张宇1000题(最新版)第三章习题详解

合集下载

高等代数答案-第三章

高等代数答案-第三章

第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。

微积分及其应用第三章习题解答

微积分及其应用第三章习题解答

1.(1)v =01.02001.02)()(=∆==∆=∆∆-∆+=∆∆t t t t t t s t t s ts=01.020)263(=∆=++∆t t t t =14.03 (2)14lim)2(200=∆∆==→∆t t ts v2。

(1)v =tt ∆=1=tt ts ∆=∆∆1=tg t g t ∆--∆+-∆+]215[])1(21)1(5[2=t g g ∆--215 (2)g t ht t -=∆∆==→∆5]lim[)1(1ν (3) tgt t t t g t t th tvtt t t t ∆--∆+-∆+=∆∆=∆∆==)215()((21)(50020000=t g gt ∆--2150 (4)000005)215(lim lim)(gt t g gt t h t t t -=∆--=∆∆=→∆→∆ν 3。

(1)x x f x x f x x f x x f x x ∆--∆-+=∆-∆-→∆→∆)()]([lim )()(lim000000=)()]()([lim 0,000x f xx f x x f x -=∆--∆-+-→∆(2))()()()((lim )()((lim0,00000000x f h x x h x f x f h h x f x f h h =--∆--=∆--→∆→∆(3)h h x f h x f h x f h x f h h 202000200)()((lim )()((lim -+=-+→∆→∆=0lim )()((lim 020200==-+→∆→∆h h x f h x f h h(4)xx x f x x f x ∆∆--∆+→∆)()(lim000=)(21()()()(21lim 0,00000x f x x x x x x f x x f x =∆--∆+∆--∆+→∆4。

(1)xx f x x f y x ∆-∆+='→∆)()(lim000=xxx x x x x x x x x x x ∆∆+∆+-=∆-∆+→∆→∆)()(lim 11lim 0000=2001)(1lim )(limxx x x xx x x x x x -=∆+-=∆∆+∆-→∆→∆ (2)x xx x xx f x x f x f x x ∆-∆+=∆-∆+='→∆→∆000lim )()(lim)(=xx x x x x xx x x x +∆+=+∆+-∆+→∆→∆1limlim 00=x215.解:1)5(21)5()5(21lim 2)5()5(lim00-='-=----=--→∆→∆f x f x f x f x f x x 6(1)==x x y 首先判断函数的连续性0x >时2x y =连续,0< x 时2-x y =连续,在0x =时,0])([lim )00(220=-∆+=++→∆x x x f f x0])([lim )00(220=+∆+=--→∆x x x f f x由于)00()00(-=+f f所以函数y 在0=x 处连续 下面判断可导性 在0=x 处 xf x f f x ∆-∆='+→∆+)0()(lim)0(0=xx x ∆∆++→∆20)0(lim=0lim 0=∆+→∆x xxf x f f x ∆-∆+='-→∆-)0()0(lim)0(0=0lim )(lim 020=∆-=∆∆---→∆→∆x xx x x由于)0()0(-+'='f f 故函数在0=x 处可导 (2))1(011-x 1-x sin lim)(lim 11f x f x x =≠==→→)(∴ 函数)(x f 在1=x 处不连续,从而0=x 在处不可导。

2021-2022学年北师大版九年级数学下册第三章 圆专项攻克试题(含答案及详细解析)

2021-2022学年北师大版九年级数学下册第三章 圆专项攻克试题(含答案及详细解析)

