第二章练习题参考解答48755

合集下载

七年级数学上册第二章各节练习题含答案

七年级数学上册第二章各节练习题含答案

七年级数学上册第二章:2.1有理数同步练习题一、选择题1.若向东记为正,向西记为负,那么向东走3米,再向西走﹣3米,结果是()A.回到原地B.向西走3米C.向东走6米D.向西走6米2.在,2,,3这四个数中,比小的数是A.B.2 C.D.33.如果赚120万元记作万元,那么亏100万元记作A.万元B.万元C.万元D.万元4.在0,,,3这四个数中,最小的数是A.0 B.C.D.35.下列说法正确的是( )A.一个数前面加上“-”号,这个数就是负数 B.零既是正数也是负数C.若a是正数,则-a不一定是负数D.零既不是正数也不是负数6.下列四个数中,是正整数的是()A.﹣1 B.0 C.D.17.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2) B. 2﹣(﹣2) C. (﹣2)+2 D. (﹣2)﹣28.下列四个数中,是正整数的是()A.﹣1 B.0 C.D.1二、填空题9.用“ <” 、“ >” 或“ =” 连接:(1) 2 _____+6;(2)0 _____ 1.8;(3)_____10.有理数包含正有理数、负有理数和____________.11.A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,则点B所表示的数为______.12.在实数﹣3,0,1中,最大的数是_____.13.如果收入60元记作+60元,那么支出40元记作________ 元14.数轴上到1的距离是3的数有_________个,是______________.15.比较大小:-3__________0.(填“< ”“="”“" > ”)16.如果水位上升8米记作+8米,那么﹣5米表示_____.17.如果将“收入50元”记作“+50元”,那么“﹣20元”表示__________.18.在数轴上点A表示7,点B,C所表示的数互为相反数,且C与A间的距离为2,点B,C对应的数分别是__________.三、解答题19.所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101正数集合:{ …};负数集合:{ …};分数集合:{ …};非负数集合:{ …}.20.甲、乙两人同时从某地出发,如果甲向东走250 m记作+250 m,那么乙向西走150 m 怎样表示?这时甲、乙两人相距多远?21.某足球守门员练习折返跑,从守门员位置出发,向前跑记为正数,向后跑记为负数,他的练习记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了守门员位置?(2)守门员离开守门员位置最远是多少米?(3)守门员离开守门员位置达到10米以上(包括10米)的次数是多少?22.粮库3天内进出库的粮食记录日下单位:吨进库的吨数记为正数,出库的吨数记为负数:,,,,,.经过这3天,库里的粮食是增多了还是减少了?经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?23.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=___________.(2)数轴上表示x和-1的两点之间的距离表示为___________.(3)找出所有符合条件的整数x,使|x+5|+|x-2|=7,这样的整数有___________个.(4)若x表示一个有理数,且|x-2|+|x+4|>6,则有理数x的取值范围是_________.24.体育课上,某中学对七年级女生进行仰卧起坐测试,以做28个为标准,超过的个数用正数表示,不足的个数用负数表示,其中10名女生的成绩如下:-2 +5 -1 0 +10 +3 0 +8 +1 +6(1)这10名女生有百分之几达到标准?(2)她们共做了多少个仰卧起坐?北师大新版数学七年级上册《2.2数轴》同步练习一.选择题(共9小题)1.若数a和﹣2两点之间的距离是3,那么a的值为()A.1 B.﹣5 C.﹣1或5 D.﹣5或12.小明同学将2B铅笔笔尖从原点O开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1个单位长度完成第一次操作;再沿负半轴滑动2个单位长度完成第二次操作;又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…,以此规律继续操作,经过第50次操作后笔尖停留在点P处,则点P对应的数是()A.0 B.﹣10 C.﹣25 D.503.数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在这个数轴上随意画出一条长2017cm的线段AB,则线段AB盖住的整点有()A.2016个B.2017个C.2016个或2017个D.2017个或2018个4.一个小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在0的位置,则小虫的起始位置所表示的数是()A.0 B.2 C.4 D.﹣45.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>06.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣27.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.8.﹣a﹣b+c的相反数是()A.a﹣b+c B.﹣a+b﹣c C.a+b﹣c D.﹣a﹣b﹣c9.下列说法正确的是()A.符号相反的两个数是相反数B.任何一个负数都小于它的相反数C.任何一个负数都大于它的相反数D.0没有相反数二.填空题(共7小题)10.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.11.已知数轴上点A对应的数为3,点B对应的数为﹣5,则到A、B两点距离相等的点对应的数为.12.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.13.﹣(﹣2)=,与﹣[﹣(﹣8)]互为相反数.14.如果a、b互为相反数,那么2016a+2016b﹣100=.15.当两数时,它们的和为0.16.若a=﹣5,则﹣a=.三.解答题(共2小题)17.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.18.已知m是6的相反数,n比﹣m的相反数大3,求n﹣1与n﹣m的值.参考答案一.选择题1.D.2.C.3.D.4.C.5.D.6.B.7.C.8.C.9.B.二.填空题10.﹣1.11.﹣112..13.2,8.14.﹣100.15.互为相反数.16.5.三.解答题17.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.18.解:∵m是6的相反数,n比﹣m的相反数大3,∴m=﹣6,n﹣m=3,∴n=9,∴n﹣1=8,n﹣m=3,答:n﹣1与n﹣m的值分别为8,3.北师大新版数学七年级上册《2.2数轴》同步练习一.选择题(共9小题)1.若数a和﹣2两点之间的距离是3,那么a的值为()A.1 B.﹣5 C.﹣1或5 D.﹣5或12.小明同学将2B铅笔笔尖从原点O开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1个单位长度完成第一次操作;再沿负半轴滑动2个单位长度完成第二次操作;又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…,以此规律继续操作,经过第50次操作后笔尖停留在点P处,则点P对应的数是()A.0 B.﹣10 C.﹣25 D.503.数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在这个数轴上随意画出一条长2017cm的线段AB,则线段AB盖住的整点有()A.2016个B.2017个C.2016个或2017个D.2017个或2018个4.一个小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在0的位置,则小虫的起始位置所表示的数是()A.0 B.2 C.4 D.﹣45.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>06.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣27.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.8.﹣a﹣b+c的相反数是()A.a﹣b+c B.﹣a+b﹣c C.a+b﹣c D.﹣a﹣b﹣c9.下列说法正确的是()A.符号相反的两个数是相反数B.任何一个负数都小于它的相反数C.任何一个负数都大于它的相反数D.0没有相反数二.填空题(共7小题)10.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.11.已知数轴上点A对应的数为3,点B对应的数为﹣5,则到A、B两点距离相等的点对应的数为.12.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.13.﹣(﹣2)=,与﹣[﹣(﹣8)]互为相反数.14.如果a、b互为相反数,那么2016a+2016b﹣100=.15.当两数时,它们的和为0.16.若a=﹣5,则﹣a=.三.解答题(共2小题)17.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.18.已知m是6的相反数,n比﹣m的相反数大3,求n﹣1与n﹣m的值.数轴测试题时间:45分钟总分:100题号一二三四总分得分一、选择题(本大题共8小题,共32.0分)1.在数轴上到原点距离等于3的数是A. 3B.C. 3或D. 不知道2.有理数a,b在数轴的位置如图,则下面关系中正确的个数为.A. 1B. 2C. 3D. 43.若数轴上表示和3的两点分别是点A和点B,则点A和点B之间的距离是A. B. C. 2 D. 44.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且数a对应的点在M与N之间,数b对应的点在P与R之间,若,则原点是A. M或RB. N或PC. M或ND. P或R5.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是A. B.C. D.6.点M为数轴上表示的点,将点M沿数轴向右平移5个单位到点N,则点N表示的数是A. 3B. 5C.D. 3或7.在数轴上,与表示数的点的距离是3的点表示的数是A. 2B.C.D. 2或8.下列说法错误的有最大的负整数是;绝对值是本身的数是正数;有理数分为正有理数和负有理数;数轴上表示的点一定在原点的左边;在数轴上7与9之间的有理数是8.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共32.0分)9.已知A,B,C是数轴上的三个点,且C在B的右侧点A,B表示的数分别是1,3,如图所示若,则点C表示的数是______ .10.在数轴上,与表示的点相距6个单位长度的点表示的数是______ .11.在数轴上,点A表示1,点C与点A间的距离为3,则点C所表示的数是______ .12.在数轴上把表示的点A沿数轴移动6个单位后得到点B,则B所表示的数为______ .13.已知数轴上的A点表示那么在数轴上与A点的距离5个长度单位的点所表示的数是______.14.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有______ 个,负整数点有______ 个,被淹没的最小的负整数点所表示的数是______ .15.在数轴上与所对应的点相距4个单位长度的点表示的数是______.16.数轴上表示与之间的所有整数之和是______.三、计算题(本大题共4小题,共24.0分)17.点A、B在数轴上的位置如图所示:点A表示的数是______ ,点B表示的数是______ ;在原图中分别标出表示的点C、表示的点D;在上述条件下,B、C两点间的距离是______ ,A、C两点间的距离是______ .18.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东记为正,向西记为负,当天的航行路程记录如下单位:千米:14,,,,,,,.请你帮忙确定B地相对于A地的位置;若冲锋舟每千米耗油升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?19.已知数轴上有A,B,C三个点,分别表示有理数,,10,动点P从A出发,以每秒4个单位长度的速度向终点C移动,设移动时间为t秒.用含t的代数式表示点P与A的距离:______;点P对应的数是______;动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,若P、Q同时出发,求:当点P运动多少秒时,点P和点Q间的距离为8个单位长度?20.把下列各数在数轴上表示出来,并用“”把它们连接起来,3,,,0.四、解答题(本大题共2小题,共12.0分)21.已知数轴上三点A,O,B表示的数分别为6,0,,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.22.在数轴上有A、B两点,所表示的数分别为n,,A点以每秒5个单位长度的速度向右运动,同时B点以每秒3个单位长度的速度也向右运动,设运动时间为t秒.当时,则______ ;当t为何值时,A、B两点重合;在上述运动的过程中,若P为线段AB的中点,数轴上点C所表示的数为是否存在t的值,使得线段,若存在,求t的值;若不存在,请说明理由.答案和解析【答案】1. C2. C3. D4. A5. B6. A7. D8. D9. 710. 或411. 或412. 1或13. 或214. 70;53;15. 2或16.17. ;1;;718. 解:,答:B地在A地的东边20千米;这一天走的总路程为:千米,应耗油升,故还需补充的油量为:升,答:冲锋舟当天救灾过程中至少还需补充9升油.19. 4t;20. 解:,.21. 122.【解析】1. 解:设这个数是x,则,解得或.故选:C.先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.本题考查的是数轴,熟知数轴上各点到原点的距离的定义是解答此题的关键.2. 解:由图可知:,,,,,,,所以只有、、成立.故选:C.由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.3. 解:.故选:D.根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.本题考查了数轴,主要利用了两点间的距离的表示,需熟记.4. 解:,,;当原点在N或P点时,,又因为,所以,原点不可能在N或P点;当原点在M、R时且时,;综上所述,此原点应是在M或R点.故选A.先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.主要考查了数轴的定义和绝对值的意义解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.5. 解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB 上的点与原点的距离.6. 解:由M为数轴上表示的点,将点M沿数轴向右平移5个单位到点N可列:,故选A.根据在数轴上平移时,左减右加的方法计算即可求解.此题主要考查点在数轴上的移动,知道“左减右加”的方法是解题的关键.7. 解:在数轴上,与表示数的点的距离是3的点表示的数有两个:;.故选:D.此题可借助数轴用数形结合的方法求解在数轴上,与表示数的点的距离是3的点有两个,分别位于与表示数的点的左右两边.本题考查的是数轴,注意此类题应有两种情况,再根据“左减右加”的规律计算.8. 解:最大的负整数是,故正确;绝对值是它本身的数是非负数,故错误;有理数分为正有理数、0、负有理数,故错误;时,在原点的右边,故错误;在数轴上7与9之间的有理数有无数个,故错误;故选:D.根据负整数的意义,可判断;根据绝对值的意义,可判断;根据有理数的分类,可判断;根据负数的意义,可判断;根据有理数的意义,可判断.本题考查了有理数,理解概念是解题关键.9. 解:点A,B表示的数分别是1,3,,,,点C表示的数是7.故答案为7.先利用点A、B表示的数计算出AB,存在计算出BC,然后计算点C到原点的距离即可得到C点表示的数.本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数一般取右方向为正方向,数轴上的点对应任意实数,包括无理数10. 解:在数轴上,与表示的点相距6个单位长度的点表示的数是或4,故答案为:,4.根据数轴上到一点距离相等的点有两个,分别位于该点的左右,可得答案.本题考查了数轴,数轴上到一点距离相等的点有两个,以防漏掉.11. 解:若点在1的左面,则点为;若点在1的右面,则点为4.故答案为:或4.此类题注意两种情况:要求的点可以在已知点的左侧或右侧.本题考查了数轴,注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.12. 解:在数轴上把表示的点A沿数轴移动6个单位后得到点B,则B所表示的数为:,或,故答案为:1或.考虑两种情况:要求的点在已知点左移或右移6个单位长度.此题考查了数轴,要求掌握数轴上的两点间距离公式的运用在数轴上求到已知点的距离为一个定值的点有两个.13. 解:若该点在A点左边,则该点为:;若该点在A点右边,则该点为:.故答案为:2或.该点可以在数轴的左边或右边,即或.本题考查了数轴,此类题一定要考虑两种情况:左减右加.14. 解:由数轴可知,和之间的整数点有:,,,,共32个;和之间的整数点有:,,,16,共38个;故被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.故答案为:70,53,.根据数轴的构成可知,和之间的整数点有:,,,,共32个;和之间的整数点有:,,,16,共38个;依此即可求解.本题考查了数轴,熟悉数轴的结构是解题的关键.15. 解:当该点在的右边时,由题意可知:该点所表示的数为2,当该点在的左边时,由题意可知:该点所表示的数为,故答案为:2或由于题目没有说明该点的具体位置,故要分情况讨论.本题考查数轴,涉及有理数的加减运算、分类讨论的思想.16. 解:如图所示:,数轴上表示与之间的所有整数为:,,,,0,1,2,故符合题意的所有整数之和是:.故答案为:.根据题意画出数轴,进而得出符合题意的整式,求出答案即可.此题主要考查了数轴,根据题意得出符合题意的所有整数是解题关键.17. 解:点A表示的数是,点B表示的数是1;根据题意得:;根据题意得:,.故答案为:;1;;7 根据数轴上点的位置找出A与B表示的点即可;在数轴上找出表示与的两个点C与D即可;找出B、C之间的距离,以及A,C之间的距离即可.此题考查了数轴,弄清题意是解本题的关键.18. 根据有理数的加法,可得和,再根据向东为正,和的符号,可判定方向;根据行车就耗油,可得耗油量,再根据耗油量与已有的油量,可得答案.本题考查了正数和负数,有理数的加法运算是解题关键,有理数的大小比较得出最远距离.19. 解:;点P对应的数是;故答案为:4t;;分两种情况:当点P在Q的左边:,解得:;当点P在Q的右边:,解得:,综上所述:当点P运动2秒或秒时,点P和点Q间的距离为8个单位长度.根据题意容易得出结果;需要分类讨论:当点P在Q的左边和右边列出方程解答.本题考查了数轴,一元一次方程的应用解答题,对t分类讨论是解题关键.20. 根据有理数大小比较法则先把这些数按照从小到大的顺序排列起来,再在数轴上表示出来即可.本题考查了有理数大小比较的法则以及数轴的知识,解题时牢记法则是关键,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序在数轴上表示的两个有理数,右边的数总比左边的数大;也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.21. 解:,B表示的数分别为6,,,,点P表示的数是1,故答案为:1;设点P运动x秒时,在点C处追上点R,则:,,,,解得,,点P运动5秒时,追上点R;线段MN的长度不发生变化,理由如下分两种情况:当点P在A、B之间运动时如图:.当点P运动到点B左侧时如图,;综上所述,线段MN的长度不发生变化,其长度为5.由已知条件得到,由,于是得到结论;设点P运动x秒时,在点C处追上点R,于是得到,,根据,列方程即可得到结论;线段MN的长度不发生变化,理由如下分两种情况:当点P在A、B之间运动时当点P运动到点B左侧时,求得线段MN的长度不发生变化.此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.22. 解:当运动时间为t秒时,点A表示的数为,点B表示的数为.当时,点A表示的数为,点B表示的数为,.故答案为:.根据题意得:,解得:.当t为3时,A、B两点重合.为线段AB的中点,点P表示的数为,,,解得:或.存在t的值,使得线段,此时t的值为或.找出运动时间为t秒时,点A、B表示的数.将代入点A、B表示的数中,再根据两点间的距离公式即可得出结论;根据点A、B重合即可得出关于t的一元一次方程,解之即可得出结论;根据点A、B表示的数结合点P为线段AB的中点即可找出点P表示的数,根据即可得出关于t的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、两点间的距离、数轴以及列代数式,解题的关键是:找出点A、B表示的数;根据两点重合列出关于t的一元一次方程;根据PC列出关于t 的含绝对值符号的一元一次方程.参考答案一.选择题1.D.2.C.3.D.4.C.5.D.6.B.7.C.8.C.9.B.二.填空题10.﹣1.11.﹣112..13.2,8.14.﹣100.15.互为相反数.16.5.三.解答题17.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.18.解:∵m是6的相反数,n比﹣m的相反数大3,∴m=﹣6,n﹣m=3,∴n=9,∴n﹣1=8,n﹣m=3,答:n﹣1与n﹣m的值分别为8,3.第二章有理数及其运算 2.3 绝对值同步练习题1.3的相反数是()A.-3 B.3 C.-13 D.132.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.-1 B.1 C.-2 D.23. 下列说法中不正确的是()A.正数的相反数是负数B.负数的相反数是正数C.0的相反数是0 D.0没有相反数4. 如果a与-3互为相反数,那么a等于()A .3B .-3 C.13 D .-13 5. 如果两个数的绝对值相等,则这两个数( )A .相等B .是0,1,-1C .相等或互为相反数D .都是06. |-12|的值是( )A .-12 B.12 C .-2 D .27. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d8. 如图,数轴上有A ,B ,C ,D 四个点,其中绝对值为2的数对应的点是( )A .点A 与点CB .点A 与点DC .点B 与点CD .点B 与点D9. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是( ) A .-2 B .-3 C .3 D .510. 在0,-2,1,-3这四个数中,最小的是( ) A .0 B .-2 C .1 D .-311. 下列说法中:①一个数的绝对值越大,这个数越大;②一个正数的绝对值越小,这个数越小;③一个数的绝对值越小,这个数越大;④一个负数的绝对值越小,这个数越大.其中正确的有( ) A.1个 B.2个 C.3个 D.4个12. 如图,数轴的单位长度为1,若点A,B表示的数的绝对值相等,则点A表示的数是( )A.-4 B.-2 C.0 D.413.有理数a,b在数轴上的位置如图所示,那么( )A.b>a B.|a|>|b| C.-a<b D.-b>a14. 如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A.点M B.点N C.点P D.点Q15.已知实数a,b在数轴上的位置如图所示,下列结论错误的是( )A.|a|<1<|b| B.1<-a<b C.1<|a|<b D.-b<a<-116. 若|x|=|-3.5|,则x=;绝对值大于3但不大于5的整数有 . 17. 若a ,b ,c 在数轴上的表示如图,|a|=5,|b|=2,|c|=3,则a =____,b =____,c =____. 18. 比较下列各组数的大小: (1)-13和-14; (2)-45和-1.1 19. 计算:(1)|-12|+|-5|-|+12|;(2)|-313|÷|-114|×|-112|.20. 师傅让一名学徒工加工一些标准长度为0.5米的钢管,为了检查加工的质量,师傅随便从加工成品中抽出六根,经测量发现: (表中正数表示超过标准的长度/米,负数表示不足标准的长度/米). 问哪一根钢管加工的质量要好些?你能否用所学的绝对值的知识加以解释?。

