高考三角函数题型分析
三角函数高考题型分类总结
三角函数高考题型分类总结根据出现频率和难度程度,三角函数的高考题型可以分为以下几类:1.求解三角函数值:给定某个角度,求其正弦、余弦、正切等函数值。
这是三角函数的基本应用,通常难度较低。
2.证明恒等式:要求学生运用三角函数的基本公式和性质,证明某些三角函数的恒等式。
难度较高。
3.解三角形:给定某些三角形的一些角度或边长,要求学生利用三角函数的基础知识求解其余角度或边长。
难度较高。
4.求解三角方程:给定某些三角函数的式子,要求学生解出该式的解集。
这种题型通常需要学生掌握一定的三角函数公式,难度较高。
5.综合应用:要求学生将三角函数运用到实际问题中,如求解高度、距离等。
考察学生对三角函数的理解和应用能力。
难度较高。
除了以上几种常见的题型,还可能出现一些变形题,需要学生根据题目情况灵活运用三角函数的知识。
总的来说,三角函数在高考中的重要性不言而喻,学生需要扎实掌握相关知识和技能。
6.三角函数的图像与性质:考察三角函数的图像、周期、奇偶性、单调性等性质,需要学生掌握函数图像的绘制和相关概念的理解。
7.复合三角函数:考察学生对三角函数复合的概念和公式的掌握,需要注意不同变换下函数值的变化。
8.三角函数的导数:考察学生对三角函数的导数概念和计算方法的掌握,包括链式法则、求导公式等内容。
9.反三角函数:考察学生对反三角函数的定义、性质和公式的掌握,需要注意定义域、值域和解的判断。
10.三角函数的应用:考察学生将三角函数用于实际问题的解决,如解决三角形、距离等问题。
总的来说,三角函数是高中数学中重要的一部分,掌握好三角函数的知识对于高考的成绩至关重要。
在复习中,学生需要注重基础知识的巩固,深入理解概念和定理,做好练习题和真题的训练,同时灵活应用所学知识解决实际问题。
高三高考文科数学《三角函数》题型归纳与汇总
高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
高考三角函数题型归纳总结
高考三角函数题型归纳总结
高考解三角函数题型归纳总结
一、函数值的计算
1.由某个函数的定义求指定的函数值
2.由表达式求某个函数的值
3.由一切三角函数的基本等式求某个函数的值
二、函数的延长
1.函数的延长:对某个函数的符号或值作一定重新定义,以推广原函数的定义域,使原值可以成为新函数的值
2.求函数值时把原函数的值替换新定义的函数的值
三、函数的平移
1.对某个函数作一定的平移变换,使其实轴、值轴都做出一定的平移
2.函数按照平移变换规则,将原函数的值按比例地经过初始点再离开
四、函数的综合运用
1.记住一些常见的组合等式,如:sinα±cosα=sincosα、sin α-cosα=-2sinsinα/2
2.按延长或平移变换,用组合等式解决具体问题
3.用其他三角函数的关系转换,把一种函数转换成另一种,如tanα=sinα/cosα。
- 1 -。
高考数学最新真题专题解析—三角函数(全国通用)
高考数学最新真题专题解析—三角函数(全国通用)考向一 三角函数的图像【母题来源】2022年高考全国I 卷【母题题文】 设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A. 513,36⎫⎡⎪⎢⎣⎭B. 519,36⎡⎫⎪⎢⎣⎭C. 138,63⎛⎤ ⎥⎝⎦D.1319,66⎛⎤ ⎥⎝⎦【答案】C【试题解析】解:依题意可得0>ω,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭, 要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦. 故选:C .【命题意图】本题主要考查正弦型函数的图象的变换,考查学生的数学运算能力,逻辑分析那能力,是一道中档题.【命题方向】这类试题在考查题型上主要以选择形式出现.多为低档题,本类题型主要考查三角函数的图像和性质以及三角函数的平移变换问题. 常见题型:平移变换、辅助角公式、诱导公式. 【得分要点】(1)利用降幂公式、辅助角公式对三角函数进行化简; (2)利用三角函数的一些性质解题. 考向二 三角函数的性质 【母题来源】2022年高考北京卷【母题题文】 已知函数22()cos sin f x x x =-,则( ) A.()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减 B.()f x 在,412ππ⎛⎫-⎪⎝⎭上单调递增 C. ()f x 在0,3π⎛⎫⎪⎝⎭上单调递减 D.()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增 【答案】C【试题解析】因为()22cos sin cos2f x x x x =-=.对于A 选项,当26x ππ-<<-时,23x ππ-<<-,则()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递增,A 错; 对于B 选项,当412x ππ-<<时,226x ππ-<<,则()f x 在,412ππ⎛⎫- ⎪⎝⎭上不单调,B 错;对于C 选项,当03x π<<时,2023x π<<,则()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,C 对;对于D 选项,当7412x ππ<<时,7226x ππ<<,则()f x 在7,412ππ⎛⎫⎪⎝⎭上不单调,D 错. 故选:C.【命题意图】本题考查倍角公式及三角函数的单调性.【命题方向】这类试题在考查题型选择、填空、解答题都有可能出现,多为中档题,是历年高考的热点. 常见的命题角度有:(1)三角函数的图像;(2)三角函数的性质:定义域、值域、奇偶性、单调性、对称性等; 【得分要点】(3)利用倍角公式、降幂公式及辅助角公式对三角函数进行化简; (4)利用三角函数的一些性质解题. 真题汇总及解析 一、单选题1.(2022·天津市求真高级中学高二期末)函数()()sin 0f x x ωω=>的最小正周期为2π,则ω的值为( ) A .4 B .2 C .1D .12【答案】A 【解析】 【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】由2T πω=,∴2242Tππωπ===.故选:A. 2.(2022·上海·华师大二附中模拟预测)已知,x y ∈R ,则表达式22cos cos cos x yxy( )A .既有最大值,也有最小值B .有最大值,无最小值C .无最大值,有最小值D .既无最大值,也无最小值【答案】D 【解析】 【分析】结合余弦函数,可分别得到2cos x ,2cos y ,()cos xy 的范围,再确定端点值是否可以同时取等,即可判断. 【详解】由[]22cos ,cos 0,1x y ∈,()[]cos 1,1xy ∈-,易知22cos cos cos 1,3x yxy.同时,由于π是无理数,因此当cos cos 0xy时,cos 1xy ;当22cos cos 1xy时,cos 0xy,故两端均不能取得等号.补充证明:二元表达式22cos cos cos x yxy(,x y R )可以取到任意接近1-和3的值,从而该式无最值.①取x π=,y n (*n ∈N ),则222cos cos cos 2cos x y xy n .对任意0ε>,由抽屉原理,存在*N N ,使得22N N .再考虑*k ∈N ,使得1k k(由π的无理性,两头都不取等).则nkN 时,212122NN kkN k,从而2cos 1,coskN,22cos cos cos 2cos ,3x y xy ,即证.②取2x π=,2yn(*n ∈N ),则22221cos cos cos cos4n x y xy .对任意0ε>,由抽屉原理,存在*N N ,使得224N N .再考虑k ∈Z ,使得4k k(不取等的理由同上).则nkN 时,2244244N kN N kk,从而221cos cos ,14kN ,22cos cos cos 1,cosxy xy,即证.故选:D 【点睛】易错点点睛:2cos x ,2cos y ,()cos xy 均有最值,但三者加和后,需确定能否同时取得最值.3.(2022·河南安阳·模拟预测(文))已知函数()sin cos f x a x b x c ωω=++(a ,b ,0>ω)的部分图象如图所示,则=a ( )A .1B 2C 3D .2【答案】B 【解析】 【分析】整理()()22f x a b x c ωϕ=+++,且tan b aϕ=222a b +,利用相邻对称轴的距离求得ω,根据对称轴求得ϕ,进而可得tan 1ϕ=,即a b =,即可求解. 【详解】由题,()()22sin cos f x a x b x c a b x c ωωωϕ=+++++,tan b aϕ=,223a b c +=,221a b c -+=-,所以1c =222a b +,又51882T ππ-=,所以T π=,则22T πω==,因为对称轴为8x π=,所以2282k ππϕπ⨯+=+,k ∈Z ,则24k ϕπ=+π,k ∈Z 所以tan 1ϕ=,即a b =, 所以2a = 故选:B4.(2023·广西柳州·模拟预测(文))若()4sin π5α-=,则cos2α=( ) A .-2425B .725C .-725D .2425【答案】C 【解析】 【分析】根据给定条件,利用诱导公式、二倍角的余弦公式化简计算作答. 【详解】依题意,4sin 5α=,所以2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭.故选:C5.(2022·四川成都·模拟预测(理))函数2cos 34cos f x x x 的最小正周期为( ) A .23πB .43π C .π D .2π【答案】A 【解析】 【分析】利用三角恒等变换化简函数()f x 的解析式,利用余弦型函数的周期公式可求得函数()f x 的最小正周期. 【详解】222cos 22cos 2cos 1cos 2sin cos2sin sin 2cos2cos f xx x x x x xx x x xcos3x =-,所以,函数()f x 的最小正周期为23T π=. 故选:A.6.(2022·上海闵行·二模)“角,αβ的终边关于y 轴对称”是“cos cos 0αβ+="的( ) A .充要条件 B .充分不必要条件 C .必要不充分条许 D .既不充分也不必要各件【答案】B 【解析】 【分析】先证明充分性,再举出反例说明必要性不成立,得到答案. 【详解】由角,αβ的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,可知cos cos αβ=-,即cos cos 0αβ+=成立,充分性成立;当cos cos 0αβ+=时,角,αβ的终边关于y 轴对称或(21),k k Z αβπ=++∈, 所以“角,αβ的终边关于y 轴对称”是“cos cos 0αβ+=”的充分不必要条件, 故选:B.7.(2022·甘肃·武威第六中学模拟预测(理))已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( ) A .6π=ϕB .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【答案】D 【解析】 【分析】由已知得()2sin 23f ππϕ⎛⎫-=-+=± ⎪⎝⎭,由2πϕ<可求得ϕ,可判断A 选项,由此有()12sin 36x f x π⎛⎫=- ⎪⎝⎭;对于B ,由,2x ππ⎡⎤∈--⎢⎥⎣⎦得12363x πππ-≤-≤-,由正弦函数的单调性可判断;对于C ,由[],x ππ∈-得12366x πππ-≤-≤,由此得()f x 在区间[],ππ-上的最大值为2sin16π=;对于D ,()11+2sin +336f x x πθθ⎛⎫=- ⎪⎝⎭,由()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈. 【详解】解:因为函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,所以()2sin 23f ππϕ⎛⎫-=-+=± ⎪⎝⎭,所以+,32k k Z ππϕπ-+=∈,又2πϕ<,所以6πϕ=-,故A 不正确;所以()12sin 36x f x π⎛⎫=- ⎪⎝⎭,对于B ,当,2x ππ⎡⎤∈--⎢⎥⎣⎦时,12363x πππ-≤-≤-,所以()f x 在区间,2单调递增,故B 不正确;对于C ,当[],x ππ∈-时,12366x πππ-≤-≤,()f x 在区间[],ππ-上的最大值为2sin16π=,故C 不正确;对于D ,若()f x θ+为偶函数,且()()111+2sin +2sin +36336f x x x ππθθθ⎡⎤⎛⎫=-=- ⎪⎢⎥⎣⎦⎝⎭,所以()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈,故D 正确,故选:D.8.(2022·青海·海东市第一中学模拟预测(理))已知函数()()23sin cos cos 0f x x x x ωωωω+>,若函数f (x )在,2ππ⎛⎫⎪⎝⎭上单调递减,则实数ω的取值范围是( )A .13,32⎡⎤⎢⎥⎣⎦B .12,33⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .20,3⎛⎤⎥⎝⎦【答案】B 【解析】 【分析】利用二倍角和辅助角公式化简解析式,然后利用正弦函数的单调性解决即可. 【详解】 函数()()()2313sin cos cos 0sin 21cos222f x x x x x x ωωωωωω=+>=++311sin 2cos2222x x ωω=++1sin 262x πω⎛⎫=++ ⎪⎝⎭,由函数f (x )在,2ππ⎛⎫ ⎪⎝⎭上单调递减,且2,2666x πππωωπωπ⎛⎫+∈++ ⎪⎝⎭,得26232262k k ππωππππωππ⎧+≥+⎪⎪⎨⎪+≤+⎪⎩,k ∈Z ,解12233k k ω+≤≤+,k ∈Z .又因为ω>0,12222πππω⨯≥-,所以k =0,所以实数ω的取值范围是12,33⎡⎤⎢⎥⎣⎦.故选:B9.(2022·浙江·模拟预测)如图所示的是函数()y f x =的图像,则函数()f x 可能是( )A .sin y x x =B .cos y x x =C .sin cos y x x x x =+D .sin cos y x x x x =-【答案】C 【解析】 【分析】由图象确定函数的性质,验证各选项是否符合要求即可. 【详解】由图可知:()f x 是非奇非偶函数,且在y 轴右侧,先正后负.若()sin f x x x =,则()()()sin sin f x x x x x -=--=,所以函数sin y x x =为偶函数, 与条件矛盾,A 错,若()cos f x x x =,则()()()cos cos f x x x x x -=--=-,所以函数cos y x x =为奇函数,与条件矛盾,B 错,若()sin cos f x x x x x =-,则()2sin 4f x x x π⎛⎫=- ⎪⎝⎭,当04x π⎛⎫∈ ⎪⎝⎭,时,()2sin 04f x x x π⎛⎫=-< ⎪⎝⎭,与所给函数图象不一致,D 错,若()sin cos f x x x x x =+,则()2sin 4f x x x π⎛⎫=+ ⎪⎝⎭,当304x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,又2()4f π=, ()04f π-=,所以函数sin cos y x x x x =+为非奇非偶函数,与所给函数图象基本一致, 故选:C .10.(2022·北京·北大附中三模)如图矩形,6ABCD AB =,沿PQ 对折使得点B 与AD 边上的点1B 重合,则PQ 的长度可以用含α的式子表示,那么PQ 长度的最小值为( )A .4B .8C .2D 93【答案】D 【解析】 【分析】设PQ y =,由三角比的定义可得sin PB y α=,sin cos2PA y αα=⋅,继而求得()262sin 1sin y αα=-,令()()221g t t t =-和2sin t α⎛=∈ ⎝⎭,求导可得()g t 的最大值为:343g =⎝⎭PQ 长度的最小值. 【详解】设PQ y =,1PB PB =,11180APB B PB ∠+∠=,12180B PB α+∠=,则12APB α∠=,则有sin PB y α=和11cos cos2PA PB APB PB ∠α==,代入6AB PA PB =+=,解得:()()266sin 1cos22sin 1sin y αααα==+-,令()()221g t t t =-和2sin t α⎛=∈ ⎝⎭, 导函数()226g t t '=-,即可得()g t 的最大值在3t =此时343g =⎝⎭min 93y =, 故选:D .二、填空题11.(2022·辽宁实验中学模拟预测)已知tan 2α=,则222222cos 2sin 2cos 3sin sin 1cos 2αααααα--+=++_________.【答案】16799-##68199-【解析】 【分析】利用同角间的三角函数关系,把待求式化为关于tan α的式子,然后代入已知计算. 【详解】2222222222222222cos 2sin 2cos 3sin cos 2sin 2cos 3sin sin 1cos 2sin sin cos cos 2(sin cos )αααααααααααααααα----+=+++++++22222222cos 2sin 2cos 3sin 2sin cos 2sin 3cos αααααααα--++=+222212tan 23tan 2tan 12tan 3αααα--+=++ 182128183--=+++16799=-. 故答案为:16799-. 12.(2022·内蒙古·乌兰浩特一中模拟预测(文))将最小正周期为π的函数()2sin(2)1(0)6f x x πωω=-+>的图像向左平移4π个单位长度,得到()g x 的图像,则函数()g x 的一个对称中心为___________【答案】,13π⎛⎫⎪⎝⎭,不唯一【解析】 【分析】根据最小正周期求出ω ,再根据函数平移规则即可求出()g x 的解析式. 