北师大版九年级数学下册第三章 圆专项攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,面积为18的正方形ABCD 内接于⊙O ,则⊙O 的半径为( )A .32 BC .3D .2、如图,在圆内接五边形ABCDE 中,425C CDE E EAB ∠+∠+∠+∠=︒,则CDA ∠的度数为( )A .75︒B .65︒C .55︒D .45︒3、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立是( )A .弧AC =弧ADB .弧BC =弧BD C .CE =DE D .OE =BE4、已知,在圆中圆心角度数为45°,半径为10,则这个圆心角所对的扇形面积为( )A .52π B .5π C .10π D .252π 5、如图,菱形ABCD 的顶点B ,C ,D 均在⊙A 上,点E 在弧BD 上,则∠BED 的度数为( )A .90°B .120°C .135°D .150°6、如图,ABC 中,90ACB ∠=︒,AC BC =,点D 是边AC 上一动点,连接BD ,以CD 为直径的圆交BD 于点E .若AB 长为4,则线段AE 长的最小值为( )A 1B .2C .D 7、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A .直径所对圆周角为90︒B .如果点A 在圆上,那么点A 到圆心的距离等于半径C .直径是最长的弦D .垂直于弦的直径平分这条弦8、已知O 的半径为5cm ,点P 到圆心O 的距离为4cm ,则点P 和圆的位置关系( )A .点在圆内B .点在圆外C .点在圆上D .无法判断9、如图,有一个弓形的暗礁区,弓形所含的圆周角50C ∠=︒,船在航行时,为保证不进入暗礁区,则船到两个灯塔A ,B 的张角ASB ∠应满足的条件是( )A .sin sin 25ASB ∠>︒B .sin sin50ASB ∠>︒C .sin sin55ASB ∠>︒D .cos cos50ASB ∠>︒10、已知⊙O的半径为4,点P在⊙O外部,则OP需要满足的条件是()A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为 _____.2、如图,AB是⊙O的直径,∠BAD=70°,则∠C=___________.3、一块直角三角板的30°角的顶点A落在O上,两边分别交O于B、C两点,若弦BC长为4,则O的半径为______.4、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.5、如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG 并延长交AD于点F,则AF的最大值是_______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,图形W上任意两点间的距离有最大值,将这个最大值记为d.对点P 及图形W给出如下定义:点Q为图形W上任意一点,若P,Q两点间的距离有最大值,且最大值恰好为2d,则称点P为图形W的“倍点”.(1)如图1,图形W是半径为1的⊙O.①图形W上任意两点间的距离的最大值d为_________;②在点1P(0,2),2P(3,3),3P(3-,0)中,⊙O的“倍点”是________;(2)如图2,图形W是中心在原点的正方形ABCD,已知点A(1-,1),若点E(t,3)是正方形ABCD的“倍点”,求t的值;(3)图形W是长为2的线段MN,T为MN的中点,若在半径为6的⊙O上存在MN的“倍点”,直接写出满足条件的点T所构成的图形的面积.2、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上(点M ,N 是格点).(1)画出线段AB 绕点N 顺时针旋转90°得到的线段11A B (点1A ,1B 分别为A ,B 的对应点);(2)在问题(1)的旋转过程中,求线段AB 扫过的面积.3、如图,AB 为⊙O 的直径,半径⊥OD AB 于O ,⊙O 的弦CD 与AB 相交于点F ,⊙O 的切线CE 交AB 的延长线于点E .(1)求证:EC EF =;(2)若⊙O 的半径长为3,且BF BE =,求DF 的长.4、在平面直角坐标系xOy 中,O 的半径为1,点A 在O 上,点P 在O 内,给出如下定义:连接AP 并延长交O 于点B ,若AP kAB =,则称点P 是点A 关于O 的k 倍特征点.(1)如图,点A 的坐标为()1,0.①若点P 的坐标为1,02⎛⎫- ⎪⎝⎭,则点P 是点A 关于O 的_______倍特征点; ②在110,2C ⎛⎫ ⎪⎝⎭,21,02C ⎛⎫ ⎪⎝⎭,311,22C ⎛⎫- ⎪⎝⎭这三个点中,点_________是点A 关于O 的12倍特征点; ③直线l 经过点A ,与y 轴交于点D ,60DAO ∠=︒.点E 在直线l 上,且点E 是点A 关于O 的12倍特征点,求点E 的坐标;(2)若当k 取某个值时,对于函数()101y x x =-+<<的图象上任意一点M ,在O 上都存在点N ,使得点M 是点N 关于O 的k 倍特征点,直接写出k 的最大值和最小值.5、在平面直角坐标系xOy 中,⊙O 的半径为1.对于线段AB ,给出如下定义:若线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′,则称线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,直线l 称为“反射轴”.(1)如图,线段CD ,EF ,GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ;(2)已知A 点坐标为(0,2),B 点坐标为(1,1),①若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,求反射轴l 与y 轴的交点M 的坐标. ②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标y M 的取值范围为12≤y M 136≤,求S . (3)已知点M ,N 是在以原点为圆心,半径为2的圆上的两个动点,且满足MN =1,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积.(4)已知点M ,N 是在以(2,0MN =MN 是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.-参考答案-一、单选题1、C【分析】连接OA、OB,则OAB为等腰直角三角形,由正方形面积为18,可求边长为2=18AB,进而通过勾股定理,可得半径为3.【详解】解:如图,连接OA ,OB ,则OA =OB ,∵四边形ABCD 是正方形,∴90AOB ∠=︒,∴OAB 是等腰直角三角形,∵正方形ABCD 的面积是18,∴2=18AB ,∴222+18OA OB AB ==,即:2218OA =∴3OA =故选C .【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.2、B【分析】先利用多边的内角和得到540EAB B C CDE E ∠+∠+∠+∠+∠=︒,可计算出115B ∠=︒,然后根据圆内接四边形的性质求出CDA ∠的度数即可.【详解】解:∵五边形ABCDE 的内角和为()52180540-⨯︒=︒,∴540EAB B C CDE E ∠+∠+∠+∠+∠=︒,∵425EAB C CDE E ∠+∠+∠+∠=︒,∴540425115B ∠=︒-︒=︒,∵四边形ABCD 为O 的内接四边形,∴180B CDA ∠+∠=︒,∴18011565CDA ∠=︒-︒=︒.故选:B.【点睛】本题主要考查了多边形的内角和与圆内接四边形的性质,掌握圆内接四边形的性质是解答本题的关键.3、D【分析】根据垂径定理解答.【详解】解:∵AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,∴弧AC =弧AD ,弧BC =弧BD ,CE =DE ,故选:D .【点睛】此题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,熟记定理是解题的关键.4、D【分析】利用扇形面积公式直接计算即可.【详解】解:在圆中圆心角度数为45°,半径为10,则这个圆心角所对的扇形面积为:24510253602ππ⨯⨯=,故选:D.【点睛】本题考查了扇形面积计算,解题关键是熟记扇形面积公式,准确进行计算.5、B【分析】连接AC,根据菱形的性质得到△ABC、△ACD是等边三角形,求出∠BCD=120°,再根据圆周角定理即可求解.【详解】如图,连接AC∴AC=AB=AD∵四边形ABCD是菱形∴AB=BC=AD=CD=AC∴△ABC、△ACD是等边三角形∴∠ACB=∠ACD=60°∴∠BCD=120°∵优弧BD BD=∴∠BED=∠BCD=120°故选B.【点睛】此题主要考查圆内角度求解,解题的关键是熟知菱形的性质及圆周角定理.6、D【分析】如图,连接,CE 由CD 为直径,证明E 在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AEAO OE 最小,再利用锐角的正弦与勾股定理分别求解,AO OE ,即可得到答案.【详解】解:如图,连接,CE 由CD 为直径,90,CED BECE 在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AE AO OE 最小,90ACB ∠=︒,AC BC =,4,AB =45,ABC BAC ∴∠=∠=︒sin 4522,2,AC BC AB OB OC OE 2222210,AO10 2.AE故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.7、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A 选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为90︒,A 选项符合要求;B 、C 选项,根据圆的定义可以得到;D 选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.8、A【分析】直接根据点与圆的位置关系进行解答即可.【详解】解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,∴点P在圆内.故选:A.【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.9、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【详解】如图,AS交圆于点E,连接EB,由圆周角定理知,∠AEB=∠C=50°,而∠AEB是△SEB的一个外角,由∠AEB>∠S,即当∠S<50°时船不进入暗礁区.所以,两个灯塔的张角∠ASB应满足的条件是∠ASB<50°.∴cos∠ASB>cos50°,故选:D.【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P在⊙O外部,∴OP需要满足的条件是OP>4,故选:A.【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.二、填空题1、30°度【分析】连接OB和OC,证明△OBC为等边三角形,得到∠BOC的度数,再利用圆周角定理得出∠A.【详解】解:连接OB和OC,∵圆O 半径为2cm ,BC =2cm ,∴OB =OC =BC ,∴△OBC 为等边三角形,∴∠BOC =60°,∴∠A =12∠BOC =30°,故答案为:30°.【点睛】本题考查了圆周角定理和等边三角形的判定和性质,解题的关键是正确的作出辅助线.2、20︒【分析】连接BC ,首先由直径所对的圆周角是直角得到90BCA ∠=︒,然后由同弧所对的圆周角相等得到70BCD BAD ∠=∠=︒,即可求出ACD ∠的度数. 【详解】解:如图所示,连接BC ,∵AB 是⊙O 的直径∴90BCA ∠=︒∵BD BD =∴70BCD BAD ∠=∠=︒∴907020ACD BCA BCD ∠=∠-∠=︒-︒=︒故答案为:20︒.【点睛】此题考查了直径所对的圆周角是直角,同弧所对的圆周角相等,解题的关键是熟练掌握直径所对的圆周角是直角,同弧所对的圆周角相等.3、4【分析】连接OB 、OC ,由题意易得∠BOC =60°,则有△BOC 是等边三角形,然后问题可求解.【详解】连接OB 、OC ,如图所示:∵∠A =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∵4BC =,∴4OB BC ==,即⊙O 的半径为4.故答案为:4.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.4、256π 【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】如图,连接BO ,OC ,OA ,由题意得:△BOC ,△AOB 都是等边三角形,∴∠AOB =∠OBC =60°,∴OA∥BC,∴OBC ABC S S =,2605253606BOC S S ππ⨯⨯∴===阴扇. 故答案为:256π. 【点睛】 本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出BOC S S =阴扇.5、1【分析】以AB 为直径作圆,当CF 与圆相切时,AF 最大.根据切线长定理转化线段AF +BC =CF ,在Rt △DFC 利用勾股定理求解.【详解】解:以AB 为直径作圆,因为∠AGB =90°,所以G 点在圆上.当CF 与圆相切时,AF 最大.此时FA =FG ,BC =CG .设AF =x ,则DF =4−x ,FC =4+x ,在Rt △DFC 中,利用勾股定理可得:42+(4−x )2=(4+x )2,解得x =1.故答案为:1.【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键.三、解答题1、(1)① 2;②3P ;(2)t 的值为3或3 ;(3)π【分析】(1)①根据定义解答即可;②分别找出123PQ P Q PQ 、、的最大值,再根据定义判断即可;(2) 如图所示,正方形ABCD 上的任意两点间距离的最大值为E (t ,3)是正方形ABCD的“倍点”,则点E 到ABCD 上的点的最大距离恰好为 分0t <, 0t >和0=t 分别讨论即可求解;(3)分线段MN 在O 内部和在O 外部两种情况讨论即可.【详解】(1)①圆上两点之间的最大距离是直径2,根据定义可知d= 2,故答案为:2;②由图可知113PQ ≤≤,故1P 不是图形W 的“倍点”; 2114PQ ≤≤≠,故1P 不是图形W 的“倍点”;324PQ ≤≤,当Q (1,0)时,34PQ ==2d ,故P 为图形W 的“倍点”; 故答案为:3P ;(2)如图所示,正方形ABCD 上的任意两点间距离的最大值为依题意,若点E (t ,3)是正方形ABCD 的“倍点”,则点E 到ABCD 上的点的最大距离恰好为 当0t <时,点E 到ABCD 上的点的最大距离为EC 的长. 取点H (1,3),则CH ⊥EH 且CH =4,此时可求得EH =4,从而点E 的坐标为()13,3E -,即3t =-;当0t >时,点E 到ABCD 上的点的最大距离为ED 的长.由对称性可得点E 的坐标为()23,3E ,即3t =.当0=t 时,显然不符合题意. 综上,t 的值为3或3-. (3)MN 上d =2,2d =4,当线段MN 在O 内部时,T 组成的图形为半径为4的圆,216S r ππ==, 当线段MN 在O 外部时,T 组成的图形为半径为8的圆,264S r ππ==, 故点T 所构成的图形的面积为16π或64π. 【点睛】此题考查考查了一次函数的性质,图形上两点间的“极大距离”等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题. 2、(1)见解析;(2)21π4【分析】(1)根据旋转的性质:点B 和点1B ,点A 和点1A 到点N 的距离相等,且1190BNB ANA ∠=∠=︒即可;(2)线段AB 扫过的面积为()()111111NABNA B NAA NBB NAA NBB S SSSSS +-+=-扇形扇形扇形扇形,由扇形面积公式计算即可. 【详解】 (1)如图所示:(2)如图,线段AB 扫过的面积=()()111111NABNA B NAA NBB NAA NBB S SSSSS +-+=-扇形扇形扇形扇形22ππ21π444=-=. 【点睛】本题考查旋转画图与扇形的面积公式,掌握不规则图形面积公式的求法是解题的关键.3、(1)见解析;(2 【分析】(1)连接OC .根据半径相等,利用切线的性质和等角的余角相等证得∠ECF =∠EFC ,即可得到结论;(2)设BF =BE =x ,在Rt △OCE 中,利用勾股定理可求得x =2,再在Rt △ODF 中,利用勾股定理即可求解. 【详解】(1)证明:如图,连接OC .∵CE 切⊙O 于点C , ∴OC ⊥CE ,∴∠OCF +∠ECF =90°, ∵OD ⊥AB ,∴∠D +∠DFO =90°, ∵OC =OD , ∴∠D =∠OCD , ∴∠ECF =∠OFD又∵∠OFD =∠EFC∴∠ECF =∠EFC , ∴EC =EF ;(2)解: ∵BF =BE ,设BF =BE =x ,则EC =EF =2x ,OE =3+x , 在Rt △OCE 中,OC 2+CE 2=OE 2, ∴32+(2x )2=(3+x )2, 解得x 1=0(舍),x 2=2, ∴OF =OB -FB =1,在Rt △ODF 中,DF =. 【点睛】本题考查了切线的性质,勾股定理,解一元二次方程等知识,解题的关键是灵活运用所学知识解决问题.4、(1)①34;②3C ;③(34;(2)k k【分析】(1)①先求出AP ,AB 的长,然后根据题目的定义求解即可;②先求出112OC =,1OA =,即可得到1AC ==,假设点1C 是点A 关于⊙O 的12倍特征点,得到112AC AE =,则22AE OA =>=不符合题意,同理可以求出3AC ==3C 是点A 关于⊙O 的12倍特征点,得到312AC AF =,可求出点F 的坐标为(0,-1),由点2C 的坐标为(12,0),得到212AC =,则214AC AB =,则点2C 不是点A 关于⊙O 的12倍特征点;③设直线AD 交圆O 于B ,连接OE ,过点E 作EF ⊥x 轴于F ,先求出E 是AB 的中点,从而推出∠EOA =30°,再求出EF =34OF =,即可得到点E 的坐标为(34;(2)如图所示,设直线1y x =-+与x 轴,y 轴的交点分别为C 、D 过点N 作NP ⊥CD 交CD 于P ,交圆O 于B ,过点O 作直线EF ⊥CD 交圆O 于E ,F 即可得到MN NP ≥,AM BP ≤,由MN kAN =,可得1111MN k AM k k ==-+--,可以推出当MN AN的值越大,k 的值越大,则当AM =BP ,MN =NP 时,k 的值最小,即当A 与E 重合,N 于F 重合时,k 的值最小,由此求出最小值即可求出最大值. 【详解】解:(1)①∵A 点坐标为(1,0),P 点坐标为(12-,0),∴32AP =,B 点坐标为(-1,0), ∴2AB =, ∵AP kAB =, ∴34AP k AB ==, 故答案为:34;②∵1C 的坐标为(0,12),A 点坐标为(1,0), ∴112OC =,1OA =,∴1AC =假设点1C 是点A 关于⊙O 的12倍特征点, ∴112AC AE =,∴22AE OA =>=不符合题意,∴点1C 不是点A 关于⊙O 的12倍特征点,同理可以求出3AC == 假设点3C 是点A 关于⊙O 的12倍特征点, ∴312AC AF =, ∴3C 即为AF 的中点, ∴点F 的坐标为(0,-1), ∵点F (0,-1)在圆上,∴点3C 是点A 关于⊙O 的12倍特征点, ∵点2C 的坐标为(12,0), ∴212AC =,∴21 4ACAB=,∴点2C不是点A关于⊙O的12倍特征点,故答案为:3C;③如图所示,设直线AD交圆O于B,连接OE,过点E作EF⊥x轴于F,∵点E是点A关于⊙O的12倍的特征点,∴12 AEAB=,∴E是AB的中点,∴OE⊥AB,∵∠EAO=60°,∴∠EOA=30°,∴1122AE OA==,12EF OE=,∴OE==∴EF=∴34 OF==,∴点E 的坐标为(34;(2)如图所示,设直线1y x =-+与x 轴,y 轴的交点分别为C 、D 过点N 作NP ⊥CD 交CD 于P ,交圆O 于B ,过点O 作直线EF ⊥CD 交圆O 于E ,F∴MN NP ≥,AM BP ≤, ∵MN kAN =,∴()1AM AN MN k AN =-=-,∴1111MN k AM k k==-+--, ∵当k 越大时,1k -的值越小, ∴111k-+-的值越大, ∴当MNAN的值越大,k 的值越大, ∴当AM =BP ,MN =NP 时,k 的值最小,∴当A 与E 重合,N 于F 重合时,k 的值最小, ∵C 、D 是直线1y x =-+与x 轴,y 轴的交点, ∴C (1,0),D 点坐标为(0,1),∴OC=OD=1,∴CD=∵OG⊥CD,∴CG DG==∴OG==,∴1FG OF OG=-=-∴12224FGkEF===,∴k∴当N在E点,A在F点时,k【点睛】本题主要考查了坐标与图形,一次函数与坐标轴的交点问题,含30度角的直角三角形的性质,垂径定理等等,解题的关键在于能够正确理解题意进行求解.5、(1)2;(2)①1(0,)2M ;②02S ≤≤;(3)1916π⎛ ⎝⎭;(4)1y >或1y <- 【分析】(1)O 的半径为1,则O 的最长的弦长为2,根据两点的距离可得2,EF CD EF ===而即可求得答案;(2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得M 的坐标;②由①可得当0S =时,y M 1=2,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,根据余弦求得11cos cos QO POMOQ O OP OM OO ∠=∠==进而代入数值列出方程,解方程即可求得S 的最大值,进而求得S 的范围;(3)根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴,反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线,求得半径为1算即可;(4)根据(2)的方法找到MN 所在的圆心3O ,当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,即3OO 的中点1A 在以S l 与y 轴交点的纵坐标y 的取值范围 【详解】 (1)O 的半径为1,则O 的最长的弦长为2根据两点的距离可得2,EF CD EF ===2,2,2EF CD EF ∴<<>故符合题意的“反射线段”有2条;故答案为:2(2)①如图,过点B 作BO y '⊥轴于点O ',连接11A BA 点坐标为(0,2),B 点坐标为(1,1),∴AB ==45BAO '∠=︒,(0,1)O 'O 的半径为1,1190AOB ∠=︒11A B ∴1145B A O =︒线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,()00O ,,(0,1)O ' 1(0,)2M ∴②由①可得当0S =时,y M 1=2如图,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,(0,1)O '1(,1)O S S ∴+()222211221OO S S S S ∴=++=++ 过1OO 中点Q ,作直线l 1OO ⊥交y 轴于点M ,则l 即为反射轴1(,)22S S Q +∴12≤y M 136≤, 136OM ∴= 11cos cos QO PO MOQ O OP OM OO ∠=∠== 即11112136OO S OO +=即()21113126OO S =+⨯ ∴()2113126S S S ++=+ 解得1252,6S S ==-(舍)02S ∴≤≤(3)1MN =∴1M N ''= O 的半径为1,则M N O ''是等边三角形,根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴, ∴反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线222OO ∴==2112OR OO ∴==∴当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积为2191=16ππ⎛⎛ ⎝⎭⎝⎭. (4)如图,根据(2)的方法找到MN 所在的圆心3O ,设(2,0)T则TM =2MN =3O MN 是等腰直角三角形3O L ML ∴,TL ∴==3TO ∴=当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,1SA ∴是3OO T 的中位线1312SA O T ∴==,13SA TO ∥即3OO 的中点1A 在以S∴若MN 是⊙O 的以直线l 为对称轴的“反射线段”,则l 为S 的切线 设S 与y 轴交于点,C D 112OS OT ==,1SC SA =1OC ∴=同理可得1OD =∴反射轴l 与y 轴交点的纵坐标y 的取值范围为1y >或1y <-【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.。

