二次函数动点的面积最值问题--PPT课件
二次函数动点面积最值问题
二次函数最大面积例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间练习1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。
_ ___________________________________________ 2(1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀t的取值范围。
(2) t为何值时,S最小?并求岀这个最小值。
A开始沿QBB边向点B以A2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。
2求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变量x的取值范围。
C3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。
(1)求点P在BC上的运动的过程中y的最大值。
1(2 )当y= cm时,求x的值。
44如图所示,边长为在线段记CD(1)过ADPBB1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E,连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为t o1当t=丄时,求线段DE3如果梯形CDEB的面积为所在直线的函数表达式S,那么S是否以及此时(2) 存在最大值?若存在,请求出最大值,t的值;若不存在,请说明理由。
2 2(3)当OD DE的算术平方根取最小值时,(4)求点E的坐标。
二次函数最大面积交ABD BE能力提高例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线1cm/s的速度沿直线I向左匀速移动,(1)(2) t秒时梯形I上,且C,Q两点重合,如果等腰△ PQR以2 ABCD与等腰△ PQF重合部分的面积记为Scm当t=4时,求S的值。
2020年 二次函数中图形面积最值问题 (22张PPT)
返回目录
例:如图,抛物线 yx22x3与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为G
(2)若D点在直线CB下方抛物线上运动,求△BCD面积的最大值。 (变式1)在(2)条件下,求四边形ACDB面积最大值。 (变式2)在(2)条件下,过D点作DE∥y轴交BC边于点E,求DE的最大值。
(变式3)在(2)条件下,过D点作DF⊥BC于点F,当DF最大时,求D点坐标。
割补—铅锤法
转化—化斜为直
S△BCD=S△CDH+S△BDH
1 DH •CN 1 DH • BK
2
2
1 DH(CN BK) 2
1 2
( yH
yD )(xB
xK
)
新中问考题复剖习析指,南合·数作学探(究宜昌)
返回目录
例:如图,抛物线 yx22x3与x轴交于A,B两点,与y轴 交于点C,抛物线的顶点为G.
(变式4)在变式(2),(3)条件下,求△DEF周长的最大值。
C△BCD DFFEED
2 DE 2 DEDE
2
2
( 2 1)DE
转化为△BCD面积最值问题
新中考复习指南 ·数学(宜昌)
返回目录
通过对上述四个变式的探究,你有什么收获?
新中考拓复展习指探南究·,数能学力(宜提昌升)
返回目录
例:如图,抛物线 yx22x3与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为G
新变中式考练复习习一指南 ·数学(宜昌)
返回目录
例:如图,抛物线 yx22x3与x轴交于A,B两点,与y轴 交于点C,抛物线的顶点为G. (2)若D点在直线CB下方抛物线上运动,求△BCD面积的最大值。
(变式1)在(2)条件下,求四边形ACDB面积最大值。
二次函数的最值问题课件
顶点法
总结词
利用二次函数的顶点坐标求最值。
详细描述
根据二次函数的顶点公式$(h, k)$,代入原函数求出最值。当$a > 0$时,函数有最小值;当$a < 0$时,函数有 最大值。
导数法
总结词
通过求导数判断函数的单调性,进而 找到最值点。
详细描述
对二次函数求导得到$f'(x) = 2ax + b$,令导数等于0得到临界点$x = frac{b}{2a}$,通过判断单调性找到最 值点。
复杂的二次函数最值问题
总结词
运用配方法或公式法求最值
详细描述
对于复杂的二次函数,可以通过配方法或公式法求出最值 。配方法是通过配方将二次函数转化为顶点式,再利用顶 点式求最值;公式法是利用公式直接求出二次函数的最值 。
总结词
利用导数求最值
详细描述