【详解】由题意,T π= ,2,12ππωω∴== ,即()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭ ,()f x 向左平移4π得()g x , ()2sin 212sin 21463g x x x πππ⎡⎤⎛⎫⎛⎫∴=+-+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ,令2,33x x πππ+== ,∴()g x 的一个对称中心为,13π⎛⎫ ⎪⎝⎭;故答案为: ,13π⎛⎫⎪⎝⎭.13.(2022·福建·三明一中模拟预测)已知函数2()322cos 1f x x x =-+,且方程()0f x a -=在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根,则实数a 的取值范围是___________.【答案】[2,1]- 【解析】 【分析】由题意可得()a f x =在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根,a 的取值范围即为函数()f x 的值域.【详解】2()322cos 132cos 22sin(2)6f x x x x x x π-+=-=-,方程()0f x a -=在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根,即()a f x =在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根, ,36x ππ⎡⎤∈-⎢⎥⎣⎦,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,得2()1f x -≤≤,即a 的取值范围是[2,1]-,故答案为:[2,1]-14.(2022·北京工业大学附属中学三模)已知函数ππ()sin()sin()44f x x x =+-给出下列四个结论: ①f (x )的值域是[1,1]-; ②f (x )在π[0,]2上单调递减: ③f (x )是周期为π的周期函数④将f (x )的图象向左平移π2个单位长度后,可得一个奇函数的图象 其中所有正确结论的序号是___________. 【答案】②③ 【解析】 【分析】先将()f x 化简,然后根据余弦函数的性质逐一判断即可 【详解】ππ()sin()sin()44f x x x =+-2222()()x x x x =+ 2211cos sin 22x x =- 1cos22x =所以()f x 的值域为11[,]22- ,故①错误; 令2π2π2π,k x k k Z ≤≤+∈ ,πππ,2k x k k Z ∴≤≤+∈当0k =时,()f x 的一个单调递减区间为π[0,]2,故②正确;()f x 的周期2ππT ω== ,故③正确()f x 的图像向左平移π2个单位长度后得到的函数图像对应的解析式为π1π1()()cos[2()]cos 22222g x f x x x =+=+=- ,是偶函数,故④错误故答案为:②③ 三、解答题15.(2022·浙江绍兴·模拟预测)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值; (2)若π4PMN PNM ∠+∠=,求A 的值. 【答案】(1)2;π6ϕ=;(2)71A =. 【解析】 【分析】(1)利用()f x 的解析式求出周期,再由给定的最高点P 求出ϕ作答.(2)由(1)求出点M ,N 的坐标,结合图形求出PMN ∠和PNM ∠的正切,再利用和角公式计算作答.(1)函数()sin(π)f x A xϕ=+的最小正周期2π2πT==,因1(,)3P A是函数()f x图象的最高点,则1ππ2π,Z32k kϕ+=+∈,而02πϕ≤≤,有0k=,π6ϕ=,所以函数()f x的最小正周期为2,π6ϕ=.(2)由(1)知,π()sin(π)6f x A x=+,由ππ06x+=得16x=-,即点1(,0)6M-,由ππ2π6x+=得116x,即点11(,0)6N,于是得tan211()36APMN A∠==--,2tan111363APNM A∠==-,而π4PMN PNM∠+∠=,则22tan tan3tan()121tan tan123A APMN PNMPMN PNMPMN PNM A A+∠+∠∠+∠===-∠⋅∠-⋅,又0A>,解得712A=-,所以712A=-.16.(2022·上海奉贤·二模)如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处.20AB=km,10BC=km.为了处理这三家工厂的污水,现要在该矩形区域内(含边界)且与A、B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为y km.(1)设BAOθ∠=(弧度),将y表示成θ的函数并求函数的定义域;(2)假设铺设的污水管道总长度是(10103+km ,请确定污水处理厂的位置. 【答案】(1)2010sin π10,0cos 4y θθθ-=+≤≤(2)位置是在线段AB 的中垂线上且离AB 103km 【解析】 【分析】(1)依据题给条件,先分别求得OA OB OP 、、的表达式,进而得到管道总长度y 的表达式,再去求其定义域即可解决; (2)先解方程2010sin 1010103cos θθ-+=+π6θ=,再去确定污水处理厂的位置. (1)矩形ABCD 中,20AB =km ,10BC =km ,DP PC =,DC PO ⊥,BAO ABO θ∠=∠=则()10km,1010tan km cos OA OB OP θθ===-, 201010tan cos y OA OB OP θθ∴=++=+- 则2010sin π10,0cos 4y θθθ-=+≤≤(2)令2010sin 1010103cos θθ-+=+π10sin 10320,20sin 20,3θθθ⎛⎫∴+=∴+= ⎪⎝⎭则πsin 1,3θ⎛⎫+= ⎪⎝⎭又π04θ≤≤,即ππ7π3312θ≤+≤,则ππ32θ+=,则π6θ=此时π101010tan 103(km)63OP =-=所以确定污水处理厂的位置是在线段AB的中垂线上且离AB103km。
高考数学三角函数常见考查题型与解法分析
等 , 多 属 于 中低 档 题 , 多 是 课 本 例 题 、 题 或 复 习 参 考 大 大 习 题 改 编 而 来. 因此 在 复 习 备考 过 程 中应 注 意 以下 三 点 : 是 一 “ 足课标 , 眼提高 ”二 是加 强掌握 常规 题型 基本解 法 , 立 着 ,
三是 加 强 角 函 数 式 化 简 训 练 .
. .
二 角 数 与解 三 角 形 的 综 合 性 问 题 , 近 几 年 高 考 的 - 是
热 点 , 高 考 试 题 巾 频 繁 出 现 .这 类 题 型 难 度 比 较 低 . 决 在 解
=— 三
,
此 类 问题 , 根 据 已 知 条 件 , 活 运 用 正 弦 定 理 或 余 弦 定 要 灵 理 , 边角或将边角互化. 求 例 3 ( 0 0年 辽 宁 文数 ) △A C 中 , , , 别 为 内 21 在 B a b C分
角 函数 问 题 丰 富 多 彩 、 次 分 明 、 化 多 端 , 与 函 数 、 三 层 变 常 j
解 (因 函 图 过 ( ,) 得 = . 1 为 数 像 点詈÷ , 詈 ) 解
() 1知 = , 2 由( ) ÷
‘
角 、 列 、 析 几 何 等 结 合 考 查. 此 三 角 函 数 解 答 题 备 受 数 解 因 命题者青睐 , 历届 高考 的命 题热 点 , 多属 于 中低档 题. 是 大
三角函数的图象与性质6大题型(解析版)--2024高考数学常考题型精华版
三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。
三角函数常见典型考题赏析
高一使用3031年4月▼W bW V-b*e・▼■r~9•w**■一■—W-^■张文伟三角函数是高中数学的重要内容,也是高考的常考点。
同学们要掌握三角函数的有关概念和性质(单调性、对称性、奇偶性、周期性、最值),要理解和掌握三角函数的图像与性质,掌握三角函数模型的简单应用。
题型1:角的概念象限角的两种判断方法:(1)图像法,在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角;(2)转化法,先将已知角化为k X360°+a (0°C a V360°k e Z)的形式,即找出与已知角终边相同的角a,再由角a终边所在的象限判断已知角是第几象限角。
利用终边相同的角的集合S=,,=2k n+a,e Z}判断一个角,所在的象限时,只需把这个角写成[0,2n)范围内的一个角a与2n的整数倍的和,然后判断角a所在的象限。
例1在一720°〜0°范围内所有与45°终边相同的角为。
解:所有与45°终边相同的角可表示为,=45°+k X360°(k e Z)。
令一720°C45°+ k X360°V0°(k e Z),可得一765°C k X360°V7(^5°A50—45°(-e z),解得一76n oC-v—4°(-e360360Z),即一2.125C k V0.125(k e z),可知k=—2或k=—1,代入可得,=一675°或,=—315°。
答案为一675°或一315°。
跟踪训练1若a=k X360°+3,=m X 360°—3-m e Z),则角a与角,的终边的位置关系是))OA.重合B.关于原点对称C.关于x轴对称D.关于y轴对称提示:由题意知角a与角3的终边相同,角,与角一3的终边相同。
完整版)高三三角函数专题复习(题型全面)
完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。
考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。
考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。
考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。
此外,该函数的图像还可以通过一定的变换得到。
一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。
cosθ)(θ∈(π/2,π)),则sin=-cosθ。
3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。
练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。
4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。
练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。
专题10 三角函数性质、最值和ω题型归类(解析版)
专题10 三角函数性质、最值和ω题型归类一、重点题型目录【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心 【题型】三、图像法求三角函数的最值或值域 【题型】四、换元法求三角函数的最值或值域【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数 【题型】六、五点法求三角函数的解析式 【题型】七、利用图象平移求函数的解析式或参数 二、题型讲解总结【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 例1.(2023·全国·高三专题练习)已知函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在56x π=时取得最大值,则()f x 在[π,0]-上的单调增区间是( ) A .5ππ6⎡⎤--⎢⎥⎣⎦, B .5ππ66⎡⎤--⎢⎥⎣⎦, C .π03⎡⎤-⎢⎥⎣⎦, D .π06⎡⎤-⎢⎥⎣⎦, 【答案】D【分析】根据题意可得5πsin 16ϕ⎛⎫+= ⎪⎝⎭,则可求出ϕ,由于0A >,所以利用正弦函数的性质可求出答案.【详解】解:因为函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在5π6x =取最大值所以5πsin 6A A ϕ⎛⎫+= ⎪⎝⎭,则5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5πππ,Z 62k k ϕ+=+∈,得ππ,Z 3k k ϕ=-+∈ 又因为π02ϕ-<< 所以π3ϕ=-, 所以π()sin (0)3f x A x A ⎛⎫=-> ⎪⎝⎭,由πππ2π2π,Z 232k x k k -+≤-≤+∈,得5ππ22,Z 66ππk x k k -+≤≤+∈, 所以()f x 的递增区间为()π5π2π,2πZ 66k k k ⎡⎤-++∈⎢⎥⎣⎦,所以()f x 在[π,0]-上的单调增区间是π06⎡⎤-⎢⎥⎣⎦,, 故选:D .例2.(2022·黑龙江·哈尔滨市剑桥第三高级中学有限公司高三阶段练习)函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的一个对称中心是( )A .,112π⎛⎫⎪⎝⎭B .7,012π⎛⎫⎪⎝⎭ C .,13π⎛⎫ ⎪⎝⎭D .5,012π⎛⎫- ⎪⎝⎭【答案】C【分析】根据余弦型函数,求出其对称中心即可判断作答.【详解】在函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭中,由2,Z 62x k k πππ-=+∈得,,Z 23k x k ππ=+∈, 所以函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的对称中心是(,1)(Z)23k k ππ+∈,显然B ,D 不满足,A 不满足,当0k =是,对称中心为(,1)3π,C 满足.故选:C例3.(2022·湖北·宜都二中高三期中)已知函数π()sin()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .()f x 的图象可由()cos g x A x ω=图象向右平移π9个单位长度得到B .()f x 图象的一条对称轴的方程为5π9x =-C .()f x 在区间29π17π,3636⎛⎫-- ⎪⎝⎭上单调递增 D .()2f x ≥的解集为2k π2π2k π,()393k ⎡⎤+∈⎢⎥⎣⎦Z 【答案】ABD【分析】根据函数的振幅、周期、及过点4,49π⎛⎫-⎪⎝⎭可求得π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭, 对于选项A :利用函数图象的平移检验即可;对于选项B :令ππ3π,62x k k +=+∈Z 可解得()f x 图象对称轴的方程,检验是否能取到5π9x =-即可. 对于选项C :求出π9π5π3,644x ⎛⎫+∈-- ⎪⎝⎭,验证正弦函数在9π5π,44⎛⎫-- ⎪⎝⎭是否单调增.对于选项D : 直接解三角不等式π1sin 362x ⎛⎫+≥ ⎪⎝⎭即可获得答案.【详解】由题意知34ππ4,4918A T ⎛⎫==-- ⎪⎝⎭,解得2π3T =,所以2π3T ω==, 所以()4sin(3)f x x ϕ=+.又点4,49π⎛⎫- ⎪⎝⎭在()f x 的图象上, 所以4π4sin 349ϕ⎛⎫⨯+=- ⎪⎝⎭,所以4π3π2π,32k k ϕ+=+∈Z , 解得π2π,6k k ϕ=+∈Z ,又||2ϕπ<,所以ϕ=π6, 所以π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭,将π()4cos34sin 32g x x x ⎛⎫==+ ⎪⎝⎭向右平移π9个单位可得πππ4sin 34sin 3()926y x x f x ⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确;令ππ3π,62x k k +=+∈Z ,解得ππ,93k x k =+∈Z ,令2k =-得5π9x =- 所以()f x 图象的对称轴的方程为5π9x =-.故B 正确; 当29π17π,3636x ⎛⎫∈-- ⎪⎝⎭时,π9π5π3,644t x ⎛⎫=+∈-- ⎪⎝⎭,sin y t =在9π5π,44t ⎛⎫∈-- ⎪⎝⎭上不是单调递增的,故C 错误;令()2f x ≥,即π1sin 362x ⎛⎫+≥ ⎪⎝⎭,所以ππ5π2π32π,666k x k k +≤+≤+∈Z ,解得2π2π2π,393k k x k ≤≤+∈Z ,即()2f x ≥的解集为2π2π2π,()393k k k ⎡⎤+∈⎢⎥⎣⎦Z ,故D 正确. 故选:ABD.例4.(2023·全国·高三专题练习)已知函数()[]π4sin 2,π,03f x x x ⎛⎫=-∈- ⎪⎝⎭,则()f x 的单调递增区间是________.【答案】7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【分析】利用正弦函数的单调性以及整体代入的方法,求出()f x 的单调递增区间,结合[]π,0x ∈-,得出答案.【详解】由()πππ2π22πZ 232k x k k -+≤-≤+∈,得()π5πππZ 1212k x k k -+≤≤+∈,当1k =-时,13π7π,1212x ⎡⎤∈--⎢⎥⎣⎦;当0k =时,π5π,1212x ⎡⎤∈-⎢⎥⎣⎦;又因为[]π,0x ∈-,所以()f x 的单调递增区间为7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦故答案为:7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心例5.(2023·全国·高三专题练习)已知α,β,γ是三个互不相同的锐角,则在sin cos αβ+,sin cos βγ+,sin cos γα+ )个 A .0 B .1C .2D .3【答案】C【分析】先根据辅助角公式得到三个式子的和小于得到在sin cos αβ+,sin cos βγ+,sin cos γα+三个值中,,再举出例子,得到三个值中,有2个值符合要求,故得到答案.【详解】因为α,β,γ是三个互不相同的锐角, 所以sin cos sin cos sin cos αββγγα+++++πππ444αβγ⎛⎫⎛⎫⎛⎫=+++<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以在sin cos αβ+,sin cos βγ+,sin cos γα+若令π3α=,π4β=,π6γ=,则sin cos αβ+=>sin cos βγ+=+>sin cos 1γα+=<的个数最多有2个. 