最新微观经济学第三章习题及答案资料

最新微观经济学第三章习题及答案资料

第三章习题: 一、名词解释:效用 基数效用论 序数效用论 边际效用 边际效用递减规律 消费者均衡 消费者剩余 无差异曲线 预算线 边际替代率 收入效应 替代效用二、选择题1、总效用曲线达到顶点时,( B ) A.平均效用达到最大点 B.边际效用为零 C.边际效用达到最大点 D.平均效用与边际效用相等2、对于同一消费者而言,处在不同的无差异曲线上的各种商品组合( A ) A.效用是不可能相等的B.一般情况下,效用是不可能相等的,但在个别场合,有可能相等C.效用是否相等或不相等要视情况而定D.效用是可能相等的3、无差异曲线的形状取决于( D ) A.商品效用水平的高低 B.消费者的收入 C.商品价格 D.消费者偏好4、随着收入和价格的变化,消费者的均衡也发生变化。

假如在新的均衡下,各种商品的边际效用均低于原均衡状态的边际效用,这意味着( C )A.消费者生活状况没有变化B.消费者生活状况恶化了C.消费者生活状况得到了改善D.无法确定5、如果一条无差异曲线的斜率等于2dYdX=-,说明( A ) A.这个消费者愿意用1个单位的Y 换取0.5个单位的X B.这个消费者愿意用2个单位的Y 换取0.5个单位的X C.这个消费者愿意用1个单位的Y 换取2个单位的X D.这个消费者愿意用2个单位的Y 换取2个单位的X6、若小王的MRS XY 小于小张的MRS XY ,则对小王来说,要想有所得,就可以(A ) A.放弃X ,用以与小张交换Y B.放弃Y ,用以与小张交换X C.或者放弃X ,或者放弃Y D.维持现状,不交换7、无差异曲线如果是呈直角形的话,说明( D )A.消费者对两种商品的主观评价是替代品B.消费者对两种商品的主观评价是互补品C.消费者对两种商品的主观评价是完全替代品D.消费者对两种商品的主观评价是完全互补品8、某消费者需求曲线上的各点( A ) A 、表示该消费者的效用最大点 B 、不表示效用最大点 C 、有可能表示效用最大点9、恩格尔曲线从( B )导出A.价格—消费曲线B.收入—消费曲线C.需求曲线D.无差异曲线10、吉芬商品的价格上升时,应该有( B )A.替代效应为正值,收入效应为负值;且前者作用大于后者B.替代效应为负值,收入效应为正值;且前者作用小于后者C.替代效应为负值,收入效应为正值;且前者作用大于后者D.替代效应为正值,收入效应为负值;且前者作用小于后者 11、如果预算线平行移动,可能的原因是( C ) A.消费者购买的其中一种商品的价格发生变化 B.消费者购买的两种商品的价格发生不同比例的变化C.消费者购买的两种商品的价格发生同比例而且同方向的变化D.消费者购买的两种商品的价格发生同比例但不同方向的变化12、下列哪种情况不属消费者均衡的条件( D ) A.λ=⋯⋯===ZZY Y X X P MU P MU P MU B. 货币在每种用途上的边际效用相等 C.MU P λ=D. 各种商品的边际效用相等三、判断题1、对于同一个消费者来说, 同样数量的商品总是提供同量的效用。