对于复杂的二次函数,可以利用导数求出函数的极值点, 再根据极值点的位置和函数的单调性判断最值的位置,从 而求出最值。
总结词
结合实际背景求解
详细描述
对于实际应用中的二次函数最值问题,需要结合实际背景 进行分析。例如,在物理学中,可以利用二次函数的最值 求解物体的最大速度、最小压力等;在经济学中,可以利 用二次函数的最值求解成本最低、利润最大等问题。
06
总结与思考
二次函数最值问题的总结
定义与性质
二次函数最值问题主要研究的是 二次函数在特定条件下的最大值 或最小值。这些条件可能包括函 数的开口方向、顶点位置、定义
详细描述
二次函数是数学中常见的一种函数形式,其一般形式为 y=ax^2+bx+c,其中a、b、c为常数,且a≠0。a决定了抛 物线的开口方向和宽度,b决定了抛物线的左右位置,c决定 了抛物线的上下位置。
二次函数的图像与性质ppt课件
函数的凹凸性
当a>0时,函数凹;当a<0时,函数凸。
函数的零点和方程
零点是方程y=0的解,方程求解可以用二次公式。
二次函数的应用
1
抛物线运动
抛物线可以描述物体在空中的轨迹,如
弹性系数
2
抛出物体的运动轨迹。
二次函数可以表示材料的弹性特性,如
描述力和变形的关系。
3
跳水成绩预测
通过二次函数建模,可以预测跳水运动
二次函数的图像与性质 ppt课件
通过本课件,你将深入了解二次函数的定义和表达式,并学习二次函数的图 像特征,如开口方向、对称轴、最值点和零点等。还将探究二次函数的性质, 如增减性、凹凸性、最值和零点方程。从抛物线运动到报价模型,掌握二次 函数的应用。最后,了解二次函数的变形与拓展,包括平移、缩放、翻转和 混合运用。同时,我们将解决常见错误和实际问题应用。
常见错误和解决方法
1 符号错误
检查符号的正确使用,特别是a的正负。
3 图像理解错误
注意开口方向、对称轴和最值点的判断。
2 方程解法错误
仔细检查求解方程是否正确,特别是二次方 程。
4 实际问题应用
将数学模型应用到实际问题时,需考虑问题 的实际情况并合理使用二次函数。
开口方向
当a>0时,抛物线开口向上;当a<0时, 抛物线开口向下。
最值点
最值点是抛物线的最高点(当a>0)或最 低点(当a<0)。最值点的坐标为(-b/2a, f(-b/2a))。
二次函数的性质
函数的增减性
当a>0时,函数单调递增;当a<0时,函数单调 递减。
函数的最值
最值主要由最值点确定,注意开口方向和a的值 来确定最值。
《二次函数》优质PPT课件(共65页ppt)
抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14
棵
y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500
二次函数应用几何图形的最大面积问题教学课件
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所
二次函数的应用ppt课件
②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m
二次函数应用几何图形的最大面积问题课件
对未来学习的思考和展望
深入学习二次函数和几何图形的基础知识,掌握更多解 决实际问题的技巧和方法。
拓展学习领域,了解更多与数学相关的学科知识,如线 性代数、微积分等,为解决更复杂的问题提供支持。
关注数学在实际生活中的应用,了解数学与其他学科的 交叉点,培养跨学科解决问题的能力。
THANKS
的最大面积。
03
几何图形面积的最大值问 题
几何图形面积最大值的求解方法
03
代数法
几何法
参数法
通过代数运算和不等式性质,求出几何图 形面积的最大值。
利用几何图形的性质和特点,通过作图和 观察,求出面积最大值。
引入参数表示几何图形,通过参数的变化 和约束条件,求出面积的最大值。
面积最大值在二次函数中的应用
二次函数应用几何图形的最 大面积问题课件
目录
• 二次函数与几何图形的关系 • 二次函数的最值问题 • 几何图形面积的最大值问题 • 实际应用案例分析 • 总结与思考
01
二次函数与几何图形的关 系
二次函数图像的几何意义
01
二次函数图像是抛物线,其 顶点是函数的极值点。
02
二次函数图像的对称轴是x=h ,顶点的纵坐标是k。
二次函数与几何图形面积最大值问题 紧密相关,通过合理设定函数参数, 可以找到几何图形面积的最大值。
在解决实际问题时,需要综合考虑多 种因素,如几何图形的形状、大小和 位置等,以及二次函数的参数和约束 条件。
二次函数开口方向和顶点位置对几何 图形面积的影响是关键,需要根据实 际情况调整函数表达式,以获得最佳 效果。
01
总结词
02
详细描述
矩形面积最大化
在给定长和宽的条件下,利用二次函数求矩形的最大面积。通过设定 长和宽为二次函数的形式,并利用求导数的方法找到面积的最大值。
二次函数动点的面积最值问题
.
