小学奥数第30讲 容斥原理问题(含解题思路)教案资料
小学奥数容斥原理教案
小学奥数容斥原理教案【篇一:四年级奥数讲义:容斥原理(1)】四年级数学讲义奥数:容斥原理(1)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。
2、培养学生的逻辑思维和数学思考能力。
3、培养学生良好的书写习惯。
一、教学衔接二、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=na+nb-nab。
(二)例题精讲 nanb例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
五年级奥数:用例题讲解【容斥问题】的解题方法
五年级奥数:用例题讲解【容斥问题】的解题方法
容斥问题是指在计数时,必须注意没有重复,没有遗漏。
例题
五年级(2)班有45人,其中有35人参加了美术兴趣小组,有21人参加了体育兴趣小组,并且每个人至少参加了一个兴趣小组。
那么,两个兴趣小组都参加的有多少人?
解题方法一
分析
因为:
两个兴趣小组的总人数是:35+21=56(人),五年级(2)班只有45人,就出现了(多出了):56-45=11(人)。
所以:
这个多出的11人就是35和21重叠(重复)的部分。
我们在计算时既不能重复,也不能遗漏。
这个题目里重复的部分(11人)就是两个兴趣小组都参加的人数。
列式
(1)35+21=56(人)
(2)56-45=11(人)
答:两个兴趣小组都参加的有11人
解题方法二
1、我们来看下面的图解法:
2、根据题意以及图解,可以得出:
(1)35+21=56(人)
(2)56-45=11(人)
3、答:两个兴趣小组都参加的人数是11人。
练习题
1、五年级(1)班有46人,参加音乐兴趣小组的有30人,参加舞蹈兴趣小组的有25人,并且每个人至少参加了一个兴趣小组。
你知
道两个小组都参加的有多少人吗?
2、1-500这500个数字中,能被5或7整除的数一共有多少个?
(附练习题答案:第1题9人;第2题157个)。
容斥原理奥数题解题技巧
容斥原理奥数题解题技巧
1. 哎呀呀,对于容斥原理奥数题,一定要搞清楚集合的概念呀!比如说,咱班同学喜欢数学的有一些,喜欢语文的有一些,那既喜欢数学又喜欢语文的不就是交集嘛!就像分糖果,有些糖果是红色的,有些是蓝色的,那红色和蓝色都有的糖果不就是那个交集嘛!
2. 嘿,解题的时候可别马虎!要仔细数清楚包含和不包含的部分哟!好比去果园摘果子,这棵树上摘了几个,那棵树上摘了几个,别把重复摘的也算进去啦!
3. 哇塞,要善于利用画图来帮忙呀!画个图就像给题目穿上了一件清楚的衣服。
比如说统计班级里戴眼镜和不戴眼镜的同学,画个图一目了然,是不是一下子就清楚啦!
4. 注意啦注意啦,千万别漏算呀!就像数星星,一颗一颗都不能少呀!比如算参加比赛的人数,这个项目的,那个项目的,可不能把谁落下啦!
5. 哈哈,遇到复杂的题目别慌张呀!把它拆分成小部分,就像拆礼物一样。
比如说算几个兴趣小组的人数关系,一点点分析,不就容易多啦!
6. 哎哟喂,要记住容斥原理的公式呀,那可是解题的宝贝!就好像钥匙开锁一样,公式就是那把钥匙,能打开难题的锁哟!
7. 咦,有时候可以换个角度思考呀!别死脑筋。
好比找宝藏,这条路不通,咱换条路试试嘛!比如从反面去考虑问题,说不定有惊喜呢!
8. 哇哦,多做几道练习题来巩固呀!就像练功一样,越练越厉害。
比如反复做一些不同的容斥原理题目,那以后遇到啥题都不怕啦!
9. 嘿嘿,和小伙伴一起讨论也很棒呀!说不定他就有好点子呢!就像一起玩游戏,互相帮助才能赢嘛!
10. 记住咯,容斥原理奥数题其实没那么难呀!只要用心,肯定能搞定!就像爬山,一步一步往上爬,总能到达山顶呀!