张宇1000题(最新版)第二章习题详解

张宇1000题(最新版)第二章习题详解

n +1
′ 【解】 当 x < 0 时, f ′ ( x ) = − f ( − x ) = f ′ ( − x ) > 0, f ′′ ( x ) = − f ′′ ( − x ) < 0
19. 【答案】B
2 3 2 2 x − x2 − 3 3 = 2 , f ′(1) = lim 3 不存在. 【解】 f −′(1) = lim + + x →1− x → 1 x −1 x −1
(

x
0
′ x x f ( t ) dt − ∫ t 2 f ( t ) dt = 2 x ∫ f ( t ) dt ;
0 0
)
(2)洛必达法则的使用逻辑是“右推左” ,即,右边存在(或为无穷大) ,则左边存在(或 为无穷大) ,本题逻辑上好像是在“左推右” ,事实上不是,因为 lim
f ( x )(1 − sin x ) − f ( 0 ) = f ′ ( 0) − f (0) x
F−′ ( 0 ) = lim−
x →0
22. 【答案】A 【解】由于
x →0
lim +
F ( x ) − F ( 0) x
= lim +
x →0
f ( x )(1 + sin x ) − f ( 0 ) x
【编者注】 编者注】 本习题详解是张宇老师主编的《 本习题详解是张宇老师主编的《考研数学题源探析 1000 题》的 赠送资料, 赠送资料,对《1000 题》中没有给出详解的题目做出解析, 中没有给出详解的题目做出解析,供同学 们复习时参考。 们复习时参考。
第二章
【经典题答案与解析】 经典题答案与解析】
12. 【答案】A 【解】 F ′ ( x ) = f e − x 13. 【答案】C

张宇 题 习题详解

张宇 题 习题详解

=
lim
x→0
(1− cos x)2
x5 + x6
⋅x
56
56
56
x2
2

x
=
lim
x→0
2 x5
+
x6
= 5. 4
56
24. 【答案】(B)
【解】
∫ lim ∫ x→0
x 0
f (t )sin tdt x tϕ (t ) dt
= lim x→0
f
( x)sin x xϕ ( x)
=
lim
x→0
= e6
50. 【答案】2
=
lim
x→0
tan x − x x2 tan x
=
lim
x→0
tan x − x x3
= lim x→0
1 x3 3 x3
=
1 3
6
46. 【答案】 − 1 6
( ) 【解】 lim x→0
arctan ln 1+
x−x 2x3
=
lim
x→0
arctan x − 2x3
x
=
lim
x→0
− 1 x3 3 2x3
3
21. 【答案】(B)
( ) ( ) 1− cos x ln 1+ x2
【解】由 lim x→0
x sin xn
= lim x→0
x2 ⋅ x2 2 xn+1
=
1 lim
2 x→0
x4 xn+1
=0,
lim
x→0
x sin xn ex2 −1
= lim x→0
xn+1 x2

经济数学基础 微积分 第三章习题解答

经济数学基础     微积分    第三章习题解答

尖点, 无切线, 不可导
无定义, 不可导
0
x
无确定切线, 不可导
0
x
尖点, 无切线, 不可导
8.讨论下列函数在x 0处的连续性与可导性;若可导,
求出f (0):
1 x
(1) f ( x) 1 x
x0 x0
解 lim f ( x) 1 lim f ( x) 1
x0
x0
所以函数在x 0连续.
3
y 1 (0 6x2 ) 6 x2
16.求下列函数的导数
(1) y
ex ex
ex ex
(e x ) e x ( x) e x
y
(e x
ex
)(e x
ex (e x
) (e x ex )2
e x )(e x
ex
)
(e x e x )2 (e x e x )2
(e x ex )2
y 10( x )9 ( x ) 1 x 1 x
10(
1
x
x
)9
1 x x (1 x)2
10x9 (1 x)11
(6) y ln ln ln x 设y ln u,u ln v,v ln x
y (lnu) (lnv) (ln x) 1 1 1 uv x
1 1 1
1
lnln x ln x x x ln x ln ln x
(3) y
1 1 x2
(1
x2
1
)2
y
1
(1
x2
)
3 2
(1
x
2
)
2
x(1
x
2
)
3 2
1
(1

2020张宇考研数学题源探析经典1000题重点题目

2020张宇考研数学题源探析经典1000题重点题目

数一高等数学第一章:选择题(做:1,10,13---18,)填空题(做:20,21,24,26,28)解答题(做:30,32(17,18,21,22),34,36,37,38,41,42,44,45,47,48,49,51,52,55,57,58,60,62,63,65,66,67,68,69,70)第二章:选择题(全做)填空题(全做)解答题(做:66—79,84,85,92,94--100,105,108---117,123---126,128,132,133)第三章:选择题(全做)填空题(全做)解答题(做:67,72,73,78,83,87---93,95,97,102,105,107,108,109,110,111,115,117,119,121,125,127,128,130,131,132---146)第四章:选择题(做:4,14,18,19,22,23,25,31)填空题(做:33,36,48,49,50,51,52,53)解答题(做:56,57,58,59,60,62,63,65,68,69)第五章:选择题(全做)填空题(全做)解答题(做:30,31,32,33,37,40 ,41,42,45,46,48,50,51,52,53,54,55,56)第六章:选择题(全做)填空题(全做)解答题(除60,61,62,64,65,66,70,71,72,73,74,75不做,其余全做)第七章:选择题(全做)填空题(全做)解答题(除43,44,45,50不做,其余全做)第八章:选择题(全做)填空题(全做)解答题(做:42,43,46,47,48,51,57,61,62,68,71,72,73,75,77,78,79,80,81)代数(全做)概率论与数理统计不做:4,5,43,69,77,85---100数二高等数学第一章:选择题(做:1,9,11,14---23)填空题(做:26,28,30,34,36,37,39)解答题(做:42,48,51,53,58,63,65,66,67,71,72,74,77,78,79,83,84,85,87,88,91,92,93,94,95,97,99,100,101,105,107,108,110,112,113,114,115,117---123)第二章:选择题(全做)填空题(全做)解答题(做:77---91,101,104,110,111,113,115—122,126,129---139,146---151,153,154,158—162)第三章:选择题(全做)填空题(全做)解答题(做:88,93,95,100,112---116,119,121,123----127,129,131,139,142,144,145,146(不做第二问),147,148,152,154,155,156,158,162,164,165,167----185,188)第四章:选择题(全做)填空题(全做)解答题(做:33---37,44,47,49,50,53,54,58,59(不做(3)),60---64)第五章:选择题(全做)填空题(全做)解答题(做:29,31,32,33,34,35,36,40,42,43,46,47,51,52,54,55---58)第六章:选择题(全做)填空题(全做)解答题(做:44---50,53,56,58,64,65,68,76,77,78,79,81---85)代数(全做)数三微积分第一章:选择题(做:1,6,9,11,14---22)填空题(做:24,26,28,33,35,36,38)解答题(做:41,43((20,22,23,24,28,29),45,47,48,49,50,54,55,56,58,59,62,63,64,65,66,68,69,72,75,79,80,81,82,84---90)第二章:选择题(全做)填空题(全做)解答题(做:59,71---85,94,101,103—110,114,115—125,133---137,139,142,144,145,146---159)第三章:选择题(全做)填空题(全做)解答题(做:83,88,90,101,105,106,108---112,114,116,121,126---130,134,136,142,143,145—163,165)第四章:选择题(全做)填空题(全做)解答题(做:33---36,42,45,47,49,51,52,57,58(不做(3)),59---66)第五章:选择题(全做)填空题(全做)解答题(做:23,24,25,30,32,33,34,38,39,41,43,44,45)第六章:选择题(全做)填空题(全做)解答题(做:40---43,45---50,53,55,58,59,60,61,62,63,65,66,67)第七章:选择题(全做)填空题(全做)解答题(做:44,45,48,49,50,55,61,62,69,70,71,72,74,75,76,78---82)代数(全做)概率论与数理统计不做:1,3,39,43,72,80,86---101,169,170,172—176,178,(168和177虽然也是涉及无偏性,但这两题是典型的统计量的数字特征的计算,中间的计算完成,无偏性概念看答案即可)。

张宇1000题(最新版)概率论与数理统计习题详解

张宇1000题(最新版)概率论与数理统计习题详解
故, (A) (C) (D)都不对,且 A =
1 ≤ ξ ≤ 1 ,于是 2
3 1 P ≤ ξ < P ( BA ) 2 4 1 4 1 = = = ≠0 P BA = 1 12 2 P ( A) P ≤ ξ ≤ 1 2
(
)
故(B)也不对. 10、 【答案】D 【解】
1 243; 2) 2 4
=
1 2 2π

[ x − ( −2)]2 2( 2 ) 2
e
X ~ N (−2, 2 ) 1 −2 故当 a = , b=− = 2 时 Y = aX + b ~ N (0, 1) 2 2
应选 B. 19、 【答案】D 【解】 D ( 3 X − 2Y ) = D ( 3 X ) + D ( 2Y ) = 9 D ( X ) + 4 D (Y ) = 44 20、 【答案】B 【解】 X + Y 服从 N (1, 2 ) .根据正态分布的性质可知选项(B)正确 21、 【答案】B 【解】 由 EX = np, DX = np (1 − p ) 得方程组
⇒ P ( AB ) = P ( A) P ( B )
11、 【答案】B 【解】 将 P
{( A + A ) B} = P ( A B ) + P ( A B ) 两边同乘以 P ( B ) 即得(B)式.
1 2 1 2
12、 【答案】B 【解】
P ( A ) = P ( AB ) = P ( B ) P ( A B ) ≤ P ( A B )
=
P ( B A) P ( A) P (B)
, P ( A B) =
P ( AB ) P ( B)
=