二次函数动点的面积最值问题
利用二次函数求以动态几何为背景的最值问题, 是中考中的一类重要题型,常作为中考的最后一 个大题,分值一般为9—12分,显然是非常重要 的知识。 面积是平面几何中一个重要的概念,关联着平面 图形中的重要元素边与角,由动点而生成的面积 问题,是抛物线与直线的重要结合,解决这类问 题常用到以下与面积相关的知识:图形的割补、 等积变形、等比转化等数学方法,充分体现数形 结合的数学思想!
.
二次函数动点的面积最值问题
教学目标:1.学会用代数法表示与函数图象相关的 几何图形的面积最值问题。 2.能用函数图象的性质解决相关问题 教学重点:二次函数中动点图形的面积最值的一般 及特殊解法 教学难点:点的坐标的求法及最值问题的解决
.
一、学前准备
2、观察下列图形,指出如何求出阴影部分的面积
交点三角形
.
A B
(x 3)2 9
0 x 6 当x 3时,Smax 9
水平宽a=6
.
四、练习
(2016•娄底)如图,抛物线y=ax2+bx+c(a、b、 c为常数,a≠0)经过点A(﹣1,0), B(5,﹣6),C(6,0).
(1)求抛物线的解析式; (2)如图,在直线AB下方的抛物 线上是否存在点P使四边形PACB的面积最大?若存 在,请求出点P的坐标;若不存在,请说明理由;
明理由.
由例题可知:点A(0,-4),点C(6,0)
直线AC: y 2 x 4
3
设点B(x, 1 x2 4 x 4),则点D(x, 2 x 4)
C
BD
(23ຫໍສະໝຸດ x4)3(1
x2
《利用二次函数求几何面积的最值问题》PPT课件
夯实基础
5.若二次函数y=x2+ax+5的图象关于直线x =-2对称,且当m≤x≤0时,y有最大值5, 最小值1,则m的取值范围是 __-__4_≤_m_≤_-__2____.
夯实基础
6.已知一个直角三角形两直角边边长之和为20 cm, 则这个直角三角形的最大面积为( B ) A.25 cm2 B.50 cm2 C.100 cm2 D.不确定
整合方法
解:如图: 设裁掉的正方形边长为x dm, 由题意可得 (10-2x)(6-2x)=12, 即x2-8x+12=0,解得x=2或x=6(舍去). 答:裁掉的正方形的边长为2 dm.
整合方法 (2)若要求制作的长方体的底面长不大于底面宽的五倍,并 将容器进行防锈处理,侧面每平方分米的费用为0.5元, 底面每平方分米的费用为2元,裁掉的正方形边长多大 时,总费用最低,最低为多少?
夯实基础
7.用一条长为40 cm的绳子围成一个面积为a cm2的 长方形,a的值不可能为( D ) A.20 B.40 C.100 D.120
夯实基础
8.如图,在矩形 ABCD 中,AD=1,AB=2,从较短边 AD 上找一点
E,过这点剪下两个正方形,它们的边长分别是 AE,DE 的长,当
剪下的两个正方形的面积之和最小时,点 E 应选在( A )
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
探究培优
14.【中考·南宁】如图①,为美化校园环境,某校 计划在一块长为60 m,宽为40 m的长方形空地 上修建一个长方形花圃,并将花圃四周余下的 空地修建成同样宽的通道,设通道宽为a m. (1)用含a的式子表示花圃的面积.
《二次函数》PPT课件
一次函数 y=kx+b(k≠0)
正比例函数
y=kx (k≠0)
一条直线
反比例函数 y k (k 0).
双曲线
x
课时导入
导入新知 正方体的六个面是全等的正方形(如图),设正 方体的棱长为x,表面积为y. 显然,对于x的 每一个值,y都有一个对应值,即y是x的函数, 它们的具体关系可以表示为 y=6x2.
课堂小结
二次函数
(2)确定二次函数的各项系数及常数项时,要把函 数关系式化为一般形式.
(3)二次项系数不为0.
感悟新知
知2-练
方法点拨:在实际问题中建立二次函数模型时,关键 要找出两个变量之间的数量关系,用类似建立一元二 次方程模型的方法,借助方程思想求出二次函数的关 系式.