新课程标准数学必修2第二章课后习题解答[唐金制]

新课程标准数学必修2第二章课后习题解答[唐金制]

3、提示:直线EH 和FG 相交于点K;由点K € EH, EH 平面ABD,得K €平面 ABD.新课程标准数学必修2第二章课后习题解答第二章 点、直线、平面之间的位置关系 2. 1空间点、直线、平面之间的位置关系 练习(P43) 1、D; 2、(1)不共面的四点可确定 4个平面;(2)共点的三条直线可确定 1个或 3 个平面3、(1)X(2)V( 3)V(4)V4、(1) A € a , B? a ; (2) M? a , M € a ; ( 3) a 二 a a 二 3练习(P48) 1、(1) 3条。

分别是BB' CC' DD'.(2)相等或互补2、(1)v BC// B'C',「./ B'CA'是异面直线 AC 与 BC 所成的角。

在 RT A A'B'C'中,A'B'=23 ,BC=2 .3 ,•••/ B'CA'=45° •因此,异面直线 A'C 与BC 所成的角为45(2)T AA'// BB'B'BC'是异面直线 AA'与 BC'所成的角。

在 RT A B'BC'中,B'C'=AD=273 ,BB'=AA=2,「. BC'=4,/ B'BC'=60° •因此,异面直线 AA 与BC 所成的角为60° 练习(P49) B练习(P50)三个平面两两相交,它们的交线有一条或三条习题2.1 A 组(P51) 1、图略 2、图略3、 (1)V (2 )X( 3)V(4 )X (5 )X4、 (1) r,(2) 8,(3) 2,(4)平行或在这个平面内,(5) b //平面a 或b 与a 相交, (6)可能相交,也可能是异面直线。

八年级下册数学第二章练习题及答案

八年级下册数学第二章练习题及答案

八年级下册数学第二章练习题及答案八年级下册数学第二章练习题及答案一、填空题1.用不等式表示:x与5的差不小于x的2倍:;a与b两数和的平方不可能大于3:.2.请写出解集为x?3的不等式:.3.不等式9?3x?0的非负整数解是4.已知点P在第一象限,则m的取值范围是5.如果1 6.将–x4–3x2+x提取公因式–x后,剩下的因式是7.因式分解:a2b–4b8.小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每本笔记本2元,那么小明最多能买支钢笔.9.若4a4–ka2b+25b2是一个完全平方式,则k= .10.若一个正方形的面积是9m2+24mn+16n2,则这个正方形的边长是.111.已知x–3y=3,则x2?2xy?3y2?.12.已知2k-x2+2k>1是关于x的一元一次不等式,那么,不等式的解集是13.函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集为二、选择题14.已知x?y,则下列不等式不成立的是.A.x?6?y?B.3x?3yC.?2x??2y D.?3x?6??3y?615.将不等式组的解集在数轴上表示出来,应是.A {x?1x? A B C D16.下列从左到右的变形中,是因式分解的是A.a2–4a+5=a+5B.=x2+5x+6C.a2–9b2= D.+1=x2+2x+217.下列各组代数式中没有公因式的是A.4abc与8abc B.ab+1与ab–1C. b2与a2D. x+1与x2–118.下列因式分解正确的是A.–4a2+4b2=–4=–4B.m3–12m=3mC.4x4y–12x2y2+7=4x2y+D.4–9m2= 19.22006+3×22005–5×22007的值不能被下列哪个数整除 A. B.C.22006D.2200520.若x+y=2,xy=3,则x2+y2的值是A.2B.10 C.– D.x2+y2的值不存在三、解答题21.解下列不等式,并把它们的解集在数轴上表示出来232231-x?21?3xa4–8a2b2+16b–4+4223.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元.请用含x的代数式分别表示顾客在两家超市购物所付的费用;顾客到哪家超市购物更优惠?说明你的理由.24.有一个长方形足球场的长为x m,宽为70m.如果它的周长大于350m,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛.25.已知多项式–b2,在给定k的值的条件下可以因式分解.写出常数k可能给定的值;针对其中一个给定的k值,写出因式分解的过程.参考答案一、填空题1.x?5?2x ?a?b?2?32.略.0、1、2;.m>35. 10.m+4n;11.3; 12. -31,x 二、选择题14.D15.A 16.C 1.B 18.D 19.C20.D三、解答题10 在数轴上表示解集略。

人教版必修二第二章复习题含答案(K12教育文档)

人教版必修二第二章复习题含答案(K12教育文档)

人教版必修二第二章复习题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版必修二第二章复习题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版必修二第二章复习题含答案(word版可编辑修改)的全部内容。

章末检测卷(二)(时间:90分钟满分:100分)一、选择题(本题包括15小题,每小题3分,共45分;每小题只有一个选项符合题意)1.在西部大开发中,国家投巨资兴建“西气东输"工程,将西部蕴藏的丰富资源通过管道输送到东部地区。

这里所指的“西气”的主要成分是( )A.CO B.CH4 C.H2D.NH3答案B2.据报道,某国一集团拟在太空建造巨大的集光装置,把太阳光变成激光用于分解海水制氢:2H2O错误!2H2↑+O2↑,下列说法正确的是( )A.水的分解反应是放热反应 B.氢气是一次能源C.使用氢气作燃料将会增加温室效应 D.在这一反应中,光能转化为化学能答案D解析水的分解反应是吸热反应;H2是二次能源;H2是清洁能源,不会增加温室效应.3.太阳能的开发和利用是21世纪一个重要课题.利用储能介质储存太阳能的原理是:白天在太阳照射下某种盐熔化,吸收热量,晚间熔盐固化释放出相应的能量,已知数据:其中最适宜作为储能介质的是()A.CaCl2·6H2O B.Na2SO4·10H2O C.Na2HPO4·12H2O D.Na2S2O3·5H2O答案 B 解析该盐应是熔点不能太高,熔化吸热应较高,价格适中。

4.绿色能源是指使用过程中不排放或排放极少污染物的能源,如一次能源中的水能、地热能、天然气等;二次能源中的电能、氢能等.下列能源属于绿色能源的是( )①太阳能②风能③石油④煤⑤潮汐能⑥木材A.①②③ B.③④⑤ C.④⑤⑥ D.①②⑤答案 D 解析石油、煤、木材在使用过程中排放出污染物(如二氧化硫等)。

初二第二章练习题及参考答案

初二第二章练习题及参考答案

初二第二章练习题及参考答案第一节选择题1. 答案:B。

解析:根据题意,判断一个数字是奇数还是偶数,只需要判断最后一位数字是否为偶数即可。

若为偶数,则整个数字为偶数;若为奇数,则整个数字为奇数。

故答案为B。

2. 答案:C。

解析:将小数转化为百分数,就是将小数乘以100。

故答案为C。

3. 答案:A。

解析:计算两个小数的和,保留末尾两位小数。

故答案为A。

4. 答案:D。

解析:折扣价 = 原价 - 原价 ×折扣百分比。

故答案为D。

5. 答案:B。

解析:编码密码需要根据26个字母的顺序进行移位加密。

故答案为B。

第二节填空题6. 答案:250。

解析:由百分数的定义可知,如果一个百分数的百分数部分是整数,那么这个百分数就是这个整数本身,百分数部分为100时表示完整的数值。

故答案为250。

7. 答案:11。

解析:解方程 x + 4 = 15,得 x = 11。

故答案为11。

8. 答案:32。

解析:计算 4 × 8,得 32。

故答案为32。

9. 答案:15。

解析:在等差数列中,等差数列公式为 an = a1 + (n-1)d,其中 a1 为首项,d 为公差,n 为项数,an 为第n项。

故答案为15。

10. 答案:10。

解析:利用圆的周长公式C = 2πr,其中 C 为周长,r 为半径。

故答案为10。

第三节解答题11. 解:根据题意,有 a ÷ b = 2 且 a + b = 13,求 a 和 b 的值。

解法一:利用方程组求解,将 a 和 b 分别表示为 x 和 y,则可以得出以下方程组:x ÷ y = 2x + y = 13根据第一式可得 x = 2y,将其代入第二式得到 2y + y = 13,解得 y = 4,代入第一式可得 x = 8。

故 a = 8,b = 4。

解法二:利用代入法求解,将 a = 2b 代入 a + b = 13,得 2b + b = 13,解得 b = 4,代入 a = 2b 可得 a = 8。

八年级数学上册第二章练习题(附答案)

八年级数学上册第二章练习题(附答案)

2019年八年级数学上册第二章练习题(附答案)初中阶段对于学生们来说也是十分重要的一个时期,对每个学生来说尤为重要,下文为大家准备了八年级数学上册第二章练习题,供大家参考。

一、选择题(每小题3分,共30分)1.(2019?天津中考)估计的值在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.(2019?安徽中考)与1+ 最接近的整数是( )A.4B.3C.2D.13.(2019?南京中考)估计介于( )A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.( 2019?湖北宜昌中考)下列式子没有意义的是( )A. B. C. D.5.(2019?重庆中考)化简的结果是( )A. B. C. D.6. 若a,b为实数,且满足|a-2|+ =0,则b-a的值为( )A.2B.0C.-2D.以上都不对7.若a,b均为正整数,且a>,b>,则a+b的最小值是( )A.3B.4C.5D.68.已知=-1,=1,=0,则abc的值为( )A.0B.-1C.-D.9.(2019?福州中考)若(m?1)2? =0,则m+n的值是( )A.-1B.0C.1D.210. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于( )A.2B.8C.3D.2二、填空题(每小题3分,共24分)11.(2019?南京中考)4的平方根是_________;4的算术平方根是__________.12.(2019?河北中考)若|a|= ,则a=___________.13.已知:若≈1.910,≈6.042,则≈ ,± ≈ .14.绝对值小于π的整数有.15.已知|a-5|+ =0,那么a-b= .16.已知a,b为两个连续的整数,且a>>b,则a+b= .17.(2019?福州中考)计算:( ?1)( ?1)=________.18.(2019?贵州遵义中考) + = .三、解答题(共46分)19.(6分)已知,求的值.20.(6分)若5+ 的小数部分是a,5- 的小数部分是b,求ab+5b 的值.21.(6分)先阅读下面的解题过程,然后再解答:形如的化简,只要我们找到两个数a,b,使,,即,,那么便有:例如:化简:.解:首先把化为,这里,,因为,,即,,所以.根据上述方法化简:.22.(6分)比较大小,并说明理由:(1) 与6;(2) 与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+ 的小数部分是,5- 的整数部分是b,求+b的值.24.(8分)计算:(1) - ;(2) - .25.(8分)阅读下面计算过程:试求:(1) 的值;(2) ( 为正整数)的值;(3) 的值.第二章实数检测题参考答案一、选择题1.C 解析:11介于9和16之间,即9,b>,∴ a的最小值是3,b的最小值是2,则a+b的最小值是5.故选C.8.C 解析:∵ =-1,=1,=0,∴ a=-1,b=1,c= ,∴ abc=- .故选C.9.A 解析:根据偶次方、算术平方根的非负性,由(m?1)2? =0,得m-1=0,n+2=0,解得m=1,n=-2,∴ m+n=1+(-2)=-1. 10.D 解析:由图得64的算术平方根是8,8的算术平方根是2 .故选D.二、填空题11. 2 解析:∵∴ 4的平方根是,4的算术平方根是2.12. 解析:因为,所以,所以13.604.2 ±0.019 1 解析:≈604.2;± =±≈±0.019 1.14.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

浙教版七年级上册第二章复习+练习含答案

浙教版七年级上册第二章复习+练习含答案

第二章复习知识点填空+练习1.生物和非生物的根本区别是能否进行2.最早发现细胞的是3.提出细胞学说的是4.细胞学说的主要内容:5.细胞各结构的作用:细胞壁-- 细胞膜--细胞质-- 细胞核--液泡--含叶绿体--6.植物细胞具有一定形状,树干坚硬是因为7.紫菜放清水里,水不会变色是因为7.番茄在生长过程中,吸收某些无机盐较多,某些无机盐较少,是因为9.龙生龙凤生凤,你长得像你爸妈是因为10.西瓜汁在细胞哪里11.所有的生物都是由细胞构成的?12.有细胞壁的一定是植物细胞?13.有液泡的一定是植物细胞?14.没有叶绿体的一定是动物细胞?18.对光三转:20.注意滴加在载玻片上的液体不同,口腔上皮滴加的目的是为了保持细胞正常形态注意染色剂的不同,都可以用碘液,一个用一个用,目的都是为了便于观察细胞结构24.观察洋葱表皮细胞时的问题与对策细胞有重叠:细胞结构不太清楚:有黑色圆圈:25.细胞分裂的意义:26.在细胞分裂过程中,的变化最明显27.细胞分化形成30.皮肤的结构:表皮由组织构成真皮由组织构成皮下组织由组织构成31.面积最大的器官32.软骨、肌腱属于组织33.盖盖玻片的正确操作:34 视野由1变成2的操作步骤:35.若在调整粗准焦螺旋找物像时观察不到物像37.组织名称主要功能组织名称分布主要功能40.被子植物的生殖器官:被子植物的营养器官:42.分类等级单位越大,生物间共同特征越,亲缘关系越43.鲨鱼、鸡、老鼠、鲸、蝙蝠、变色龙、蝾螈、水母、蚯蚓、蜗牛、蜈蚣、海星、草履虫、分别属于什么动物?44.昆虫的特点:45.被子植物、裸子植物、蕨类植物、苔藓植物、藻类植物具有的器官46.荷花、松柏、胎生狗脊,满江红、地钱、海带分别属于什么植物?47无根、茎、叶分化的植物-----最高等的植物------种类最多的动物----最高等的动物-----凡是生活在水中,用鳍游泳的脊椎动物都是鱼类凡是能飞的脊椎动物都是鸟类凡是能爬行的的脊椎动物都是爬行动物第二章综合练习一、选择题1.下列哪项可以作为区分动物与植物的依据?()①任取一个细胞,观察其是否有细胞壁②任取一个细胞,观察其中是否有叶绿体③是否能对外界刺激作出反应④是否进行呼吸.A只有① B①② C①②③ D③④2.如图是低倍显微镜下观察到的根毛细胞图,则该细胞在载玻片上的放置状况是()3.下图是根据动物特征进行归类的示意图。

数学必修5第二章测试题及答案

数学必修5第二章测试题及答案

数学必修5第二章测试题及答案(共4页)-本页仅作为预览文档封面,使用时请删除本页-第二章:数列 [基础训练A 组]一、选择题1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( )A .11B .12C .13D .142.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项 的和9S 等于( )A .66B .99C .144D .2973.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A .81B .120C .168D .192 4.12+与12-,两数的等比中项是( )A .1B .1-C .1±D .21 5.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项A .2B .4C .6D .86.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列 的前8项之和为( )A .513B .512C .510D .8225 二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。

2.数列{n a }是等差数列,47a =,则7s =_________3.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________. 4.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.5.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅-=___________.三、解答题1. 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。

第二章 习题解答(11.27)

第二章  习题解答(11.27)