高等代数第三章答案

高等代数第三章答案

第三章 线性方程组习题解答1.用消元法解下列方程组:⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++12343212231453543215432154321543214321x x x x x x x x x x x x x x x x x x x x x x x x ⑵⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x⑶⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x ⑷⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ⑸⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+++43212523223124321432143214321x x x x x x x x x x x x x x x x ⑹⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-++=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x 解:⑴对它的增广矩阵作初等行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------00101000000000020*********1001001110000000000200212300101201001110007770005750212300104531213410215470213450212300104531111121311141311121112231104531即⎪⎪⎩⎪⎪⎨⎧=+-=--=+=-0022214235441x x x x x x x ,得⎪⎪⎩⎪⎪⎨⎧--====+=k x x k x x k x 220153421 k 为任意常数 ⑵无解⑶0,6,3,84321===-=x x x x⑷任意43432431,,17201719,1713173x x x x x x x x -=-=⑸无解 ⑹651,671,651434241x x x x x x +=-=+=2.把向量β表成4321αααα,,,的线性组合:⑴()()()()()1,1-1-11-1,1-11-1-,1,11,1,1,111,2,14321,,,,,,,,,,=====ααααβ ⑵()()()()()1-1-1,00,0,1,11,3,1,21,0,1,11,0,0,04321,,,,,,=====ααααβ 解:⑴令44332211ααααβk k k k +++=得方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++,1,1,2,14321432143214321k k k k k k k k k k k k k k k k 解得,41,41,41,454321-=-===k k k k 所以432141414145ααααβ--+=⑵仿上,可得31-ααβ=3.证明:如果向量组r ααα,,, 21线性无关,而βααα,21r ,,, 线性相关,则向量β可由r ααα,,, 21线性表出。

张宇1000题(最新版)第9,10章习题详解(仅数学一)

张宇1000题(最新版)第9,10章习题详解(仅数学一)

4 5
32π 3
【解】由对成性知:
2 2 ∴ ∫ ( x + y )dl = L
∫ x dl = ∫ y dl = ∫ z dl
2 2 2
L L L
2 2 2 32 ( x 2 + y 2+z 2 )dl = ⋅ 4 ⋅ ds = ⋅ 4 ⋅ 4π = π ∫ ∫ L 3 L 3 3 3
(1,2, −2 )
4 2z ′= 2 = , uz 9 x + y2 + z2
(1,2, −2 )
=
−4 9
12. 【答案】
1 0, 2, 3 5
{
}
ro 1 {6 x, 4 y, 6 z} n
(o, 3, 2 )
【解】旋转面方程 3 x 2 + 2 y 2 + 3 z 2 − 12 = 0 单位法向量 n =
2. 【答案】C 【解】直线 L 的方向向量 {−28,14, −7} = −7 {4, −2,1} ,平面 π 的法向量为 {4, −2,1} . 3. 【答案】C 【解】切平面平行与平面 2 x + 2 y + z − 1 = 0 可知切平面的法向量为 {2, 2,1} ;
′ , z′ 又由 z = 4 − x 2 − y 2 可得曲线切平面的法向量 z x }; y ,1 = {−2 x , −2 y ,1
【解】由梯度和散度的定义知

第十章
一、选择题 1. 【答案】C
多元积分学( 多元积分学(仅数学一) 仅数学一)
【解】因为 W = f ⋅ s ⋅ cos θ ,故 W = 3 ⋅ 3 ⋅ 2. 【答案】B
x 【解】 P = f ( x) − e sin y,

张宇考研1000题线代讲义

张宇考研1000题线代讲义

于是, r A 1, 则n r A n 1. a11 a21 则 an1
n, r A n r A 1, r A n 1,由于 A 0, 则r A 1或0, 但又由于A11 0, 则r A 1, 0, r A n 1 A A A E 0, 则A的每一列都是A x 0的解,由于A11 0, a12 a1n a22 a2 n 的第2,3, , n列是A x 0的n 1个无关解. an 2 ann
1 1 0 0 A , r A 2, n r A 4 2 2, 取x3 , x4为自由变量, 0 1 0 1 则1 0, 0,1, 0 , 2 1,1, 0,1 .
T T
令 k11 k2 2 l11 l2 2 , 则 0 1 0 1 0 1 1 2 k1 k2 l1 l2 0 1 0 1 2 0 1 0 1
2017考研数学题源1000题
线性代数重点题直播课 主讲:高昆轮
数值方程组 : 1.定秩,2.利用初等行变换. 一方面:1 2 2, 2, 2 是Ax 0的解, 则n r A 1, 进而r A 2;
T
a b c 1 2 另一方面 : A 1 2 1 中有二阶子式 0, 则r A 2; 2 1 2 1 1 于是r A 2, 所以n r A 1, 故Ax b的通解为:k 1,1,1 3, 2, 0 .
由于r A 1, 则n r A 3 1 2. 用" 减 "的方式找Ax 0的解:

2022年必考点解析北师大版九年级数学下册第三章 圆必考点解析试题(名师精选)

2022年必考点解析北师大版九年级数学下册第三章 圆必考点解析试题(名师精选)