我的观点结论:容斥原理奥数题只要掌握了这些技巧,多练习多思考,大家都能轻松应对!。
小学奥数教程:容斥原理之数论问题_全国通用(含答案)
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.7-7-4 容斥原理之数论问题在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个? A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=,100520÷=,10035610÷⨯=().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个. 所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=,有33个;B :1~100中7的倍数,1007142÷=,有14个;A B :1~100中3和7的公倍数,即21的倍数,10021416÷=,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43例题精讲【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n 与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。
小学奥数-容斥原理(教师版)
小学奥数-容斥原理(教师版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学奥数-容斥原理(教师版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学奥数-容斥原理(教师版)的全部内容。
容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。
”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有80种鸟类。
狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。
”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有60种兽类。
最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类140种。
”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是139种.”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。
当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。
由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。
容斥原理1如果被计数的事物有A、B两类,那么, A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数-既是A类又是B类的元素个数。
即A∪B = A+B - A∩B容斥原理2如果被计数的事物有A、B、C三类,那么, A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数.即A∪B∪C = A+B+C - A∩B —B∩C —C∩A + A∩B∩C容斥原理1【例1】★一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和.15+12—4=23【小试牛刀】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过。
五年级数学奥数教学课件:容斥原理
在100个外语教师中,懂英语的有75人,懂日语的有 45人,其中必然有既懂英语又懂日语的老师。问:只 懂英语的老师有多少人?
分析与解答
显然,两种语言都懂的人在懂英语的75人中统计 过一次,在懂日语的45人中又统计过一次。因此, 75+45=120人,比100多出的20人就是两种语 言都懂的人数。然后,从懂英语的75人中减去两 种语言都懂的20人,就是只懂英语的人数了: 75-20=55人。
书山有路勤为径
!
分析与解答
两个小组都参加的有25人,因此,至少参 加这两种小组的一个小组的人数是:
84+86-25=144人, 所以,这两个小组都不参加的人数是: 250-144=106人。
实战演练3
1,五年级有250人,其中参加象棋组的有83人,参 加乒乓球组的有86人,这两个小组都参加的有25人。 两个小组都不参加的有多少人?
1,某校的每个学生至少爱体育和文娱中的一种活动。 已知有900人爱好体育活动,有850人爱好文娱活动, 其中260人两种活动都爱好。这个学校共有学生多少 人?
2,某班在一次测验中有26人语文获优,有30人数 学获优,其中语文、数学双优的有12人,另外还有8 人语文、数学均未获优。这个班共有多少人?
搞清数量关系的逻辑关系。有些语言不易表达清楚的关系,用了 适当的图形就显得很直观、很清楚,因而容易进行计算。
五年级96名学生都订了报纸,有64人订了 少年报,有48人订了小学生报。两种报纸
都订的有多少人?
分析与解答
1,一个班的52人都在做语文和数学作业。有32人 做完了语文作业,有35人做完了数学作业。语文、 数学作业都做完的有多少人?
数量关系之容斥问题解题原理及方法
数量关系之容斥问题解题原理及方法一、知识点1、集合与元素:把一类事物的全体放在一起就形成一个集合。
每个集合总是由一些成员组成的,集合的这些成员,叫做这个集合的元素。
如:集合A={0,1,2,3,……,9},其中0,1,2,…9为A的元素。
2、并集:由所有属于集合A或集合B的元素所组成的集合,叫做A,B的并集,记作A ∪B,记号“∪”读作“并”。
A∪B读作“A并B”,用图表示为图中阴影部分表示集合A,B的并集A∪B。
例:已知6的约数集合为A={1,2,3,6},10的约数集合为B={1,2,5,10},则A ∪B={1,2,3,5,6,10}3、交集:A、B两个集合公共的元素,也就是那些既属于A,又属于B的元素,它们组成的集合叫做A和B的交集,记作“A∩B”,读作“A交B”,如图阴影表示:例:已知6的约数集合A={1,2,3,6},10的约数集合B={1,2,5,10},则A∩B={1,2}。