练习2.1答案详解一、选择题.1. 以下结论正确的是( ).(A )所有的零矩阵相等; (B ) 零矩阵必定是方阵; (C ) 所有的3阶方阵必是同型矩阵; (D ) 不是同型矩阵也可能相等. 解:(A )零矩阵的阶数可以不同,故(A )不正确;(B ) 按定义,零矩阵是元素全部为零的矩阵,未必是方阵,故(B )不正确; (C) 按定义,若两个矩阵的行数相等,列数也相等,则这两个矩阵同型,故(C )不正确;(D )按定义,不同型的矩阵或者行数不相等,或者列数不相等地,或者两者都不相等,故(D )不正确.故选(C ). 二、填空题.2. 某企业生产3种产品,每种产品在2014年和2015年各季度的产值(单位:万元)如下表:试作矩阵A 和B 分别表示三种产品在2014年和2015年各季度的产量.答案:181215192730263515181413A,161817152530283713201815B . 3. 已知1422y A x -⎫⎛=⎪-⎝⎭,132y B ⎛⎫= ⎪⎝⎭,B A =,则x = ,y = . 解:由定义,两个矩阵相等,当且仅当对应元素相等. 由B A =,得 423y y x -=⎧⎨-=⎩解这两个个方程,得24y x =⎧⎨=⎩.三、问答题.4. 下列矩阵哪些是方阵?哪些是三角矩阵?若是方阵,其主对角元素是什么?102100312A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 314702260001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,135013002C ⎛⎫ ⎪= ⎪ ⎪⎝⎭.答案:A 和C 均为方阵;C 为三角阵,且为三阶上三角矩阵,A 的主对角元素为1,0,2.C 的主对角元素为1,1,2.练习2.2答案详解一、选择题.1. 设矩阵A 为3行5列,矩阵B 为5行4列,矩阵C 为4行6列,则矩阵ABC 为( ).(A) 3行4列; (B) 3行6列; (C) 5行4列; (D) 5行6列. 解:由题设,A 是35⨯矩阵,B 是54⨯矩阵,B 是46⨯矩阵,则由矩阵乘法的定义和运算规律,知AB 是34⨯矩阵,从而()ABC AB C =是36⨯矩阵. 故选(B ). 2. 设三阶矩阵A 的行列式2A =,则2A -= ( ).(A )2-; (B )4-; (C )16-; (D ) 8. 解:由数乘矩阵的定义和行列式的性质,有 332(2)(2)216A A -=-=-⋅=-. 故选(C ).3. 设A 为二阶矩阵,且1-=A ,则A A = ( ).(A ) 0; (B ) 1-; (C ) 1; (D ) 2. 解:由数乘矩阵的定义和行列式的性质,有 233(1)1A A AA A ===-=-.故选(B ).4. 对任意的n 阶方阵A 、B ,总有 ( ).(A )B A B A +=+; (B )T T T B A AB =)(; (C )2222)(B AB A B A +-=-;(D )BA AB =.解:(A )不正确. 例子. 设1000,0001A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,则10000,0,0001A B ====,但100010000101A B ⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且10 1.01A B +== (B )因()TTTAB B A =,故(B )不正确. (C )因矩阵乘法不满足交换律,故2()()()()()A B A B A B A B A A B B-=--=---2222()()A BA BA B A BA AB B =---=--+222A AB B ≠-+.故(C )不正确.(D )因,AB A B BA B A ==,故AB BA =. 所以选(D ).5. 以下结论正确的是( ).(A )若方阵A 的行列式0A =, 则0A =; (B ) 若20A = 则0A =;(C ) 若A 为对称矩阵, 则2A 也是对称矩阵;(D ) 对n 阶矩阵,A B , 有22()()A B A B A B +-=-.解:(A )不正确. 例子, 设1111A ⎛⎫=⎪--⎝⎭,而11011A ==--. (B ) 设122,341αβ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 则2(1,2,4)312(2)34101T αβ⎛⎫⎪=-=⨯+-⨯+⨯= ⎪ ⎪⎝⎭,记22283(1,2,4)361201124T A βα-⎛⎫⎛⎫⎪ ⎪==-=-≠ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 从而 22()()()()00T T T T T T A βαβαβαβαβαβα====⋅⋅=故(B )不正确.(C ) 因A 对称, 故T A A =. 从而222()()T T A A A ==. 故(C )正确. (D ) 因矩阵乘法不满足交换律,故22()()()()()()A B A B A B A A B B A BA AB B +-=+-+=+-+2222A BA AB B A B =+--≠-.故(D )不正确.从而选(C ). 二、填空题.6. 已知⎪⎪⎭⎫⎝⎛=4321A ,⎪⎪⎭⎫⎝⎛=2101B ,则=AB . 答案:⎪⎪⎭⎫⎝⎛8743.7. 若A ,B 为3阶方阵,且2,2A B ==,则2A -= ,1TA B -= .解:由数乘矩阵的定义和行列式的性质,有 332(2)(2)216A A -=-=-⋅=-, 11111212TTT A BA B AB B A ---====⋅=. 8. 设1023A ⎛⎫=⎪-⎝⎭,2111B ⎛⎫= ⎪-⎝⎭,则AB = .解:1021[1(3)][2(1)11]92311AB A B ===⋅-⋅⋅--⋅=--.三、计算题.9. 对§2.1练习题2中的矩阵A 和B ,(1)计算A B 与B A ,并说明其经济意义;(2)计算1()2A B ,并说明其经济意义.解: §2.1练习题2中的矩阵为181215192730263515181413A,161817152530283713201815B .于是人 (1) 343032345260547228383228AB, 262420222242B A,A B 的经济意义表示三种产品2014年和2015年两年各季度的产量的和;B A 的经济意义表示三种产品2015年比2014年各季度产量的增加量. (2)171516171()26302736214191614A B ,其经济意义表示三种产品2014年和2015年两年各季度的平均产量.10. 设⎪⎪⎭⎫⎝⎛-=43110412A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=204131210131B ,用两种方法求()TAB . 解:(1) 13121400121134131402AB ⎛⎫ ⎪-⎛⎫ ⎪= ⎪ ⎪--⎝⎭ ⎪-⎝⎭⎪⎪⎭⎫⎝⎛---=6520876 所以620()75.86TAB ⎛⎫⎪=-- ⎪ ⎪-⎝⎭11. 设()1 1 12A ⎛⎫= ⎪⎝⎭,求(1)A ,(2)nA .解: (1)记11,21αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 则1(1,1)32T βα⎛⎫== ⎪⎝⎭()1111 1222T A αβ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭. (2) ()()()()()()n T n T T T T T n A αβαβαβαβαβαβ==个1()()()()T T TT Tn αβαβαβαβαβ-=个111()()3T n T n n A αβαββααβ---===111322n -⎛⎫= ⎪⎝⎭.12. 设矩阵⎪⎪⎭⎫⎝⎛=4523A ,⎪⎪⎭⎫ ⎝⎛--=3547B .求A ,B ,TA ,AB . 答案:21012=-=A ;12021=-=B ;2==A A T;2==B A AB .练习2.3答案详解一、选择题.1. 设A ,B 均为n 阶可逆矩阵,则下列各式中不正确的是( ).(A )()T T TA B A B +=+;(B ) 111()A B A B ---+=+;(C ) 111()AB B A ---=;(D ) ()T T TAB B A =.答案:B. 2. 设2011A ⎛⎫=⎪-⎝⎭,则*A =( ).(A )1120-⎛⎫ ⎪⎝⎭; (B )1012-⎛⎫ ⎪-⎝⎭; (C ) 2101⎛⎫⎪-⎝⎭; (D ) 1120-⎛⎫⎪⎝⎭. 解:1111(1)(1)1A +=-⋅-=-,1212(1)11A +=-⋅=-, 2121(1)00A +=-⋅=,2222(1)22A +=-⋅=.所以1121*12221012A A A A A -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭. 故选(B ). 3. 设A 为3阶方阵,*A 为A 的伴随阵,A = 3,则*A = ( ).(A )31; (B )3; (C )6; (D )9. 解:1*3139.n A A --===故选(D )4. 设A 为(2)n n ≥阶方阵,且A 的行列式0A a =≠,则*A 等于( ). (A )1a -; (B )a ; (C )1n a -; (D )n a . 解:1*1.n n A A a --==故选(D )二、填空题.5. 设⎪⎪⎪⎭⎫ ⎝⎛=654032001A ,则A = ;=-1*)(A .解:(1)10023018.456A ==(2)因180A =≠|, 故由AA *= A *A =|A |E , 有**11()()A A A A E A A==,所以 *110011()23018456A A A -⎛⎫⎪== ⎪ ⎪⎝⎭. 6. 设234(,,,)A αγγγ=,234(,,,)B βγγγ=,其中234,,,,αβγγγ均为四维列向量,已知4A =,1B =,则||A B += . 解:根据分块矩阵的加法和行列式的性质,得234234234(,,,)(,,,)(,2,2,2)A B αγγγβγγγαβγγγ+=+=+ 332342342342,,,2(,,,,,,)αβγγγαγγγβγγγ=+=+332()2(41)40.A B =+=+= 三、计算题.7. 设⎪⎪⎭⎫ ⎝⎛-=4031A ,求A 的伴随阵*A .解:1111(1)44A +=-⋅=,1212(1)00A +=-⋅=, 2121(1)33A +=-⋅=-,2222(1)(1)1A +=-⋅-=-.所以1121*12224301A A A A A -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭. 8. 判断方阵⎪⎪⎭⎫⎝⎛-=4031A 是否可逆,若可逆,试用伴随矩阵方法求出逆矩阵. 解:因04||≠-=A ,故A 可逆. 由上题结果,*4301A -⎛⎫=⎪-⎝⎭. 所以 1*1A A A -=⎪⎪⎪⎪⎭⎫⎝⎛-=410431.9. 若A为4阶方阵,2=A ,求*123)21(A A --. 解:11**1331313()222222222A A A A A A A A A -*-***-=-=⋅-=⋅- 41*44441311111()()()2.222222A A A A A -***-=-=-=-=-=-⋅= 10.设2阶矩阵⎪⎪⎭⎫ ⎝⎛=1223A ,⎪⎪⎭⎫ ⎝⎛=1110P ,矩阵B 满足关系式 P A PB *=,计算行列式B 的值.解:由已知,32011,12111A P ==-==-,所以21*21(1)1A A--==-=-,对P A PB *=两边取行列式,得*P B A P =,所以**1A P B A P===-.四、证明题.11.设矩阵A 可逆,证明*11()A A A --=.证明:因为**AA A A A E ==,矩阵A 可逆,所以0A ≠,故**A A A A E A A==,又因为11AA-=,所以*11()A A A --=. 12. 设方阵A 满足254A A E O -+=,证明A 及3A E -都可逆,并求1-A 及1(3)A E --.证明:由254A A E O -+=得(5)4A A E E -=-,(5)4A E A E -=-,从而有 (5)4E A AE -=,(5)4E A A E -=,则A 可逆,且11(5)4A E A -=-. 由254A A E O -+=得232620A A A E E --+-=,即(3)2(3)20A A E A E E ----= 或 (3)(3)220A E A A E E ---⋅-= 即(2)(3)20A E A E E ---= 或 (3)(2)20A E A E E ---= 从而(2)(3)2A E A E E --= , (2)(3)2A E A E E --=,则3A E -可逆,且11(3)(2)2A E A E --=-.练习2.4答案详解一、选择题.1. 下列矩阵是初等矩阵的是( ).(A )2011010⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (B )1001100⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (C )1011210⎛⎫⎪⎪0 ⎪ ⎪00⎝⎭; (D )111410⎛⎫ ⎪0- ⎪ ⎪00⎝⎭. 答案:D.本题题有误,应改成1. 下列矩阵不是初等矩阵的是( ).(A )2011010⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (B )1001100⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (C )1011210⎛⎫⎪⎪0 ⎪ ⎪00⎝⎭; (D )111410⎛⎫ ⎪0- ⎪ ⎪00⎝⎭.2. 设矩阵400020003A ⎫⎛⎪ =⎪⎪⎝⎭,则1A -等于( ).(A ) 100310021004⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭;(B ) 100410021003⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (C ) 100310041002⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (D ) 100210031004⎫⎛⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 答案:B. 二、填空题.3. 设11,01A -⎛⎫=⎪⎝⎭则1(2)A -= . 解:1111(1)11A +=-⋅=,1212(1)00A +=-⋅=,2121(1)(1)1A +=-⋅-=,2222(1)1A +=-⋅=.所以1121*12221101A A A A A ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭. 从而 11*11111111122(2).011222102A A A A --⎛⎫⎪⎛⎫====⎪ ⎪⎝⎭⎪ ⎪⎝⎭4. 设123456789A ⎫⎛⎪ =⎪ ⎪⎝⎭,001010100P ⎫⎛⎪ =⎪⎪⎝⎭,100001010Q ⎫⎛⎪ =⎪ ⎪⎝⎭,则100100P AQ = .解:矩阵P 是一个互换第一、三行的初等矩阵,所以它的100次方就意味着将后面的矩阵的第一、三行互换100次;矩阵Q 是一个互换第二、三列的初等矩阵,所以它的100次方就意味着将前面的矩阵的第二、三列互换100次. 所以 100100123456789PAQ A A ⎛⎫ ⎪=== ⎪ ⎪⎝⎭.三、计算题.5. 设21112112144622436979B --⎛⎫⎪-⎪= ⎪--⎪-⎝⎭,将矩阵B 化为行最简阶梯形矩阵,并指出在矩阵变换过程中哪些矩阵是行阶梯形矩阵.解: 1231221112112144622436979r r r B ↔⨯--⎛⎫⎪-⎪=→ ⎪--⎪-⎝⎭111214211122311236979B -⎛⎫⎪-- ⎪= ⎪--⎪-⎝⎭23314122311214022200553603343r r r r r r B ----⎛⎫ ⎪- ⎪→= ⎪--- ⎪--⎝⎭232421235311214011100002600013r r r r r B ⨯+--⎛⎫⎪- ⎪→= ⎪- ⎪-⎝⎭34434211214011100001300000r r r r B ↔--⎛⎫ ⎪-⎪→= ⎪- ⎪⎝⎭1223510104011030001300000r r r r B ---⎛⎫⎪-⎪→= ⎪-⎪⎝⎭其中45,B B 是行阶梯形矩阵,5B 已是行最简形矩阵.6. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1A -.解:⎪⎪⎪⎭⎫ ⎝⎛=100343010122001321),(E A 121323~r r rr --⎪⎪⎪⎭⎫ ⎝⎛------1036200125200013212123~r r r r +-⎪⎪⎪⎭⎫ ⎝⎛--------111100012520011201313225~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------111100563020231001 231()2(1)~r r ⨯-⨯-⎪⎪⎪⎪⎭⎫ ⎝⎛----11110025323010231001,所以A 可逆,且113235322111A --⎛⎫ ⎪ ⎪=-- ⎪ ⎪-⎝⎭. 7. 矩阵X ,使B AX =,其中A 可逆,且⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,253143B ⎛⎫⎪= ⎪⎪⎝⎭.解:解法1 因A 可逆,则AX B =,用1A -左乘上式,有11A AX AB --= ,即有1X A B -=.由题6中已经求出113235322111A --⎛⎫ ⎪ ⎪=-- ⎪ ⎪-⎝⎭,所以113225323533123224313111X A B --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎝⎭. 解法2 ⎪⎪⎪⎭⎫ ⎝⎛--------⎪⎪⎪⎭⎫ ⎝⎛=--1226209152052321~343431312252321),(121323r r rr B A21312322331()225(1)102141003210032~02519~02046~01023001130011300113r r r r r r r r r r ⨯--+--⨯---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭, 可见E A r~,所以1322313X A B -⎛⎫⎪==-- ⎪ ⎪⎝⎭.练习2.5答案详解一、填空题.1. 设矩阵500031021A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A .答案:1005011023⎛⎫ ⎪⎪- ⎪ ⎪- ⎪⎝⎭ 二、计算题.2. 设1000101001001201,1210104111011120A B ⎛⎫⎛⎫⎪⎪-⎪⎪== ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭,求AB . 解:把,A B 分块成12311000101001001201,1210104111011120B E E O A B B B A E ⎛⎫⎛⎫⎪⎪-⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪⎪--⎝⎭⎝⎭, 则1112131010120124331131B E AB A B B A B ⎛⎫⎪-⎛⎫ ⎪==⎪⎪++-⎝⎭ ⎪-⎝⎭. 3. 求矩阵1000120000410020A ⎛⎫⎪- ⎪= ⎪⎪⎝⎭的逆矩阵.解:A 可分块成121000120000410020A O A OA ⎛⎫⎪-⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪⎝⎭,其中11012A ⎛⎫= ⎪-⎝⎭,24120A ⎛⎫= ⎪⎝⎭, 求得11101122A -⎛⎫ ⎪= ⎪⎝⎭,1210212A -⎛⎫⎪= ⎪-⎝⎭,故11000110022100020012A -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪-⎝⎭.练习2.6答案详解一、选择题.1. 已知A 有一个r 阶子式不等于零,则r (A )= ( ). (A) r ; (B) 1r +; (C) r ≤ ; (D) r ≥. 答案:D.2. 设A 是n 阶方阵,若()r A r =,则( ).(A )A 中所有r 阶子式都不为零; (B ) A 中所有r 阶子式都为零; (C )A 中至少有一个1+r 阶子式不为零;(D )A 中至少有一个r 阶子式不为零. 答案:D.3. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=4444333322221111A 的秩()r A =( ). (A)1; (B)2; (C)3; (D)4.解:11111111222200003333000044440000A ⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 所以()1r A =. 故选(A ). 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为 ( ).(A )⎪⎪⎪⎭⎫⎝⎛000000111; (B )⎪⎪⎪⎭⎫ ⎝⎛000110111; (C ) ⎪⎪⎪⎭⎫ ⎝⎛000222111 ; (D ) ⎪⎪⎪⎭⎫ ⎝⎛333222111. 解:两个同型矩阵A 、B 等价的充要条件是:()().r A r B =显然,第二个矩阵的秩为2,而其余矩阵的秩者为1. 故选(B ).5. 设三阶矩阵A 的秩为3,则其伴随矩阵*A 的秩为( ).(A)0; (B)1; (C)2; (D)3. 解:若A 为n 阶矩阵,则*,()()1,()10,()1n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩故本题的*()3r A =,故选(D ). 二、填空题.6. 设矩阵103100030000A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则矩阵A 的秩为 .答案: ()2r A =.7. 设A 为34⨯阶矩阵,秩()2r AB =,且⎪⎪⎪⎭⎫⎝⎛-=102010102B ,则()r A = .解:因为20120101001040201002B ===≠-,所以B 可逆,从而()()2r A r AB ==.三、计算题.8. 求矩阵123235471A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭的秩. 解:易见A 的一个二阶子式121023=-≠,又A 的三阶子式只有A ,且123123235011104710111A =-=--=--,故()2r A =.9. 求矩阵123501211156-⎛⎫ ⎪ ⎪ ⎪-⎝⎭的秩. 解:对A 施行初等行变换,将其化成行阶梯形矩阵123512351235012101210121115601210000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.所以()2r A =.10. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=544744104421311024121A 的秩. 解:对A 施行初等行变换,将其化成行阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=544744104421311024121A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→--3120108182001311024121141342r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→--0008182001311024121342421r r r r ,由于有3个非零行,因此()3r A =.11. 若12421110A λ⎛⎫⎪= ⎪ ⎪⎝⎭,为使矩阵A 的秩最小,求λ.解:12411021014,110021rA λλ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭要使得矩阵A 的秩有最小秩,则219144λλ-=⇒=. 12. 已知矩阵1123223141011523554a A =⎛⎫ ⎪⎪ ⎪⎪⎝⎭的秩为3,求a 的值.解:r 11231123112322314001122001122,10115011120111223554000630000630r a a a a a A a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪------⎪ ⎪ ⎪= ⎪ ⎪ ⎪------ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭所以6302a a -=⇒=当时矩阵的秩为3.13. 设矩阵121231041a A a b ⎛⎫ ⎪=- ⎪ ⎪⎝⎭的秩为2,求,a b .解:12112112123100712207122,410720012a a a A a aa b a b a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭因为矩阵A 的秩为 2,所以10,201,2a b a b --=-=⇒=-=. 四、证明题.14. 设A 是一个n 阶矩阵, 且2A A =, 证明: ()().r A r A E n +-= 证明:因为2A A =,所以()0A A E -=,从而()()r A r A E n +-≤ ① 利用不等式()()()r A B r A r B +≤+,得()()()[()]r A r A E r A r E A +-=+--()()[()()]r A r E A r A E A =+-≥+-()r E n == ②由①、 ②,得()()r A r A E n +-=.第2章 综合练习答案详解一、基本题.1. 设方阵A 满足A A =2,则以下正确的是( ).(A )0=A ;(B) E A =; (C)0=A 或E A =; (D) 以上等式都不成立. 