解:(1) y=300+30 ( 60-x ) =-30x+2 100 ( 40 ≤ x ≤ 60 ). ( 2 ) W= ( x-40 ) ( -30x+2 100 ) =-30x2+3 300x-84 000.
课时导入
这个函数与我们学过的函数不同,其中自变 量x的最高次数是2.
这类函数具有哪些性质呢?这就是本章要学 习的二次函数.
感悟新知
知识点 1 二次函数的定义
问题1
知1-讲
n个球队参加比赛,每两队之间进行一场比赛,
比赛的场次数m与球队数n有什么关系?
比赛的场次数
m= 1 n(n-1),
即m=
1
2 n2-
感悟新知
总结
知2-讲
1. 建立二次函数模型的一般步骤: (1)审清题意:找出问题中的已知量(常量)和
未知量(变量),把问题中的文字或图形语言转化 成数学语言.
沪科版九年级上册二次函数的应用面积、利润最值问题精品课件PPT
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
当堂训练
3.九年级数学兴趣小组经过市场调查,得到某种运动
服每月的销量与售价的相关信息如下表:
售价(元/件) 100 110 120 130 … 月销量(件)200 180 160 140 … 已知该运动服的进价为每件60元,设售价为x元/件.
(1)请用含x的式子表示:
①销售该运动服每件的利润是(x-60)元; ②月销量是(400-2x)件;(直接写出结果)
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
一、复习引入二次函数最值的理论
思考:你能说明当为 x什 b么 时,函数的最 2a
y4acb2 呢?此时是最大最值小还值是呢? 4a
二次函数的一 y般 ax2式 b: xc(a0)
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
解 设围成的矩形水面的一边长为xm,那么,矩形水面 的另一边长应为(20-x)m.若它的面积是Sm2,则有它 的面积是Sm2由题可得 S=x(20-x).
将这个函数的表达式配方,得 S= -(x-10)2+100(0<x<20).
C.4<x<16
D.x>4或x<16
沪科版九年级上册21.4 二次函数的应用(1) 面积、利润最值问题课件
动点问题之面积最值问题
不重合),过点������ 作������轴的平行线交������������于点������.
二 次
(1)求该二次函数的解析式: (2)若设点������的横坐标为������,用含m的代数式表示线段������������的长;
函
(3)求△ ������������������面积的最大值,并求此时点������的坐标.
练习1:如图,在平面直角坐标系中,点������、������的坐标分别为 −1 , 0 , (0 ,
−3 ) ,点������在������轴上.已知某二次函数的图象经过������、������、������三点,且它的对称轴
为直线 ������ = 1 ,点������为直线������������下方的二次函数图象上的一个动点(点 ������ 与 ������、������
动点问题之面积最值问题综述:动点问题是初中数学问题中的一个大类的问 题,因为其具有动态性、变化性的特点,特别能考查学生的数学能力,所以 备受中考出题老师的青睐。主要包括线段的最值问题、利润的最值问题、面 积的最值问题等,多数考查一次函数或二次函数的性质,题目难度中等偏难, 同学们感到这类问题棘手多数是因为没能掌握这类问题的解题套路(方法和 技巧)。昊南老师查阅大量的中考真题后发现,此类问题单独考查的情形比 较少,大多数会做为二次函数压轴题的第二问或第三问出现,分值为3分或4 分,本文昊南老师和大家一同探讨一下面积最值的问题。
数
最
值Hale Waihona Puke 问题【解析】 二 次 函 数 最 值 问 题
《二次函数》PPT优秀课件
(2)当x=3时矩形的面积.
解:(1)y=(8-x)x=-x2+8x (0<x<8);
(2)当x=3时,y=-32+8×3=15 cm2 .
定
二
次
函
数
义
右边是整式;
自变量的指数是2;
二次项系数a ≠0
一般形式
y=ax2+bx+c(a ≠0,a,b,c是常数)
再作判断.除此之外,二次函数除有一般形式y=ax2+bx+c(a≠0)外,
还有其特殊形式如 y=ax2, y=ax2+bx, y=ax2+c等.
例2 y m 3 x
m2 7
.
(1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
m 2 7 1,
.