北师大版九年级数学下册第三章圆必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为()A.70°B.50°C.20°D.40°2、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P.A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是()A .20 mB .mC .( - 20)mD .(m3、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A .6,B .6,C . 6D .6,34、在平面直角坐标系xOy 中,已知点A (﹣4,﹣3),以点A 为圆心,4为半径画⊙A ,则坐标原点O 与⊙A 的位置关系是( )A .点O 在⊙A 内B .点O 在⊙A 外C .点O 在⊙A 上D .以上都有可能5、如图,点A ,B ,C 均在O 上,当35OBC ∠=︒时,A ∠的度数是( ).A .65°B .60°C .55°D .50°6、已知⊙O 的半径为3,若PO =2,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断7、如图,点A 、B 、C 在⊙O 上,∠BAC =56°,则∠BOC 的度数为( )A .28°B .102°C .112°D .128°8、如图,BD 是⊙O 的切线,∠BCE =30°,则∠D =( )A .40°B .50°C .60°D .30°9、如图,菱形ABCD 中,60C ∠=°,2AB =.以A 为圆心,AB 长为半径画BD ,点P 为菱形内一点,连PA ,PB ,PD .若PA PB =,且120APB ∠=︒,则图中阴影部分的面积为( )A .23y π= B .23y π= C .23y π= D .23y π=10、小明设计了如图所示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为()A.8πB.172πC.192πD.12π第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆形角是270°的扇形的半径为4cm,则这个扇形的面积是______2cm.2、如图,在Rt ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则ABC的面积是______.3、“化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:⊙O(纸片),其半径为r.求作:一个正方形,使其面积等于⊙O的面积.作法:①如图1,取⊙O的直径AB,作射线BA,过点A作AB的垂线l;②如图2,以点A 为圆心,OA 为半径画弧交直线l 于点C ;③将纸片⊙O 沿着直线l 向右无滑动地滚动半周,使点A ,B 分别落在对应的A ',B '处;④取CB '的中点M ,以点M 为圆心,MC 为半径画半圆,交射线BA 于点E ;⑤以AE 为边作正方形AEFG .正方形AEFG 即为所求.根据上述作图步骤,完成下列填空:(1)由①可知,直线l 为⊙O 的切线,其依据是________________________________.(2)由②③可知,AC r =,AB r π'=,则MC =_____________,MA =____________(用含r 的代数式表示).(3)连接ME ,在Rt AME △中,根据222AM AE EM +=,可计算得2AE =_________(用含r 的代数式表示).由此可得正方形o AEFG S S =.490°的最大扇形(阴影部分),则这个扇形的面积为____5、如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG并延长交AD于点F,则AF的最大值是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,AB为⊙O的弦,OC⊥AB于点M,交⊙O于点C.若⊙O的半径为10,OM:MC=3:2,求AB 的长.2、在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB 是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有;(2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标y M的取值范围为12≤y M136≤,求S.(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点M,N是在以(2,0MN=MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.=,D是BC的中点.以BD为直径作O,交边AB于点P,连接3、已知:如图,在ABC中,AB ACPC,交AD于点E.(1)求证:AD是O的切线;(2)若PC是O的切线,8BC ,求PC的长.4、如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠PAC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.5、如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过弧BD上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,CH=4,求EM的值.-参考答案-一、单选题1、D【分析】首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OA,OB,∵PA,PB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D.【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.2、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB为直径构造,设圆心为O,过点B作BC⊥l,垂足为C,∵A,P分别位于B的西北方向和东北方向,∴∠ABC=∠PBC=∠BOC=∠BPC=45°,∴OC=CB=CP=20,∴OP=40,OB∴最小的距离PE=PO-OE m),故选D.【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.3、B【分析】如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.【详解】解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,∵六边形ABCDEF是正六边形,∴∠AOB=360°÷6=60°,∵OA=OB,∴△OAB是等边三角形,∴OA=AB=6;(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,∵六边形ABCDEF是正六边形,∴∠AO1B=60°,∵O1A= O1B,∴△O1AB是等边三角形,∴O1A= AB=6,∵O1M⊥AB,∴∠O1MA=90°,AM=BM,∵AB=6,∴AM=BM,∴O1M故选B.【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.4、B【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.【详解】解:∵点A(﹣4,﹣3),∴5OA=,∵⊙A的半径为4,>,∴54∴点O在⊙A外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.5、C【分析】先由OB=OC,得到∠OCB=∠OBC=35°,从而可得∠BOC=180°-∠OCB-∠OBC=110°,再由圆周角定理即可得到答案.【详解】解:∵OB=OC,∴∠OCB=∠OBC=35°,∴∠BOC=180°-∠OCB-∠OBC=110°,∴1=552A BOC∠=∠︒,故选C.【点睛】本题主要考查了圆周角定理,三角形内角和定理,等腰三角形的性质,熟知圆周角定理是解题的关键.6、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O 上,③当r <d 时,点P 在⊙O 外,根据以上内容判断即可.【详解】∵⊙O 的半径为3,若PO =2,∴2<3,∴点P 与⊙O 的位置关系是点P 在⊙O 内,故选:A .【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O 的半径为r ,点P 到圆心O 的距离是d ,①当r >d 时,点P 在⊙O 内,②当r =d 时,点P 在⊙O 上,③当r <d 时,点P 在⊙O 外.7、C【分析】直接由圆周角定理求解即可.【详解】解:∵∠A =56°,∠A 与∠BOC 所对的弧相同,∴∠BOC =2∠A =112°,故选:C .【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.8、D【分析】连接OB ,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得60BOD ∠=︒,根据切线的性质可得90OBD ∠=︒,根据直角三角形的两个锐角互余即可求得D ∠.【详解】解:连接OBBE BE =30BAE BCE ∴∠=∠=︒OB OA =30OBA OAB ∴∠=∠=︒60BOD OBA OAB ∴∠=∠+∠=︒BD 是⊙O 的切线90OBD ∴∠=︒30D ∴∠=︒故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.9、C【分析】过点P 作PM AB ⊥交于点M ,由菱形ABCD 得60DAB C ∠=∠=︒,2AB AD ==,由PA PB =,120APB ∠=︒得112AM AB ==,1602APM APB ∠=∠=︒,故可得30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,根据SAS 证明ABP ADP ≅,求出PM =ABP ADP ABD S S S S =--阴扇形.【详解】如图,过点P 作PM AB ⊥交于点M ,∵四边形ABCD 是菱形,∴60DAB C ∠=∠=︒,2AB AD ==,∵PA PB =,120APB ∠=︒, ∴112AM AB ==,1602APM APB ∠=∠=︒, ∴30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,在ABP △与ADP △中,AB AD PAB PAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴()ABP ADP SAS ≅,∴ABP ADP S S =△△,在Rt AMP △中,30PAM ∠=︒,∴2AP PM =,222AP PM AM =+,即2241PM PM =+,解得:PM =∴260211222360223ABP ADPABD S S SS ππ⋅=--=-⨯⨯=阴扇形 故选:C .【点睛】 此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键. 10、C【分析】如图(见解析),先分别求出扇形①、②、③、④和⑤的圆心角的度数,再利用弧长公式即可得.【详解】解:如图,扇形①、③和⑤的圆心角的度数均为360906060150︒-︒-︒-︒=︒,扇形②和④的圆心角的度数均为180606060︒-︒-︒=︒, 则图中扇形的弧长总和1503603151932218018022πππππ⨯⨯⨯+⨯=+=, 故选:C .【点睛】本题考查了求弧长,熟记弧长公式(180n r l π=,其中l 为弧长,n ︒为圆心角的度数,r 为扇形的半径)是解题关键.二、填空题1、12π【分析】根据扇形的面积公式计算即可.【详解】∵222704 =360360n rSππ⨯⨯=扇形=12π,故答案为:12π.【点睛】本题考查了扇形的面积,熟记扇形面积公式是解题的关键.2、6【分析】根据题意利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理即可得出答案.【详解】解:连接DO,EO,∵⊙O是△ABC的内切圆,切点分别为D,E,F,∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=2,AF=AE=3又∵∠C=90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =12×3×4=6.故答案为:6.【点睛】本题主要考查三角形内切圆与内心,根据题意得出四边形OECF 是正方形以及运用方程思维和勾股定理进行分析是解题的关键.3、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2)()12r π+,()12r π-;(3) 2r π【分析】(1)根据切线的定义判断即可.(2)由CB '=AC +AB ',2CB MC '=计算即可;根据MA MC AC =-计算即可. (3)根据勾股定理,得2AE 即为正方形的面积,比较与圆的面积的大小关机即可.【详解】解:(1)∵⊙O 的直径AB ,作射线BA ,过点A 作AB 的垂线l ,∴经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;(2)根据题意,得AC =r ,AB '=22πr =πr ,∴CB '=AC +AB '=r +πr , ∴2CB MC '==()12r π+; ∵MA MC AC =-,∴MA =()12rπ+-r =()12rπ-,故答案为:()12rπ+,()12rπ-;(3)如图,连接ME ,根据勾股定理,得22222AE ME MA MC MA =-=-=()()2211[][]22rrπ+π--=2r π;故答案为:2r π.【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.4、π【分析】如图(见解析),连接BC ,先根据圆周角定理可得BC 是圆形纸片的直径,从而可得BC =用勾股定理可求出AB 的长,然后利用扇形的面积公式即可得.【详解】解:如图,连接BC ,由题意得:,90AB AC BAC =∠=︒,BC ∴是圆形纸片的直径,BC ∴=在Rt ABC 中,BC =解得2AB =, 则这个扇形(阴影部分)的面积为2902360ππ⨯=, 故答案为:π.【点睛】本题考查了圆周角定理、扇形的面积等知识点,熟练掌握扇形的面积公式是解题关键.5、1【分析】以AB 为直径作圆,当CF 与圆相切时,AF 最大.根据切线长定理转化线段AF +BC =CF ,在Rt △DFC 利用勾股定理求解.【详解】解:以AB 为直径作圆,因为∠AGB =90°,所以G 点在圆上.当CF与圆相切时,AF最大.此时FA=FG,BC=CG.设AF=x,则DF=4−x,FC=4+x,在Rt△DFC中,利用勾股定理可得:42+(4−x)2=(4+x)2,解得x=1.故答案为:1.【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键.三、解答题AB1、16【分析】连接OA,根据⊙O的半径为10,OM:MC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.【详解】解:如图,连接OA.∵OM :MC =3:2,OC =10,∴OM =331055OC =⨯=6.∵OC ⊥AB ,∴∠OMA =90°,AB =2AM .在Rt △AOM 中,AO =10,OM =6,∴AM =8.∴AB =2AM =16.【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.2、(1)2;(2)①1(0,)2M ;②02S ≤≤;(3)1916π⎛ ⎝⎭;(4)1y >或1y <- 【分析】(1)O 的半径为1,则O 的最长的弦长为2,根据两点的距离可得2,EF CD EF ===而即可求得答案;(2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得M 的坐标;②由①可得当0S =时,y M 1=2,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,根据余弦求得11cos cos QO PO MOQ O OP OM OO ∠=∠==进而代入数值列出方程,解方程即可求得S 的最大值,进而求得S 的范围;(3)根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴,反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线,求得半径为1算即可;(4)根据(2)的方法找到MN 所在的圆心3O ,当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,即3OO 的中点1A 在以S l 与y 轴交点的纵坐标y 的取值范围【详解】(1)O 的半径为1,则O 的最长的弦长为2根据两点的距离可得2,EF CD EF ===2,2,2EF CD EF ∴<<>故符合题意的“反射线段”有2条;故答案为:2(2)①如图,过点B 作BO y '⊥轴于点O ',连接11A BA 点坐标为(0,2),B 点坐标为(1,1),∴AB ==45BAO '∠=︒,(0,1)O 'O 的半径为1,1190AOB ∠=︒11A B ∴1145B A O =︒线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,()00O ,,(0,1)O ' 1(0,)2M ∴ ②由①可得当0S =时,y M 1=2如图,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,(0,1)O '1(,1)O S S ∴+()222211221OO S S S S ∴=++=++ 过1OO 中点Q ,作直线l 1OO ⊥交y 轴于点M ,则l 即为反射轴1(,)22S S Q +∴ 12≤y M 136≤,136OM ∴= 11cos cos QO PO MOQ O OP OM OO ∠=∠== 即11112136OO S OO += 即()21113126OO S =+⨯ ∴()2113126S S S ++=+ 解得1252,6S S ==-(舍)02S ∴≤≤(3)1MN =∴1M N ''= O 的半径为1,则M N O ''是等边三角形,根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴,∴反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线222OO ∴==2112OR OO ∴==∴当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积为2191=16ππ⎛⎛ ⎝⎭⎝⎭. (4)如图,根据(2)的方法找到MN 所在的圆心3O ,设(2,0)T则TM =2MN =3O MN 是等腰直角三角形3O L ML ∴,TL ∴==3TO ∴=当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,1SA ∴是3OO T 的中位线1312SA O T ∴==,13SA TO ∥即3OO 的中点1A 在以S∴若MN 是⊙O 的以直线l 为对称轴的“反射线段”,则l 为S 的切线设S 与y 轴交于点,C D 112OS OT ==,1SC SA =1OC ∴=同理可得1OD =∴反射轴l 与y 轴交点的纵坐标y 的取值范围为1y >或1y <-【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.3、(1)见解析;(2)PC =【分析】(1)要证明AD 是圆O 的切线,只要证明∠BDA =90°即可;(2)连接OP ,根据等腰三角形的性质求得DC 的长,再求出OC 的长,根据切线的性质求得90OPC ∠=︒,最后利用勾股定理求出PC 的长.【详解】(1)证明:∵AB = AC ,D 是BC 的中点,∴AD ⊥BD .又∵BD 是⊙O 直径,∴AD 是⊙O 的切线.(2)解:连接OP .∵点D 是边BC 的中点,BC = 8,AB =AC ,∴BD = DC =4,OD =OP = 2.∴OC = 6.∵PC 是⊙O 的切线,O 为圆心,∴90OPC ∠=︒.在R t△OPC 中,由勾股定理,得OC 2 = OP 2 + PC 2∴PC 2 = OC 2-O P 232=∴PC =【点睛】本题是圆的综合问题,考查了圆的切线的判定与性质,勾股定理,等腰三角形的性质,掌握这些性质是解决本题的关键.4、(1)证明见解析;(2)证明见解析;(3)54【分析】(1)连接OC ,由题意知90ACB ACP ∠=︒=∠,OAC OCA ∠=∠,PCF OCA ∠=∠,90PCF ACF ∠+∠=︒,90OCA ACF ∠+∠=︒;可得OC CF ⊥,进而说明CF 是O 的切线. (2)连接BG ,同弧所对圆周角PAC PBG ∠∠,相等,22=+PBA PAC PBG PBG ABG ∠=∠=∠∠∠有,ABG PBG ∠=∠,进而说明AB BP =.(3)勾股定理知5AB BP ==,2PC =,有Rt PAC Rt APD ≌,知24AD PC PD AC ====、,PAC APD ∠=∠,AE PE =;在Rt AED △中用勾股定理求出DE 的长,求出EP 的长,通过角度关系得出PEC FCE ∠=∠,故有EF CF PF ==,进而求出CF 的值.【详解】解:(1)证明:如图所示,连接OC ,OC 为半径ABC 是O 的内接三角形,且AB 是直径90ACB ACP ∴∠=︒=∠∴在Rt ABC和Rt PBD中,有BAC BPD∠=∠=OA OC∴∠=∠OAC OCA=PF CF∴∠=∠PFC PCF∴∠=∠PCF OCA又90∠+∠=︒PCF ACF∴∠+∠=︒90OCA ACF⊥即OC CFOC是半径CF∴是O的切线.(2)证明:如图连接BG=GC GC∴∠=∠PAC PBG∠=∠=∠∠∠22=+PBA PAC PBG PBG ABGAB 为直径90AGB PGB ∴∠=∠=︒APB PAB ∴∠=∠AB BP ∴=(3)在Rt ABC 中43AC BC ==、5AB ∴5BP AB ∴==2PC ∴=在Rt PAC △和Rt APD 中90PDA PCA APC PADPA PA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()Rt PAC Rt APD AAS ∴≌2AD PC ∴==,4PD AC ==,PAC APD ∠=∠AE PE ∴=设DE x =,4AE PE x ==-在Rt AED △中,有222AD DE AE +=,2222(4)x x +=- 解得32x = 542EP x ∴=-= 90PEC EPC ∠=︒-∠,90FCE PCF ∠=︒-∠EF CF PF ∴==1524CF EP ∴== ∴15=24CF EP =【点睛】本题考查了切线、圆周角、三角形全等、等腰三角形、勾股定理等知识.解题的关键与难点在于角度等量关系的转化.5、(1)见解析;(2)52【分析】(1)连接OE ,由FG EG =得GEF GFE AFH ∠=∠=∠,由OA OE =知OAE OEA ∠=∠,根据CD AB ⊥得90AFH FAH ∠+∠=︒,从而得出90GEF AEO ∠+∠=︒,即可得证;(2)连接OC .设⊙O 的半径为r .在Rt △OCH 中,利用勾股定理求出r ,证明△AHC ∽△MEO ,可得AH HC EM OE =,由此即可解决问题. 【详解】解:(1)如图,连接OE ,∵GF =GE ,∴∠GFE =∠GEF =∠AFH ,∵OA =OE ,∴∠OAE =∠OEA ,∵AB ⊥CD ,∴∠AFH +∠FAH =90°,∴∠GEF +∠AEO =90°,∴∠GEO =90°,∴GE ⊥OE ,∴EG 是⊙O 的切线;(2)如图,连接OC .设⊙O 的半径为r ,∵AH =2,HC =4,在Rt △HOC 中,∵OC =r ,OH =r -2,HC =4,∴()22224r r -+=,∴r =5,∵GM ∥AC ,∴∠CAH=∠M, ∵∠OEM=∠AHC, ∴△AHC∽△MEO∴AH HCEM OE=,∴245 EM=,∴EM=52.【点睛】本题考查圆的综合题、相似三角形的判定与性质、勾股定理等知识,解题的关键是学会添加常用的辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题.。