故选:C例6.(2023·全国·高三专题练习)已知()1cos cos 2222x x x f x ⎫=+-⎪⎭,若存在0ππ,33x ⎡⎤∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解,则实数m 的取值范围为( )A .50,2⎡⎤⎢⎥⎣⎦B .(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭C .1,32⎡⎤-⎢⎥⎣⎦D .[)1,3,2⎛⎤-∞-⋃+∞ ⎥⎝⎦【答案】B【分析】先化简()f x 的解析式,不等式()205122f x m m ≤--在,33ππ⎡⎤-⎢⎥⎣⎦上能成立等价于()2min 51,22f x m m -≤-求得()f x 的最小值后解不等式即可求解【详解】()21sin cos 2222x x xf x =+-1cos 11cos 222x x x x +=+-=+ cossin sin cos 66xx x π=+. sin 6x π⎛⎫=+ ⎪⎝⎭0π ,33x π⎡⎤∃∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解则 ()2min 51,22f x m m -≤-π,33x π⎡⎤∈-⎢⎥⎣⎦ πππ,662x ⎡⎤∴+∈-⎢⎥⎣⎦1sin 126x π⎛⎫∴-≤+≤ ⎪⎝⎭ 当3x π=-时,()f x 取得最小值,ππ1sin 362f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭. 所以 2511,222m m --≥-解之得:52m或0m m ∴的取值范围是(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭故选:B例7.(2022·湖南·高三开学考试)若函数()22cos f x x x m ++在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为6,则下列结论正确的是( ) A .5π512f ⎛⎫= ⎪⎝⎭B .2π是函数()f x 的一个周期C .当π0,2x ⎡⎤∈⎢⎥⎣⎦时,不等式()4c f x c <<+恒成立,则实数c 的取值范围是[)2,3D .将函数()f x 的图像向左移动6π个单位得到函数()g x 的图像,则函数()g x 是一个偶函数 【答案】BD【分析】先根据三角恒等变换整理得()π2sin 216f x x m ⎛⎫=+++ ⎪⎝⎭,以π26x +为整体,结合正弦函数图像与性质运算求解,并运用图像平移处理求解判断.【详解】()2π2cos cos212sin 216f x x x m x x m x m ⎛⎫++=+++=+++ ⎪⎝⎭,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,则ππ7π2,666x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以当π6x =时,()f x 的最大值为6,即3m =,所以5π412f ⎛⎫= ⎪⎝⎭,选项A 不正确; ∵()f x 的最小正周期2ππ2T ==,则2π是函数()f x 的一个周期,选项B 正确; 当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()36f x ≤≤,所以不等式()4c f x c <<+恒成立,则364c c <⎧⎨<+⎩,解得23c <<,选项C 不正确;函数()f x 的图像向左移动6π个单位得到函数()πππ2sin 242sin 242cos24662g x x x x ⎡⎤⎛⎫⎛⎫=+++=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()g x 是一个偶函数,选项D 正确. 故选:BD .例8.(2023·广东·高三学业考试)已知函数22()cossin 22x xf x a =--,R a ∈ (1)求函数()f x 的单调递增区间;(2)若函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,求a 的取值范围.【答案】(1)22[]k k πππ-, ,k ∵Z (2)1,12⎡⎤⎢⎥⎣⎦【分析】(1)利用余弦的二倍角公式化简,再结合余弦函数的单调性求解即可;(2)转化为方程cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解即可.(1)22()cos sin cos 22x xf x a x a =--=- 当22k x k πππ-≤≤ ,k ∵Z 时,()f x 单调递增,∵函数()f x 的单调递增区间为22[]k k πππ-,,k ∵Z . (2)函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,也就是cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解.∵当,36x ππ⎡⎤∈-⎢⎥⎣⎦时,1cos ,12x ⎡⎤∈⎢⎥⎣⎦.∵a 的取值范围是1,12⎡⎤⎢⎥⎣⎦.【题型】三、图像法求三角函数的最值或值域例9.(2023·全国·高三专题练习)若将()sin 214f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移4π个单位长度后得到函数()g x 的图象,则()g x 在0,8π⎡⎤⎢⎥⎣⎦上的最小值为( )A1 B .2C 1D .2【答案】C【分析】先求平移后的函数解析式,再求()g x 在闭区间上的最值【详解】因为()si 1442n g x f x x ππ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭,又因为0,8x π⎡⎤∈⎢⎥⎣⎦,所以2,442x πππ⎡⎤+∈⎢⎥⎣⎦,所以()min 1g x =. 故选:C例10.(2023·全国·高三专题练习)已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .()()f x f x π+=B .6f x π⎛⎫+ ⎪⎝⎭的图象关于原点对称C .若125012x x π<<<,则()()12f x f x < D .对1x ∀,2x ,3,32x ππ⎡⎤∈⎢⎥⎣⎦,有()()()132f x f x f x +>成立【答案】ACD【分析】利用正弦型函数的周期公式求周期判断A ,利用正弦型函数的对称性可判断B ,利用正弦型函数的单调性可判断C ,利用正弦型函数的值域可判断D.【详解】∵函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭的周期22T ππ==,所以()()f x f x π+=恒成立, 故A 正确;又2sin 216f x x π⎛⎫+=+ ⎪⎝⎭,所以2sin 11663f πππ⎛⎫+=+= ⎪⎝⎭,2sin 11663f πππ⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,所以6666f f ππππ⎛⎫⎛⎫+≠--+ ⎪ ⎪⎝⎭⎝⎭, 所以6f x π⎛⎫+ ⎪⎝⎭的图象不关于原点对称,故B 错误;当50,12x π⎛⎫∈ ⎪⎝⎭时,2,332x πππ⎛⎫-∈- ⎪⎝⎭,所以函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭在50,12π⎛⎫⎪⎝⎭上单调递增,故C 正确;因为,32x ππ⎡⎤∈⎢⎥⎣⎦ ,所以22,333x πππ⎡⎤-∈⎢⎥⎣⎦sin 213x π⎛⎫≤-≤ ⎪⎝⎭,()1,3f x ⎤∴∈⎦,又)213>,即min max 2()()f x f x >,所以对123,,[,],32x x x ππ∀∈有132()()()f x f x f x +>成立,故D 正确.故选:ACD.例11.(2023·全国·高三专题练习)如图,点D 位于以AB 为直径的半圆上(含端点A ,B ),ABC 是边长为2的等边三角形,则AD CB ⋅的取值可能是( )A .1-B .0C .1D .4【答案】BC【分析】建立坐标系,利用数量积的坐标表示求AD CB ⋅,化简求其范围,由此可得结论. 【详解】如图所示,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系,则()1,0A -,()10B ,,(0,C .令()cos ,sin D θθ,其中0θπ≤≤,则()cos 1,sin AD θθ=+,(1,CB =,所以cos 12sin 16AD CB πθθθ⎛⎫⋅=++=++ ⎪⎝⎭.因为0θπ≤≤,所以7666πππθ≤+≤,所以1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭,所以[]2sin 10,36AD CB πθ⎛⎫⋅=++∈ ⎪⎝⎭.故选:BC.例12.(2023·全国·高三专题练习)函数()ππsin 36f x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的最大值为______.【答案】2【分析】利用三角诱导公式和恒等变换化简得到()2cos f x x =,从而求出最大值.【详解】()πππππsin cos 36362f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+--=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭πππππcos 2sin 2sin 2cos 33362x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++=++=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故函数()f x 的最大值为2 故答案为:2【题型】四、换元法求三角函数的最值或值域例13.(2023·全国·高三专题练习)已知函数()2sin cos f x x x x =,则下列结论中正确的是( )A .函数()f x 的最小正周期为2πB .3x π=时()f x 取得最小值C .()f x 关于3x π=对称 D .512x π=时()f x 取得最大值 【答案】D【分析】结合二倍角正弦公式和辅助角公式化简()f x ,再结合正弦函数性质判断各选项.【详解】因为()2sin cos f x x x x =,所以()sin 2f x x x =,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==,A 错误,2sin 22333f πππ⎛⎫⎛⎫=⨯-=≠- ⎪ ⎪⎝⎭⎝⎭,BC 错误,552sin 2212123f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:D.例14.(2023·全国·高三专题练习)函数()sin cos sin 2f x x x x =++的最大值为( ) A.1 B .1C .1D .3【答案】C【分析】利用换元法,令sin cos t x x =+,则原函数可化为21y t t =+-,再根据二次函数的性质可求得其最大值【详解】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[t ∈,则22(sin cos )12sin cos t x x x x =+=+,所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[t ∈,对称轴为12t =-,所以当t =时,21y t t =+-取得最大值,所以函数的最大值为211=,即()sin cos sin 2f x x x x =++的最大值为1 故选:C例15.(2023·全国·高三专题练习)函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .2C .32D .3【答案】C【分析】先将函数用二倍角公式进行降幂运算,得到1()sin(2)26f x x π=+-,然后再求其在区间[,]42ππ上的最大值.【详解】解:因为2()sin cos f x x x x =,所以1cos 21()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .例16.(2022·广东·汕头市达濠华侨中学高三阶段练习)已知函数()3sin 222f x x x =+,则下列选项正确的有( ) A .()f x 的最小正周期为πB .曲线()y f x =关于点π,03⎛⎫⎪⎝⎭中心对称C .()f xD .曲线()y f x =关于直线π6x =对称 【答案】ACD【分析】化简()πsin 26⎛⎫=+ ⎪⎝⎭f x x .利用周期公式求出周期可判断A ;计算π3⎛⎫⎪⎝⎭f 可判断B ; 利用π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x 可判断C ;计算π6f ⎛⎫⎪⎝⎭可判断D【详解】()3πsin 22sin 226f x x x x ⎛⎫==+ ⎪⎝⎭. 对于A ,()f x 的最小正周期2ππ2T ==,故A 正确;对于B ,πππ20336f ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x ,所以()max f x C 正确;对于D ,πππ2666f ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭D 正确.故选:ACD.【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数例17.(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ) A .3 B .4 C .5 D .6【答案】C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,根据三角函数的图象可知,零点与对称轴之间距离为:()1214T k ⨯-,k ∵N *.要求ω最大,则周期最小,∵()12142k T π-⨯=,则T 221k π=-;∵ω=2k ﹣1;当9ω=时,由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭,易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C .例18.(2023·全国·高三专题练习)若直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,且函数πsin()4y x ω=-在区间[0,π12]上不单调,则ω的最小值为( )A .9B .7C .11D .3【答案】C【分析】根据给定条件,求出ω的关系式,再求出函数πsin()4y x ω=-含有数0的单调区间即可判断作答.【详解】因直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,则πππ,N 442k k ωπ-=+∈,即43,N k k ω=+∈, 由πππ242x ω-≤-≤得π3π44x ωω-≤≤,则函数πsin()4y x ω=-在π3π[,]44ωω-上单调递增, 而函数πsin()4y x ω=-在区间π[0,]12上不单调,则3π412πω<,解得9ω>, 所以ω的最小值为11. 故选:C例19.(2023·江苏南京·高三阶段练习)已知函数()()πsin 026f x x ωω⎛⎫=+<< ⎪⎝⎭,()()π0f x f x ++=,()()()0πf f αβαβ=<<<,则( )A .()()4πf x f x =+B .()()9π0f x f x ++=C .()()12f f αββα+<-= D .()()12f f βααβ-<+=【答案】AB【分析】推导出()()2πf x f x +=,可判断AB 选项;求出2π3αβ+=,并求出()f βα-的取值范围,可判断CD 选项.【详解】对于A 选项,对任意的R x ∈,()()πf x f x +=-,则()()()2ππf x f x f x +=-+=, 所以,()()()4π2πf x f x f x +=+=,A 对;对于B 选项,()()()9ππf x f x f x +=+=-,则()()9π0f x f x ++=,B 对; 对于CD 选项,由题意可知,()f x 的最小正周期为2π,则2π12πω==,则()πsin 6f x x ⎛⎫=+ ⎪⎝⎭,当()0,πx ∈时,ππ7π666x <+<, 由πππ662x <+<可得π03x <<,则函数()f x 在π0,3⎛⎫⎪⎝⎭上单调递增, 由ππ7π266x <+<可得ππ3x <<,则函数()f x 在π,π3⎛⎫ ⎪⎝⎭上单调递减,0παβ<<<,则πππ7π6666αβ<+<+<, 所以,πππ66αβ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2π3αβ+=,所以,()2ππ5π1sin sin 3662f αβ⎛⎫+=+==⎪⎝⎭,C 错, 因为πππ7π6666αβ<+<+<,则πππ662α<+<,所以,π03α<<, 则2π2π20,33βαα⎛⎫-=-∈ ⎪⎝⎭,所以,ππ5π,666βα⎛⎫-+∈ ⎪⎝⎭ 故()1,12f βα⎛⎤-∈ ⎥⎝⎦,则()()12f f βααβ->+=,D 错.故选:AB.【题型】六、五点法求三角函数的解析式例20.(2023·全国·高三专题练习)智能主动降噪耳机工作的原理是通过耳机两端的噪声采集器采集周围的噪声,然后通过主动降噪芯片生成与噪声相位相反、振幅相同的声波来抵消噪声(如图).已知噪声的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,周期为2π,初相位为π2,则通过主动降噪芯片生成的声波曲线的解析式为( )A .sin y x =B .cos y x =C .sin y x =-D .cos y x =-【答案】A【分析】由振幅可得A 的值,由周期可得ω的值,由初相位可得ϕ的值,即可得出声波曲线的解析式,进而可得主动降噪芯片生成的声波曲线的解析式.