解:因为零因子存在,即由0AB =推不出0A =或0B =. 于是由A A =2得到()0A A E -=,故同样推不出0A =或0A E -=. 从而选取(D ).2. 设A 是p s ⨯矩阵,C 是m n ⨯矩阵,如果TAB C 有意义,则B 是( )矩阵.(A )p n ⨯; (B )p m ⨯; (C )s m ⨯ ; (D )m s ⨯.解:因为A 是p s ⨯矩阵,C 是m n ⨯矩阵,且TAB C 有意义,所以T B 必是s m ⨯矩阵,从而B 是m s ⨯矩阵. 故选(D ).3. 设A 为n 阶可逆矩阵,下列运算中正确的是( ).(A )(2)2T TA A =;(B )11(3)3A A --=;(C )111[(())][()]T T T A A ---=; (D )1()TA A -=.解:根据逆矩阵的性质,正确的选项是(A ).4.设,A B 均为n 阶矩阵,且A 可逆,则下列结论正确的是( ). (A )若0AB ≠,则B 可逆 ; (B )若0AB =,则0B =; (C )若0AB ≠,则B 不可逆; (D )若AB BA =,则B E =.解:(A )不正确. 例子, 1001A ⎛⎫= ⎪⎝⎭,2100B ⎛⎫= ⎪⎝⎭,则21000AB ⎛⎫=≠ ⎪⎝⎭,但2100B ⎛⎫= ⎪⎝⎭不可逆.(C )不正确. 例子, 1001A ⎛⎫= ⎪⎝⎭,2110B ⎛⎫= ⎪⎝⎭,则21010AB ⎛⎫=≠ ⎪⎝⎭,但2110B ⎛⎫= ⎪⎝⎭可逆.(C )不正确. 例子, 2003A ⎛⎫= ⎪⎝⎭,4005B ⎛⎫= ⎪⎝⎭,则AB BA =,但B E ≠.(B )正确. 因为A 可逆,0AB =两边左乘以1A -,得110A AB A --=,即0B =.故选(B ).5. 设3=A ,2=B ,则有( ).(A )23=TAB ; (B ) 23⨯=T AB ; (C ) 23=T AB ; (D ) 32=T AB . 解:32T T AB A B A B ===⨯. 故选(B ).6. 设B A ,均为)2(≥n n 阶方阵,则必有 ( ).(A )||||||B A B A +=+; (B ) BA AB =;(C ) ||||BA AB =; (D ) 111)(---+=+A B B A . 答案:(C ).7. 设,A B 为n 阶方阵,满足22A B =,则必有( ).(A )A B =; (B )A B =-; (C )A B =; (D )22A B =.解:例子. 设1010,0101A B ⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭, 则22A B =,但A B ≠±,A B ≠. 故(A )、(B )、(C )都不正确. 故用排除法,只有(D )正确.事实上,由22A B =两边取行列式,得22A B =,所以22A B =. 故选(D ).8. 设A 是n 阶方阵,k 为常数,则下式中成立的是( ). (A )()A k kA nT= ; (B ) ()TTA k kA 1=; (C )()A k kA T= ; (D ) ()Ak kA T=. 解:因A 是n 阶方阵,k 为常数,所以()T T kA kA =, ().TT T n T n nkA kA k A k A k A ====故选(A ).9. 已知二阶矩阵a b A c d ⎫⎛=⎪⎝⎭的行列式1A =-, 则()1*A -=( ).(A )a b c d --⎫⎛⎪--⎝⎭; (B )a b c d ⎫⎛⎪ ⎝⎭; (C )d b c a -⎫⎛⎪ -⎝⎭; (D )db c a -⎫⎛⎪ -⎝⎭. 解:因为**AA A A A E ==,矩阵A 可逆,所以0A ≠,故**A A A A E A A==,所以*111().1a b a b A A c d c d A ---⎛⎫⎛⎫=== ⎪ ⎪---⎝⎭⎝⎭故选(A ). 10. 设A 为n 阶可逆矩阵,0k ≠为常数,则*()kA =( ). (A ) *kA ; (B ) 1*n k A -; (C )*n k A ; (D ) n k A .解:因A 为n 阶可逆矩阵,0k ≠为常数,所以kA 可逆,且1*1()()kA kA kA-=,从而 *11*1*111()()n n n kA kA kA k A A k A A k A k k A---==⋅=⋅⋅=. 故选(B ).11. 已知02111334A -⎛⎫ ⎪= ⎪ ⎪0⎝⎭,14123130B -⎛⎫⎪=0 ⎪ ⎪-⎝⎭,求2AB BA -及TA B .解:116129352422152211218241134124335871419AB BA ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 0131413113210232651341303228TA B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-0=-- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 12. 计算下列矩阵的乘积.(1)31,2,321;(2)321231;(3)211251034034-⎛⎫-⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪-⎝⎭; (4) 212113512541-⎛⎫⎛⎫⎪⎪-- ⎪⎪⎪⎪⎝⎭⎝⎭;(5) ()111213112321222323132333,,a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭.解:(1)()31,2,321⎛⎫ ⎪ ⎪ ⎪⎝⎭13223110=⨯+⨯+⨯=. (2)()321231⎛⎫ ⎪ ⎪ ⎪⎝⎭313233212223111213⨯⨯⨯⎛⎫ ⎪=⨯⨯⨯ ⎪ ⎪⨯⨯⨯⎝⎭369246123⎛⎫ ⎪= ⎪ ⎪⎝⎭. (3)211251034034-⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭1519103-⎛⎫⎪-⎝⎭. (4)212113512541-⎛⎫⎛⎫ ⎪⎪--= ⎪⎪ ⎪⎪⎝⎭⎝⎭511⎛⎫ ⎪ ⎪ ⎪⎝⎭. (5)111213112312222321323333(,,)a a a x x x x a a a x a a a x ⎛⎫⎛⎫⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭()111122133121222233131232333,,a x a x a x a x a x a x a x a x a x =++++++123x x x ⎛⎫⎪ ⎪ ⎪⎝⎭222111222333121213132323222a x a x a x a x x a x x a x x =+++++.13. 设1*A BA A B E -=-, *222264368A ⎛⎫ ⎪= ⎪ ⎪⎝⎭为A 的伴随矩阵,试求矩阵B .解:1*A BA AB E -=-,在等式两边左乘A ,右乘1A -,得11*11AA BAA AA BA AEA ----=-1B A EBA E -→=-1B A BA E -→=-1B A A B E -→-=()1B A A E E -→-=*1B A A E E A ⎛⎫→⋅-= ⎪ ⎪⎝⎭()*B A E E →-= ()1*B A E -→=-, 而*122254367A E ⎛⎫ ⎪-= ⎪ ⎪⎝⎭,所以()1*1122210301B A E ---⎛⎫⎪=-=- ⎪ ⎪-⎝⎭.14. 设n 阶方阵A 满足2460A A E --=,试证A 及A E +均可逆,并求1A -及1()A E -+.证明:246A A E O --=246A A E ⇒-=(4)6A A E E ⇒-=1[(4)]6A A E E ⇒-= 所以A 可逆,且11(4)6AA E -=-;又246A A E O --=()(5)A E A E E ⇒+-=,所以A E +可逆,且1()5A E A E -+=-.15. 把下列矩阵化为行阶梯形.(1) 310211211344⎛⎫ ⎪-- ⎪⎪-⎝⎭; (2) 321312131370518---⎛⎫⎪-- ⎪ ⎪--⎝⎭. 解:(1) 310211211344⎛⎫⎪-- ⎪⎪-⎝⎭12r r ↔−−−→112131021344--⎛⎫ ⎪ ⎪ ⎪-⎝⎭ 21313r r r r --−−−→112104650465--⎛⎫⎪- ⎪ ⎪-⎝⎭32r r -−−−→ 112104650000---⎛⎫ ⎪⎝⎭; (2) 321322131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭12r r -−−−→134412131370518--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭21312,7r r r r --−−−−−→13441071195021332715------⎛⎫ ⎪⎝⎭323r r -−−−→1344107119500----⎛⎫⎪⎝⎭. 16. 利用初等变换将下列矩阵化为行最简形.(1) 201312240131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭; (2) 23137120243283023743--⎛⎫⎪-- ⎪⎪-⎪-⎝⎭.解:(1) 201312240131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭12r r ↔−−−→122420130131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭212r r -−−−→122404350131-⎛⎫⎪-- ⎪⎪-⎝⎭23r r ↔−−−→122401310435-⎛⎫ ⎪- ⎪ ⎪--⎝⎭324r r +−−−→1224013100159-⎛⎫⎪- ⎪ ⎪-⎝⎭3115r −−−→1224013130015⎛⎫⎪- ⎪- ⎪ ⎪- ⎪⎝⎭122r r -−−−→1086013130015⎛⎫ ⎪- ⎪- ⎪ ⎪- ⎪⎝⎭13238,3,r r r r +-−−−−−→610054010530015⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪- ⎪⎝⎭; (2) 23137120243283023743--⎛⎫⎪--⎪ ⎪-⎪-⎝⎭12r r ↔−−−→12024231373283023743--⎛⎫⎪-- ⎪⎪-⎪-⎝⎭213141232r r r r r r ---−−−→1202401111088912077811--⎛⎫⎪- ⎪ ⎪-⎪-⎝⎭324287r r r r --−−−→12024011110001400014--⎛⎫⎪- ⎪⎪⎪⎝⎭12432r r r r +-−−−→1020201111000140000-⎛⎫ ⎪-⎪ ⎪⎪⎝⎭233(1)r r r -⨯-−−−→10202011030001400000-⎛⎫⎪-⎪⎪ ⎪⎝⎭. 17. 利用初等变换求下列矩阵的逆矩阵.(1) 123134144A ⎛⎫⎪= ⎪ ⎪⎝⎭; (2) 211112310-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 解:(1)123100(,)134010144001A E ⎛⎫⎪= ⎪ ⎪⎝⎭ 2131r r r r --−−−→123100011110021101⎛⎫⎪- ⎪ ⎪-⎝⎭ 322r r -−−−→12310011110001121⎛⎫ ⎪- ⎪ ⎪--⎝⎭23133r r r r ++−−−→120463010011001121-⎛⎫⎪- ⎪ ⎪--⎝⎭122r r -−−−→100441010011001121-⎛⎫ ⎪- ⎪ ⎪--⎝⎭, 所以1441011121A --⎛⎫⎪=- ⎪ ⎪--⎝⎭;(2) 211100112010310001-⎛⎫ ⎪- ⎪ ⎪-⎝⎭12r r ↔−−−→112010211100310001-⎛⎫⎪- ⎪ ⎪-⎝⎭213123r r r r ++−−−→112010015120026031-⎛⎫ ⎪ ⎪⎪⎝⎭12322r rr r --−−−→103110015120004211----⎛⎫ ⎪ ⎪ ⎪---⎝⎭ 13(1)1()4r r --−−−→103110015120111001244⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭132335r r r r --−−−→113100244335010244111001244⎛⎫- ⎪ ⎪ ⎪- ⎪⎪ ⎪-⎪⎝⎭, 所以1211112310--⎛⎫ ⎪-= ⎪ ⎪-⎝⎭21316354211-⎛⎫⎪- ⎪ ⎪-⎝⎭. 18. 求下列矩阵方程的解.(1) 223121*********X ⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭;(2)设110011101A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,且2AX X A =+,求X .(3)021123213231334X ⎛⎫⎛⎫ ⎪-= ⎪ ⎪-⎝⎭ ⎪--⎝⎭; (4)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.解:(1)矩阵方程记为AX B =.11011~1011722312r--⎛⎫ ⎪- ⎪ ⎪⎝⎭21312~r r r r+-110110112604314--⎛⎫ ⎪- ⎪ ⎪-⎝⎭12324~r r r r -+1011701126007728---⎛⎫⎪- ⎪ ⎪⎝⎭22312(,)1101110117A B ⎛⎫⎪=-- ⎪⎪-⎝⎭23(1)7~r r ÷-÷101170112600114---⎛⎫ ⎪--- ⎪ ⎪⎝⎭1323~r r r r ++100030101200014-⎛⎫⎪-- ⎪ ⎪⎝⎭, 所以1031214X A B --⎛⎫⎪==-- ⎪ ⎪⎝⎭.(2)2AX X A =+(2)A E X A ⇒-=,(2,)A E A -=110110011011101101---⎛⎫ ⎪--- ⎪ ⎪---⎝⎭123(1)(1)(1)~r r r ÷-÷-÷-110110011011101101-⎛⎫ ⎪- ⎪ ⎪-⎝⎭3231~r r r r +-110110011011002220-⎛⎫ ⎪- ⎪ ⎪-⎝⎭23123122~r r r r r --÷100011010101001110-⎛⎫⎪- ⎪ ⎪-⎝⎭,所以1011(2)101110X A E A --⎛⎫⎪=-=- ⎪ ⎪-⎝⎭;(3)矩阵方程记为XA B =,可推出TTT A XB . 因为02312(,)2132313431T TA B -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭ 10024~010*******r -⎛⎫⎪- ⎪ ⎪-⎝⎭ ,所以, 124()1714T T TX A B --⎛⎫⎪==- ⎪⎪-⎝⎭,从而1211474X BA ---⎛⎫== ⎪-⎝⎭. (4)对矩阵方程010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭的观察可见,矩阵010100001⎛⎫⎪ ⎪ ⎪⎝⎭是一个互换第一、二行的初等矩阵,其逆矩阵也是它本身,所以用它左乘就意味着将后面的矩阵的第一、二行互换;矩阵100001010⎛⎫⎪⎪ ⎪⎝⎭是一个互换第二、三列的初等矩阵,其逆矩阵也是它本身,所以用它右乘就意味着将前面的矩阵的第二、三列互换. 所以11010143100100201001001120010X ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭201100210143001134120010102--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.解法二:将矩阵方程010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭记为AXB C =,则010100(,)100010001001A E ⎛⎫ ⎪= ⎪ ⎪⎝⎭12~r r ↔100010010100001001⎛⎫ ⎪ ⎪ ⎪⎝⎭,故1010100001A -⎛⎫⎪= ⎪⎪⎝⎭,100100(,)001010010001B E ⎛⎫ ⎪= ⎪ ⎪⎝⎭23~r r ↔100100010001001010⎛⎫ ⎪ ⎪ ⎪⎝⎭,故1100001010B -⎛⎫⎪= ⎪⎪⎝⎭,所以11010143100210100201001134001120010102X A CB ----⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪==-=- ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.19. 设101020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,且2AX E A X +=+,求X .解:2AX E A X +=+2AX X A E ⇒-=-()()()A E X A E A E ⇒-=-+,因001100010~010100001A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故A E -为可逆矩阵,所以1201()()()030102X A E A E A E A E -⎛⎫⎪=--+=+= ⎪ ⎪⎝⎭.二、综合题.20 . 设⎪⎪⎭⎫⎝⎛=1101A ,求所有与A 相乘可换的矩阵.解:显然与A 可交换的矩阵必为二阶方阵,设为X ,并令⎪⎪⎭⎫ ⎝⎛=d cb aX , 又 ⎪⎪⎭⎫ ⎝⎛++=d b c a b a AX , ⎪⎪⎭⎫⎝⎛++=d d c b b a XA ,由可交换条件AXXA ,可得 0b =,d a = (其中c d a ,,为任意常数),即⎪⎪⎭⎫⎝⎛=a c a X 0.21. 设2()35f x x x =-+,2133A -⎛⎫=⎪-⎝⎭,证明:()0f A =.证明:计算得2751512A -⎛⎫=⎪-⎝⎭,则有210217500()35350133151200f A E A A --⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,即()f A O =.22. 设A 为n 阶方阵,证明:(1) 若20A =, 则1()E A E A --=+; (2) 若0kA =, , 则121()k E A E A A A ---=++++.证明:(1)因为2A O =,所以22()()E A E A E A A A E A E O E -+=+--=-=-=,所以1()E A E A --=+;(2)因为kA O =,所以,21()()k E A E A A A --++++2121()()k k k E A A A A A A A --=++++-++++k E A E =-=,所以121()k E A E A A A ---=++++.23. 证明:如果A 为可逆对称阵,则1A -也是对称阵. 证明:因为A 为可逆对称阵,即有11,TA A AAA A E --===, 对第二式取转置,11()()T T T AA A A E --==,即11()()T T T T A A A A E --==,注意到,T A A =上式成为11()()T TA A A A E --== 所以11()TA A --=,即1-A 为对称矩阵. 24. 设矩阵1410,1102P D ---⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,矩阵A 由矩阵方程1P AP D -=确定,求5A . 解:由1P AP D -=,得1A PDP -=,所以5151111151()A PDP PDP PDP PDP PDP PDP PD P -------===51141014110211------⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭14141033110321133⎛⎫ ⎪---⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭-- ⎪⎝⎭ 14112843443313211111233⎛⎫ ⎪-⎛⎫⎛⎫== ⎪ ⎪ ⎪--- ⎪⎝⎭⎝⎭-- ⎪⎝⎭.教材上答案错误,以此为准.25. 已知()111,2,3,1,,23αβ⎛⎫== ⎪⎝⎭,令TA αβ=,求n A (n Z +∈).解:计算:111(1,,)23233T βα⎛⎫ ⎪== ⎪ ⎪⎝⎭,1112311122(1,,)2123333312T A αβ⎛⎫⎪⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭. 所以 ()()()()()()n T n T T T T T n A αβαβαβαβαβαβ==个1()()()()T T T T T n αβαβαβαβαβ-=个111111123233332133312T n n T n n A αβαβ----⎛⎫ ⎪⎪ ⎪==== ⎪⎪ ⎪⎪⎝⎭. 26. 设111222333A ⎛⎫⎪= ⎪ ⎪⎝⎭, 求100A .解:解法一:对矩阵A 的观察可得,11112222(1,1,1)3333A ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若记(1,2,3),α=(1,1,1)β=,则T A αβ=,且1(1,1,1)263T βα⎛⎫ ⎪== ⎪ ⎪⎝⎭, 所以100()()()()()()T n T T T T T A αβαβαβαβαβαβ==100个99()()()()T T T T T αβαβαβαβαβ=个999999991116666222333T T A αβαβ⎛⎫ ⎪==== ⎪ ⎪⎝⎭. 解法二:直接计算,211111166611122222212121262226333333181818333A AA A ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪===== ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭3226666A A A AA A A ===⋅= 432236666A A A AA A A ===⋅= ........................................................... 100999911166222333AA ⎛⎫⎪== ⎪ ⎪⎝⎭.27.设3阶矩阵A,B 满足关系式BA A BA A +=-61,其中⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,求B . 解:BA A BA A +=-61⇒11116A BAA AA BAA ----=+⇒16A B E B -=+⇒16AA B A AB -=+ ⇒6B A AB =+⇒1116A B A AB A A ----= ⇒ 11)(6---=E A B ,()11300200040030,007006A A E --⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭而,()-111002300100020.30011006A E B -⎛⎫ ⎪⎛⎫ ⎪⎪⎪-== ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪⎝⎭则,所以 28. 设A 为3阶矩阵,且1||2A =,求1*(3)2A A --的值. 解:1*3111().24n A A--===11*111(3)22233A A A A A A A-*-**-=-=- 331111116(2)(2).1334272A A *=-=⋅-⋅=- 29. 确定参数λ,使矩阵2112121212λλλ----⎛⎫ ⎪⎪ ⎪⎝⎭的秩最小.解:222211211212103321203224λλλλλλλλ⎛⎫⎛⎫-- ⎪ ⎪-→-- ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭22222112112033033032103(1)(2)1λλλλλλλλλλλλ⎛⎫⎛⎫-- ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪+---+-⎝⎭⎝⎭可见,当1λ=时矩阵的秩最小为2.30. 已知A =⎪⎪⎪⎭⎫ ⎝⎛x x x 111111, 讨论A 的秩.解:211111111110111111011x x x A x x x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭2111101101100(1)(1)00(1)(2)x x x x x x x x x x ⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪⎪ ⎪-+--+⎝⎭⎝⎭所以当3)(21=-≠A r x 时,和; 当2)(2=-=A r x 时,; 当1)(1==A r x 时,.31. 试写出矩阵1001010200130000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的三种分块形式. 解:(1) ⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=210000310020101001O O D E A , 其中100010,001E ⎛⎫ ⎪= ⎪ ⎪⎝⎭12,3D ⎛⎫⎪= ⎪ ⎪⎝⎭1(0,0,0),O =()1120⨯=O ;(2) ()10010102,,00130000A F b ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0321,000100010001b F ; (3) ()12310010102,,,00130000A a a a b ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦, 其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0321,0100,0010,0001321b a a a .。

