释QPSK调制技术的工作原理, 讨论其在高速通信中的优势和限 制。
八进制相移键控(8PSK)
介绍8PSK调制技术的特点和应 用,探究其在无线通信系统中的 性能和效率。四、解调方式1
同步解调
介绍同步解调技术的原理和方法,讨论其在信号解码中的作用和挑战。
2
相干解调
详细解释相干解调技术的工作原理,探究其在数字信号处理中的优势和适用范围。
《角度调制及解调》PPT 课件
了解角度调制及解调的原理、应用场景,以及不同调制和解调方式的优缺点。 掌握误码率分析方法和该技术的发展前景。
一、引言
角度调制及解调是一种重要的通信技术,用于将模拟信号转换为数字信号, 并实现信号的传输和解码。本章将介绍其定义和应用场景。
二、角度调制原理
奈奎斯特采样定理
介绍奈奎斯特采样定理的原 理和意义,对模拟信号进行 合理采样以确保信号的完整 性和准确性。
模拟信号的频谱
解释模拟信号的频谱特性, 探讨频谱分析在角度调制中 的重要性。
广义正交振幅调制
介绍广义正交振幅调制 (GMSK)的原理,讨论其 在现代通信中的应用和优势。
三、调制方式
二进制相移键控(BPSK)
详细说明BPSK调制技术的原理, 探讨其在数字通信领域的重要性 和应用。
七、参考资料
• 文献推荐 • 网络资源
3
径向基网络解调
介绍径向基网络解调算法的概念和应用,探讨其在信道估计和解调中的创新性和 效果。
五、误码率分析
• BER计算方法 • 码间干扰的影响 • 多径、多普勒效应对误码率的影响
六、总结
1 优点
说明角度调制及解调的优势和益处,以及其在现代通信系统中的重要性。

第六章-角度调制与解调

第六章-角度调制与解调

(1 U EQ u
c ost )
CQ (1 m cost)
m U /(EQ u ) U / EQ ,称为电容调制度,它表示 结电容受调制信号调变的程度。
3. 变容二极管全接入调频电路
Cc
Rb1 C0
Cc
VD
Rb2
L
Re
Ec
Lc
+
u
-
Cb
L
Cj
EQ
Cc
(a)
(b)
变容管作为回路总电容全部接入回路
频率变化的快慢。
m :相对于载频的最大角频偏(峰值角频偏)
fm m 2 :最大频偏
m k f U :k f 是比例常数,表示U 对最大角频偏的控制 能力,单位调制电压产生的频率偏移量,称为调频灵敏度。
mf m fm F :调频波的调制指数 。m f 与U成正比, 与 成反比。
调频波的频谱 1.调频波的展开式
鉴频器
1.定义:调频波的解调称为频率检波或鉴频(FD), 调相波的解调称为相位检波或鉴相(PD)。
鉴频器是一个将输入调频波的瞬时频率 (f 或频偏 f )
变换为相应的解调输出电压 uo的变换器。
2.鉴频器的主要性能指标:
uo
(1)鉴频器中心频率 f 0
uom ax
(2)鉴频带宽 Bm
f
uo
变换器
fB
m mc / 2 2m ( / 2 1)m2c / 8
二次谐波失真系数:
Kf2
2 m m
1 ( 1)m
42
Cj
Cj
CQ
o
uo
t
EQ
t
(a)

f
f

dsp第6章 角度调制和解调

dsp第6章 角度调制和解调

(t ) c k f u (t )
(t ) o t k p u (t )
角度调制
第6章 角度调制和解调
CHANGCHUN INSTITUTE OF TECHNOLOGY
AM调制方式中
AM DSB SSB
属于频谱线性搬移电路 , 调制信号寄 生于已调信号的振幅变化中
FM PM
第6章 角度调制和解调
(t )
d ( t ) du ( t ) o k p o ( t ) dt dt
( t ) k p du ( t ) ; PM波瞬时频偏 dt du ( t ) kp | |max k pU dt
CHANGCHUN INSTITUTE OF TECHNOLOGY
当进行角度调制 (FM或PM)后 , 其已调波的角频率将是时间的函数 即 ω(t) 。可用右图所示的旋转矢 量表示
t =0
o
实轴
设旋转矢量的长度为 Uom , 且当t=0时,初相角为 o ,t= t时刻, 矢量与实轴之间的瞬时相角为 ( t ) ,显然有:
第6章 角度调制和解调
6.2 调角信号的分析
一.调角信号的分析与特点
CHANGCHUN INSTITUTE OF TECHNOLOGY
1.瞬时频率和瞬时相位( instantaneous frequency and phase) 如果设高频载波信号为 : t= t
( t )
uo (t ) Uom cos(o t o ) Uom cos (t )
U kF (5) 表达式: uFM ( t ) U cos ( t )
U cos [ ot k f U cos [ ot

角度调制与解调-PPT文档资料

角度调制与解调-PPT文档资料
12
以单音调制波为例
调频
调制信号 v ( t ) V cos t Ω Ω
( t ) k V cos Ωt 瞬时频率 0 f
k V f ( t ) t sin Ωt 瞬时相位 0 0