【详解】解:因为噪音的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,则1A =, 周期为2π,则2π2π12πT ω===,初相位为π2,π2ϕ=,所以噪声的声波曲线的解析式为πcos sin 2y x x ⎛⎫=+=- ⎪⎝⎭,所以通过主动降噪芯片生成的声波曲线的解析式为sin y x =.故选:A.例21.(2022·福建省连城县第一中学高三阶段练习)函数()()sin()0,f x A x b ωϕωϕπ=++><的部分图象如图所示,下列说法正确的是( )A .函数()f x 的解析式为()2sin 213f x x π⎛⎫=++ ⎪⎝⎭B .函数()f x 的单调递增区间为5,(Z)1212k k k ππππ⎛⎫-++∈ ⎪⎝⎭C .函数()f x 的图象关于点,1(Z)2k k π⎛⎫∈ ⎪⎝⎭对称 D .为了得到函数()f x 的图象,只需将函数()2cos 23g x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位长度,再向上平移一个单位长度 【答案】ABD【分析】由题意求出()f x 的解析式可判断A ;利用正弦函数的单调性和对称性可判断BC ;由三角函数的平移变换可判断D.【详解】对于A ,由图可知,31A b A b +=⎧⎨-+=-⎩,可得21A b =⎧⎨=⎩,由π1sin 425π1sin 122ωϕωϕ⎧⎡⎤⎛⎫⨯-+=-⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎨⎛⎫⎪⨯+=- ⎪⎪⎝⎭⎩,则1122ππ+2π,Z 465π7π+2π,Z126k k k k ωϕωϕ⎧-+=-∈⎪⎪⎨⎪+=∈⎪⎩,两式相减得:()122π4π2π33k k ω=+-, 所以()1223k k ω=+-∵,又因为π2π5ππ33212425ππ2π2π31243T T ωωωω⎧⎧≤≤+⎧⎪⎪≥⎪⎪⎪⇒⇒⎨⎨⎨⎪⎪⎪≤≥+≥⎩⎪⎪⎩⎩,所以332ω≤≤,结合∵,2ω=, 因为π5ππ412212-+=,所以πππ21223ϕϕ⨯+=⇒=, 所以()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,故A 正确;对于B ,πππ2π22π,Z 232k x k k -+≤+≤+∈,解得:()5ππππ,Z 1212k x k k -+≤≤+∈,故B 正确; 对于C ,令π2ππ,Z 3+=+∈x k k ,解得:ππ,Z 32=+∈k x k , 函数()f x 的图象关于点()ππ,1Z 32k k ⎛⎫+∈ ⎪⎝⎭对称,所以C 不正确;对于D ,将函数π2cos 23x ⎛⎫+ ⎪⎝⎭向右平移π4个单位得到πππ2cos 22sin 2433⎡⎤⎛⎫⎛⎫-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦x x ,向上平移一个单位长度可得π2sin 213y x ⎛⎫=++ ⎪⎝⎭,故D 正确.故选:ABD.例22.(2023·江西·赣州市赣县第三中学高三期中(理))已知函数()sin 0,0,π()(||)f x A x A ωϕωϕ=+>><的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数()g x 的图象.(1)求函数()g x 的解析式;(2)若对于()()2π0,,303x g x mg x ⎡⎤⎡⎤⎣⎦⎢⎥∀-⎣-⎦∈≤恒成立,求实数m 的取值范围.【答案】(1)π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭,(2)1,22⎡⎤⎢⎥⎣⎦.【分析】(1)先根据函数图象求出()f x 的解析,再利用图象变换规律可求出()g x 的解析式; (2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,从而可得[]()1,2g x ∈-,然后分()0g x =,()[1,0)g x ∈-和(,])2(0g x ∈求解即可.【详解】(1)由()f x 的图象可得2A =,5πππ212122T ⎛⎫=--= ⎪⎝⎭, 所以πT =,所以2ππω=,得2ω=,所以()()(|2sin 2π|)f x x ϕϕ=+<, 因为()f x 的图象过5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πϕ⎛⎫⨯+=- ⎪⎝⎭,所以5sin 16πϕ⎛⎫+=- ⎪⎝⎭, 所以5ππ2π,Z 62k k ϕ+=-∈,得4π2π,Z 3k k ϕ=-∈, 因为||πϕ<,所以2π3ϕ=, 所以()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,可得32π2π2sin 22sin 3233y x x ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭,再将所得函数图象向右平移π6个单位长度,得 π2ππ2sin 32sin 3636y x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭(2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,所以π1sin 3,162x ⎛⎫+∈- ⎪⎝⎭⎡⎤⎢⎥⎣⎦,所以[]π2sin 31,26x ⎛⎫+∈- ⎪⎝⎭,所以[]()1,2g x ∈-,当()0g x =时,30-≤恒成立,当()[1,0)g x ∈-时,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≤-, 因为函数3y x x=-在[1,0)-上为增函数,所以min33()12()1g x g x ⎡⎤-=--=⎢⎥-⎣⎦ 所以2m ≤,当(,])2(0g x ∈,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≥-, 因为函数3y x x=-在(0,2]上为增函数,所以max331()2()22g x g x ⎡⎤-=-=⎢⎥⎣⎦ 所以12m ≥, 综上122m ≤≤,即实数m 的取值范围为1,22⎡⎤⎢⎥⎣⎦.【题型】七、利用图象平移求函数的解析式或参数例23.(2023·全国·高三专题练习)要得到函数π3sin(2)3y x =+的图象,只需要将函数3cos 2y x =的图象( )A .向右平行移动π12个单位 B .向左平行移动π12个单位 C .向右平行移动π6个单位D .向左平行移动π6个单位【答案】A【分析】由三角函数的图象变换求解【详解】π3cos 23sin(2)2y x x ==+,要得到π3sin(2)3y x =+的图象,需要向右平移πππ23212-=个单位.故选:A例24.(2022·湖南省临澧县第一中学高三阶段练习)已知函数π()2sin 213f x x ⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .将函数2sin 2y x =的图象向右平移π6个单位,再向上平移1个单位得到()=y f x 的图象B .函数()=y f x 在区间π0,2⎛⎫⎪⎝⎭上单调递增C .函数()=y f x 的图象关于直线π12x =-对称 D .函数()=y f x 的图象关于点,06π⎛⎫⎪⎝⎭对称【答案】AC【分析】根据图象平移写出解析式判断A ;利用正弦函数性质,整体法判断()f x 的区间单调性判断B ,代入法判断对称性,判断C 、D. 【详解】A :根据平移过程πππ=()+1=2sin2()+1=2sin(2)+1663y g x x x ---,正确; B :π0,2x ⎛⎫∈ ⎪⎝⎭,则ππ2π2(,)333x -∈-,根据正弦函数性质()f x 在区间内不单调,错误;C :πππ()=2sin()+1=11263f ----,此时ππ2=32x --,故直线π12x =-为对称轴,正确;D :πππ()=2sin()+1=1633f -,故关于点π,16⎛⎫⎪⎝⎭对称,错误.故选:AC例25.(2022·广东·深圳中学高三阶段练习)将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,所得图像关于原点对称.若01ω<<,则下列说法正确的是( ) A .()f x 的最小正周期为4πB .()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭C .对任意的R x ∈,都有()2π=3f x f x -⎛⎫ ⎪⎝⎭D .()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x【答案】AB【分析】利用平移后得函数是奇函数求出12ω=,则()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈判断B 正确;由π=13f -⎛⎫⎪⎝⎭判断C 错误;令()=()f x g x 分析得到公,判断D 错误.【详解】将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,可得2ππ()=2sin (+)33h x x ω-⎡⎤⎢⎥⎣⎦,()h x 为奇函数,则(0)0h =,即2ππ=π33k ω-,13=+,22k k Z ω∈, 因为01ω<<,所以1=0=2k ω,,则()1π=2sin 23f x x -⎛⎫ ⎪⎝⎭,所以()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈,得2π=2π+3x k ,()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭,故B 正确;π1ππ=2sin(?)=13233f --⎛⎫⎪⎝⎭,所以3x π=不是对称轴,故C 错误;令()=()f x g x ,即1π1πsin =sin +2326x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,1π1ππ1πsin +=sin +=cos 2623223x x x --⎡⎤⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,1π1πsin =sin +=?2326x x ∴-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ ()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x故D 错误; 故选:AB.。
高中三角函数常见题型与解法
三角函数的题型和方法一、思想方法1、三角函数恒等变形的基本策略。
( 1)常值代换:特别是用“ 1”的代换,如 1=cos 2θ +sin 2 θ=tanx · cotx=tan45 °等。
( 2)项的分拆与角的配凑。
如分拆项: sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α =(α + β)-β,β =-等。
2 2( 3)降次与升次。
即倍角公式降次与半角公式升次。
( 4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
( 5)引入协助角。
asin θ +bcos θ = a 2 b 2 sin(θ + ),这里协助角 所在象限由 a 、b 的符号确立,角的值由 tan = b确立。
a( 6)全能代换法。
巧用全能公式可将三角函数化成 tan的有理式。
22、证明三角等式的思路和方法。
( 1)思路:利用三角公式进行假名,化角,改变运算结构,使等式两边化为同一形式。
( 2)证明方法:综合法、剖析法、比较法、代换法、相消法、数学概括法。
3、证明三角不等式的方法:比较法、配方法、反证法、剖析法,利用函数的单一性,利用正、余弦函数的有界性,利用单位圆三角函数线及鉴别法等。
4、解答三角高考题的策略。
( 1)发现差别:察看角、函数运算间的差别,即进行所谓的“差别剖析”。
( 2)找寻联系:运用有关公式,找出差别之间的内在联系。
( 3)合理转变:选择适合的公式,促进差别的转变。
二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目种类多样,变化仿佛复杂,办理这种问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。
2、三角变换的一般思想与常用方法。
注意角的关系的研究,既注意到和、差、倍、半的相对性,如1() ( ) 22 .也要注意题目中所给的各角之间的关系。
三角函数中的常考题型及其解法
三角函数中的常考题型及其解法三角函数中常考题型及解法:一、求解三角函数值1、求正弦函数值解法:使用正弦定理进行求解,总结如下:(1)正弦定理(用于直角三角形):a/sinA=b/sinB=c/sinC;(2)正弦表:常记正弦值,如15°的正弦值是0.2588;(3)半角公式:sin(x/2)=±√[(1-cosx)/2];(4)倍角公式:sin2x=2sinxcosex。
2、求余弦函数值解法:使用余弦定理进行求解,总结如下:(1)余弦定理(用于直角三角形):a²=b²+c²-2bc·cosA;(2)余弦表:常记余弦值,如45°的余弦值是0.7071;(3)化简余弦值:常用公式或知识点化简余弦值,如极限化简,勾股定理等;(4)半角公式:cos(x/2)=±√[(1+cosx)/2];(5)倍角公式:cos2x=cos²x-sin²x。
三、求解三角函数表达式1、求正弦函数表达式解法:(1)可用图像法求解,如求函数y=2sin(x+π/6)的图形,可将之前已知的普通正弦图形向右移动π/6,并放大2倍;(2)也可用公式求解,如求函数y=2sin(x+π/6),用单位正弦函数表示法,则有y=2sin(x)·cos(π/6)+2cos(x)·sin(π/6)。
2、求余弦函数表达式解法:(1)可用图像法求解,如求函数y=2cos(x+π/6)的图形,可先求出正弦函数的图像,再进行垂直翻转;(2)也可用公式求解,如求函数y=2cos(x+π/6),用单位余弦函数表示法,则有y=2cos(x)·cos(π/6)-2sin(x)·sin(π/6)。
高中数学三角函数知识点归纳及常考题型分析
高中数学三角函数知识点归纳及常考题型分析三角函数知识点归纳及常考题型分析角的概念及表示角是指由两条射线(或直线段)共同围成的图形,其中一个射线为始边,另一个射线为终边。
正角、负角和零角是角的三种分类。
终边相同的角可以表示为{β|β=k·360+α,k∈Z}。
象限角是指顶点在原点,始边与x轴非负半轴重合的角,其终边落在第几象限就称这个角是第几象限的角。
轴线角是指顶点在原点,始边与x轴非负半轴重合,终边落在坐标轴上的角。
区间角是指角的量数在某个确定的区间内,由若干个区间构成的集合称为区间角的集合。
角度制与弧度制角度制和弧度制是两种常见的角度量方式。
它们之间的互换关系是1rad=180°≈57.30°=57°18ˊ,1°≈0.(rad)。
弧长公式与扇形面积公式弧长公式是指l=|α|·r,其中α是角的量数,r是半径。
扇形面积公式是指s扇形=lr=|α|·r^2/2.三角函数的定义与符号设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)。
P与原点的距离为r,则sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y。
在各象限中,正弦函数和正切函数在第一象限和第二象限中为正,余弦函数在第一象限和第四象限中为正。
三角函数的图像及基本关系式正弦线是MP,余弦线是OM,正切线是AT。
同角三角函数的基本关系式是sin^2θ+cos^2θ=1,tanθ=sinθ/cosθ。
正弦、余弦的诱导公式正弦、余弦的诱导公式是奇变偶不变,符号看象限。
其中sin(±α)和cos(±α)的值与sinα和cosα的值有关,而sin(α+π)=-sinα,cos(α+π)=-cosα。
和角与差角公式和角与差角公式是sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβ,tan(α±β)=(tanα±tanβ)/(1∓tanαtanβ),sin(α+β)sin(α-β)=sin^2α-sin^2β,cos(α+β)cos(α-β)=cos^2α-sin^2β,asinα+bcosα=a^2+b^2sin(α+φ),其中辅助角φ所在象限由点(a,b)的象限决定,tanφ=b/a。
高考数学三角函数常考题型及解答方法总结
(4)求值: ________(答:32)
13、正弦函数和余弦函数的图象:正弦函数 和余弦函数 图象的作图方法:五点法:先取横坐标分别为0, 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。
14、正弦函数 、余弦函数 的性质:
如(1)已知角 的终边经过点P(5,-12),则 的值为__。(答: );(2)设 是第三、四象限角, ,则 的取值范围是_______(答:(-1, );
7.特殊角的三角函数值:
30°
45°
60°
0°
90°
180°
270°
15°
75°
0
1
0
-1
1
0
-1
0
1
0
0
2-
2+
1
0
0
2+
2-
8.同角三角函数的基本关系式:
如(1)函数 的图象经过怎样的变换才能得到 的图象?(答: 向上平移1个单位得 的图象,再向左平移 个单位得 的图象,横坐标扩大到原来的2倍得 的图象,最后将纵坐标缩小到原来的 即得 的图象);
(2)要得到函数 的图象,只需把函数 的图象向___平移____个单位(答:左; );
(3)将函数 图像,按向量 平移后得到的函数图像关于原点对称,这样的向量是否唯一?若唯一,求出 ;若不唯一,求出模最小的向量(答:存在但不唯一,模最小的向量 );
(1)定义域:都是R。
(2)值域:都是 ,对 ,当 时, 取最大值1;当 时, 取最小值-1;对 ,当 时, 取最大值1,当 时, 取最小值-1。
如(1)若函数 的最大值为 ,最小值为 ,则 __, _(答: 或 );
高考数学 常见题型 三角函数的值域与最值
【解析】 ①∵f(x)=2cos2x+2 3sinxcosx+m =1+cos2x+ 3sin2x+m=2sin(2x+π6)+m+1, ∴函数 f(x)的最小正周期 T=π.