(完整word版)第二章《有理数及其运算》专项练习共7个专题(含答案),推荐文档

(完整word版)第二章《有理数及其运算》专项练习共7个专题(含答案),推荐文档

第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。

八年级数学上册第二章练习题(附答案)-精选文档

八年级数学上册第二章练习题(附答案)-精选文档

2019年八年级数学上册第二章练习题(附答案)初中阶段对于学生们来说也是十分重要的一个时期,对每个学生来说尤为重要,下文为大家准备了八年级数学上册第二章练习题,供大家参考。

一、选择题(每小题3分,共30分)1.(2019?天津中考)估计的值在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.(2019?安徽中考)与1+ 最接近的整数是( )A.4B.3C.2D.13.(2019?南京中考)估计介于( )A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.( 2019?湖北宜昌中考)下列式子没有意义的是( )A. B. C. D.5.(2019?重庆中考)化简的结果是( )A. B. C. D.6. 若a,b为实数,且满足|a-2|+ =0,则b-a的值为( )A.2B.0C.-2D.以上都不对7.若a,b均为正整数,且a>,b>,则a+b的最小值是( )A.3B.4C.5D.68.已知 =-1, =1, =0,则abc的值为( )A.0B.-1C.-D.9.(2019?福州中考)若(m?1)2? =0,则m+n的值是( )A.-1B.0C.1D.210. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于( )A.2B.8C.3D.2二、填空题(每小题3分,共24分)11.(2019?南京中考)4的平方根是_________;4的算术平方根是__________.12.(2019?河北中考)若|a|= ,则a=___________.13.已知:若≈1.910,≈6.042,则≈ ,± ≈ .14.绝对值小于π的整数有 .15.已知|a-5|+ =0,那么a-b= .16.已知a,b为两个连续的整数,且a>>b,则a+b= .17.(2019?福州中考)计算:( ?1)( ?1)=________.18.(2019?贵州遵义中考) + = .三、解答题(共46分)19.(6分)已知,求的值.20.(6分)若5+ 的小数部分是a,5- 的小数部分是b,求ab+5b的值.21.(6分)先阅读下面的解题过程,然后再解答:形如的化简,只要我们找到两个数a,b,使,,即,,那么便有:例如:化简: .解:首先把化为,这里,,因为,,即,,所以 .根据上述方法化简: .22.(6分)比较大小,并说明理由:(1) 与6;(2) 与 .23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用 -1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+ 的小数部分是,5- 的整数部分是b,求+b的值.24.(8分)计算:(1) - ;(2) - .25.(8分)阅读下面计算过程:试求:(1) 的值;(2) ( 为正整数)的值;(3) 的值.第二章实数检测题参考答案一、选择题1.C 解析:11介于9和16之间,即9,b>,∴ a的最小值是3,b的最小值是2,则a+b的最小值是5.故选C.8.C 解析:∵ =-1, =1, =0,∴ a=-1,b=1,c= ,∴ abc=- .故选C.9.A 解析:根据偶次方、算术平方根的非负性,由(m?1)2? =0,得m-1=0,n+2=0,解得m=1,n=-2,∴ m+n=1+(-2)=-1. 10.D 解析:由图得64的算术平方根是8,8的算术平方根是2 .故选D.二、填空题11. 2 解析:∵ ∴ 4的平方根是,4的算术平方根是2.12. 解析:因为,所以,所以13.604.2 ±0.019 1 解析:≈604.2;± =±≈±0.019 1.14.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.15.8 解析:由|a-5|+ =0,得a=5,b=-3,所以a-b=5-(-3)=8.16.11 解析:∵ a>>b, a,b为两个连续的整数,又0.707,∴ - +1- >-3,∴ 5-2>5- >5-3,∴ 2。

第二章课课练(附答案)

第二章课课练(附答案)

1一、填空题1.如果提高10分表示+10分,那么下降8分表示_______,不升不降用_______表示.2.如果向南走5 km 记为-5 km ,那么向北走10 km 记为_______.3.如果收入2万元用+2万元表示,那么支出3000元,用_______表示.4.某乒乓球比赛用+1表示赢一局,那么输2局用_______表示,不输不赢用_______表示.5.某企业以1996年的利润为标准,2000年增加了10%记为+10%,2001年利润为-5%表示的意义是_______.6.节约用水,如果节约5.6吨水记作+5.6吨,那么浪费3.8吨水,记作_______. 二、选择题1.下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数. A.0 B.1 C.2 D.3 2.下列各数,正数一共有( )-11,0,0.2,3,+71,32,1,-1 A.5个B.6个C.4个D.3个3.在0,21,-51,-8,+10,+19,+3,-3.4中整数的个数是( )A.6B.5C.4D.3 三、判断题1.零上5℃与零下5℃意思一样,都是5℃.( )2.正整数集合与负整数集合并在一起是整数集合. ( )3.若-a 是负数,则a 是正数.( )4.若+a 是正数,则-a 是负数. ( )5.收入-2000元表示支出2000元.( )四、能力拓展题某地气象站测得某天的四个时刻气温分别为:早晨6点为零下3℃,中午12点为零上1℃,下午4点为0℃,晚上12点为零下9℃.1.用正数或负数表示这四个不同时刻的温度.2.早晨6点比晚上12点高多少度.3.下午4点比中午12点低多少度.五、下表是2003年4月19日《信息早报》上有“-”号(读作负)的数来表示,如-1.06;这说明该支股票当天收盘价与昨天的收盘价相比下跌了1.06%;前面带“+”号的说明该支股票与昨天的收盘价比较涨了百分之多少.0表示不涨不跌.你观察一下有哪些股票跌了_______.思考:冰糕要保持不融化需要的温度比0℃高还是低?答:________________.§2.1.1有理数及其运算2一、填空题1.大于-5.1的所有负整数为_____.2._____既不是正数,也不是负数.3.分数有_____,_____.4.珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____.5.请写出3个大于-1的负分数_____.6.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.7.某县外贸局一年出口总额人民币1300万元,表示为+1300万.进口某种原料350万应表示为_____.8.在“学雷锋活动月”活动中,甲乙两组同学上街清扫街道,它们分别在街道的两端同时相向开始打扫,街道总长1200米,两组会合时甲组向南清扫了500米,记作+500米,则乙组向北清扫了_____米,应记作_____. 9.某下岗职工购进一批苹果,第一天盈利17元,记作+17元,第二天亏损6元应记作_____. 二、选择题10.下列各数中,大于-21小于21的负数是( ) A.-32B.-31 C.31 D.011.负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数12.关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 13.非负数是( )A.正数B.零C.正数和零D.自然数 14.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A.文具店 B.玩具店C.文具店西40米处D.玩具店西60米处 三、解答题15.下面是具有相反意义的量,请用箭头标出其对应关系16.某天气预报显示,我国五个地区的最高气温第二天比第一天下降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温17.某人向东走了4千米记作+4千米,那么-2千米表示什么?18.某同学语、数、外三科的成绩,高出平均分是什么?19.某公司今年第一季度收入与支出情况如表支出各多少万元?(2)如果收入用正数表示,则总收入与总支出应如何表示?(3)该公司第一季度利润为多少万元?§2.1.2有理数及其运算同学们都会读温度计吧?同温度计类似,可以在一条直线上画出刻度标上数,用直线上的点表示有理数.定义:画一条水平直线,在直线上取一点,表示0(叫做原点)选取某一长度为单位长度,规定直线上向右的方向为正方向,就得到一条数轴,画数轴的具体方法:1.画直线(一般水平方向),标出一点为原点0.2.规定从原点向右的方向为正方向,那么向左方为负方向.3.选择适当的长度单位为单位长度.思考:1.原点表示的数是______.2.原点右边的数是_____,左边的数是_____.3.指出数轴上A、B、C、D、E各点分别表示什么数:解:A点表示______,B点表示______,C点表示______,D点表示______,E点表示______.总结:一条正确的数轴,必须要有______,______,______.一、填空题:1.在数轴上,-0.01表示A点,-0.1表示B点,则离原点较近的是_______.2.在所有大于负数的数中最小的数是_______.3.在所有小于正数的数中最大的数是_______.4.在数轴上有一个点,已知离原点的距离是3个单位长度,这个点表示的数为_______.5.已知数轴上的一个点表示的数为3,这个点离开原点的距离一定是_______个单位长度.二、判断题1.-31的相反数是3. ()2.规定了正方向的直线叫数轴. ()3.数轴上表示数0的点叫做原点.()4.如果A、B两点表示两个相邻的整数,那么这两点之间的距离是一个单位长度.()5.如果A、B两点之间的距离是一个单位长度,那么这两点表示的数一定是两个相邻的整数()三、选择题1.每个有理数都可以用数轴上的以下哪项来表示()A.一个点B.线C.单位D.长度2.下列图形中不是数轴的是()3.下列各式中正确的是()A.-3.14<-πB.-121>-1C.3.5>-3.4D.-21<-24.下列说法错误的是()A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数分别是-231与-2,那么-2在右边D.所有的有理数都可以用数轴上的点表示出来四、下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.§2.2.1有理数及其运算34一、填空题1.若数轴规定了向右为正方向,则原点表示的数为______,负数所对应的点在原点的______,正数所表示的点在原点的______.2.在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____.3.两个负数较大的数所对应的点离原点较____.4.在数轴上距离原点为2的点所对应的数为_____,它们互为_____.5.数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____.6.数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____.7.一个数与它的相反数之和等于_____. 8.比较大于(填写“>”或“<”号) (1)-2.1_____1 (2)-3.2_____-4.3 (3)-21_____-31(4)-41 _____09.相反数是它本身的数为_____. 二、选择题10.下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间11.关于相反数的叙述错误的是( ) A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零12.如果点A 、B 、C 、D 所对应的数为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系为( )A.a <c <d <bB.b <d <a <cC.b <d <c <aD.d <b <c <a 13.下列表示数轴的图形中正确的是( )14.若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 三、解答题15.写出大于-4.1小于2.5的所有整数,并把它们在数轴上表示出来.16.请指出下列各数的相反数,并把它们在数轴上表示出来3,21,0,-22117.已知a 是最小的正整数,b 的相反数还是它本身,c 比最大的负整数大3,计算(2a +3c )²b 的值.§2.2.2有理数及其运算5在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,25,-4观察以上各数在数轴上的位置,回答: 距原点一个单位长度的数是________距原点2个单位长度的数是_______和________距原点25个单位长度._____和______距原点4个单位长度距原点最近的是________.像1,2,25,4,0分别是±1,±2,±25,±4,0的绝对值.在数轴上,一个数所对应的点与原点的距离叫该数的绝对值.如:+2的绝对值是2,记作|+2|=2 -2的绝对值是2,记作|-2|=2因此绝对值是2的数有_____个,它们是_____,绝对值是101的数有_____个,它们是_____,那么0的绝对值记作| |=_____,-100的绝对值是_____,记作| |=_____.思考:一个数的绝对值能是负数吗?一、填空题1.一个数a 与原点的距离叫做该数的_______.2.-|-76|=_______,-(-76)=_______,-|+31|=_______,-(+31)=_______, +|-(21)| =_______,+(-21)=_______. 3.____的倒数是它本身,___的绝对值是它本身. 4.a +b =0,则a 与b _______.5.若|x |=51,则x 的相反数是_______.6.若|m -1|=m -1,则m ___1.若|m -1|>m -1,则m ___1.若|x |=|-4|,则x =____. 若|-x |=|21|,则x =______. 二、选择题1.|x |=2,则这个数是( ) A.2 B.2和-2 C.-2 D.以上都错2.|21a |=-21a ,则a 一定是( ) A.负数 B.正数 C.非正数 D.非负数3.一个数在数轴上对应点到原点的距离为m ,则这个数为( )A.-mB.mC.±mD.2m4.如果一个数的绝对值等于这个数的相反数,那么这个数是( )A.正数B.负数C.正数、零D.负数、零 5.下列说法中,正确的是( ) A.一个有理数的绝对值不小于它自身 B.若两个有理数的绝对值相等,则这两个数相等 C.若两个有理数的绝对值相等,则这两个数互为相反数D.-a 的绝对值等于a 三、判断题1.若两个数的绝对值相等,则这两个数也相等.( )2.若两个数相等,则这两个数的绝对值也相等( )3.若x <y <0,则|x |<|y |. ( ) 四、解答题1.若|x -2|+|y +3|+|z -5|=0计算: (1)x ,y ,z 的值.(2)求|x |+|y |+|z |的值. 2.若xx =1,求x . 若xx =-1,求x .§2.3.1有理数及其运算6一、填空题1.互为相反数的两个数的绝对值_____.2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.3.-32的绝对值是_____. 4.绝对值最小的数是_____.5.绝对值等于5的数是_____,它们互为_____.6.若b <0且a =|b |,则a 与b 的关系是______.7.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).8.如果|a |>a ,那么a 是_____.9.绝对值大于2.5小于7.2的所有负整数为____. 10.将下列各数由小到大排列顺序是_____.-32,51 ,|-21|,0,|-5.1| 11.如果-|a |=|a |,那么a =_____.12.已知|a |+|b |+|c |=0,则a =____,b =__,c =____. 13.比较大小(填写“>”或“<”号) (1)-53___|-21| (2)|-51|____0 (3)|-56|____|-34| (4)-79____-56 14.计算(1)|-2|³(-2)=____ (2)|-21|³5.2=____ (3)|-21|-21=____(4)-3-|-5.3|=____ 二、选择题15.任何一个有理数的绝对值一定( ) A.大于0 B.小于0 .不大于0 D.不小于0 16.若a >0,b <0,且|a |<|b |,则a +b 一定是( )A.正数B.负数C.非负数D.非正数17.下列说法正确的是( )A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数18.下列结论正确的是( )A.若|x |=|y |,则x =-yB.若x =-y ,则|x |=|y |C.若|a |<|b |,则a <bD.若a <b ,则|a |<|b | 三、解答题19.“南辕北辙” 这个成语讲的是我国古代某人要去南方,却向北走了起来,有人预言他无法到达目的地,他却说:“我的马很快,车的质量也很好”,请问他能到达目的地吗?“马很快,车质量好”会出现什么结果,用绝对值的知识加以说明.20.某班举办“迎七一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最低分多少?21.把-3.5、|-2|、-1.5、|0|、331、|-3.5|记在数轴上,并按从小到大的顺序排列出来.§2.3.2有理数及其运算7一、填空题1.m +0=_____,-m +0=______,-m +m =_______.2.16+(-8)=______,(-21)+(-31)=______. 3.若a =-b ,则a +b =_______.4.若|a |=2,|b |=5,则|a +b |=_______.5.用算式表示:温度-10℃上升了3℃达到___. 二、判断题1.若a >0,b <0,则a +b >0. ( )2.若a +b <0,则a ,b 两数可能有一个正数.( )3.若x +y =0,则|x |=|y |. ( )4.有理数中所有的奇数之和大于0.( )5.两个数的和一定大于其中一个加数.( ) 三、选择题1.有理数a ,b 在数轴上对应位置如图所示,则a +b 的值为( ) A.大于0 B.小于0 C.等于0 D.大于a2.下列结论不正确的是( ) A.若a >0,b >0,则a +b >0 B.若a <0,b <0,则a +b <0C.若a >0,b <0,则|a |>|b |,则a +b >0D.若a <0,b >0,且|a |>|b |,则a +b >03.一个数大于另一个数的绝对值,则这两个数的和是( )A.负数B.正数C.非负数D.非正数 4.如果两个数的和为正数,那么( )A.这两个加数都是正数B.一个数为正,另一个为0C.两个数一正一负,且正数绝对值大D.必属于上面三种之一 四、解答题一辆货车从货场A 出发,向东走了2千米到达批发部B ,继续向东走1.5千米到达商场C ,又向西走了5.5千米到达超市D ,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A ,批发部B ,商场C ,超市D 的位置. (2)超市D 距货场A 多远? (3)货车一共行驶了多少千米?五、长江足球队近六年与黄河队比赛如下表:表1 长江足球队成绩x 个球.用0表示平局.请您帮忙计算一下以上六年合计分别是多少?1997年:________ 1998年:________ 1999年:________ 2000年:________ 2001年:________ 2002年:________ 六年净胜球总计:_________.思考:以上结果你是如何得出的? (1)同号两数如何相加? (2)异号两数如何相加?(3)一个数与零相加和是多少?参考例题[例1]仓库内原存粮食4000千克,一周内存入和取出情况如下(存入为正,单位:千克): 2000,-1500,-300,600,500,-1600,-200 问第7天末仓库内还存有粮食多少千克?解:2000+(-1500)+(-300)+600+500+(-1600)+(-200)=2000+600+[(-1500)+(-1600)]+[(-300)+500+(-200)]=2600+(-3100)=-500(千克)材4000+(-500)=3500(千克) 答:第7天末仓库内还存有粮食3500千克. [例2]从一批货物中抽取20袋,称得它们的重量如下:(单位:千克)122,121,119,118,122,123,120,118,124,122,119,121,124,117,119,123,124,122,118,116.计算这批货物的总重量和每袋的平均重量. (答案:2412千克 120.6千克.)§2.4有理数及其运算8一、填空题1、1-0=_____,0-1=_____,0-(-2)=_____.2、a -_______=0,-b -_______=0.3、( )-(-10)=20,-8-( )=-15.4、比-6小-3的数是_______. 5.、-172比171小_______. 6.两个正数之和为_____,两个负数之和为_____,一个数同0相加得_____.7.某地傍晚气温为-2℃,到夜晚下降了5℃,则夜晚的气温为_____,第二天中午上升了10℃,则此时温度为_____.8.已知一个数是-2,另一个数比-2的相反数小3,则这两个数和的绝对值为_____. 二、选择题1.若x -y =0,则( )A.x =0B.y =0C.x =yD.x =-y 2.若|x |-|y |=0,则( )A.x =yB.x =-yC.x =y =0D.x =y 或x =-y 3.-(-21-31)的相反数是( ) A.-21-31 B.-21+31 C.21-31 D. 21+314.下列结论不正确的是( ) A.两个正数之和必为正数B.两数之和为正,则至少有一个数为正C.两数之和不一定大于某个加数D.两数之和为负,则这两个数均为负数 5.下列计算用的加法运算律是( )-32+3.2-32+7.8=-31+(-32)+3.2+7.8 =-(31+32)+3.2+7.8=-1+11=10 A.交换律 B.结合律C.先用交换律,再用结合律D.先用结合律,再用交换律6.若两个数绝对值之差为0,则这两个数( )A.相等B.互为相反数C.两数均为0D.相等或互为相反数 7.-[0.5-31-(61+2.5-0.3)]等于( ) A.2.2 B.-3.2 C.-2.2 D.3.2 三、判断题1.1-a 一定小于1. ( )2.若对于有理数a ,b ,有a +b =0,则a =0,b =0( )3.两个数的和一定大于每一个加数.( )4.a >0,b <0,则a -b >a +b . ( )5.若|x |=|y |,则x -y =0. ( ) 四、解答题1.两个加数的和是-10,其中一个加数是-1021,则另一个加数是多少?2.某地去年最高气温曾达到36.5℃,而冬季最低气温为-20.5℃,该地去年最高气温比最低气温高多少度?3.已知a =-83,b =-41,c =41,求代数式a -b -c 的值.4.一个数的相反数的绝对值等于这个数的绝对值的相反数,问这个数是多少?5.弘文中学定于十一月份举行运动会,组委会在整修百米跑道时,工作人员从A 处开工,约定向东为正,向西为负,从开工处A 到收工处B 所走的路线(单位:米),分别为+10、-3、+4、-2、+13、-8、-7、-5、-2,工作人员整修跑道共走了多少路程?§2.5有理数及其运算一、计算题1、+3-(-7)=_______.2、(-32)-(+19)=_______.3、-7-(-21)=_______.4、(-38)-(-24)-(+65)=_______.二、填空题1、-4-_______=23.2、36℃比24℃高_ __℃,19℃比-5℃高__ _℃.3、A、B、C三点相对于海平面分别是-13米、-7米、-20米,那么最高的地方比最低的地方高_______米.4、冬季的某一天,甲地最低温度是-15℃,乙地最低温度是15℃,甲地比乙地低___ ____℃.三、已知:a=-2,b=20,c=-3,且a-(-b)+c-d=10,求d的值.四、有十箱梨,每箱质量如下:(单位:千克)51,53,46,49,52,45,47,50,53,48你能较快算出它们的总质量吗?列式计算.五、某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实际每月生产量与计划量相比情况如下表(增加多生产多少辆?2.半年内总生产量是多少?比计划多了还是少了,增或减多少?六、计算:(1)23-17-(-7)+(-16) (2)32+(-51)-1+31(3)(-26.54)+(-6.4)-18.54+6.4(4)(-487)-(-521)+(-441)-381(5)0+1-[(-1)-(-73)-(+5)-(-74)]+|-4|七、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?3.10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7.5,-3,5,-8,3.5,4.5,8,-1.5这10名学生的总体重为多少?10名学生的平均体重为多少?§2.6有理数及其运算910一、填空题1.23-|-6|-(+23)=_______.2.-7+4-(-2)=_______.3.把(+2)+(-5)-(+3)-(-1)写成省略括号的和的形式是_______.4.-5减去-3的相反数得_______.5.小明从家里出发向东行驶2千米,记作+2千米,再向西行驶3千米,记作-3千米,实际结果是_______.6.已知:a =11,b =-12,c =-5 计算:(1)a +b +c =_____(2)a -b +c =_____ (3)a -(b +c )=_____(4)b -(a -c )=_____7.某次考试初一年级数学平均分为73分,其中最高分高出平均分25分,最低分比平均分低24分,请问最高分比最低分高_____分.8.某地上午气温为5℃,中午气温上升7℃,晚上又下降了16℃,则晚上的气温为______. 二、选择题1.若m <0,则m 与它的5倍的相反数的差为( )A.4mB.-4mC.6mD.-6m 2.在有理数中,绝对值等于它本身的数有( )A.一个B.无数个C.三个D.两个 3.|x |=1,则x 与-3的差为( )A.4B.-2C.4或2D.2 4.与a +b -c 的值相等的是( ) A.a -(-b )-(-c ) B.a -(-b )-(+c ) C.a +(-b )-c D.a +(c -b )5.如果一个整数加4为正,加2为负,那么这个数与-2的和为( )A.-4B.-5C.5D.4 6.下面等式错误的是( )A.21-31-51=21-(31+51)B.-5+2+4=4-(5+2)C.(+3)-(-2)+(-1)=3+2-1D.2-3-4=-(-2)-(+3)+(-4) 三、列式计算1.负50,正13,正12,负11的和是多少?2.某水库正常水位是15米,二个月后水位下降了2米,记作-2米,第3个月时下了一场大雨,使水位上升了0.5米,记作+0.5米,求此时水位.3.室内温度是32℃,小明打开空调后,温度下降了6℃,记作-6℃,当关上空调后1小时,空气温度又回升了2℃,记作+2℃,求此时室内温度. 四、下表记录了初一(1)班一个组学生的体重,(2)最重比最轻的重多少千克?五、“学雷锋活动月”活动中,对某小组做好事(2)谁做的好事最多,谁最少? (3)最多的比最少的多多少?§2.7有理数及其运算11一、填空题1.0³(-m )=_______,m ²0=_______.2.(-31)³73=____,(-163)³(-916)=_____. 3.(-5)³(1+51)=_______,x ²x1=_______.4.87³(-103)³0³(1917)=_______. 5.a >0,b <0,则ab _______0. 6.|a +2|=1,则a =_______.7.几个不等于0的有理数相乘,它们的积的符号如何确定_______.8.(-2)³(-2)³(-2)³(-2)的积的符号是__. 二、选择题1.若mn >0,则m ,n ( )A.都为正B.都为负C.同号D.异号 2.已知ab <|ab |,则有( )A.ab <0B.a <b <0C.a >0,b <0D.a <0<b 3.若m 、n 互为相反数,则( )A.mn <0B.mn >0C.mn ≤0D.mn ≥0 4.下列结论正确的是( )A.-31³3=1 B.|-71|³71=-491 C.-1乘以一个数得到这个数的相反数D.几个有理数相乘,同号得正 三、在下图中填上适当的数四、已知|a |=5,|b |=2,ab <0.求:1.3a +2b 的值. 2.ab 的值.解:1.∵|a |=5,∴a =_______ ∵|b |=2,∴b =_______∵ab <0,∴当a =_______时,b =_______, 当a =_______时,b =_______. ∴3a +2b =_______或3a +2b =_______. 2.ab =_______∴3a +2b 的值为_______,ab 的值为_______.五(1)(241343671211-+-)³(-48)(2(-56)³(-32)+(-44)³32六、在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8 ℃,已知山脚的温度是24 ℃,山顶的温度是4 ℃,试求这座山的高度.七.上午6点水箱里的温度是78℃,此后每小时下降4.5℃,求下午2点水箱内的温度.§2.8有理数及其运算122.1.1参考答案一、1.-8 0 2.10 km 3.-0.3万元 4.-2 0 5.减少5% 6.-3.8吨二、1.D 2.A 3.B三、1.³ 2.³ 3.√ 4.√ 5.√四、(1)早晨6点-3℃,中午12点1℃,下午4点0℃,晚上12点-9℃ (2)6° (3)1°五、广电网络 东方明珠 上菱电器 思考:比0℃低 2.1.2答案:一、1.-1,-2,-3,-4,-5 2. 0 3.正分数 负分数 4.-155米 5.-21,-32,-436.-600元7.-350万8.700 -700米9.-6元二、10.B 11.D 12.D 13.C 14.A 三、15.略 16.略17.向西走了2千米 18.分别是语文和外语 19.(1)总收入130万,总支出35万(2)总收入+130万,总支出-35万 (3)95万 2.2.1参考答案思考:1.0 2.正数 负数3.1.5 -0.5 -3 3 -2 总结:原点 正方向 单位长度 一、填空1.-0.01 2.0 3.04.±35.3 二、1.³ 2.³ 3.√ 4.√ 5.³ 三、1.A 2.B 3.C 4.A 四、2.2.2答案一、1. 0 左方 右方 2.A 点 3.近 4.±2 相反数 5.A 、B 、C 6.3 7.0 8.< > < < 9. 0二、10.A 11.C 12.C 13.D 14.B三、15.-4,-3,-2,-1,0,1,2 数轴略16.-3,-21,0,221数轴略17.0 2.3.1参考答案±1;±2;25;-25;+4;-4;0;2;±2;2;±101;0;0;100;-100;100 思考:不可能 一、1.绝对值 2.-76 76 -31 -31 21 -21 3.±1 非负数 4.互为相反数 5.51或--51 6.m ≥1 m <1 x =±4 x =±21二、1.B 2.C 3.C 4.D 5.A 三、1.³ 2.√ 3.³四、1.(1)x=2 y =-3 z=52、x >0 x <0 2.3.2答案一、1.相等 2.近 3.324. 05.±5 相反数6.互为相反数7.>8.负数9.-7,-6,-5,-4,-310.-32,0,51,|-21|,|-5.1| 11.0 12.0 0 0 13.< > < < 14.-4 2.60 -8.3二、15.D 16.B 17.C 18.B 三、19.不能.因为方向相反,“马很快,车的质量很好,只能离目的地越来越远”.20.甲同学分数最高,丁同学分数最低,因为甲同学得分为正,且绝对值最大,所以分数最高,最高分比最低分高80分.21.-3.5,-1.5,|0|,|-2|,331,|-3.5| 2.4参考答案一、1.m -m 0 2.8 -653.04.7或3135.-10℃+3℃二、1.³ 2.√ 3.√ 4.³ 5.³ 三、1.B 2.D 3.B 4.D 四、(1)(2)2 km (3)11 km五、表1第3行依次为:+4,-1,+1,-5,+4,-1 +4 -1 +1 -5 +4 -1六年净胜球总计:2 思考:(1)符号不变,将绝对值相加.(2)取绝对值较大的那个数的符号,再将绝对值相减.(3)还是它本身. 2.5参考答案一、1.1 -1 2 2.a (-b ) 3.10 7 4.-3 5.2736.正数 负数 这个数 7、-7℃ +3℃ 8. 3二、1.C 2.D 3.A 4、 D 5.D 6.D 7.A 三、1.³ 2.³ 3.³ 4.√ 5.³ 四、1、21 2、57℃ 3、-834.0 5、54米 2.6参考答案一、1.10 2.-51 3.14 4.-79 二、1.-27 2.12 24 3.13 4.30 三、5四、50³10+[1+3+(-4)+(-1)+2+(-5)+(-3)+0+3+(-2)]=500+(-6)=494(千克) 五、1.+4-(-5)=92.20³6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121121>120比计划多了1辆. 六、解:(1)原式=23-17+7-16=23+7-17-16=30-33=-3(2)原式=(32+31-1)+(-51)=-51 (3)原式=(-26.54)-18.54+[(-6.4)+6.4]=(-26.54)-18.54=-45.08(4)原式=(-487)+521+(-441)-381=(-487-441-381)+521 =-1241+521=-643 (5)原式=1-[(-1)+73-5+74]+4 =1-[(-1+7473 )-5]+4 =1-(-5)+4=10七、解:1000+1500+(-1200)+1100+(-1700)=1000+1500-1200+1100-1700 =1000+1500+1100-1200-1700 =3600-2900=700(米)因此,这时这架飞机离海平面700米. 八、解:2+3+(-7.5)+(-3)+5+(-8)+3.5+4.5+8+(-1.5)=2+3-7.5-3+5-8+3.5+4.5+8-1.5=2+5+3.5+4.5+3-3-8+8-7.5-1.5=6.因此,10名学生的总体重为: 50³10+6=506(千克)10名学生的平均体重为: 506÷10=50.6(千克) 2.7参考答案 一、1.-6 2.-1 3.2-5-3+1 4.-8 5.-1千米6.(1)-6 (2)18 (3)28 (4)-28 7.49 8.-4℃二、1.C 2.B 3.C 4.B 5.B 6.B 三、1.-36 2.13.5(米) 3.28℃ 四、(1)小天最重 小丽最轻 (2)13 kg 五.(1)小娟15 小青11 小红+1(2)小明最多、小青最少 (3)7件 2.8参考答案 一、1.0 0 2.-71 313.-6 14.05.<6.-1或-37.当负数个数为偶数时,积为正数,当负数个数为奇数时,积为负数. 8.正二、1.C 2.A 3.C 4.C三、四、1.±5 ±2 5 -2 -5 2 11 -112.±10 ±11 -10五、略六、解:根据题意,得这座山的高度为:100³[(24-4)÷0.8]=100³25=2500(米) 七、解:下午2点即为14点78-4.5³(14-6)=78-36=42(℃)因此,下午2时水箱内的温度是42℃.14。