4、容斥原理(包含与排除原理):(用|A|表示集合A中元素的个数,如A={1,2,3},则|A|=3)原理一:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进行:第一步:先求出∣A∣+∣B∣(或者说把A,B的一切元素都“包含”进来,加在一起);第二步:减去∣A∩B∣(即“排除”加了两次的元素)总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣原理二:给定三个集合A,B,C。
要计算A∪B∪C中元素的个数,可以分三步进行:第一步:先求∣A∣+∣B∣+∣C∣;第二步:减去∣A∩B∣,∣B∩C∣,∣C∩A∣;第三步:再加上∣A∩B∩C∣。
即有以下公式:∣A∪B∪C∣=∣A∣+∣B∣+∣C∣-∣A∩B∣-∣B∩C∣- |C∩A|+|A∩B∩C∣二、例题分析:例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。
分析:设A={20以内2的倍数},B={20以内3的倍数},显然,要求计算2或3的倍数个数,即求∣A∪B∣。
实用的计数原理之容斥原理(内含大量实例和详细分析)
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。
例1 、一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。
)容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?分析:仿照例1的分析,你能先说一说吗?例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。
我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。
小学数学奥林匹克辅导小升初专题容斥原理
小学奥林匹克数学辅导-----------容斥原理在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。
在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑.如:A={五(1)班全体同学}.我们称一些事物的全体为一个集合.A ={五(1)班全体同学}就是一个集合。
例1 B={全体自然数}={1,2,3,4,⋯}是一个具体有无限多个元素的集合。
例2 C={在1,2,3,⋯,100中能被3整除的数}=(3,6,9,12,⋯,99}是一个具有有限多个元素的集合。
集合通常用大写的英文字母A、B、C、⋯表示.构成这个集合的事物称为这个集合的元素.如上面例子中五(1)班的每一位同学均是集合A 的一个元素.又如在例1中任何一个自然数都是集合B的元素.像集合B 这种含有无限多个元素的集合称为无限集.像集合C这样含有有限多个元素的集合称为有限集.有限集合所含元素的个数常用符|A| 、| B| |C|、⋯表示。
记号A∪B表示所有属于集合A或属于集合B的元素所组成的集合.就是右边示意图中两个圆所覆盖的部分.集合A∪B叫做集合A与集合B的并集.“∪”读作“并”,“A∪B”读作“A并B”。
例3 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={1,2,3,4,6,8}.元素2、4在集合A、B中都有,在并集中只写一个。
记号A∩B表示所有既属于集合A也属于集合B中的元素的全体.就是上页图中阴影部分所表示的集合.即是由集合A、B的公共元素所组成的集合.它称为集合A、B的交集.符号“∩”读作“交”,“A∩B”读作“A交B”.如例3中的集合A、B,则A∩B={2,4}。
下面再举例介绍补集的概念。
例4 设集合I={1,3,5,7,9},集合A={3,5,7}。
补集(或余集),如右图中阴影部分表示的集合(整个长方形表示集合I).对于两个没有公共元素的集合A和B,显然有|A∪B|=|A|+|B|。
奥数 容斥原理(例题+详解)
容斥原埋在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。
例1、桌上有两张圆纸片A、B.假设圆纸片A的面积为30平方厘米,圆纸片B的面积为20平方厘米.这两张圆纸片重叠部分的面积为10平方厘米.则这两张圆纸片覆盖桌面的面积由容斥原理的公式(1)可以算出为:|A∪B|=30+20-10=40(平方厘米)。
例2、求在1至100的自然数中能被3或7整除的数的个数。
分析解这类问题时首先要知道在一串连续自然数中能被给定整数整除的数的个数规律是:在n个连续自然数中有且仅有一个数能被n整除.根据这个规律我们可以很容易地求出在1至100中能被3整除的数的个数为33个,被7整除的数的个数为14个,而其中被3和7都能整除的数有4个,因而得到解:设A={在1~100的自然数中能被3整除的数},B={在1~100的自然数中能被7整除的数},则A∩B={在1~100的自然数中能被21整除的数}。
∵100÷3=33…1,∴|A|=33。
∵100÷7=14…2,∴|B|=14。
∵100÷21=4…16,∴|A∩B|=4。
由容斥原理的公式(1):|A∪B|=33+14-4=43。
答:在1~100的自然数中能被3或7整除的数有43个。
例3、求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?分析如果在1~100的自然数中去掉5的倍数、6的倍数,剩下的数就既不是5的倍数也不是6的倍数,即问题要求的结果。
解:设A={在1~100的自然数中5的倍数的数},B={在1~100的自然数中6的倍数的数},数.为此先求|A∪B|。
∵100÷50=20,∴|A|=20又∵100÷6=16…4,∴|B|=16∵100÷30=3…10,∴|A∩B|=3,|A∪B|=|A|+|B|-|A∩B|=20+16-3=33。
四年级奥数---容斥原理教案
四年级奥数---容斥原理教案奥数:容斥原理教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。
2、培养学生的逻辑思维和数学思考能力。
3、培养学生良好的书写习惯。
一、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab 。
(二)例题精讲例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有Nab NbNa23人,两题都答对的有15人。
问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
容斥问题的解法
容斥问题的解法
容斥原理是一种用于解决包含多个集合的问题的方法。
它基于布尔代数中的概念,在组合数学和概率论中经常被使用。
容斥定理是这样表述的:对于任意一组集合A1, A2, ..., An,
其容斥原理可以表示如下:
|A1 ∪ A2 ∪ ... ∪ An| = Σ(|Ai|) - Σ(|Ai ∩ Aj|) + Σ(|Ai ∩ Aj ∩ Ak|) - ... + (-1)^(n+1) * |A1 ∩ A2 ∩ ... ∩ An|
其中 |X| 表示集合X的元素个数。
容斥原理的基本思想是通过减去不相关的重复计数来得到正确的计数。
具体步骤如下:
1.计算每个集合Ai的元素个数。
2.计算每对集合Ai ∩ Aj 的元素个数,注意要减去这些重复计数。
3.计算每三个集合Ai ∩ Aj ∩ Ak 的元素个数,注意要加回这些重复计数。
4.依此类推,计算每n个集合Ai ∩ Aj ∩ ... ∩ An 的元素个数,注意要交替加减。
5.最终得到的结果即为所求的集合的元素个数。
例如,假设有两个集合A和B,我们可以使用容斥原理计算它们的并集的元素个数:
|A ∪ B| = |A| + |B| - |A ∩ B|
这就是容斥原理的简单形式,它可以通过直观理解得到。
对于更复杂的问题,容斥原理可以一次应用到多个集合之间的关系上,通过递归的方式得到正确的计数。
奥数容斥问题课件
示例:有五个班级,分别有30人、40人、50人、60人和70人,其中两个班级共有10人既是第一班也是第二班的人,同时是第二班和第三班的人有15人,同时是第二班和第四班的人有20人,同时是第三班和第四班的人有25人,同时是第三班和第五班的人有30人,同时是第四班和第五班的人有35人。求五个班级总共有多少人
进阶练习题在难度上有所提升,需要学生灵活运用容斥原理解决较为复杂的问题,提高解题技巧。
题目4
一个班级有45名学生,每人至少参加一项体育活动。其中,28人参加篮球,30人参加足球。问同时参加两项体育活动的学生有多少人?
题目3
一个班级有35名学生,每人至少参加一项课外活动。其中,18人参加音乐小组,21人参加美术小组。问同时参加两项课外活动的学生有多少人?
奥数容斥问题课件
目录
容斥问题简介容斥问题的基本解法容斥问题的进阶解法容斥问题的实际应用容斥问题的常见题型及解析练习题及答案解析
CONTENTS
容斥问题简介
容斥问题是一种数学问题,涉及到集合和集合之间的关系。它主要考察的是如何正确地理解和处理集合之间的关系,以及如何通过已知的集合信息来推导出未知的集合信息。
题目2:一个班有40名学生,每人至少参加一个运动项目。其中,25人参加篮球,20人参加足球。问同时参加两个运动项目的人数是多少?
答案及解析:通过容斥原理,我们可以得出同时参加两个运动项目的人数为10人。
总结词
提高解题技巧
答案及解析
通过容斥原理,我们可以得出同时参加两项课外活动的学生有9人。
详细描述
详细描述:对于n个集合,它们的并集的元素数量可以通过以下公式计算:|A∪B∪C...∪n| = Σ(i=1 to n) |Ai| - Σ(i=2 to n) Σ(j=i+1 to n) |Ai∩Aj| + Σ(i=3 to n) Σ(j=i+1 to n) Σ(k=i+1 to n) |Ai∩Aj∩Ak| - ... + (-1)^(n-1) * Σ(i=n to 2) Σ(j=i+1 to n) ... Σ(k=i+1 to n) |Ai∩Aj∩Ak...∩An|,其中Σ表示求和符号,Ai、Aj、Ak...An分别表示第i个、第j个、第k个...第n个集合的元素数量,Ai∩Aj、Ai∩Aj∩Ak、Ai∩Aj∩Ak...∩An等分别表示第i个和第j个、第i个和第j个以及第k个...第n个集合的交集的元素数量。
小学奥数计数问题之容斥原理知识点
然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。
经典例题:
例1、某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每 人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队 的有()人. 考点:重叠问题. 分析:如图所示,设既参加是球队又参加排球队的人数为x,则依容斥原理,有20+12+10-6-2-x=30,解方程即可. 解答:解:如图所示,设既参加是球队又参加排球队的人数为x,则依容斥原理, 有20+12+10-6-2-x=30, 解得x=4. 故答案为:4. 点评:此题考查学生依据容斥原理解答问题的能力. 例2、在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出 第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1 人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是() 解答:根据"每个人至少答出三题中的一道题"可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2 题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥
(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)
容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。
”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。
狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。
”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。
最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。
”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。
”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。
当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。
由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。
容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。
即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。
即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。
小学奥数 容斥原理 知识点+例题+练习 (分类全面)
5、在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?不是6的倍数或不是5的倍数的数有几个?