②假设存在实数 m 符合题意.∵x∈[0,π2], ∴π6≤2x+π6≤76π,∴sin(2x+π6)∈[-12,1]. ∴f(x)=2sin(2x+π6)+m+1∈[m,3+m]. 又∵f(x)∈[12,72],解得 m=12, ∴存在实数 m=12,使函数 f(x)的值域恰为[12,72].
cos2x+
3 4
=12sinx·cosx-
23cos2x+
3 4
=14sin2x-
43(1+cos2x)+
3 4
=14sin2x- 43cos2x=12sin2x-π3.
所以 f(x)的最小正周期 T=22π=π.
(2) 因 为 f(x) 在 区 间 -π4,-1π2 上 是 减 函 数 , 在 区 间 -1π2,π4上是增函数,
故 y=f(t)=12(t+1)2-1(- 2≤t≤ 2). 从而知 f(-1)≤y≤f( 2),即-1≤y≤ 2+12. 则函数的值域为[-1, 2+12].
点评:可化为y=f(sinx)型三角函数的最值或值域也可通 过换元法转为其他函数的最值或值域.
对点训练 (1)求函数 y=s1in-2xcsoisnxx的值域. 【解析】 ∵y=2si1n-xcocsoxssxinx=2cos1x-1-coscxos2x =2cos2x+2cosx=2(cosx+12)2-12, 于是当且仅当 cosx=1 时,ymax=4. 但 cosx≠1,∴y<4. 且 ymin=-12,当且仅当 cosx=-12时取得. 故函数值域为[-12,4).
三角函数的图象与性质6大题型
三角函数的图象与性质6大题型三角函数的图象与性质是高考的热点,函数sin()y A x ωϕ=+的图象变换以及三角函数的周期性、对称性、单调性之间逻辑关系则是重心。
随着新高考改革的推进,更加注重对以周期性为核心的三大性质之间的逻辑关系的考查,要求考生能用几何直观和代数运算来研究三角函数。
高考中的相关试题多以选择题、填空题的形式考查,难度中等或偏下。
一、三角函数性质问题相关方法1、周期的计算公式:函数)0()cos(),sin(>+=+=ωϕωϕωx A y x A y 的周期为ωπ2=T ,函数)0()tan(>+=ωϕωx A y 的周期为ωπ=T 求解.2、奇偶性的判断方法:三角函数中奇函数一般可化为x A y ωsin =或x A y ωtan =的形式,而偶函数一般可化为b x A y +=ωcos 的形式.3、解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.方法:整体处理法、代入验证法对于函数)0()cos(),sin(>+=+=ωϕωϕωx A y x A y ,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线0x x =或点)0,(0x 是否是函数的对称轴或对称中心时,可通过检验)(0x f 的值进行判断.4、确定函数)0,0()sin(>>+=ωϕωA x A y 单调区间的方法采用“换元”法整体代换,将‘ϕω+x ’看作一个整体,可令“ϕω+=x z ”,即通过求z A y sin =的单调区间而求出函数的单调区间.若0<ω,则可利用诱导公式先将x 的系数转变为正数,再求单调区间.二、三角函数图形变换问题解决三角函数图像变换问题的两种方法分别为先平移后伸缩和先伸缩后平移.破解此类题的关键如下:1、定函数:一定要看准是将哪个函数的图像变换得到另一个函数的图像.2、变同名:函数的名称要一样.3、选方法:即选择变换方法.要注意:对于函数)0(sin >=ωωx y 的图像,向左平移ϕ个单位长度得到的是函数)(sin ϕω+=x y 的图象,而不是函数)sin(ϕω+=x y 的图像.【题型1【例1】(2023·湖南湘潭·统考二模)函数2cos2()sin xf x x+=的部分图象大致为()A .B .C .D .【变式1-1】(2023秋·云南·高三云南师大附中校考阶段练习)函数()21sin 2f x x x x =-的图象大致为()A .B .C .D .【变式1-2】(2022秋·河南·高三校联考阶段练习)函数()cos e =xf x 的部分图象大致为()A .B .C .D .【变式1-3】(2022秋·云南·高三校联考阶段练习)函数()cos ln xf x x xππ+=⋅-在(),ππ-上的图象大致为()A .B .C .D .【变式1-4】(2022秋·四川遂宁·高三遂宁中学校考阶段练习)函数()(tan sin 2)22x x y x x -=--的部分图象大致为()A .B .C .D .【题型2根据图象求三角函数解析式】【例2】(2023秋·湖南怀化·高三统考期末)已知函数()2cos()(0)f x x ωϕω=+>的部分图象如图所示,则()0f =()A .1B .1-CD .【变式2-1】(2022秋·贵州铜仁·高三校考阶段练习)已知A ,B ,C ,D ,E 是函数sin()y x ωϕ=+0,02πωϕ⎛⎫><< ⎪⎝⎭一个周期内的图像上的五个点,如图,A ,06π⎛⎫- ⎪⎝⎭,B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,CD 在x 轴上的投影为12π,则ωφ,的值为()A .2ω=,3πϕ=B .2ω=,6πϕ=C .12ω=,3πϕ=D .12ω=,6πϕ=【变式2-2】(2023秋·山西太原·高三山西大附中校考阶段练习)函数()sin()(0,0)f x x ωϕωϕπ=+><<的部分图象如图,BC x ∥轴,当π0,4x ⎡⎤∈⎢⎥⎣⎦时,若不等式()sin 2f x m x ≥-恒成立,则m 的取值范围是()A.⎛-∞ ⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(-∞D .(],1-∞【变式2-3】(2023秋·北京朝阳·高三统考期末)已知函数π()sin()0,||2ωϕωϕ⎛⎫=+>< ⎪⎝⎭f x x ,若()()1g x f x ⋅=,且函数()g x 的部分图象如图所示,则ϕ等于()A .π3-B .π6-C .π6D .π3【变式2-4】(2023·全国·模拟预测)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 的图象向右平移()0m m >个单位长度后得到函数()()sin 2g x A x ωϕ=-的图象,则m 的值可以是()A .π4B .π3C .4π3D .9π4【题型3三角函数图象变换问题】【例3】(2023秋·江西赣州·高三统考期末)函数()()sin f x x ωϕ=+(其中0ω>,π2ϕ<)的图象如图所示,为了得到cos y x ω=的图象,只需把()y f x =的图象上所有点()A .向左平移π6个单位长度B .向右平移π12个单位长度C .向左平移π12个单位长度D .向右平移π6个单位长度【变式3-1】(2022·四川·高三统考对口高考)为了得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象上所有的点()A .向左平移4π个单位B .向右平移4π个单位C .向左平移2π个单位D .向右平移2π个单位【变式3-2】(2022·陕西汉中·统考一模)为得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将sin2y x =的图象()A .向左平移512π个单位长度B .向右平移512π个单位长度C .向左平移23π个单位长度D .向右平移23π个单位长度【变式3-3】(2023秋·江苏南通·高三统考期末)已知函数π()3sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭的图象向左平移()0ϕϕ>个单位长度后与其导函数()y f x '=的图象重合,则()f ϕ的值为()A .0B .32C .62D .32【变式3-4】(2022·全国·模拟预测)已知函数()3sin cos f x x x =-的图象向左平移ϕ(0ϕ>)个单位长度后得到()f x 的导函数()f x '的图象,则()f ϕ=()A .3-B .3C .1D .1-【变式3-5】(2023·河南信阳·河南省信阳市第二高级中学校联考一模)将函数()sin 2c 2πos π63f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭图象上的所有点的横坐标缩短为原来的12(纵坐标不变),然后再将其图象向左平移()0θθ>单位得到图象()g x ,若函数()g x 图象关于y 轴对称,则θ的最小值为()A .π3B .π6C .π12D .π24【题型4三角函数的四种性质】【例4】(2023秋·河南南阳·高三统考期末)已知函数()()()sin cos f x x x ϕϕ=+++是偶函数,则3sin 2cos 2sin 3cos ϕϕϕϕ-=+______.【变式4-1】(2023秋·河北邢台·高三邢台市第二中学校考期末)函数9cos 24y x π⎛⎫=- ⎪⎝⎭的单调递减区间为______.【变式4-2】(2022秋·辽宁沈阳·高三沈阳市第一二〇中学校考期中)已知函数()tan tan f x x x =+,则下列结论中正确的是()A .()f x 的最小正周期为π2B .点π,02⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心C .()f x 的值域为[)0,∞+D .不等式()2f x >的解集为()ππ2,2πZ 42k k k π⎛⎫++∈ ⎪⎝⎭【变式4-3】(2023·四川内江·统考一模)已知函数()()1sin cos sin (0)2f x x x x ωωωω=-+>,若函数()f x 在π,π2⎛⎫⎪⎝⎭上单调递减,则ω不能取()A .23B .13C .58D .14【变式4-4】(2023秋·江苏南通·高三统考期末)(多选)设函数()()sin f x x ωϕ=+,x ∈R ,其中0ω>,3πϕ<.若1409f π⎛⎫-= ⎪⎝⎭,419f π⎛⎫=⎪⎝⎭,且()f x 的最小正周期大于52π,则()A .14ω=B .6πϕ=C .()f x 在()2,3ππ上单调递增D .()f x 在()0,3π上存在唯一的极值点【变式4-5】(2023·安徽淮南·统考一模)(多选)已知函数()()πsin ,12,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭图像过点10,2⎛⎫- ⎪⎝⎭,且存在12,x x ,当122πx x -=时,()()120f x f x ==,则()A .()f x 的周期为4π3B .()f x 图像的一条对称轴方程为5π9x =-C .()f x 在区间4π10π,99⎡⎤⎢⎣⎦上单调递减D .()f x 在区间()0,5π上有且仅有4个极大值点【变式4-6】(2023秋·湖北·高三统考期末)(多选)已知函数()2sin sin 2f x x x =,则下列说法正确的是()A .π是()f x 的一个周期B .()f x 的图象关于点π,02⎛⎫⎪⎝⎭中心对称C .()f x 在区间[]0,2π上的零点个数为4D .()f x 的最大值为8【变式4-7】(2023春·浙江·高三校联考开学考试)(多选)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则()A .()0f =B .()f x 的最小正周期为π2C .()f x 在π0,6⎛⎫⎪⎝⎭上单调递减D .()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增【题型5三角函数的最值问题】【例5】(2022秋·北京·高三北京市八一中学校考阶段练习)定义运算,,,.a a b a b b a b ≤⎧=⎨>⎩※例如,121=※,则函数()sin cos f x x x =※的值域为()A .1,2⎡⎤-⎢⎥⎣⎦B .22⎡⎤⎢⎥⎣⎦C .2,12⎡⎤⎢⎥⎣⎦D .22⎡-⎢⎣⎦【变式5-1】(2023秋·湖南株洲·已知定义域为R 的函数(),()f x g x 满足()()πf x f x +=-,且()()cos π,g x x f x =++()()sin πf x x g x =-+,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()()y f x g x =的最小值为()A .0B .2CD .38【变式5-2】(2022秋·安徽·高三石室中学校联考阶段练习)如图是函数()cos()(0)f x x ωϕω=+>的部分图象,则()f x 在,9045⎡⎤-⎢⎥⎣⎦π22π上的值域为()A .[]1,1-B .1322⎡⎢⎣⎦C .11,2⎡⎤-⎢⎥⎣⎦D .32⎡-⎢⎣⎦【变式5-3】(2023·河北衡水·河北衡水中学校考模拟预测)函数()25cos 4sin 53cos f x x x x -+的最大值为().A .22B .23C .5D .3【变式5-4】(2023秋·北京丰台·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫=+>⎪⎝⎭,若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫⎪⎝⎭上有最小值无最大值,则ω=___________.【变式5-4】(2020秋·吉林白城·高三校考阶段练习)已知向量1(cos ,)2a x = ,(3,cos 2),Rb x x x =∈,设函数()f x a b =⋅ .(1)求()f x 的最小正周期;(2)求()f x 在π[0,]2上的最大值和最小值.【题型6三角函数的零点问题】【例6】(2022·四川宜宾·统考模拟预测)若函数()π2sin 213f x x ⎛⎫=+- ⎪⎝⎭,则()f x 在区间[]0,2π上零点的个数是_______.【变式6-1】(2023·全国·高三对口高考)已知0ω>,函数()πsin 16f x x ω⎛⎫=+- ⎪⎝⎭在区间[]0,π上有且仅有两个零点,则ω的取值范围是________.【变式6-2】(2022秋·河南濮阳·高三统考阶段练习)已知函数5π()cos (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在π0,4⎛⎫⎪⎝⎭上有且仅有1个零点,则实数ω的取值范围为______.【变式6-3】(2023秋·福建宁德·高三校考阶段练习)若函数()1cos42f x x x m =-+-在π04⎡⎤⎢⎥⎣⎦,上存在两个零点,则实数m 的取值范围为()A .3522⎛⎤ ⎥⎝⎦,B .3522⎡⎫⎪⎢⎣⎭,C.1522⎛⎤+ ⎥⎝⎦,D.1522⎡⎫+⎪⎢⎪⎣⎭,【变式6-4】(2023秋·山西·高三校联考阶段练习)已知函数()()221sin 2π,,3213,,x a x a f x x a x a x a ⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩.若()f x 在()0,∞+上恰好有5个零点,则a 的取值范围是()A .411,36⎡⎫⎪⎢⎣⎭B .411717,,3636⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦C .1167,3⎡⎫⎪⎢⎣⎭D .43117,,3263⎛⎤⎛⎤⋃ ⎝⎦⎝⎦【变式6-5】(2022秋·广西桂林·高三校考阶段练习)已知定义在R 上的函数()y f x =是偶函数,当0x ≥时,()2sin ,01213,122x x x f x x π⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()()20,R f x af x b a b ++=∈⎡⎤⎣⎦,有且仅有6个不同实数根,则实数a 的取值范围是()A .34,2⎛⎫-- ⎪⎝⎭B .74,2⎛⎫-- ⎪⎝⎭C .7734,222⎛⎫⎛⎫--⋃-- ⎪⎝⎭⎝⎭D .324,1,27⎛⎫⎛⎫--⋃-- ⎪ ⎪⎝⎭⎝⎭【变式6-6】(2023秋·山东烟台·高三统考期末)已知定义在R 上的函数()f x 满足:2f x π⎛⎫- ⎪⎝⎭为偶函数,且()()8sin ,021,02x x f x f x x ππ⎧--≤≤⎪⎪=⎨⎪->⎪⎩;函数()lg 2g x x π=+,则当[]4,3x ππ∈-时,函数()()y f x g x =-的所有零点之和为()A .7π-B .6π-C .72π-D .3π-(建议用时:60分钟)1.(2022秋·河北唐山·高三开滦第二中学校考阶段练习)将函数()π3cos (0)6f x x ωω⎛⎫=+> ⎪⎝⎭的图象向右平移π6ω个单位长度,得到函数()g x 的图象,若函数()y g x =在π3π,24⎡⎤⎢⎥⎣⎦上单调递增,则ω的最大值为()A .2B .83C .103D .42.(2022秋·广西钦州·高三校考阶段练习)已知函数()()sin f x x ϕ=-且2cos πcos 3ϕϕ⎛⎫-= ⎪⎝⎭,则函数()f x 的图象的一条对称轴是()A .5π6x =B .7π12x =C .π3x =D .π6x =3.(2023·四川绵阳·统考模拟预测)函数()πcos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,且()302f =.则下列选项正确的是()A .π3ϕ=-B .π122f ⎛⎫=-⎪⎝⎭C .()f x 在区间2π,π3⎡⎤⎢⎥⎣⎦上为减函数D .()102f f ⎛⎫> ⎪⎝⎭4.(2023·全国·高三专题练习)已知函数π()2sin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在[]0,π上单调递增,且2π()3f x f ⎛⎫≥-⎪⎝⎭恒成立,则ω的值为()A .2B .32C .1D .125.