浙教版9年级上册 第二章 解答题(解析版)

浙教版9年级上册 第二章 解答题(解析版)

浙教版9年级上册 第二章 解答题一、金属的化学性质1.(2019九上·天台期中)金属材料与人类的生产和生活密切相关。

请回答:(1)下列用品中,主要利用金属导电性的是 (填字母);A.铂金饰品B.铁锅C.铝导线(2)为了验证铝、铜、银三种金属的活动性顺序,设计了下列四种方案,其中可行的是________(填序号)①将铝、银分别浸入到硫酸铜溶液中;①将银分别浸入到硫酸铝、硫酸铜溶液中;①将铜、银分别浸入到硫酸铝溶液中 ①将铜分别浸入到硫酸铝、硝酸银溶液中。

(3)某钢铁厂每天需消耗4900t 含Fe 2O 376%的赤铁矿石,该厂理论上可日产含Fe98%的生铁的多少?【答案】 (1)C (2)1.4(3)设 理论上可日产含Fe98%的生铁质量为x3CO+ Fe 2O 3=高温2Fe+3CO 2160 1124900t ×76% 98% x160112=4900t×76%98%x x=2660t.【解析】(1)铂金饰品是利用其金属光泽,A 错误;铁锅是利用金属的导热性,B 错误;铝导线是利用铝的导电性,C 正确; 故填:C ;(2) ①将铝、银分别浸入到硫酸铜溶液中,铝能与硫酸铜反应,银不能与硫酸铜反应,可以验证三种金属活动性,正确;①将银分别浸入到硫酸铝、硫酸铜溶液中,银与硫酸铝、硫酸铜溶液都不反应,无法验证铝和铜的活动性,错误;①将铜、银分别浸入到硫酸铝溶液中,铜和银都不发生反应,无法验证铜和银的活动性,错误; ①将铜分别浸入到硫酸铝、硝酸银溶液中,铜能与硝酸银反应,不能与硝酸铝反应,可以证明三种金属的活动性,正确;故填 :①①;(3)设 理论上可日产含Fe98%的生铁质量为x3CO+ Fe 2O 3=高温2Fe+3CO 2160 1124900t ×76% 98% x160112=4900t×76%98%xx=2660t.2.(2019九上·温州期中)国庆70周年阅兵总共有各种飞机160余架,为史上之最!且这些飞机都是我国自主研发、制造的现役主战装备,性能优越!金属铝具有质轻、抗腐蚀性能好等优点,在飞机制造领域具有广泛的用途。

(人教版)七年级数学第二章课后习题与答案

(人教版)七年级数学第二章课后习题与答案

七年级上册 第二章习题 2.1P59 1.列式表示: (1)m 的15倍;(2)n 的151; (3)x 的31的6倍;(4)每件a 元的上衣,降低20%的售价是多少元?(5)一辆汽车的行驶速度是65千米/时,t 小时行驶多少千米?一本英汉词典的销售是65元,n 本英汉字典的售价是多少?(6)苹果每千克p 元,买10千克以上按9折优惠,买15千克应支付多少元? 解:(1)15m; (2)n 151; (3) 2x; (4) 0.8a; (5) 65t,65n; (6) 13.5p .P60 2.列式表示: (1)比a 小3的数;(2)x 的2倍与10的和; (3)x 的三分之二减y 的差; (4)比x 的三分之二小7的数;(5)甲乙两车同时、同地、同向出发。

行驶速度分别是x 千米/时和y 千米/时,3小时后两车相距多少千米?(6)某种苹果的售价是每千克x 元,用面值是50元的人民币购买6千克,应找回会多少钱? 解:(1) a-3; (2) 2x+10 ; (3)y -x 31; (4) 7x 32- ; (5)y x 33-; (6)50-6x;P60 3.填表整数-15ab 224a b5yx 32 43x 2-42242a b b a +-系数次数项数解:整数-15ab 224a b5yx 32 43x 2- 42242a b b a +-系数-15453次数2 43 3 4项数33p60 4.设教室里座位的行数是m ,用式子表示:(1)教室里每行的座位数比行数多6,教室里总共有多少座位? (2)教室里座位的行数是每行座位的32,教室里总共有多少座位? 解:(1) m (m+6):; (2)223m 。

p60 5.三个植树队,第一队植数x 棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42颗,当x 为下列各值时,求三个队共植树多少棵. (1)x=100; (2) x=240 解:三队共植树)(1727422252棵+=++-+x x x x (1) 367棵;(2) 857棵;P 60 6.一块三角尺的形状和尺寸如图所示,如果圆孔的半径是r ,三角尺的厚度是h ,这块三角尺的体积v 是多少?若a=6 cm,r=0.5 cm ,h=0.2 cm.求V 的植(π取3) 解: v=22245.3;r a 21cm V h h =-πp60 7.一种商品每件成本a 元,按成本增加22%定出价格,每件销售多少元?后来因库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解:a+0.22a,(a+0.22a)×0.85,(a+0.22a)×0.85-ap61 8.设n表示人员一个整数,利用含n的式子表示:(1)任意一个数的偶数;(2)任意一个数的奇数.解:(1)2n (2)2n+1p61 9. 3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),总的比赛场数是多少?4个队呢?5个队呢?n各队呢?解:3,6,10,21n)(np61 10.观察下图并填表;梯形个数 1 2 3 4 5 6 ...... n图形周长5a 8a 11a 14a解:17a, 20a, 23a,..., (3n+2)aP61 11,如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1),当n=5,7,11时,S是多少?解:S=3n-3,当n=5,7,11时,S=12,18,30习题 2.2p71 1.计算:(1)2x-10.3x; (2) 3x-x-5x;(3) -b+0.6b-2.6b; (4) m-2n+m-2n;解:(1)2x-10.3x= -8.3x (2) 3x-x-5x=-3x(3) -b+0.6b-2.6b= -3b (4) m-2n+m-2n=2m-22np71 2,计算:(1) 2(4x-0.5); (2)-3(1-x 61); (3) -x+(2x-2)-(3x+5); (4) ).a 3()2a 2(a 32222a a a -+--+ 解:(1) 2(4x-0.5)= 8x-1 (2)-3(1-x 61)=321-x (3)-x+(2x-2)-(3x+5)=-2x-7; (4) ).a 3()2a 2(a 32222a a a -+--+=a 5a 2+p71 3.计算:(1)(5a+4c+7b )+(5c-3b-6a); (2)(8xy-)xy 8()y x 2222+--+y x (3) );21(4)321-x 2(22+--+x x x (4)]2)34(7[x 322x x x ----; 解(1)(5a+4c+7b )+(5c-3b-6a)= -a+4b+9c(2)(8xy-)xy 8()y x 2222+--+y x = -2222x y + (3) )21(4)321-x 2(22+--+x x x = 25x 62--x (4)]2)34(7[x 322x x x ----= 5x 2-3x-3P71 4.先化简下式,再求值:)245(45x -22x x x +-+++)(, 其中x=-2.解:化简得:2x +9x+1 代入x=-2得,-13p71,5.(1)列式表示比a 的5倍大4的数与比a 的2倍小3的数,计算这两个数的和;(2)列式表示比x 的7倍大3的数与比x 的-2倍小5的数,计算这两个数的差.解:(1)5a +4,2a -3,7a +1; (2)7x +3,-2x -5,9x +8.p 71,6.某村小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积的少5公顷。