(精品word)浙教版八年级数学第三章知识点+经典例题+解析(良心出品必属精品)

(精品word)浙教版八年级数学第三章知识点+经典例题+解析(良心出品必属精品)

第三章不等式重点:不等式の性质和一元一次不等式の解法。

难点:一元一次不等式の解法和一元一次不等式解决在现实情景下の实际问题。

知识点一:不等式の概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系の式子,叫做不等式.用“≠”表示不等关系の式子也是不等式.要点诠释:(1)不等号の类型:①“≠”读作“不等于”,它说明两个量之间の关系是不等の,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边の数比右边の数大;③“<”读作“小于”,它表示左边の数比右边の数小;④“≥”读作“大于或等于”,它表示左边の数不小于右边の数;⑤“≤”读作“小于或等于”,它表示左边の数不大于右边の数;(2) 等式与不等式の关系:等式与不等式都用来表示现实世界中の数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得の关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量の不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语の含义。

2.不等式の解:能使不等式成立の未知数の值,叫做不等式の解。

要点诠释:由不等式の解の定义可以知道,当对不等式中の未知数取一个数,若该数使不等式成立,则这个数就是不等式の一个解,我们可以和方程の解进行对比理解,一般地,要判断一个数是否为不等式の解,可将此数代入不等式の左边和右边利用不等式の概念进行判断。

3.不等式の解集:一般地,一个含有未知数の不等式の所有解,组成这个不等式の解集。

求不等式の解集の过程叫做解不等式。

如:不等式x-4<1の解集是x<5.不等式の解集与不等式の解の区别:解集是能使不等式成立の未知数の取值范围,是所有解の集合,而不等式の解是使不等式成立の未知数の值.二者の关系是:解集包括解,所有の解组成了解集。

要点诠释:不等式の解集必须符合两个条件:(1)解集中の每一个数值都能使不等式成立;(2)能够使不等式成立の所有の数值都在解集中。

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X,Y)的分布密度f(x,y)=⎩⎨⎧>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y y u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<<--.,0,42,2),6(其他yxyxk(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他 |1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =YX13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为 2 5 8(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立 【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i }{}i P X x =(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y eXYXY(1)求X和Y的联合概率密度;(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1)因1,01,()0,Xxf x<<⎧==⎨⎩其他;21e,1,()20,yYyf y-⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.yX Yx yf x y X Y f x f y-⎧<<>⎪=⎨⎪⎩g独立其他题14图(2) 方程220a Xa Y++=有实根的条件是2(2)40X Y∆=-≥故X2≥Y,从而方程有实根的概率为:22{}(,)d dx yP X Y f x y x y≥≥=⎰⎰21/2001d e d212[(1)(0)]0.1445.xyx yπ-==-Φ-Φ=⎰⎰15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=⎪⎩⎪⎨⎧>.,0,1000,10002其他xx求Z=X/Y的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z zP z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<gg g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布. 19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是(4)类似上述过程,有20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X }; (2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.xy R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r r R θθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处.【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+== 即1,3111{},4248P X x Y y =++==从而131{,}.12P X x Y y === 同理21{},2P Y y ==223{,}8P X x Y y === 又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=g L 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为1 0 11 0 1a 0b0 0.1 c其中a ,b ,c 为常数,且X 的数学期望E (X )=,P {Y ≤0|X ≤0}=,记Z =X +Y .求:XY(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +=1 即 a+b+c = .由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为2,1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z 2 1 0 1 2P(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.习题四1.设随机变量X 的分布律为1 0 12求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=L3.设随机变量X 的分布律为1 0 1且已知E (X )=,E (X 2)=,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=g g ……②,222212313()(1)010.9E X P P P P P =-++=+=g g g ……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑g 全概率公式001{}{}1().NNk k k P X k kP X k N N n E X N N========∑∑g5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -g 因独立 1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X2Y ),D (2X 3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他 求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x ==⎰g 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=g方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩g 其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x x y y +∞+∞----===⨯=⎰⎰⎰⎰g g10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X 3Y 2).【解】22-200()()d 2ed [e ]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰g201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰g22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰g 从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 222()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰g22220π2ed .k x kx x +∞-==⎰(3) 22222221()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⎰⎰g 故 222221π4π()()[()].24D X E X E X k k k⎛-=-=-= ⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下:X 0 1 2 3 P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑g22111111()()n nn i i i i i i i D X D X D X X DX n n n ===⎛⎫== ⎪⎝⎭∑∑∑g 之间相互独立 2221.n n nσσ==g (2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑g故22211()1ni i S X nX n ==--∑. (3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑g g15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )=1,计算:Cov (3X2Y +1,X +4Y3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰g同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰g222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x . 显然()()(,).X Y f x f y f x y ≠g 故X 和Y 不是相互独立的.17.设随机变量(X ,Y )的分布律为1 0 110 1验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表X11P 382838Y101P 382838XY101P 284828由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-g从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.【解】如图,S D=12,故(X,Y)的概率密度为题18图2,(,),(,)0,x y Df x y∈⎧=⎨⎩其他.()(,)d d DE X xf x y x y =⎰⎰1101d 2d 3xx x y -==⎰⎰g22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-g . 从而112XY ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x x x y y +∞+∞-∞-∞==+=⎰⎰⎰⎰g ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰g 从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭g222222π4Cov(,)(π4)π8π164.πππ8π32π8π32()()2162XYX Y D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-g 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X 2Y 和Z 2=2X Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故 121212513.26()()134Z Z D Z D Z ρ===⨯g21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy Schwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈g g可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=-g2224{[()]()()}.E VW E V E W =-g故222[()]()()}.E VW E V E W ≤g22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2). 对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为P {X ≤x }=1eλx,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1ey/5.。

张宇题源1000题

张宇题源1000题

张宇题源1000题
(原创实用版)
目录
1.张宇题源 1000 题的背景和作者介绍
2.张宇题源 1000 题的主要内容和特点
3.张宇题源 1000 题的价值和意义
4.张宇题源 1000 题的适用对象和推广建议
正文
张宇题源 1000 题是一本由知名教育专家张宇编写的题目集,其主要针对的是中学生的数学学习。