(2022·四川成都·成都市第二十中学校校考一模)已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论不正确的是()A .π为函数()f x 的一个周期B .2π,03⎛⎫⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间[],a a -上单调递增,则实数a 的最大值为5π12D .将函数()f x 的图象向右平移π12个单位长度后,得到一个偶函数的图象6.(2022·河北衡水·衡水市第二中学校考一模)已知()()()π2tan 0,,02f x x f ωϕωϕ⎛⎫=+><= ⎪⎝,周期π3ππ,,446T ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭是()f x 的对称中心,则π3f ⎛⎫⎪⎝⎭的值为()A .BC D .3-7.(2023秋·山东东营·高三东营市第一中学校考期末)(多选)关于函数2()cos 4cos 1f x x x =++,下列说法正确的是()A .函数()f x 在π3π,42⎡⎤⎢⎥⎣⎦上的最大值为6B .函数()f x 在π3π,42⎡⎤⎢⎥⎣⎦上的最小值为-2C .函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递增D .函数()f x 在π0,2⎛⎫⎪⎝⎭上单调递减8.(2022秋·河北唐山·高三开滦第二中学校考阶段练习)(多选)设()sin 22cos f x x x =+,x ∈R ,则().A .()f x 在区间[]0,2π上有2个零点B .()f x 的单调递增区间为π7ππ,π26k k ⎛⎫++⎪⎝⎭,k ∈Z C .()f x 的图象关于直线ππ3x k =+对称D .()f x 的值域为0,2⎡⎢⎣⎦9.(2023·湖南长沙·统考一模)已知函数()()()2sin 0f x x ωϕω=+>,若函数()f x 的图象关于点π,06⎛⎫⎪⎝⎭中心对称,且关于直线π3x =轴对称,则ω的最小值为______.10.(2022秋·四川遂宁·高三校考阶段练习)已知函数()()7ππsin 12f x x x ⎛⎫=---+ ⎪⎝⎭则函数()f x 的对称中心_________11.(2021·上海浦东新·华师大二附中校考模拟预测)已知函数23()sin sin cos (,,0)2f x a x x x a b a b a =-+<,(1)若当π0,2x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域为[]5,1-,求实数,a b 的值;(2)在(1)条件下,求函数()f x 图像的对称中心和单调区间.12.(2023秋·江苏扬州·高三校联考期末)已知函数()()(0,0f x x ωϕωϕ=+><<sin π的最小正周期为π,且直线π2x =-是其图像的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图像向右平移π4个单位,再将所得的图像上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图像对应的函数记作()y g x =,已知常数R λ∈,*n ∈N ,且函数()()212sin F x x g x λ=-+在()0,πn 内恰有2021个零点,求常数λ与n 的值.参考答案【题型1三角函数的图象辨析】【例1】(2023·湖南湘潭·统考二模)函数2cos2()sin xf x x+=的部分图象大致为()A .B .C .D .【答案】A【解析】()f x 的定义域为{}π,Z x x k k ≠∈,关于原点对称,因为2cos(2)2cos2()()sin()sin x xf x f x x x+-+-==---,所以()f x 为奇函数,故排除C,D ,又π102f ⎛⎫=> ⎪⎝⎭,所以排除B,故选:A【变式1-1】(2023秋·云南·高三云南师大附中校考阶段练习)函数()21sin 2f x x x x =-的图象大致为()A .B .C .D .【答案】A【解析】()f x 的定义域为R ,2211()()()sin()sin ()22f x x x x x x x f x -=----=-=,所以()f x 为偶函数,图象关于y 轴对称,排除C ,D 选项;()21ππ02f =>,排除B 选项.所以A 选项正确.故选:A【变式1-2】(2022秋·河南·高三校联考阶段练习)函数()cos e =xf x 的部分图象大致为()A .B .C .D .【答案】C【解析】由题意得函数定义域为R ,且()()()cos cos ee --===x xf x f x ,∴()f x 为偶函数,故排除选项B ,∵()()cos e2πe xf x f k =≤=,Z k ∈,()0e f =为最大值,∴排除选项D ,∵()()()cos 2πcos 2πee x xf x f x ++===,∴()f x 是2π为周期的周期函数,∴排除选项A.故选:C【变式1-3】(2022秋·云南·高三校联考阶段练习)函数()cos ln xf x x xππ+=⋅-在(),ππ-上的图象大致为()A .B .C .D .【答案】B【解析】因为()()cos lnxf x x f x xππ--=⋅=-+,所以f (x )是奇函数,排除A ,D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,ln0xxπ+>π-,所以()0f x >,排除C ,故选:B .【变式1-4】(2022秋·四川遂宁·高三遂宁中学校考阶段练习)函数()(tan sin 2)22x x y x x -=--的部分图象大致为()A .B .C .D .【答案】A【解析】由题得函数的定义域为π{|π,}2x x k k Z ≠+∈,定义域关于原点对称.设()()(tan sin 2)22x xf x x x -=--,所以()()(tan sin 2)22x x f x x x --=-+-()(tan sin 2)22()x xx x f x -=--=,所以函数()f x 是偶函数,其图象关于y 轴对称,排除选项D.又(π)=0f ,所以排除选项B.当π2x →时,tan ,sin 20,x x →+∞→()220x x-->,所以此时()0f x >.故选:A【题型2根据图象求三角函数解析式】【例2】(2023秋·湖南怀化·高三统考期末)已知函数()2cos()(0)f x x ωϕω=+>的部分图象如图所示,则()0f =()A .1B .1-CD .【答案】C【解析】观察函数图象得,函数()f x 的周期413()3123T πππ=-=,则22Tπω==,而13212f π⎛⎫= ⎪⎝⎭,即13cos 16πϕ⎛⎫+= ⎪⎝⎭,则有132,Z 6k k πϕπ+=∈,因此132Z 6k k πϕπ=-∈,即有13()2cos(22)2cos(2)66f x x k x πππ=+-=-,所以()02cos()6f π=-故选:C【变式2-1】(2022秋·贵州铜仁高三校考阶段练习)已知A ,B ,C ,D ,E 是函数sin()y x ωϕ=+0,02πωϕ⎛⎫><< ⎪⎝⎭一个周期内的图像上的五个点,如图,A ,06π⎛⎫- ⎪⎝⎭,B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,CD在x 轴上的投影为12π,则ωφ,的值为()A .2ω=,3πϕ=B .2ω=,6πϕ=C .12ω=,3πϕ=D .12ω=,6πϕ=【答案】A【解析】因B 与D 关于点E 对称,CD 在x 轴上的投影为12π,则B 与图像最高点(最靠近B 点)连线所对应向量在x 轴上的投影为12π,又A ,06π⎛⎫- ⎪⎝⎭,则A 与图像最高点(最靠近B 点)连线对应向量在x 轴上的投影为πππ6124+=,故函数最小正周期为24πππ=4ω⨯=,又0ω>,则2ω=.又因函数图像过点,06π⎛⎫- ⎪⎝⎭,则2ππ,Z 3φk k -+=∈,得2ππ,Z 3φk k =+∈,又02πϕ<<,则0k =,得π3ϕ=.综上,有2ω=,π3ϕ=.故选:A【变式2-2】(2023秋·山西太原·高三山西大附中校考阶段练习)函数()sin()(0,0)f x x ωϕωϕπ=+><<的部分图象如图,BC x ∥轴,当π0,4x ⎡⎤∈⎢⎥⎣⎦时,若不等式()sin 2f x m x ≥-恒成立,则的取值范围是()A .⎛-∞ ⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(-∞D .(],1-∞【答案】A【解析】因为//BC x 轴,所以()f x 图象的一条对称轴方程为1π2π7π()22312x =+=,所以7πππ41234T =-=,则πT =,所以2π2T ω==,又π2π2π3k ϕ⨯+=+,Z k ∈,且0πϕ<<,所以π3ϕ=,故π()sin(23f x x =+,因为当π[0,]4x ∈时,不等式()sin 2f x m x ≥-恒成立,所以π3π()sin 2sin(2)sin 2sin 2cos 2sin(2)3226m f x x x x x x x ≤+=++=++,令()π26g x x ⎛⎫=+ ⎪⎝⎭,因为π0,4x ⎡⎤∈⎢⎥⎣⎦,则ππ2π2,663x ⎡⎤+∈⎢⎥⎣⎦,所以π1sin 2,162x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以π())6g x x +的最小值为2,所以2m ≤,即m ⎛∈-∞ ⎝⎦.故选:A .【变式2-3】(2023秋·北京朝阳·高三统考期末)已知函数π()sin()0,||2ωϕωϕ⎛⎫=+>< ⎪⎝⎭f x x ,若()()1g x f x ⋅=,且函数()g x 的部分图象如图所示,则ϕ等于()A .π3-B .π6-C .π6D .π3【答案】B【解析】由图可知,函数()g x 过点π,13⎛⎫⎪⎝⎭和点5π,16⎛⎫- ⎪⎝⎭,即π135π16g g⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,又因为()()1g x f x ⋅=,所以π135π16f f ⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,结合正弦型函数的性质可知,5ππ263T =-,解得πT =,所以2ππω=,解得2ω=±,因为0ω>,所以2ω=所以()sin(2)f x x ϕ=+,所以πsin(2)13ϕ⨯+=,即2ππ2π32k ϕ+=+,Z k ∈解得π2π6k ϕ=-+,Zk ∈因为π||2ϕ<,所以π6ϕ=-,故选:B.【变式2-4】(2023·全国·模拟预测)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 的图象向右平移()0m m >个单位长度后得到函数()()sin 2g x A x ωϕ=-的图象,则m 的值可以是()A .π4B .π3C .4π3D .9π4【答案】AD【解析】由图象可知:2A =,最小正周期5ππ4π126T ⎛⎫=⨯-=⎪⎝⎭,2π2T ω∴==,ππ2sin 263f ϕ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭,()ππ2π32k k ϕ∴+=+∈Z ,解得:()π2π6k k ϕ=+∈Z ,又π2ϕ<,π6ϕ∴=,()π2sin 26f x x ⎛⎫∴=+ ⎪⎝⎭,()π2sin 23g x x ⎛⎫=- ⎪⎝⎭,()()π2sin 226f x m x m g x ⎛⎫-=-+= ⎪⎝⎭ ,()ππ22π63m k k ∴-+=-+∈Z ,解得:()ππ4m k k =-∈Z ,当0k =时,π4m =;当2k =-时,9π4m =.故选:AD.【题型3三角函数图象变换问题】【例3】(2023秋·江西赣州·高三统考期末)函数()()sin f x x ωϕ=+(其中0ω>,π2ϕ<)的图象如图所示,为了得到cos y x ω=的图象,只需把()y f x =的图象上所有点()A .向左平移π6个单位长度B .向右平移π12个单位长度C .向左平移π12个单位长度D .向右平移π6个单位长度【答案】C【解析】由图象可知,712344Tπππ-==,所以T π=,又因为2T πω=,所以2ω=,所以()()sin 2f x x ϕ=+,又因为771,sin 211212f ππϕ⎛⎫⎛⎫=-∴⨯+=-⎪ ⎪⎝⎭⎝⎭,又||2ϕπ<,所以,3πϕ=所以()sin 2cos 2cos 2cos 2332612f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭又因为()cos 2g x x =,所以只需把()y f x =的图象上所有点向左平移π12个单位长度可得()cos 2g x x=的图象.故选:C.【变式3-1】(2022·四川·高三统考对口高考)为了得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象上所有的点()A .向左平移4π个单位B .向右平移4π个单位C .向左平移2π个单位D .向右平移2π个单位【答案】A【解析】依题意,sin(2)sin(2)sin[2()]42444y x x x πππππ=+=+-=+-,所以把函数sin 24y x π⎛⎫=- ⎪⎝⎭图象上所有的点向左平移4π个单位可以得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,A 正确.故选:A 【变式3-2】(2022·陕西汉中·统考一模)为得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将sin2y x =的图象()A .向左平移512π个单位长度B .向右平移512π个单位长度C .向左平移23π个单位长度D .向右平移23π个单位长度【答案】A【解析】555cos 2cos 2sin 2sin 2362612y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故可由sin2y x =的图象向左平移512π个单位长度得到.故选:A.【变式3-3】(2023秋·江苏南通·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭的图象向左平移()0ϕϕ>个单位长度后与其导函数()y f x '=的图象重合,则()f ϕ的值为()A .0B .2C .2D .32【答案】D【解析】因为π()sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭,所以()ππcos sin (0)63f x x x ωωω⎛⎫⎛⎫=-=+> ⎪ ⎪⎝⎭⎝⎭',而函数()f x 的图象向左平移()0ϕϕ>个单位长度后得到()()ππsin (0)66f x x x ϕωϕωωϕω⎡⎤⎛⎫++-+-> ⎪⎢⎥⎣⎦⎝⎭,由题意得()()f x f x ϕ+=',所以ππ2π,Z 63k k ωϕ=⎨-=+∈⎪⎩,解得1π2π,Z 2k k ωϕ=⎧⎪⎨=+∈⎪⎩且0ϕ>,所以πππ3()2π2632f k ϕ⎛⎫=+-= ⎪⎝⎭,故选:D 【变式3-4】(2022·全国·模拟预测)已知函数()3sin cos f x x x =-的图象向左平移ϕ(0ϕ>)个单位长度后得到()f x 的导函数()f x '的图象,则()f ϕ=()A .3-B .3C .1D .1-【答案】B【解析】因为()3sin cos f x x x =-,所以()3cos sin f x x x =+',而()()()3sin cos 3sin cos 3cos sin cos cos sin sin f x x x x x x x ϕϕϕϕϕϕϕ+=+-+=+-+()()3cos sin sin 3sin cos cos x x ϕϕϕϕ=++-⋅,由题意得()()f x f x ϕ+=',所以3cos sin 13sin cos 3ϕϕϕϕ+=⎧⎨-=⎩,解得sin 1cos 0ϕϕ=⎧⎨=⎩,所以()3sin cos 3f ϕϕ=-=,故选:B.另解:因为()3sin cos f x x x =-,所以()3cos sin f x x x =+',由题意知()()f x f x ϕ+='对一切实数x 恒成立,所以令0x =,得()()03cos 0sin 03f f ϕ'==+=,故选:B.【变式3-5】(2023·河南信阳·河南省信阳市第二高级中学校联考一模)将函数()sin 2c 2πos π63f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭图象上的所有点的横坐标缩短为原来的12(纵坐标不变),然后再将其图象向左平移()0θθ>单位得到图象()g x ,若函数()g x 图象关于y 轴对称,则θ的最小值为()A .π3B .π6C .π12D .π24【答案】C 【解析】()πsin 2cos 2sin 2co i ππs 22s n26366πππ62f x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++-=+++-=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,由()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,横坐标缩短为原来的12(纵坐标不变)得到π2sin 46⎛⎫=+ ⎪⎝⎭y x ,将其图象向左平移()0θθ>单位得到图象()46π2sin 4g x x θ⎛⎫=++ ⎪⎝⎭,而()g x 图象关于y 轴对称,∴4π,Z 6π2πk k θ+=+∈,∵0θ>,∴当0k =时,θ取最小值π12.故选:C.