已调频信号
k V f a ( t ) V cos( t sin Ωt ) 0 0 0
D ( t ) k v ( t ) p
最大相移,即相偏,表示为 D m p 调制指数 k ( t)max pv d d 瞬时频率 ( t ) [ t k v ( t ) ] k v ( t) 0 p 0 0 p d t d t d 频偏 D ( t ) k v ( t) p p d t max
t t
t 0
0
t
(t )
(t )
实轴
9
0
( t ) V cos( t ) 设调制信号为vΩ (t), 载波信号 v o 0 0 0
调频
瞬时频率
( t ) k v ( t ) 0 f
ω0是未调制时的载波中心频率;kfvΩ (t)是瞬时频率相对于ω0的 偏移,叫瞬时频率偏移,简称频率偏移或频移。可表示为
m Ω D
14
以单音调制波为例
( t ) V cos t 调制信号 v
( t ) k V cos Ωt 调频 瞬时频率 0 f
瞬时相位
k V f ( t ) t sin Ωt 0 0
kfV D f mf
调相 瞬时相位 ( t ) t k V cos Ωt 0 p 0
t 0
max

第10章 角度调制与解调2ppt

第10章   角度调制与解调2ppt
调角波的性质
由此可知,调频波的最大频移f 与调制频率无关,最大 相移mf 则与 成反比; 调相波的最大频移p与 成正比,最大相移mp 则与调

频率 无关。
这是两种调制的根本区别。
正是由于这一根本区别,调频波的频谱宽度对于不同的 几乎维持恒定;调相波的频谱宽度则随 的不同而有剧
烈变化。
第10章 角度调制与解调
第10章 角度调制与解调
mf
mf
调角波的性质
mf
k fV
mf
f k fV
mf
0
0
V
图10.2.2 调频信号 、mf与V 、的关系
第10章 角度调制与解调
调角波的性质
mp
m p k pV mp
p k pV
mp
mp
0
0
V
图10.2.3 调相信号 、mp与V 、的关系
第10章 角度调制与解调
f (t)
p(t)
0
2
t
f (t)
0
2
t
p(t)
0
2
t
(a )调 频
0
2
t
(b)调 相
第10章 角度调制与解调
调角波的性质
在调相时,相位变化反映调制信号的波形,频率变化为 它的微分,成为一系列振幅为正、负无限大、宽度为 零的脉冲。
若调制信号为(t) = Vcost,未调制时的载波频率为0,
[解]单频正弦波为(t)=Vsint
mf
f
F
10103 400
25
p m p
mp
p
第10章 角度调制与解调
调角波的性质
mp
f
F

第6章 角度调制与解调

第6章 角度调制与解调
0
0
t
t
则 FM 信号为
t uFM t Ucm coscos t Ucm cos c t kf uΩ t dt 0
相移
4
单频调制时:uΩ t U Ωm cos Ωt
最大角频移
则 t c +kf U Ωm cos Ωt c +fm cos Ωt
U cm cos c t cos mf sin Ωt sin c t sin mf sin Ωt
根据贝塞尔函数理论有:
cos mf sin Ωt J 0 mf 2 J 2 n mf cos 2nΩt sin mf sin Ωt 2 J 2 n1 mf sin 2n 1 Ωt
kf U Ωm t c t sin Ωt c t mf sin Ωt Ω
uFM t U cm cos c t mf sin Ωt
调频指数 (最大相移)
fm kf U Ωm
mf
kf U Ωm fm ffm mf F Ω Ω
c t +kp uΩ t
t
c +kf uΩ t
c +fm cos Ωt
瞬时相位
t
c t k f uΩ t d t
0
t
c t +mp cos Ωt pm kpU Ωm Ω mp Ω mp kpU Ωm
uPM t U cm cos c t kp uΩ t U cm cos c t mp cos Ωt

10

调频信号与调相信号的相同之处在于: (1) 二者都是等幅信号。

第五章角度调制与解调

第五章角度调制与解调
BWCR 2F (fm F ) 显然,窄带调频时,频带宽度与调幅波基本相同,窄 带调频广泛应用于移动通信台中。
当M 1,为宽带调制时,此时有
BWCR 2fm
(fm F )
8.3 调频电路
1. 直接调频:用调制信号直接控制振荡器振荡频率, 使其不失真地反映调制信号的规律。
2. 间接调频:用调制信号的积分值控制调相器实现 调频。
t
(2) 非线性失真系数THD:
THD
fm2n
n2
fm1
(3) 中心频率准确度和稳定度
一、直接调频电路
1、变容二极管调频电路
(1)电路组成:
(2)变容二极管特性:
Cj
Cj0 (1 u
)n
UB
(3)调频原理分析
由于振荡回路中仅包含一个电感L和一个变容二极管
等效电容C j,在单频调制信号 (t) Vm cos t 的作用下 回路振荡角频率,即调频特性方程为
(t) Vcm cos(ct M sin t) Vcm Re[e j(ctM sint) ]
Vcm Re[e jct .e jM sin t ]
式中 e jM sint 是 的周期性函数,其傅立叶级数展开式为:
e jM sin t
J n (M )e jnt
n
式中
Jn
(M
)
1
2
e jM sin te jnt dt
1. 调频(FM)
(t) k f (t) k fVm cos t m cos t
其中 m k f Vm 为最大角频偏
(t) k f
t
0 (t)dt
k f Vm
sin t
M
f
sin t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档