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是(C
A . m,n是常数,且m≠0
B . m,n是常数,且n≠0
C. m,n是常数,且m≠n
D . m,n为任何实数
3.下列函数是二次函数的是 ( C
y
A.y=2x+1
B.
C.y=3x2+1
D.y
)
2
x
1
1
2
x
)
4.矩形的周长为16cm,它的一边长为x(cm),面积为y(cm2).求
的二次式表示的.
定义
形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫
做二次函数.其中x是自变量,a,b,c分别是二次项
系数、一次项系数和常数项.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交点三角形
顶 点三 角பைடு நூலகம்形
选择坐标轴上的边作为底边
.
4
二、重点知识
SABC SABD SCBD
F
C
1 BD • AE 1 BD • CF
2
2
1 BD( AE CF ) 2
D
铅垂高 推导公式:
A
E
B
S ABC
1 2
ah
水平宽a
.
5
三、试题解析
若点B是线段AC下方的抛物线 y 1 x 2 4 x 4上的动点,如果三 角形ABC有最大面积,请求出最大面积3和此时点3B的坐标;如果没有,请说
0 x6
9
当x 3时,Smax 9
水平宽a=6
.
6
四、练习
(2016•娄底)如图,抛物线y=ax2+bx+c(a、b、c为 常数,a≠0)经过点A(﹣1,0), B(5,﹣6),C(6,0).
(1)求抛物线的解析式; (2)如图,在直线AB下方的抛物 线上是否存在点P使四边形PACB的面积最大?若存 在,请求出点P的坐标;若不存在,请说明理由;
二次函数动点的面积最值问题
主讲老师:****老师
.
1
二次函数动点的面积最值问题
利用二次函数求以动态几何为背景的最值问题, 是中考中的一类重要题型,常作为中考的最后一 个大题,分值一般为9—12分,显然是非常重要 的知识。 面积是平面几何中一个重要的概念,关联着平面 图形中的重要元素边与角,由动点而生成的面积 问题,是抛物线与直线的重要结合,解决这类问 题常用到以下与面积相关的知识:图形的割补、 等积变形、等比转化等数学方法,充分体现数形 结合的数学思想!
.
2
二次函数动点的面积最值问题
教学目标:1.学会用代数法表示与函数图象相关的 几何图形的面积最值问题。 2.能用函数图象的性质解决相关问题 教学重点:二次函数中动点图形的面积最值的一般 及特殊解法 教学难点:点的坐标的求法及最值问题的解决
.
3
一、学前准备
2、观察下列图形,指出如何求出阴影部分的面积
.
7
过程精讲
【解答】解:
(1)设y=a(x+1)(x﹣6)(a≠0),
把B (5,﹣6)代入a(5+1)(5﹣6)=﹣6,a=1,
D
∴y=(x+1)(x﹣6)=x2﹣5x﹣6。
(2)如图1,过P向x轴作垂线 交AB与点D,交X轴于M 设P(m,m2﹣5m﹣6),有A (-1,0),B (5,﹣6), 得YAB=-x-1 则D(m,﹣m﹣1) ∴PD= ﹣m﹣1- ( m2﹣5m﹣6)=-m2 +4m+5
明理由.
由例题可知:点A(0,-4),点C(6,0)
No 直线AC: y 2 x 4 3 设点B(x, 1 x2 4 x 4),则点D(x, 2 x 4)
Image C
BD
(
2
3 x
4)
(31
x
2
4
x
4)
3
33
1 x2 2x
3
D
3
S ABC
1 6( 1
2
3
x2
2x)
A B
(x 3)2
.
8
过程精讲
D
∴S△ABP=(( -m2 +4m+5 )X6 = -3m2 +12m+15 ∴当m=2时S△ABP最大 当m=2时,S四边形PACB有最大值为48,这时 m2﹣5m﹣6=22﹣5×2﹣6=﹣12, ∴P(2,﹣12),
.
9
知识总结
“二次函数中动点图形的面积最值”试题 解析一般规律: 这类问题的特征是要以静代动解题,首先 找面积关系的函数解析式,关键是用含x的 代数式表示出相关的线段的长度,若是规 则图形则套用公式或用割补法,若为不规 则图形则用割补法.
.
10