北师大版数学九年级上册第二章各节练习题含答案

北师大版数学九年级上册第二章各节练习题含答案

第二章一元二次方程2.1认识一元二次方程同步练习题1.下列方程中是关于x的一元二次方程的是()A.x2+1x=0 B.(x-1)2=(x+3)(x-2)+1C.x=x2D.ax2+bx+c=02.方程(m-1)x2+mx+1=0是关于x的一元二次方程,则m的值为( ) A.任何实数 B.m≠0C.m≠1 D.m≠-13.方程2(x+2)+8=3x(x-1)的一般形式为________________,二次项系数是________,一次项系数是________,常数项是________.4.把下列关于x的一元二次方程化为一般形式,并写出它的二次项系数、一次项系数和常数项.(1)3x2=5x-3;(2)(x+2)(x-2)+3x=4.5.设一个奇数为x,与相邻奇数的积为323,所列方程正确的是( )A.x(x+2)=323 B.x(x-2)=323C.x(x+1)=323 D.x(x-2)=323或x(x+2)=3236.(1)一块长方形菜地的面积是150 m2,如果它的长减少 5 m,那么菜地就变成正方形,若设原菜地的长为x m,则可列方程为________________________________________________;(2)已知如图所示的图形的面积为24,根据图中的条件,可列方程为__________________.7.根据下列问题,列出关于x的方程,并将其化为一般形式.(1)正方体的表面积为36,求正方体的边长x;(2)在新春佳节到来之际,九(6)班所有的同学准备送贺卡相互祝贺,所有同学送完后共送了 1 980张,求九(6)班的同学人数x.8.已知长方形宽为x cm,长为2x cm,面积为24 cm2,则x最大不超过( )A.1 B.2 C.3 D.49.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( )x 3.23 3.24 3.25 3.26ax2+bx+c -0.06 -0.02 0.03 0.09A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26 10.已知m是关于x的方程x2-2x-3=0的一个根,则2m2-4m=______.11.已知关于x的一元二次方程(k-1)x2+x+k2-1=0有一个根为0,则k的值为________.12.方程(m-1)xm2+1+2mx-3=0是关于x的一元二次方程,则m的值为( ) A.m=±1 B.m=-1 C.m=1 D.m≠113.若方程(k-1)x2+kx=1是关于x的一元二次方程,则k的取值范围是() A.k≠1 B.k≥0 C.k≥0且k≠1 D.k为任意实数14.根据关于x的一元二次方程x2+px+q=0,列表如下:x 0 0.5 1 1.1 1.2 1.3x2+px+q -15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的一个正数解满足( )A.解的整数部分是0,十分位是 5B.解的整数部分是0,十分位是8C.解的整数部分是1,十分位是 1D.解的整数部分是1,十分位是 215.若关于x的方程x2+(m+1)x+12=0的一个实数根的倒数恰是它本身,则m的值是()A.-52 B.12C.-52或12D.116.已知关于x的方程(m2-4)x2+(m-2)x+4m=0,当m ____________时,它是一元二次方程,当m________时,它是一元一次方程.17.已知关于x的一元二次方程m(x-1)2=-3x2+x的二次项系数与一次项系数互为相反数,则m的值为多少?18. 有这样的题目:把方程12x2-x=2化为一元二次方程的一般形式,并写出它的二次项系数,一次项系数和常数项.现在把上面的题目改编成下面的两个小题,请回答问题:(1)下面式子中是方程12x2-x=2化为一元二次方程的一般形式的是________.(只填写序号)①12x2-x-2=0,②-12x2+x+2=0,③x2-2x=4,④-x2+2x+4=0,⑤3x2-23x-43=0.(2)方程12x2-x=2化为一元二次方程的一般形式后,它的二次项系数,一次项系数和常数项之间具有什么关系?2.1答案:1. C2. C3. 3x2-5x-12=0 3 -5 -124. (1) 一般形式是3x2-5x+3=0,二次项系数是3,一次项系数是-5,常数项是3.(2) 一般形式是x2+3x-8=0,二次项系数是1,一次项系数是3,常数项是-8.5. D6. (1) x(x-5)=150.(2) (x+1)2-1=24.7. (1)6x2=36,一般形式为6x2-36=0.(2)x(x-1)=1 980,一般形式为x2-x-1 980=0.8. D9. C10. 611. -112. B13. C14. C15. C16. ≠±2=-217. 整理方程,得(m+3)x2-(2m+1)x+m=0,由题意,得m+3-(2m+1)=0,解得m=2.18. (1) ①②④⑤(2) 若设它的二次项系数为a(a≠0),则一次项系数为-2a,常数项为-4a.(即满足二次系数∶一次项系数∶常数项=1∶-2∶-4即可)2.2 用配方法求解一元二次方程同步课堂练习1.用配方法解方程3x2-6x+1=0,则方程可变形为( )A.(x-3)2=13B.3(x-1)2=13C.(3x-1)2=1 D.(x-1)2=232.小明同学解方程6x2-x-1=0的简要步骤如下:解:6x2-x-1=0,两边同时除以6第一步x2-16x-16=0,移项第二步x2-16x=16,配方第三步(x-19)2=16+19,两边开方第四步x-19=±518,移项第五步x1=19+106,x2=19-106.上述步骤,发生第一次错误是在( )A.第一步 B.第二步 C.第三步 D.第四步3.用配方法解下列方程时,配方有错误的是( )A.x2-2x-99=0化为(x-1)2=100B.2x2-7x-4=0化为(x-74)2=8116C.x2+8x+9=0化为(x+4)2=25D.3x2-4x-2=0化为(x-23)2=1094.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为( )A.x+b2a2=b2-4ac4a2B.x+b2a2=4ac-b24a2C.x-b2a2=b2-4ac4a2D.x-b2a2=4ac-b24a25.一个一元二次方程的二次项是2x2,它经过配方整理得(x+12)2=1,那么它的一次项和常数项分别是( )A.x,-34B.2x,-12C.2x,-32D.x,-326.若代数式16x2+kxy+4y2是完全平方式,则k的值为( )A.8 B.16 C.-16 D.±167. 若代数式2x2-6x+b可化为2(x-a)2-1,则a+b=________.8.把方程2x2+4x-1=0配方后得(x+m)2=k,则m=________,k=________.9.若代数式2x2-5x与-2x+3的值互为相反数,则x的值为____________.10.三角形两边的长是2和5,第三边的长是方程15x2-75x+2=0的根,则该三角形的周长为________.11.已知a为实数,则代数式2a2-12a+27的最小值为________.12.已知实数m,n满足m-n2=1,则代数式m2+2n2+4m-1的最小值等于_______.13.读诗词解题(通过列方程式),算出周瑜去世时的年龄:大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?14. 用配方法把代数式3x-2x2-2化为a(x+m)2+n的形式,并说明不论x取何值时,这个代数式的值总是负数,并求出当x取何值时,这个代数式的值最大.15. 一个正方形蔬菜园需修整并用篱笆围住.修整蔬菜园的费用是15元/平方米,而购买篱笆材料的费用是30元/米,这两项支出一共为 3 600元.求此正方形蔬菜园的边长.2.2答案:1---6 DCCAC D 7. 58. 1 3 29. 12或310. 1211. 312. 413. 设这个两位数的十位数字为x,则个位数字为(x+3),这个两位数为10x +(x+3),依题意得10x+(x+3)=(x+3)2,解得x1=2,x2=3,∴这个两位数是25或36,又∵周瑜已过而立之年,∴周瑜去世时36岁.14. 3x-2x2-2=-2(x-34)2-78,∵-2(x-34)2≤0,∴-2(x-34)2-78<0,∴不论x取何值时,这个代数式的值总是负数.当x=34时,这个代数式的值最大,最大值为-7 8 .15. 设此正方形蔬菜园的边长为x米,由题意可得15x2+30×4x=3 600,解得x1=12,x2=-20(舍).故此正方形蔬菜园的边长为12米.2.3 用公式法求解一元二次方程基础题知识点1 用求根公式求解一元二次方程1.利用求根公式求方程5x2+12=6x的根时,a、b、c的值分别是( )A.5,12,6 B.5,6,12C.5,-6,12D.5,-6,-122.用公式法解方程3x2+4=12x,下列代入公式正确的是( )A.x=12±122-3×42B.x=-12±122×3×42×3C.x=12±122+3×42D.x=-(-12)±(-12)2-4×3×42×33.解方程:(1)x2+1=3x;(2)3x2+2x+1=0.知识点2 利用根的判别式判定一元二次方程的根的情况4.已知关于x的一元二次方程3x2+4x-5=0,下列说法正确的是( )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定5.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( )A.a<1 B.a>1C.a≤1 D.a≥16.若关于x的一元二次方程x2-3x+m=0有两个相等的实数根,则m=____________.知识点3 方案设计的实际问题7.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( )A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9008.如图,某小区规划在一块长30 m、宽20 m的长方形土地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草,要使每一块花草的面积都为78 m2,那么通道宽应设计成多少米?设通道宽为x m,则由题意列得方程为( )A.(30-x)(20-x)=78B .(30-2x)(20-2x)=78C .(30-2x)(20-x)=6×78D .(30-2x)(20-2x)=6×789.如图,小明家有一块长 1.50 m ,宽1 m 的矩形地毯,为了使地毯美观,小明请来工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍,则花色地毯的宽为____________m.中档题10.一元二次方程x 2+22x -6=0的根是( )A .x 1=x 2= 2B .x 1=0,x 2=-2 2C .x 1=2,x 2=-3 2D .x 1=-2,x 2=3 211.方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围是()A .m>52B .m ≤52且m ≠2C .m ≥3D .m ≤3且m ≠212.在实数范围内定义一种运算“*”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为____________.13.用公式法解方程:(1)(x-1)(1+2x)=2;(2)x2-2x+1=-32x.14.(泰州中考)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.15.(新疆中考)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?综合题16.(淄博中考)关于x的一元二次方程(a-6)x2-8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2-32x-7x2-8x+11的值.2.3参考答案1.C 2.D3.(1)将原方程化为一般形式,得x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=(-3)2-4×1×1=5>0.∴x=-(-3)±52×1.∴x1=3+52,x2=3-52.(2)∵a=3,b=2,c=1,∴b2-4ac=4-4×3×1=-8<0.∴原方程没有实数根.4.B 5.B 6.947.B 8.C 9.0.25 10.C 11.B 12.x1=-1+52,x2=-1-5213.(1)方程化为一般式,得2x2-x-3=0,x=-(-1)±(-1)2-4×2×(-3)2×2,x1=-1,x2=32.(2)方程化为一般式,得x2+22x+1=0,x=-22±(22)2-4×1×12×1,x1=1-2,x2=-2-1.14.(1)∵b2-4ac=(2m)2-4×1×(m2-1)=4>0,∴方程有两个不相等的实数根.(2)将x=3代入原方程,得9+6m+m2-1=0,解得m1=-2,m2=-4. 15.设AB的长度为x米,则BC的长度为(100-4x)米.根据题意,得(100-4x)x =400,解得x1=20,x2=5.则100-4x=20或100-4x=80.∵80>25,∴x2=5舍去.∴AB=20,BC=20.答:羊圈的边长AB,BC分别是20米,20米.16.(1)∵关于x的一元二次方程(a-6)x2-8x+9=0有实根,∴a-6≠0,Δ=(-8)2-4×(a-6)×9≥0.解得a≤709且a≠6.∴a的最大整数值为7.(2)①当a=7时,原一元二次方程变为x2-8x+9=0,∴Δ=(-8)2-4×1×9=28.∴x=-(-8)±282,即x=4±7.∴x1=4+7,x2=4-7.②∵x是一元二次方程x2-8x+9=0的根,∴x2-8x=-9.∴2x2-32x-7x2-8x+11=2x2-32x-7-9+11=2x2-16x+72=2(x2-8x)+72=2×(-9)+72=-292.2.4用因式分解法求解一元二次方程一.选择题(共10小题)1.如果一个等腰三角形的两边长分别为方程x2﹣5x+4=0的两根,则这个等腰三角形的周长为()A.6 B.9 C.6或9 D.以上都不正确2.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或113.解方程(5x﹣1)2=3(5x﹣1)的适当方法是()A.开平方法B.配方法C.公式法D.因式分解法4.若分式的值为0,则x的值为()A.3或﹣2 B.3 C.﹣2 D.﹣3或25.已知x为实数,且满足(x2+x+1)2+2(x2+x+1)﹣3=0,那么x2+x+1的值为()A.1 B.﹣3 C.﹣3或1 D.﹣1或36.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对7.使分式的值等于零的x是()A.6 B.﹣1或6 C.﹣1 D.﹣68.一元二次方程2x(x﹣3)=5(x﹣3)的根为()A.x=B.x=3 C.x1=3,x2=﹣ D.x1=3,x2=9.已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根10.三角形的两边长是3和4,第三边长是方程x2﹣12x+35=0的根,则三角形的周长为()A.12 B.13 C.14 D.12或14二.填空题(共5小题)11.方程3x(x﹣1)=2(x﹣1)的解为.12.若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.13.如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是.14.关于x的一元二次方程(k﹣1)x+6x+8=0的解为.15.对任意实数a,b,若(a2+b2)(a2+b2﹣1)=12,则a2+b2=.三.解答题(共5小题)16.解方程:①2x2﹣4x﹣7=0(配方法);②4x2﹣3x﹣1=0(公式法);③(x+3)(x﹣1)=5;④(3y﹣2)2=(2y﹣3)2.17.解下列方程:(1)9(y+4)2﹣49=0(2)2x2+3=7x(配方法);(3)2x2﹣7x+5=0 (公式法)(4)x2=6x+16(5)2x2﹣7x﹣18=0(6)(2x﹣1)(x+3)=4.18.用适当的方法解下列方程:(1)x2﹣5x﹣6=0;(2)(1﹣x)2﹣1=;(3)8x(x+2)=3x+6;(4).19.阅读下面的例题与解答过程:例.解方程:x2﹣|x|﹣2=0.解:原方程可化为|x|2﹣|x|﹣2=0.设|x|=y,则y2﹣y﹣2=0.解得y1=2,y2=﹣1.当y=2时,|x|=2,∴x=±2;当y=﹣1时,|x|=﹣1,∴无实数解.∴原方程的解是:x1=2,x2=﹣2.在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;(2)x2﹣2x﹣4|x﹣1|+5=0.20.现定义一种新运算:“※”,使得a※b=4ab(1)求4※7的值;(2)求x※x+2※x﹣2※4=0中x的值;(3)不论x是什么数,总有a※x=x,求a的值.用因式分解法求解一元二次方程一.选择题(共10小题)1.(2017?新区一模)如果一个等腰三角形的两边长分别为方程x2﹣5x+4=0的两根,则这个等腰三角形的周长为()A.6 B.9 C.6或9 D.以上都不正确2.(2016?荆门)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或113.(2016秋?兰州期中)解方程(5x﹣1)2=3(5x﹣1)的适当方法是()A.开平方法B.配方法C.公式法D.因式分解法4.(2016秋?利川市校级月考)若分式的值为0,则x的值为()A.3或﹣2 B.3 C.﹣2 D.﹣3或25.(2016春?长兴县月考)已知x为实数,且满足(x2+x+1)2+2(x2+x+1)﹣3=0,那么x2+x+1的值为()A.1 B.﹣3 C.﹣3或1 D.﹣1或36.(2015?安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对7.(2015?东光县校级二模)使分式的值等于零的x是()A.6 B.﹣1或6 C.﹣1 D.﹣68.(2015春?绍兴期末)一元二次方程2x(x﹣3)=5(x﹣3)的根为()A.x=B.x=3 C.x1=3,x2=﹣ D.x1=3,x2=9.(2015春?下城区期末)已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根10.(2013秋?惠安县期中)三角形的两边长是3和4,第三边长是方程x2﹣12x+35=0的根,则三角形的周长为()A.12 B.13 C.14 D.12或14二.填空题(共5小题)11.(2017?德州)方程3x(x﹣1)=2(x﹣1)的解为12.(2016?磴口县校级二模)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2= 13.(2016秋?滨州月考)如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是14.(2015秋?南江县期末)关于x的一元二次方程(k﹣1)x+6x+8=0的解为15.(2015春?婺城区期末)对任意实数a,b,若(a2+b2)(a2+b2﹣1)=12,则a2+b2=三.解答题(共5小题)16.解方程:①2x2﹣4x﹣7=0(配方法);②4x2﹣3x﹣1=0(公式法);③(x+3)(x﹣1)=5;④(3y﹣2)2=(2y﹣3)2.17.解下列方程:(1)9(y+4)2﹣49=0(2)2x2+3=7x(配方法);(3)2x2﹣7x+5=0 (公式法)(4)x2=6x+16(5)2x2﹣7x﹣18=0(6)(2x﹣1)(x+3)=4.18.用适当的方法解下列方程:(1)x2﹣5x﹣6=0;(2)(1﹣x)2﹣1=;(3)8x(x+2)=3x+6;(4).19.(2015春?沙坪坝区期末)阅读下面的例题与解答过程:例.解方程:x2﹣|x|﹣2=0.解:原方程可化为|x|2﹣|x|﹣2=0.设|x|=y,则y2﹣y﹣2=0.解得y1=2,y2=﹣1.当y=2时,|x|=2,∴x=±2;当y=﹣1时,|x|=﹣1,∴无实数解.∴原方程的解是:x1=2,x2=﹣2.在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;(2)x2﹣2x﹣4|x﹣1|+5=0.20.(2015秋?平南县月考)现定义一种新运算:“※”,使得a※b=4ab(1)求4※7的值;(2)求x※x+2※x﹣2※4=0中x的值;(3)不论x是什么数,总有a※x=x,求a的值.用因式分解法求解一元二次方程参考答案与试题解析一.选择题(共10小题)1.B.2.D.3.D.4.A.5.A.6.B.7.A.8.D.9.D.10.A.二.填空题(共5小题)11.1或.12.:6.13.3.14.x1=4,x2=﹣1.15.4.三.解答题(共5小题)16.解:①x2﹣2x=x2﹣2x+1=(x﹣1)2=x﹣1=±∴x1=1+,x2=1﹣.②a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.③方程整理得:x2+2x﹣8=0(x+4)(x﹣2)=0∴x1=﹣4,x2=2.④(3y﹣2+2y﹣3)(3y﹣2﹣2y+3)=0 (5y﹣5)(y+1)=0∴y1=1,y2=﹣1.17.解:(1)方程变形得:(y+4)2=,开方得:y+4=±,解得:y1=﹣,y2=﹣;(2)方程整理得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,开方得:x﹣=±,解得:x1=3,x2=;(3)这里a=2,b=﹣7,c=5,∵△=49﹣40=9,∴x=,解得:x1=2.5,x2=1;(4)方程整理得:x2﹣6x﹣16=0,即(x+2)(x﹣8)=0,解得:x1=﹣2,x2=8;(5)这里a=2,b=﹣7,c=﹣18,∵△=47+144=191,∴x=;(6)方程整理得:2x2+5x﹣7=0,即(2x+7)(x﹣1)=0,解得:x1=﹣3.5,x2=1.18.解:(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x1=6,x2=﹣1.(2)(1﹣x)2﹣1=,(1﹣x)2=+1,(1﹣x)2=,1﹣x=,∴x1=1﹣=﹣,x2=1+=.(3)8x(x+2)=3x+6,8x(x+2)﹣3(x+2)=0,(x+2)(8x﹣3)=0,∴x1=﹣2,x2=.(4).y2﹣5=20,y2=25,y=±5,即y1=5,y2=﹣5.19.解:(1)原方程可化为|x|2﹣2|x|=0,设|x|=y,则y2﹣2y=0.解得y1=0,y2=2.当y=0时,|x|=0,∴x=0;当y=2时,∴x=±2;∴原方程的解是:x1=0,x2=﹣2,x3=2.(2)原方程可化为|x﹣1|2﹣4|x﹣1|+4=0.设|x﹣1|=y,则y2﹣4y+4=0,解得y1=y2=2.即|x﹣1|=2,∴x=﹣1或x=3.∴原方程的解是:x1=﹣1,x2=3.20.解:(1)4※7=4×4×7=112;(2)由新运算的定义可转化为:4x2+8x﹣32=0,解得x1=2,x2=﹣4;(3)∵由新运算的定义得4ax=x,∴(4a﹣1)x=0,∵不论x取和值,等式恒成立,∴4a﹣1=0,即.2.6 应用一元二次方程利润问题与增降率问题同步课时练习题1.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( ) A.(3+x)(4-0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15 D.(x+1)(4-0.5x)=152. 某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为( ) A.8 B.20 C.36 D.183. 某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1964. 股票每天的涨跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x 满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=1095. 制造一种产品,原来每件成本价是500元,销售价为625元,经市场预测,该产品销售价为第一个月降低20%,第二个月比第一个月提高6%,为使两月后的销售利润与原来的销售利润一样,该产品的成本价平均每月应降低( ) A.5% B.10% C.20% D.25%6. 某种文化衫,平均每天销售40件,每件盈利20元,若每件降价1元,则每天可多售出10件.如果每天要盈利 1 080元,每件应降价________元.7.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价为a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不能超过进价的25%,商店计划要赚400元,需要卖出________件商品,每件商品的售价为________元.8. 某市为了更好地吸引外资,决定改善城市容貌,绿化环境.计划用两年时间,将绿地面积增加44%,则这两年平均每年绿地面积的增长率为___________.9. 李先生将10 000元存入银行,一年到期后取出 2 000元购买电脑,余下8 000元及利息又存入银行,如果两次存款的年利率不变,一年到期后本息和是8 925元,则存款的年利率为________.10. 某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y=-x2 10+710x+710,如果把利润看作是销售额减去成本费和广告费,那么当年利润为16万元时,广告费x为________万元.11. 小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了 1 200元,请问她购买了多少件这种服装?12. 在一次“春风行动”捐款活动中,某单位第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?13. 某地2014年为做好“精准扶贫”,投入资金 1 280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金 1 600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前 1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?14. 毕业在即,某商店抓住商机,准备购进一批纪念品.若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进 1 200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利 2 500元,问第二周每个纪念品的销售价格为多少元?15. 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为________万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)答案:1---5 ABCBB6. 2或147. 100 258. 20%9. 5%10. 311. ∵80×10=800元<1 200元,∴小丽买的服装数大于10件.设她购买了x 件这种服装,根据题意,得x[80-2(x-10)]=1 200.解得x1=20,x2=30.∵1 200÷30=40<50,∴x2=30不合题意,舍去.答:她购买了20件这种服装.12. (1)设捐款增长率为x,则10 000·(1+x)2=12 100,解得x1=0.1=10%,x2=-2.1(不合题意,舍去),∴捐款增长率为10%.(2)12 100×(1+10%)=13 310(元),∴第四天该单位能收到13 310元的捐款.13. (1)设该地投入异地安置资金的年平均增长率为x,根据题意,得 1 280(1+x)2=1 280+1 600,解得x1=0.5=50%,x2=-2.5(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%.(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得 1 000×8×400+(a-1 000)×5×400≥5 000 000,解得a≥1 900,答:今年该地至少有 1 900户享受到优先搬迁租房奖励.14. (1)设学生纪念品的成本为x元,根据题意,得50x+10(x+8)=440.解得x=6.∴x+8=6+8=14.答:学生纪念品的成本为6元,教师纪念品的成本为14元.(2)第二周单价降低x元后,这周销售的销量为(400+100x)个,由题意得400×(10-6)+(10-x-6)(400+100x)+(4-6)[1 200-400-(400+100x)]=2 500,整理,得x2-2x+1=0.解得x1=x2=1.则10-1=9(元).答:第二周每个纪念品的销售价格为9元.15. (1)26.8.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为28-[27-0.1(x -1)]=(0.1x+0.9)(万元).当0<x≤10,根据题意得x·(0.1x+0.9)+0.5x =12,整理得x2+14x-120=0,解得x1=-20(不合题意,舍去),x2=6;当x>10时,根据题意得x·(0.1x+0.9)+x=12,整理得x2+19x-120=0,解得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.综上可知,需要售出6部汽车.第二章一元二次方程第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列方程中是关于x的一元二次方程的是( )A.x2+1x2=0 B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=02.已知关于x的方程(4-a)xa2-3a-2-ax-5=0是一元二次方程,则它的一次项系数是( )A.-1 B.1 C.4 D.4或-13.用配方法解一元二次方程x2-6x-10=0时,下列变形正确的是( ) A.(x+3)2=1 B.(x-3)2=1C.(x+3)2=19 D.(x-3)2=194.若2x+1与2x-1互为倒数,则实数x的值为( )A.±12B.±1 C.±22D.± 25.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a<2 B.a>2C.a<2且a≠1 D.a<-26.若关于x的方程x2+2x-3=0与2x+3=1x-a有一个解相同,则a的值为( )A.1 B.1或-3 C.-1 D.-1或37.某品牌服装原价为173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)=1738.已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边的长,则△ABC的周长为( ) A.7 B.10 C.11 D.10或119.若a满足不等式组2a-1≤1,1-a2>2,则关于x的方程(a-2)x2-(2a-1)x+a+12=0的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.以上三种情况都有可能10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0,那么我们称这个方程为“美好”方程.若一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( ) A.方程有两个相等的实数根 B.方程有一根等于0C.方程两根之和等于0 D.方程两根之积等于0请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.在估算一元二次方程x2+12x-15=0的根时,小彬列表如下:x 1 1.1 1.2 1.3x2+12x-15 -2-0.590.842.29由此可估算方程x2+12x-15=0的一个根x的范围是________.12.若(m2+n2)(1-m2-n2)+6=0,则m2+n2的值为________.13.某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克,且10≤x≤18)之间的函数关系如图1所示,该经销商想要每天获得150元的销售利润,销售价应定为多少?列出关于x的方程是__________________.(不需化简和解方程)图114.某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是____________.15.已知x1,x2为方程x2+4x+2=0的两实数根,则x13+14x2+5=________.16.对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:①若a+c=0,则方程ax2+bx+c=0必有实数根;②若b2+4ac<0,则方程ax2+bx+c=0一定有实数根;③若a-b+c=0,则方程ax2+bx+c=0一定有两个不相等的实数根;④若方程ax2+bx+c=0有两个实数根,则方程cx2+bx+a=0一定有两个实数根.其中正确的有________(填序号).三、解答题(共72分)17.(6分)用适当的方法解下列方程:(1)(x+1)(x-2)=x-2;(2)(2x+1)2=x2+2.18.(6分)已知m是方程x2-2x-2=0的根,且m>0,求代数式m2-1m+1的值.19.已知关于x的一元二次方程x(x-2)=x-2①与一元一次方程2x+1=2a-x②.(1)若方程①的一个根是方程②的根,求a的值;(2)若方程②的根不小于方程①两根中的较小根且不大于方程①两根中的较大根,求a的取值范围.20.(8分)已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?21.(10分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为 2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过 3.4亿元?22.(10分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是________吨;(2)若该经销店计划获得9000元的月利润而且尽可能地扩大销售量,则售价应定为每吨多少元?23.(12分)某住宅小区在住宅建设时留下一块1798平方米的矩形空地,准备建一个矩形的露天游泳池,设计图如图2所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其他三侧各保留2米宽的道路及1米宽的绿化带.(1)请你计算出游泳池的长和宽;(2)已知贴1平方米瓷砖需费用50元,若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,共需要费用多少元?图224.(12分)如图3,在矩形ABCD中,AB=6 cm,AD=2 cm,点P以2 cm/s 的速度从顶点A出发沿折线A-B-C向点C运动,同时点Q以1 cm/s的速度从顶点C出发向点D运动,当其中一个动点到达末端停止运动时,另一点也停止运动.(1)问两动点运动几秒后,四边形PBCQ的面积是矩形ABCD面积的4 9;(2)问是否存在某一时刻使得点P与点Q之间的距离为 5 cm.若存在,请求出运动所需的时间;若不存在,请说明理由.图3答案1.C2.B3.D4.C5.C6.C7.C8.D9.C10.C11.1.1<x<1.212.313.(x-10)(-2x+60)=150 [解析] 设y与x之间的函数表达式为y=kx+b,把(10,40),(18,24)代入,得10k+b=40,18k+b=24,解得k=-2,b=60,∴y与x之间的函数表达式为y=-2x+60(10≤x≤18),∴W=(x-10)(-2x+60),当销售利润为150元时,可得(x-10)(-2x+60)=150.14.(3+x)(4-0.5x)=1515.-4316.①②17.解:(1)(x+1)(x-2)-(x-2)=0,(x-2)(x+1-1)=0,x-2=0或x+1-1=0,所以x1=2,x2=0.(2)3x2+4x-1=0,Δ=42-4×3×(-1)=28,x=-4±272±3=-2±73,所以x1=-2+73,x2=-2-73.18.解:x2-2x-2=0,x2-2x=2,x2-2x+1=3,(x-1)2=3,x=±3+1.∵m>0,∴m=3+1.∴m2-1m+1=m-1= 3.19.解:(1)解方程①,得x1=1,x2=2,解方程②,得x=2a-1 3.当2a-13=1时,a=2;当2a-13=2时,a=72.综上所述,a的值是2或7 2 .(2)由题可知,1≤2a-13≤2,解得2≤a≤72.20.解:(1)证明:∵在方程x2-(t-1)x+t-2=0中,Δ=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)设方程的两个根分别为m,n.∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.21.解:(1)设该企业从2015年到2017年利润的年平均增长率为x.L根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2015年到2017年利润的年平均增长率为20%.(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2018年的利润能超过 3.4亿元.22.解:(1)60(2)解法一:设每吨售价下降10x(0<x<16)元.由题意,可列方程(260-100-10x)(45+7.5x)=9000,化简,得x2-10x+24=0,解得x1=4,x2=6.所以当售价定为每吨200元或220元时,该经销店的月利润均为9000元.当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.解法二:设售价定为每吨x元.由题意,可列方程(x-100)(45+260-x10×7.5)=9000.化简,得x2-420x+44000=0,解得x1=200,x2=220.因为要尽可能地扩大销售量,所以售价应定为每吨200元.23.解:(1)设游泳池的宽为x米,则长为2x米.根据题意,得。