张宇是我国著名的数学教育专家,他在教育领域有着丰富的经验和研究,特别是在数学教学方面,他的方法和理念受到了广泛的认可和赞誉。

张宇题源 1000 题的主要内容和特点是,它涵盖了中学数学的全部知识点,题目设计精巧,既有基础题型,也有进阶题型,更有一些创新题型。

这些题目不仅能够帮助学生巩固数学基础知识,提高解题能力,还能够激发学生的数学思维,培养他们的创新意识。

张宇题源 1000 题的价值和意义在于,它为中学生提供了一个全面、系统的数学学习资料,是学生自学、教师教学的优秀参考书。

此外,这本书也适合用于复习和备考,能够有效地提高学生的考试成绩。

张宇题源 1000 题的适用对象主要是中学生,但也适用于数学教师和其他数学教育工作者。

对于学生来说,可以根据自己的学习进度和需要,选择适合自己的题目进行学习和练习。

对于教师来说,可以根据教学需要,选择适合的题目作为课堂教学的例题或者作业。

总的来说,张宇题源 1000 题是一本非常优秀的数学学习资料,值得广大中学生和数学教育工作者拥有和使用。

资料:第三章作业参考答案2

资料:第三章作业参考答案2

第三章作业参考答案3.3.1a. A-B = 69-90 = -21 因为是8位无符号数,所以无法表示负数,所以下溢。

b. A-B = 102-44 = 58 无溢出3.3.2a. 69 = (0100 0101)2若为原码= +6990 = (0101 1010)2若为原码= +90A+B = 159 大于8位原码的最大值127,所以上溢(二进制算出来-31)b. 102 = (0110 0110)2 若为原码= +10244 = (0010 1100)2若为原码= +44A+B = 146 上溢(二进制算出来-18)3.3.3a. A-B = 69 – 90 = -21 不溢出b. A-B = 102-44 = 58 不溢出3.3.4a.200 = (1100 1000)2因为是补码,所以真值= - 56103 = (0110 0111)2真值= +103A+B = 103-56 = 47b. 247 = (1111 0111)2真值-9237 = (1110 1101)2真值-19A+B = -28 (用竖式计算出来为1110 0100,为补码,转换成原码1001 1100,再换成十进制也是-28)3.3.5 a. A-B = 103+56 = 156 饱和计算= 127b. A-B = -9+19 = 103.3.6 a. 1100 1000 + 0110 0111 = 1 0010 1111 = 1111 1111 即255饱和计算b.1111 0111 + 1110 1101 = 1111 1111 即255饱和计算所以,0101 0000 ×0010 0011 = 0000 1010 1111 00003.4.4 a. 101100×110111 = - 12×-23 = 276 = (0001 0001 0100)2b. 011000×000111 = 24×7 = 168 = (0000 1010 1000)23.4.5不必做了已知:x=0.10110,y=0.11111。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.【答案】A
∫ ∫ ∫ 【解】根据引力公式可得出引力 F =
l 0
kmµ
(a + x)2
dx
=
−l 0
(
kmµ
a − x)2
d
(

x
)
=
0 −l
(
kmµ
a − x)2
dx
18.【答案】B
【解】选(B)的理由如下:因为 f ′(x) < 0, 所以 f (x) 在[a,b] 上单调减,又因为 f ′′(x) > 0,
cos2
xdx
=

2
π
2 cos2 xdx =2π
0
π 2 0
1
+
cos 2
2
x
dx
=
π2 2
14.【答案】A
【解】双纽线方程的极坐标形式为 r 2 = cos 2θ . 因为曲线围成的区域具有对称性,所以
∫ ∫ S = 4
π 4
1
r
2 (θ
)dθ
=2
π
4 cos 2θ dθ.
02
0
15.【答案】C
−∞
−∞
a
设 f ( x) = x ,则 f ( x) 是 (−∞, +∞) 上连续的奇函数,且 lim ∫ R f ( x)dx = 0 .但是 R→+∞ − R
∫ ∫ ∫ ∫ ∫ 0
f ( x)dx =
0
xdx = ∞ ,
+∞ f ( x)dx =
+∞ xdx = ∞ ,故
+∞ f ( x)dx 发散,这表明命题
【解】曲线 y = x(x −1)(2 − x) 与 x 轴有三个交点 x = 0,1, 2, 且当 0 < x < 1 时 y < 0, 当
1 < x < 2 时 y > 0.
16.【答案】B
60
∫ 【解】体积V =

a
(m −
g(x))2
− (m −
f
(
x)
)2
dx
= ∫bπ [2m − f (x) − g(x)][ f (x) − g(x)]dx. a
−3
cos 2
xd
(cos
x)
=
cos2 x
cos2 x
2 +C cos x
24.【答案】 −2 arctan 1− x + C
【解】
∫ ∫ dx

(2− x) 1− x
1−x =t
=
−2
dt 1+ t2
= −2 arctan t + C = −2 arctan
1− x +C
25.【答案】 1 ex2 (x2 −1) + C 2
A→+∞
20.【答案】A 【解】方法与(19)题相同. 21.【答案】A
61
∫ ∫ ∫ 【解】 +∞ f ( x)dx 收敛 ⇔ 存在常数 a ,使 a f ( x)dx 和 +∞ f ( x)dx 都收敛,此时
−∞
−∞
a
∫+∞ f ( x)dx = ∫a f ( x)dx + ∫+∞ f ( x)dx
f (x) < f (a) + f (b) − f (a) (x − a), x ∈ (a,b). b− a
∫ ∫ 两边积分,得
b
f (x) <
a
b a
1[
2
f
(a) +
f
(b)](b − a), 即 S1
<
S3.
19.【答案】C
∫ ∫ ∫ 【解】A. +∞ ln xdx = lim A ln xdx = lim A ln xd (ln x) = lim ln2 A − 1 发散
0
0
00
29.【答案】 2(e2 +1)
【解】
∫ ∫ ( ) ∫ ∫ ∫ ( ) 4 e
令 x =t
x dx = −
2 etd
t2
= −2
2 tetdt = − 2
2 tdet
= − 2tet
2 +2
2 et dt =2 e2 +1
0
0
0
0
00
30.【答案】 2 x arcsin x + 2 1− x + C
02
13
6 36
(0,1), (1, 2) 内连续。又 lim g(x) = g(1), 故 g(x) 在 (0, 2) 内连续. x→1−0
7.【答案】A
【解】因 esin x sin x 是以 2π为周期的周期函数,所以
∫ ∫ ∫ x+2π esint sin tdt = 2π esint sin tdt = 2π esint cos2 tdt.
F (−x) = ∫ −x t [ f (t) + f (−t)]dt t = −u ∫ x (−u)[ f (−u) + f (u)](−du)
0
0
11.【答案】B
= ∫ x u [ f (u) + f (−u)]du = F(x). 0
∫ ∫ 【解】记 F (x) =
x
f (t)dt +
x
1
dt, 则 F (x) 在[a,b] 上单调增,且 F (a) < 0, F (b) > 0.
a
b f (t)
12.【答案】B
【解】由旋转体体积公式可得
( ) v = π ∫π sin3 xdx = −π ∫π sin2 xd (cos x) = −π ∫π 1− cos2 x d (cos x) = 4π .
0
0
0
3
13.【答案】C
【解】由旋转体体积公式可得
∫ ∫ ∫ v = π
π
2 −π
3.【答案】D
【解】根据函数奇偶性,及定积分性质,得出 M = 0 , N > 0, P < 0 .
4.【答案】B
∫ 【解】 F (x)
=
x2 t 2dt,
0
0 ≤ x ≤ 1,
∫ ∫
1
t
2dt
+
0
x
(2 − t),1 < x ≤ 2.
1
5.【答案】D
∫ ∫ 【解】 F (x) =
x
f
(t)dt
=
x t2dt
1
=
1 3
x3

1, 3
1

x
1dt
1
=
x
−1,
6.【答案】D
0 ≤ x ≤ 1, 1 < x ≤ 2.
∫ 【解】当 0 < x < 1时, g(x) = x 1 (u2 +1)du = x3 + x ;
02
62
∫ ∫ 当 1 ≤ x < 2 时 , g(x) = 1 1 (u2 +1)du + x 1 (u −1)du = 1 x2 − x + 5 . 显 然 g(x) 在
A→+∞
A e
x
l
(ln
x)2
dx
=
lim
A→+∞
A e
l
(ln x)2
d
(ln
x)
=
lim
A→+∞
−1 ln A
+1
=
1收敛
∫ ∫ ∫ +∞
D.
l
A
dx = lim
l
A
dx = lim
l d (ln x) = lim 2 ln x 发散
e x ln x
A→+∞ e x ln x
A→+∞ e ln x
【解】

ln
x −1 x2
dx
=
−∫
(ln
x
−1)
d
1 x
=

ln
x −1 x
+

1 x
d
(ln
x
−1)
=

ln
x −1 x
+

1 x2
dx
= − ln x + C x
23.【答案】 2 + C cos x
【解】

∫ ∫ ∫ tan x dx =
cos x
sin x
3
dx = −
1
3
d (cos x) = −
(1−
x2
)
1 2
d
(1

x2
)
=

1
(
1− x2 )3 + C.
f (x)
2
3
36.【答案】 − ln(1− x) − x2 + C.
【解】
f
′(sin 2
x)
= 1− sin2
x
+
sin2 x 1− sin2 x
, (0
<
x
< 1),
【解】 ∫ xf ′(x)dx = xf (x) − ∫ f (x)dx. 但由题设知 ∫ f (x)dx = ln2 x + C, f (x) = 2 ln x, 故 x
∫ xf ′(x)dx = 2 ln x − ln2 x + C.
34.【答案】 x + ex + C
相关文档
最新文档