6、某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。问两科都在90分以上的有多少人?
巩固:刘老师、夏老师和胡老师共有书90本,其中刘老师和夏老师一共有70本,夏老师和胡老师共有50本,三位老师各有书多少本?
例5、在1至10000中不能被5或7整除的数共有多少个?既不能被5整除又不能被7整除的有多少个?
巩固:在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?不是5的倍数或不是8的倍数的数有几个?
巩固:某校的每个学生至少爱好体育和文娱中的一种活动,已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。这个学校共有学生多少人?
例3、学校开展课外活动,共有250人参加。其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。问这250名同学中,象棋组、乒乓球组都不参加的有多少人?
课后作业
1、五年级有112人参加语文、数学考试,每人至少有一门功课得优,其中,语文得优的有65人,数学得优的有87人,问语文、数学都得优的有多少人?
2、某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有多少个学生?
3、五(1)班有学生50人,在一次测试中,语文90分以上的有30人,数学90分以上的35人,语文和数学都在90分以上的有20人,90分以下的有多少人?
(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案
(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展容斥原理【知识点归纳】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数﹣既是A类又是B类的元素个数用符号可表示成:A∪B=A+B﹣A∩B(其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数﹣既是A类又是B类的元素个数﹣既是B类又是C类的元素个数﹣既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C﹣A∩B﹣B∩C﹣A∩C+A∩B∩C1.三年级共有80名同学参加书法兴趣小组和美术兴趣小组,其中参加书法组的有52人,参加美术组的有48人.那么,既参加书法组又参加美术组的有多少人?2.我们班参入调查了饭后吃水果情况:30人喜欢吃苹果,27人喜欢吃梨,10人两种都喜欢,问我们班有多少人?3.同学们收集图片.张明、李红、蔡正明、王丹、熊威、高伟、梅芳7个人收集了名山图片,吴凤、李红、王丹、戴月红、高伟这5人收集了河流图片,吴心怡、张冬、李可这3人收集了奥运图片.(1)收集名山图片和奥运图片的共有多少人?(2)收集名山图片和河流图片的共有多少人?4.在校运动会上,共有30人参加跳远和跳高。
参加跳远的有18人,参加跳高的有22人,既参加跳远又参加跳高的有多少人?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30、容斥原理问题
例1 在1至1000的自然数中,不能被5或7整除的数有______个。
(莫斯科市第四届小学数学竞赛试题)
讲析:能被5整除的数共有1000÷5=200(个);
能被7整除的数共有1000÷7=142(个)……6(个);
同时能被5和7整除的数共有1000÷35=28(个)……20(个)。
所以,能被5或7整除的数一共有(即重复了的共有):
200+142—28=314(个);
不能被5或7整除的数一共有
1000—314=686(个)。
例2 某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。
这部分学生达到优秀的项目、人数如下表:
求这个班的学生人数。
(全国第三届“华杯赛”复赛试题)
讲析:如图5.90,图中三个圆圈分别表示短跑、游泳和篮球达到优秀级的学生人数。
只有篮球一项达到优秀的有
15—6—5+2=6(人);
只有游泳一项达到优秀的有
18—6—6+2=8(人);
只有短跑一项达到优秀的有
17—6—5+2=8(人)。
获得两项或者三项优秀的有
6+6+5—2×2=13(人)。
另有4人一项都没获优秀。
所以,这个班学生人数是13+6+8+8+4=39(人)。