【题型4三角函数的四种性质】【例4】(2023秋·河南南阳·高三统考期末)已知函数()()()sin cos f x x x ϕϕ=+++是偶函数,则3sin 2cos 2sin 3cos ϕϕϕϕ-=+______.【答案】15【解析】由题知数()()()sin cos f x x x ϕ=+++是R 上偶函数,所以()()ππ22f f =-,即()()()()ππππsin cos sin cos 2222ϕϕϕϕ+++=-++-+,即cos sin cos sin ϕϕϕϕ-=-+,即cos sin ϕϕ=,tan 1ϕ=,所以3sin 23sin 2cos 321cos 2sin 2sin 3cos 2353cos ϕϕϕϕϕϕϕϕ---===+++.故答案为:15【变式4-1】(2023秋·河北邢台·高三邢台市第二中学校考期末)函数9cos 24y x π⎛⎫=- ⎪⎝⎭的单调递减区间为______.【答案】()π5ππ,πZ 88k k k ⎡⎤++∈⎢⎥⎣⎦【解析】由9πcos 24y x ⎛⎫=-⎪⎝⎭=cos π24x ⎛⎫- ⎪⎝⎭=cos π24x ⎛⎫- ⎪⎝⎭,得2kπ≤2x -4π≤2k π+π(k ∈Z ),解得kπ+π8≤x ≤kπ+58π(k ∈Z ),所以函数的单调递减区间为π5ππ,π88k k ⎡⎤++⎢⎥⎣⎦(k ∈Z ).故答案为:()π5ππ,πZ 88k k k ⎡⎤++∈⎢⎥⎣⎦.【变式4-2】(2022秋·辽宁沈阳·高三沈阳市第一二〇中学校考期中)已知函数()tan tan f x x x =+,则下列结论中正确的是()A .()f x 的最小正周期为π2B .点π,02⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心C .()f x 的值域为[)0,∞+D .不等式()2f x >的解集为()ππ2,2πZ 42k k k π⎛⎫++∈ ⎪⎝⎭【答案】C【解析】()π2tan ,[π,π),Z 2tan tan π0,(π,π),Z 2x x k k k f x x x x k k k ⎧∈+∈⎪⎪=+=⎨⎪∈-+∈⎪⎩,作出()f x的图象,如图,观察图象,()f x 的最小正周期为π,A 错误;()f x 的图象没有对称中心,B 错误;()f x 的值域为[)0,∞+,C 正确;不等式()2f x >,即π[π,π)(Z)2x k k k ∈+∈时,2tan 2x >,得tan 1x >,解得ππππ,Z 42k x k k +<<+∈,所以()2f x >的解集为ππ(π,π)()42Z k k k +∈+,故D 错误.故选:C【变式4-3】(2023·四川内江·统考一模)已知函数()()1sin cos sin (0)2f x x x x ωωωω=-+>,若函数()f x 在π,π2⎛⎫⎪⎝⎭上单调递减,则ω不能取()A .23B .13C .58D .14【答案】A【解析】因为()()1sin cos sin 2f x x x x ωωω=-+21sin cos sin 2x x x ωωω=⋅-+11cos 21sin 2222x x ωω-=-+1(sin 2cos 2)2x x ωω=+(sin 2cos 2)222x x ωω=⋅⋅π)4x ω=+由ππ3π2π22π242k x k ω+≤+≤+,Z k ∈,得ππ5ππ88k k x ωωωω+≤≤+,Z k ∈,所以函数()f x 的单调递减区间为ππ5ππ,88k k ωωωω⎡⎤++⎢⎥⎣⎦()k ∈Z .又函数()f x 在π,π2⎛⎫ ⎪⎝⎭上单调递减,所以π,π2⎛⎫ ⎪⎝⎭⊆ππ5ππ,88k k ωωωω⎡⎤++⎢⎥⎣⎦()k ∈Z ,所以πππ825πππ8k k ωωωω⎧+≤⎪⎪⎨⎪+≥⎪⎩,Z k ∈,因为0ω>,所以15248k k ω+≤≤+,Z k ∈,当23ω=时,得1252438k k +≤≤+,得152424k ≤≤,不成立;所以23ω=不可取;当13ω=时,得1152438k k +≤≤+,得712412k -≤≤,因为Z k ∈,所以0k =时,13ω=可取到;当58ω=时,得1552488k k +≤≤+,得3016k ≤≤,因为Z k ∈,所以0k =时,58ω=可取到;当14ω=时,得1152448k k +≤≤+,得308k -≤≤,因为Z k ∈,所以0k =时,14ω=可取到.综上所述:ω不能取23.故选:A【变式4-4】(2023秋·江苏南通·高三统考期末)(多选)设函数()()sin f x x ωϕ=+,x ∈R ,其中0ω>,3πϕ<.若1409f π⎛⎫-= ⎪⎝⎭,419f π⎛⎫= ⎪⎝⎭,且()f x 的最小正周期大于52π,则()A .14ω=B .6πϕ=C .()f x 在()2,3ππ上单调递增D .()f x 在()0,3π上存在唯一的极值点【答案】BC【解析】函数()()sin f x x ωϕ=+的最小正周期为T ,由1409f π⎛⎫-= ⎪⎝⎭及419f π⎛⎫= ⎪⎝⎭得:414(21)()2,N 499T k k πππ*⋅-=--=∈,则8,N 21T k k π*=∈-,而52T π>,即有5822,N 1k k ππ*>∈-,解得21,N 10k k *<∈,即1k =或2k =,当1k =时,18,4T πω==,由419f π⎛⎫= ⎪⎝⎭得1114,Z 492k k ππϕπ⨯+=+∈,有117,Z 18k k πϕπ=+∈,而3πϕ<,显然不存在整数1k ,使得3πϕ<,当2k =时,83,34T πω==,由419f π⎛⎫= ⎪⎝⎭得2234,Z 492k k ππϕπ⨯+=+∈,有22,Z 6k k πϕπ=+∈,而3πϕ<,于是得20,6k πϕ==,符合题意,所以83,,346T ππωϕ===,A 不正确,B 正确;3()sin()46f x x π=+,当23x ππ<<时,532934612x πππ<+<,而函数sin y x =在529(,)312ππ上单调递增,所以函数()f x 在()2,3ππ上单调递增,C 正确;当03x π<<时,32964612x πππ<+<,而函数sin y x =在29(,)612ππ上两个极值点,一个极大值点,一个极小值点,所以函数()f x 在()0,3π上有两个极值点,一个极大值点,一个极小值点,D 不正确.故选:BC【变式4-5】(2023·安徽淮南·统考一模)(多选)已知函数()()πsin ,12,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭图像过点10,2⎛⎫- ⎪⎝⎭,且存在12,x x ,当122πx x -=时,()()120f x f x ==,则()A .()f x 的周期为4π3B .()f x 图像的一条对称轴方程为5π9x =-C .()f x 在区间4π10π,99⎡⎤⎢⎣⎦上单调递减D .()f x 在区间()0,5π上有且仅有4个极大值点【答案】ACD【解析】因为()f x 图像过点10,2⎛⎫- ⎪⎝⎭且π2ϕ<,所以1sin 2ϕ=-,解得π6ϕ=-,因为存在12,x x ,当122πx x -=时,()()120f x f x ==,所以π2π2T k k ω⋅==,即2k ω=,*N k ∈,又因为12ω<<,所以32ω=,所以()3πsin 26f x x ⎛⎫=-⎪⎝⎭,选项A :()f x 的周期2π4π332T ==,正确;选项B :()f x 图像的对称轴为3πππ262x k -=+,解得4π2π93kx =+,Z k ∈,令5π4π2π993k-=+,k 无整数解,B 错误;选项C :当4π10π,99x ⎡⎤∈⎢⎥⎣⎦时,3ππ3π,2622x ⎡⎤-∈⎢⎣⎦,所以由正弦函数的图像和性质可得()f x 在区间4π10π,99⎡⎤⎢⎥⎣⎦上单调递减,C正确;选项D :当()0,5πx ∈时,3ππ22π,2663x ⎛⎫-∈- ⎪⎝⎭,所以由正弦函数的图像和性质可得()f x 在区间()0,5π有4个极大值点,3个极小值点,D 正确;故选:ACD【变式4-6】(2023秋·湖北·高三统考期末)(多选)已知函数()2sin sin 2f x x x =,则下列说法正确的是()A .π是()f x 的一个周期B .()f x 的图象关于点π,02⎛⎫ ⎪⎝⎭中心对称C .()f x 在区间[]0,2π上的零点个数为4D .()f x 的最大值为8【答案】ABD 【解析】对于A ,因为()2(π)sin (π)sin 2(π)f x x x +=++()22sin sin 2sin sin 2()x x x x f x =-==,所以π是()f x 的一个周期,故A 正确;对于B ,()2π(2)(π)sin (π)sin 2(π)2f x f x x x ⨯-=-=--22sin sin(2)sin sin 2()x x x x f x =-=-=-,所以()f x 的图象关于点π,02⎛⎫⎪⎝⎭中心对称,故B 正确;对于C ,由()2sinsin 2f x x x =0=,得πx k =或2πx k =,Z k ∈,得πx k =或π2k x =,Z k ∈,由0π2πk ≤≤及Z k ∈得0k =或1k =或2k =,所以0x =或2πx =或πx =,由π02π2k ≤≤及Z k ∈得0k =或1k =或2k =或3k =或4k =,所以0x =或π2x =或πx =或3π2x =或2πx =,所以()f x 在区间[]0,2π的零点为0x =,π2x =,πx =,3π2x =,2πx =,共5个,故C 错误;对于D ,()2sinsin 2f x x x =2sin 2sin cos x x x =⋅32sin cos x x =,所以()262()4sin cos f x x x =624sin (1sin )x x =-,设2sin [0,1]t x =∈,34(1)y t t =-3444(01)t t t =-≤≤,则23212164(34)y t t t t '=-=-,令0'>y ,得304t <<,令0'<y ,得314t <≤,所以3444(01)y t t t =-≤≤在3[0,)4上为增函数,在3(,1]4上为减函数,所以当3t 4=时,y 取得最大值为333274(1)4464⎛⎫⨯-= ⎪⎝⎭,0=t 或1t =时,y 取得最小值为0,所以()2()f x y =27[0,64∈,所以()[f x ∈,所以()f x D 正确;故选:ABD 【变式4-7】(2023春·浙江·高三校联考开学考试)(多选)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则()A .()0f =B .()f x 的最小正周期为π2C .()f x 在π0,6⎛⎫ ⎪⎝⎭上单调递减D .()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增【答案】BD【解析】()ππ0tan tan 66f ⎛⎫=-=-= ⎪⎝⎭A 错误;函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭的最小正周期为π2T =,故B 正确;π0,6x ⎛⎫∈ ⎪⎝⎭时,2,πππ666x ⎛⎫-∈- ⎪⎝⎭,故()f x 在π0,6⎛⎫⎪⎝⎭上单调递增,故C 错误;π,06x ⎛⎫∈- ⎪⎝⎭时,2,π626ππx ⎛⎫-∈-- ⎪⎝⎭,故()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增,故D 正确.故选:BD .【题型5三角函数的最值问题】【例5】(2022秋·北京·高三北京市八一中学校考阶段练习)定义运算,,,.a a b a b b a b ≤⎧=⎨>⎩※例如,121=※,则函数()sin cos f x x x =※的值域为()A.1,2⎡⎤-⎢⎥⎣⎦B.22⎡⎤⎢⎥⎣⎦C.,12⎡⎤⎢⎥⎣⎦D.2⎡-⎢⎣⎦【答案】D【解析】根据题设中的新定义,得()sin ,sin cos cos ,sin cos x x x f x x x x≤⎧=⎨>⎩,由sin cos x x ≤可得sin cos 0x x -≤π04x ⎛⎫-≤ ⎪⎝⎭,所以π2ππ2π4k x k -≤-≤,Z k ∈,即3ππ2π2π+44k x k -≤≤,Z k ∈,由sin cos x x >可得sin cos 0x x ->π04x ⎛⎫-> ⎪⎝⎭,所以π2π2π+π4k x k <-<,Z k ∈,即π5π2π+2π+44k x k <<,Z k ∈,所以()3ππsin ,2π2π,Z 44π5πcos ,2π2π,Z44x k x k k f x x k x k k ⎧-≤≤+∈⎪⎪=⎨⎪+<<+∈⎪⎩,当3ππ2π2π+44x k x k ∈-≤≤,Z k ∈,()()()2πsin 2πsin f x x x f x +=+==,当π5π2π+2π+44x k x k ∈<<,Z k ∈时,()()()2πcos 2πcos f x x x f x +=+==,所以函数()f x 为周期函数,周期为2π,作出函数()f x 在一个周期内的图象(实线部分),观察图象,可知函数()f x 的值域为22⎡-⎢⎣⎦,故选:D.【变式5-1】(2023秋·湖南株洲·高三校联考期末)已知定义域为R 的函数(),()f xg x满足()()πf x f x +=-,且()()cos π,g x x f x =++()()sin πf x x g x =-+,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()()y f x g x =的最小值为()A .0B .2CD 【答案】A【解析】()cos ()=-g x x f x ,()()()()πcos ππcos +=+-+=-+g x x f x x f x ,所以()sin cos ()f x x x f x =+-,得sin cos ()2x x f x +=,cos sin ()2x xg x -=,所以22cos sin 1()()cos 244x x y f x g x x -===,π0,4x ⎡⎤∈⎢⎥⎣⎦,所以0cos 21x ≤≤,10()()4≤≤f x g x ,得()()y f x g x =的最小值为0.故选:A.【变式5-2】(2022秋·安徽·高三石室中学校联考阶段练习)如图是函数()cos()(0)f x x ωϕω=+>的部分图象,则()f x 在,9045⎡⎤-⎢⎥⎣⎦π22π上的值域为()A .[]1,1-B .122⎡⎢⎣⎦C .11,2⎡⎤-⎢⎥⎣⎦D .⎡-⎢⎣⎦【答案】D【解析】由图象知函数的周期13ππ2π230103T ⎛⎫=⨯-=⎪⎝⎭,即2π2π=3ω,即3ω=,由五点对应法得ππ32π+()102k k ϕ⨯+=∈Z ,得π2π+5k ϕ=,则π()cos 35f x x ⎛⎫=+ ⎪⎝⎭,因为π22π,9045x ⎡⎤∈-⎢⎥⎣⎦,所以ππ5π3,563x ⎡⎤+∈⎢⎣⎦,所以πcos 31,52x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦.故选:D【变式5-3】(2023·河北衡水·河北衡水中学校考模拟预测)函数()3cos f x x 的最大值为().A .B .C .D .3【答案】D 【解析】2225cos 4sin 59cos 4cos 4sin 5x x x x x -+=--+()()22229cos 4sin 4sin 13cos 2sin 1x x x x x =+-+=+-,所以()3cos f x x ==故()f x 的最大值转化为点()3cos ,2sin P x x 到()0,1A 与()0,2sin B x 的距离之差的最大值,因为1sin 1x -≤≤,22sin 2x -≤-≤,112sin 3x -≤-≤,所以12sin 3PA PB AB x -≤=-≤,当且仅当sin 1x =-时,等号成立,则3PA PB -≤,经检验,此时cos 0x =,()303f x =⨯=,所以()3f x ≤,即()f x 的最大值为3.故选:D.【变式5-4】(2023秋·北京丰台·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫=+>⎪⎝⎭,若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫ ⎪⎝⎭上有最小值无最大值,则ω=___________.【答案】4【解析】由于若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫ ⎪⎝⎭上有最小值无最大值,πππ6223+=,则πππsin 1336f ω⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,所以πππ2π,62,Z 362k k k ωω+=-=-∈,又ππππ,62366T ωω=≥-=≤,由于0ω>,所以ω的值为4.故答案为:4。
高考中常见的三角函数题型和解题方法-数学秘诀
第12讲 三角函数一、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考三角函数题型分析数学.试题分析专题.三角函数 一、题型分析一、单调性问题此类问题主要考查三角函数的增减性,各象限中各个三角函数值的符号等.很多情况下,需要通过三角恒等变换将已知函数式化为一个角的一个三角函数式的形式来求解.例 1 写出函数24sin cos cos y x x x x =+-在[]0π,上的单调递增区间.解:()()2222sin cos sin cos cos y x x x x x x =+-+π2cos 22sin 26x x x ⎛⎫=-=- ⎪⎝⎭. 由已知可得πππ2π22π262k x k -+-+≤≤, 则ππππ63k x k -++≤≤,k ∈Z . 又[]0πx ∈,,所以其单调递增区间是π03⎡⎤⎢⎥⎣⎦,,5ππ6⎡⎤⎢⎥⎣⎦,.点评:① 在求单调区间时,要注意给定的定义域,根据题意取不同的k 值;② 在求sin()y A x ωϕ=+的单调区间时还应注意ω的正、负,同学们可以自己求一下π2sin 26y x ⎛⎫=- ⎪⎝⎭的单调递减区间,并与本例所求得的区间对比一下.二、图象变换问题三角函数的图象变换是一个重点内容.解这类问题,先通过三角恒等变换将函数化为sin()y A x ωϕ=+(00)A ω>>,的形式,然后再探索其图象是由正弦曲线经过怎样的平移变换、伸缩变换或振幅变换得到的.特别需要注意的是:在图象变换中,无论是“先平移后伸缩”,还是“先伸缩后平移”,须记清每次变换均对“x ”而言,尤其是左右平移在由形变换向数的问题转化的的时候,也是用“x + k ”代替“x ”,其它做法都是多余的。