七年级数学上册第二章单元测试题及答案

七年级数学上册第二章单元测试题及答案

七年级数学上册第二章单元测试题及答案第二章《有理数及其运算》单元测试卷班级姓名学号得分温馨提示:亲爱的同学们,经过这段时间的学习,相信你已经拥有了许多有理数的知识财富!下面这套试卷是为了展示你在本章的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易言弃,就一定会有出色的表现!一定要沉着应战,细心答题哦!本试卷共120分,用100分钟完成,一、耐心填一填:(每题3分,共30分)1、222的绝对值是,的相反数是的倒数是. 5552、某水库的水位下降1米,记作-1米,那么+1.2米表示.3、数轴上表示有理数-3.5与4.5两点的距离是.〔b 4〕=0,那么〔a b〕4、|a-3|+22003=.5、p是数轴上的一点 4,把p点向左移动3个单位后再向右移1个单位长度,那么p点表示的数是______________。

6、最大的负整数与最小的正整数的和是_________ 。

7、 12003+ 12022= 。

8、假设x、y是两个负数,且x<y,那么|x| |y| 9、假设|a|+a=0,那么a的取值范围是 10、假设|a|+|b|=0,那么a=,b=二、精心选一选:〔每题3分,共24分.请将你的选择答案填在下表中.〕1A 0 B -1 C 1 D 0或11/ 22、绝对值大于或等于1,而小于4的所有的正整数的和是〔〕A 8B 7C 6D 51001013、计算:(-2)+(-2)的是〔〕100100A 2B -1C -2D -2 4、两个负数的和一定是〔〕A 负B 非正数C 非负数D 正数2/ 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章
2.13 在一台单流水线多操作部件的处理机上执行下面的程序,每条指令的取指令、指令译码需要一个时钟周期,MOVE、ADD和MUL操作分别需要2个、3个和4个时钟周期,每个操作都在第一个时钟周期从通用寄存器中读操作数,在最后一个时钟周期把运算结果写到通用寄存器中。

k: MOVE R1,R0 ;R1← (R0)
k+1: MUL R0,R2,R1 ;R0← (R2)×(R1)
k+2: ADD R0,R2,R3 ;R0← (R2)+(R3)
(1)就程序本身而言,可能有哪几种数据相关?
(2)在程序实际执行过程中,哪几种数据相关会引起流水线停顿?
(3)画出指令执行过程的流水线时空图,并计算完成这3条指令共需要多少个时钟周期?
解:(1)就程序本身而言,可能有三种数据相关。

若3条指令顺序流动,则k指令对R1寄存器的写与k+1指令对R1寄存器的读形成的“先写后读”相关。

若3条指令异步流动,则k指令对R0寄存器的读与k+1指令对R0寄存器的写形成的“先读后写”相关,k+2指令对R0寄存器的写与k+1指令对R0寄存器的写形成的“写—写”相关。

(2)在程序实际执行过程中,二种数据相关会引起流水线停顿。

一是“先写后读”相关,k指令对R1的写在程序执行开始后的第四个时钟;k+1指令对R1的读对指令本身是第三个时钟,但k+1指令比k指令晚一个时钟进入流水线,则在程序执行开始后的第四个时钟要读R1。

不能在同一时钟周期内读写同一寄存器,因此k+1指令应推迟一个时钟进入流水线,产生了流水线停顿。

二是“写—写”相关,k+1指令对R0的写对指令本身是第六个时钟,而要求该指令进入流水线应在程序执行开始后的第三个时钟,所以对R0的写是在程序执行开始后的第八个时钟。

k+2指令对R0的写对指令本身是第五个时钟,而k+2指令比k+1指令晚一个时钟进入流水线,则在程序执行开始后的第四个时钟,所以对R0的写是在程序执行开始后的第八个时钟。

不能在同一时钟周期内写写同一寄存器,因此k+2指令应推迟一个时钟进入流水线,产生了流水线停顿。

另外,可分析“先读后写”相关不会产生流水线的停顿。

(3)由题意可认位该指令流水线由六个功能段取指、译码、取数、运一、运二和存数等组成,则程序指令执行过程的流水线时空图如下图所示。

若3条指令顺序流动,共需要9个
存数
运二
运一
取数
译码
取指
0 1 2 3 4 5 6 7 8 9
2.23 有一条5个功能段的线性动态多功能流水线如图所示,其中1→2→3→5功能段组成加法流水线,1→4→5功能段组成乘法流水线,设每个功能段的延迟时间均相等为△t 。


这条流水线计算F=41
()i
i i a b =+∏,画出流水线时空图,并计算流水线的实际吞吐率、加速比
和效率。

解:由于该流水线为动态双功能流水线,计算要求先加后乘,因此应先设置加法功能,连续计算出(a 1+b 1)、(a 2+b 2)、(a 3+b 3)、(a 4+b 4)四个加法后;再设置乘法功能,而且按[(a 1+b 1)×(a 2+b 2)]×[(a 3+b 3)×(a 4+b 4)]顺序做3个乘法。

因此可画出该流水线的时空图如图所示,图
中A=a 1+b 1,B=a 2+b 2,C=a 3+b 3,D=a 4+b 4。

由时空图可以看出,在总共12个△t 的时间内输出7个结果,所以有: TP = n/Tn = 7/12△t
而当用串行方法完成操作时,需要四次加法和三次乘法,完成一次加法需要4△t ,完成一次乘法需要3△t ,完成该运算总共需要时间为:
T 0 = 4×4△t+3×3△t = 25△t 所以 S = T 0/Tn = 2.08
E = 有效时空区面积/全部时空区面积
= (4×4△t+3×3△t)/(5×12△t) = 0.42
2.24 有一条3个功能段的流水线如下图所示,每个功能段的延迟时间均为△t ,但是,功能段S 2的输出要返回到它自己的输入端循环执行一次。

输出
△t △t △t
(1
)如果每隔一个△t 向流水线连续输入任务,这条流水线会发生什么问题?
(2)求这条流水线能够正常工作的实际吞吐率、加速比和效率。

a 1
b 1 a 2 b 2 a 3 b 3 a 4 b 4 A B C D A ·B C ·D 时间
(3)可用什么办法来提高流水线的吞吐率,画出改进后的流水线结构。

解:(1)每个任务在段S 2要反馈循环一次,执行时间为2Δt ,其它各段的执行时间为Δ
t ,因此应按瓶颈段的执行时间2Δt 流入任务,才不会发生冲突现象,否则会发生流水线的阻塞。

(2)若连续输入n 个任务,则流水线的实际吞吐率、加速比和效率分别为: TP = n/(4Δt +2(n –1)Δt )= n/2(n + 1)Δt →1/2Δt
S = 4n Δt/(4Δt +2(n –1)Δt )= 2n/(n + 1)→2
E = 4n Δt/3(4Δt +2(n –1)Δt )= 2n/3(n + 1)→2/3
(3)为提高流水线的吞吐率,可重复设置段S 2,并使两个段S 2串连在一起,从而消除瓶
颈段S 2,而且各段执行时间相等为Δt ,流水线的段数为4。

流水线的结构如下图所示。

△t △t △t △t
2.25 在一个5段的流水线处理机上需经9△t 才能完成一个任务,其预约表为:
(1)写出流水线的初始冲突向量。


2)画出流水线任务调度的状态有向图。

(3)求出流水线的最优调度策略及最小平均延迟时间和流水线的最大吞吐率。

(4)按最优调度策略连续输入8个任务时,流水线的实际吞吐率是多少?
解:(1)根据初始冲突向量的构成方法,对预约表各行中打“×”的拍数求出差值,除去重复的后汇集在一起,即得到延迟禁止表为F ={1,5,6,8}。

由F 可得到初始冲突向量为:
C =(10110001)
(2)根据后继冲突向量的递推规则C j = SHR (k )(C i )∨C 0则可得出所有的后继状态,具体有:
C 0四个后继状态:C 1 =SHR (2)(C 0)∨C 0 C 2 =SHR (3)(C 0)∨C 0C 3 =SHR (4)(C 0)∨C 0C 4 =SHR (7)(C 0)∨C 0 = 10110001=C 0C 1二个后继状态:C 5 =SHR (2)(C 1)∨C 0 = 10111111 C 6 =SHR (7)(C 1)∨C 0 = 10110001=C 0C 2二个后继状态:C 7 =SHR (4)(C 2)∨C 0 = 10111011=C 3C 8 =SHR (7)(C 2)∨C 0 = 10110001=C 0
C 3二个后继状态:C 9 =SHR (3)(C 3)∨C 0 = 10110111=C 2
C 10=SHR (7)(C 3)∨C 0 = 10110001=C 0
C 5一个后继状态:C 11=SHR (7)(C 5)∨C 0 = 10110001=C 0
由后继状态和引起状态转移的时间间隔可得到状态有向图如上图所示。

(3)由状态转移有向图可得到无冲突的任务调度策略及其平均延迟时间,如下表所示。

调度策略平均延迟时间特别地,从C0出发的[3,(4,3)]也是一个(2,2,7)(2+2+7)△t/3 = 3.67△t 任务调度策略,除第一条有向弧外,第二、三条(2,7)(2+7)△t/2 = 4.5△t 有向组成一个环路,该调度策略为(4,3)。

从表(3,4,7)(3+4+7)△t/3 = 4.67△t 中可以得到平均延迟时间最小的调度策略为(4,(3,7)(3+7)△t/2 = 5△t 3),该调度策略则为最优调度策略,相应的最小(4,3,7)(4+3+7)△t/3 = 4.67△t 平均延迟时间为3.5△t,所以流水线的最大吞吐(4,7)(4+7)△t/2 = 5.5△t 率为:
(7) 7△t TP max = 1/(3.5△t)= 0.286/△t
3,(4,3)(4+3)△t/2 = 3.5△t
(4)按最优调度策略[3,(4,3)]连续输入8个任务时,流水线的实际吞吐率为:
TP = 8/[(3 + 4 + 3 + 4 + 3 + 4 + 3 + 9)△t] = 0.24/△t。

相关文档
最新文档