尤其是要弄清楚“变换谁?得到谁?”,这个问题不搞清楚,就不要做题。
例2 已知函数22sin 2sin cos 3cos 1y x x x x =++-,x ∈R .该函数的图象可由sin y x =,x ∈R 的图象经过怎样的变换而得到? 解:22sin 2sin cos 3cos 1y x x x x =++-2sin 22cos sin 2cos 21x x x x =+=++π214x ⎛⎫=++ ⎪⎝⎭. 将函数sin y x =依次作如下变换: (1)把函数sin y x =的图象向左平移π4,得到函数πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;(2)把得到的图象上各点横坐标缩短到原来的12倍(纵坐标不变),得到函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象; (3倍(横坐标不变),得到函数π24y x ⎛⎫=+ ⎪⎝⎭的图象; (4)把得到的函数图象向上平移1个单位长度,得到函数π214y x ⎛⎫=++ ⎪⎝⎭的图象. 综上得到函数22sin 2sin cos 3cos 1y x x x x =++-的图象.点评:由sin y x =的图象变换得到sin()y A x ωϕ=+的图象,一般先作平移变换,后作伸缩变换,即sin sin()sin()sin()y x y x y x y A x ϕωϕωϕ=→=+→=+→=+.如果先作伸缩变换,后作平移变换,则左(右)平移时不是ϕ个单位,而是ϕω个单位,即sin()sin()y x y x ωωϕ=→=+是左(右)平移ϕω个单位长度.三、最小正周期问题这类问题一般要通过恒等变换,然后得出我们所熟悉的三角函数---------也就是sin()y A x ωϕ=+形式三角函数问题,从而求得其周期.最小正周期问题常与三角函数的奇偶性、单调性、对称性及最值交汇出现.应掌握几个常用三角函数的最小正周期,会求sin()y A x ωϕ=+的周期. 例3 函数42sin cos y x x =+的最小正周期为( ).(A)π4 (B)π2(C)π (D)2π 解析:4222sin 1sin 1sin (1sin )y x x x x =+-=-- 22211cos 47cos 41sin cos 1sin 214888x xx x x -=-=-=-=+,2ππ42T ∴==.故选(B).点评:本题是通过平方关系、倍角公式、降次将函数化为单一且次数为一次的函数求解的.四、求值与证明问题此类题是高考中出现较多的题型,要求同学们掌握从题设条件入手、以题目结论或要求为目标,正确运用各类三角公式,消除角的差异,实现函数名称的转化,达到解(证)题的目的.深刻理解三角函数的概念,熟练掌握各类三角公式,熟悉三角恒等变换的常用思想方法和变换技巧,是解决问题的关键.例4 已知π1tan 42α⎛⎫+= ⎪⎝⎭.(1)求tan α的值;(2)求2sin 2cos 1cos 2ααα-+的值.解:(1)由题意知π1tan 1tan 41tan 2ααα+⎛⎫+== ⎪-⎝⎭,解得1tan 3α=-; (2)222sin 2cos 2sin cos cos 2sin cos 1cos 22cos 2cos αααααααααα---==+1115tan 2326α=-=--=-.点评:本题在解答过程中用到了两角和的正切公式、二倍角公式及正、余弦公式的关系,熟练掌握和灵活应用各类三角公式显得尤为重要,在此前提下,解决该类问题,必须先弄清楚“角”在哪里?否则容易求错题目,弄清楚“角”在哪也就是“求值角先行!”;另外,三角函数问题围绕“角和名”两大问题来思考,尽量寻求角之间的联系,尽量减少函数名,是解决这类问题的基本法则。
五、最值或值域问题这是在考试中出现频率很高的一类题型,要求掌握基本的三角公式和正弦、余弦等基本三角函数的值域.解题时,常常进行降次处理,尽量将异名三角函数化为同名三角函数,将不同的角化为相同的角.例5若函数21cos 2π()sin sin π42sin 2x f x x a x x +⎛⎫=+++ ⎪⎛⎫⎝⎭- ⎪⎝⎭3,试确定常数a 的值. 解:222cosπ()sin sin 2cos 4xf x x a x x⎛⎫=+++ ⎪⎝⎭2πcos sin sin 4x x a x ⎛⎫=+++ ⎪⎝⎭2ππsin 44x a x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭)2πsin 4a x ⎛⎫=+ ⎪⎝⎭.因为()f x323a =,即23a =,a =点评:本题先进行三角恒等变换,化为sin()y A x ωϕ=+的形式,再求a 的值.求一个复杂三角函数的最小正周期、最值、单调区间等,一般是将这个复杂的三角函数通过三角恒等变换化简为sin()y A x ωϕ=+的形式后再求解.另外,在求最值问题还有一类题型就是:把所给的函数运用换元的办法转化为一元二次函数的问题来解决,这里就不再举例。
换元的时候要注意“引进新元要立刻根据旧元求出新元的取值范围”,当然,还有可能把三角函数问题跟导数简单结合,这样只能扩大知识点的覆盖,但不会增加试题的难度,要想正确解答这类问题,必须对三角函数的求导熟悉,否则在求导这一知识环节出问题,题目也就没办法进行了。
二、题型特点:(条件给出的变化、难度等)在这部分考题中,选择题,解答题多是基本题目,概念性比较强;这里就不再论述;在大题中,在条件的给出过程中,多与平面向量结合,这是近年来变化比较大的地方,多是利用平面向量的坐标运算以及平面向量数量积最终转化为三角函数的问题;在上面的分析中,我们给出了六类三角函数题型,其中估计在三角函数的应用部分2008年不会设置大题,三角函数图象变换出大题的可能性也不大,肯定要在三角函数图象和性质的利用上做文章,这点也是三角函数部分的重点之重点,大家除了要对三角函数的图象和性质非常熟练之外,还要对三角恒等变换以及诱导公式和两角和与差的公式非常熟悉。
因此必须引起大家的高度重视。
但历年来三角函数问题难度的设置上不会太多,多是中、低档题,因此,这部分不能丢分。
更不能会而不对,对而不全。
三、强化训练一、选择题1、(海南、宁夏理3)函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( A )2、(海南宁夏理9)若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( C )A.7 B.12- C.12 73、将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( A )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭ Bπ2cos 234x y ⎛⎫=-+ ⎪⎝⎭.C 、π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭4、(江西理5)若π02x <<,则下列命题中正确的是( D ) A.3sin πx x < B.3sin πx x > C.224sin πx x < D.224sin πx x >5、(全国卷1理1)α是第四象限角,5tan 12α=-,则sin α=( D )A .15B .15-C .513D .513- 6、全国卷1理(12)函数22()cos2cos 2xf x x =-的一个单调增区间是( A )A .233ππ⎛⎫ ⎪⎝⎭, B .62ππ⎛⎫ ⎪⎝⎭, C .03π⎛⎫ ⎪⎝⎭, D .66ππ⎛⎫- ⎪⎝⎭, 7、(全国卷2理2)函数sin y x =的一个单调增区间是( C )A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭, C .3π⎛⎫π ⎪2⎝⎭, D .32π⎛⎫π ⎪2⎝⎭, 8、函数sin 2cos 263y x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期和最大值分别为( A )A .π,1 B .π C .2π,1 D .2π9、“2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( A ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10、若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =则(D )A .126ωϕπ==,B .123ωϕπ==,C .26ωϕπ==,D .23ωϕπ==, 二、填空题4、(江苏11)若1cos()5αβ+=,3cos()5αβ-=,则tan tan αβ=___12__. 11、(上海理6)函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T π.15、(浙江理12)已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是 725-12、(四川理16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π.②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|.③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点.④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是① ④三、解答题16、(安徽理16)已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 14αβ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,,a (cos 2)α=,b ,且a b m =.求22cos sin 2()cos sin ααβαα++-的值.主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.解:因为β为π()cos 28f x x ⎛⎫=+ ⎪⎝⎭的最小正周期,故πβ=. 因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭a b ··. 故1cos tan 24m ααβ⎛⎫+=+⎪⎝⎭·. 由于π04α<<,所以 222cos sin 2()2cos sin(22π)cos sin cos sin ααβαααααα++++=--22cos sin 22cos (cos sin )cos sin cos sin ααααααααα++==--1tan π2cos 2cos tan 2(2)1tan 4m ααααα+⎛⎫==+=+ ⎪-⎝⎭·18、(福建理17)在ABC△中,1tan 4A =,3tan 5B =.(Ⅰ)求角C 的大小;(Ⅱ)若ABC △,求最小边的边长.考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力 解:(Ⅰ)π()C A B =-+,1345tan tan()113145C A B +∴=-+=-=--⨯.又0πC <<,3π4C ∴=.(Ⅱ)34C =π,AB ∴边最大,即AB =又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭,,,,∴角A 最小,BC 边为最小边.由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin A =.由sin sin AB BC C A =得:sin 2sin ABC AB C==.所以,最小边BC =19、(广东理16)已知ABC △顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,.(1)若5c =,求sin A ∠的值; (2)若A ∠是钝角,求c 的取值范围.解析: (1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>==sin ∠A ; 2)若∠A 为钝角,则391600c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞; 21、(湖南理16)已知函数2π()cos12f x x ⎛⎫=+ ⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间.解:(I )由题设知1π()[1cos(2)]26f x x =++. 因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x+πk =,即0π2π6xk =-(k ∈Z ).所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭, 当k 为奇数时,01π15()1sin 12644g x =+=+=. (II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π3113cos 2sin 2sin 22622222x x x x ⎛⎫⎡⎤⎛⎫=+++=++ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1π3sin 2232x ⎛⎫=++ ⎪⎝⎭.当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数,故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ). 22、(江西理18)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-.(1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点0()Q x y ,是PA的中点,当0y=ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.解:(1)将0x =,y =2cos()y x ωθ=+得cos 2θ=,因为02θπ≤≤,所以6θπ=.又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=,因此2cos 26y x π⎛⎫=+ ⎪⎝⎭.(2)因为点02A π⎛⎫⎪⎝⎭,,0()Q x y ,是PA 的中点,0y =所以点P 的坐标为022xπ⎛- ⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 462xπ⎛⎫-= ⎪⎝⎭.因为02xππ≤≤,所以075194666xπππ-≤≤,从而得0511466xππ-=或0513466xππ-=.即023xπ=或034xπ=.23、(全国卷1理17)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =,由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin AC A A π⎛⎫+=+π--⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC△为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,.24、(全国卷2理17)在ABC △中,已知内角A π=3,边BC =设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知sin 4sin sin sin BC AC B x xA ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin cos sin2y x x x⎛⎫=+++⎪⎪2⎝⎭5x xππππ⎛⎫⎫=++<+<⎪⎪6666⎝⎭⎭,所以,当xππ+=62,即xπ=3时,y取得最大值5、(陕西理17)设函数()f x=·a b,其中向量(cos2)m x=,a,(1sin21)x=+,b,x∈R,且()y f x=的图象经过点π24⎛⎫⎪⎝⎭,.(Ⅰ)求实数m的值(Ⅱ)求函数()f x的最小值及此时x值的集合.解:(Ⅰ)()(1sin2)cos2f x a b m x x==++,由已知πππ1sin cos2422f m⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m=.(Ⅱ)由(Ⅰ)得π()1sin2cos2124f x x x x⎛⎫=++=++⎪⎝⎭,∴当πsin214x⎛⎫+=-⎪⎝⎭时,()f x的最小值为1∴由πsin214x⎛⎫+=-⎪⎝⎭,得x值的集合为3ππ8x x k k⎧⎫=-∈⎨⎬⎩⎭Z,.26、已知0,1413)cos(,71cos且=β-α=α<β<α<2π,(Ⅰ)求α2tan的值. (Ⅱ)求β.本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。