有限元法中的几个基本概念
计算电磁学中的有限元方法
![计算电磁学中的有限元方法](https://img.taocdn.com/s3/m/ed388929001ca300a6c30c22590102020740f21d.png)
计算电磁学中的有限元方法随着计算机技术的不断发展和应用,计算电磁学研究的范围和深度不断提高,其应用领域也越来越广泛。
有限元方法是计算电磁学研究中重要的数值分析方法之一,其可模拟复杂电磁场问题,有着广泛的应用。
本文将简要介绍计算电磁学中的有限元方法的一些基本原理和应用。
一、有限元法基本理论有限元方法是数值分析中一种重要的数学工具,其基本思想是将整个计算区域分割成若干个简单的单元,然后在每个单元内选取一个适当的基函数,通过求解基函数系数来表示数值解。
这种思想很容易扩展到计算电磁场问题上,因为电磁场分布可以被视为由一些小电磁场单元组成。
有限元方法的基本过程包括建立有限元模型、离散化、求解以及后处理。
其中建模是有限元方法中最重要的一个环节。
在建模过程中,首先需要选取合适的计算区域,并将其离散化为若干个小单元(如三角形、四边形等)。
然后,我们需要选取适当的基函数,并确定它们所对应的系数的初始值。
一旦有限元模型被建立,我们就可以进行求解了。
具体来说,有限元法的求解过程需要求解一个大规模的稀疏矩阵方程,其中系数矩阵和右侧向量都与电磁场有关。
这个过程需要借助计算机的优势,通过矩阵解法算法完成求解。
最后,我们通过后处理来获得我们需要的电磁场信息或工程参数,例如电势、磁场强度、感应电动势等。
二、有限元法应用领域有限元法在计算电磁学中广泛应用。
其应用范围涉及电机、变压器、电力电子、雷达、电磁兼容等多个领域。
有限元法可用于仿真复杂的电磁场分布问题,例如在电机设计中,有限元法可用于电机磁场分析、电机振动分析以及谐波分析等。
在电力电子领域中,有限元法可用于设计电感元件和变压器等。
另外,有限元法在雷达技术中也有着广泛的应用,可用于雷达天线设计和仿真。
三、有限元法的优缺点有限元法作为一种数值分析方法,具有一定优缺点。
有限元法的主要优点在于它具有很强的适应性和通用性,可用于模拟各种复杂的材料和几何形状。
此外,有限元法允许我们针对不同的模型选择不同的元素类型和元素尺寸,因此可以根据实际需求自由选择不同的模型。
有限元基本知识
![有限元基本知识](https://img.taocdn.com/s3/m/0bd8114c767f5acfa1c7cdd5.png)
有限元的基本概念
计算等效节点力 单元特性分析的另一个重要内容是建立单元的外部 "载荷" (包括单元之间的内部 "载荷") 与单元节点物理 量之间的关系。 物体离散化后,假定力是通过节点从一个单元传递 到另一个单元。但是,对于实际的连续体,力可以作用 在单元的任意区域或位置 (体积力、分布面力、集中力 等),也可以在一个单元与相邻单元的公共边 (线、面) 之间进行传递。因而,这种作用在单元上的表面力、体 积力和集中力都需要等效的移到节点上去,也就是用等 效的节点力来代替所有作用在单元上的力。
{u} - 单元中任意点的物理量值,它是坐标的函数: {u} = {u (x,y,z)} [P] - 形状函数,与单元形状、节点坐标和节点自由度等有关 {ue} - 单元节点的物理量值;对于结构位移法可以是位移、转 角或其对坐标的导数。 常用的大型分析软件中基本上是位移+转角。
有限元分析的基本过程
结构分析时一些常用单元的节点自由度 (在单元坐标系中) 杆元:单元形状为线段,变形形式为拉伸和扭转。 在单元坐标系中: 节点自由度为 Tx 和 Rx,其中 x 为杆的轴线。 在总体坐标系中: 三个位移和三个转角 (T1,T2,T3,R1,R2,R3)。 梁元:单元形状为线段,变形形式为拉伸、扭转,以及两个垂 直于轴线方向的弯曲 在单元坐标系中: 节点自由度为 Tx,Ty,Tz,Rx,Ry,Rz。其中 x 为梁的 轴线,Y,z 为梁截面的两个抗弯惯矩主轴方向。 在总体坐标系中: 三个位移和三个转角 (T1,T2,T3,R1,R2,R3)。
有限元分析的基本过程
有限元分析的基本过程
单元形状函数举例 (未必是实际使用的单元):
(1) 一维单元
a. 杆单元 轴向拉伸和扭转:节点位移自由度为 Tx,Rx 对 2 节点单元 (线性单元): Tx = a0 + a1 * x Rx = b0 + b1 * x 各有 2 个未知数,可以由 2 个节点的位移值确定; 对 3 节点单元 (二次单元): Tx = a0 + a1 * x + a2 * x2 Rx = b0 + b1 * x + b2 * x2 各有 3 个未知数,可以法的发展 有限元分析方法最早是从结构化矩阵分析发展而来,逐步推广 到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有 效的数值分析方法。 (1) 有限元方法已发展到流体力学、温度场、电传导、磁场、 渗流和声场等问题的求解计算,目前又发展到求解几个交叉学科的 问题。 例如当气流流过一个很高的铁塔产生变形,而塔的变形又反过 来影响到气流的流动……这就需要用固体力学和流体动力学的有限 元分析结果交叉迭代求解,即所谓"流固耦合"的问题。 (2) 由求解线性工程问题进展到分析非线性问题 线性理论已经远远不能满足设计的要求。 例如:航空航天和动力工程的高温部件存在热变形和热应力, 要考虑材料的非线性 (弹塑性) 问题;诸如塑料、橡胶和复合材料 等各种新材料的出现,也只有采用非线性有限元算法才能解决。
有限元分析理论基础
![有限元分析理论基础](https://img.taocdn.com/s3/m/11ce6ff7eff9aef8951e06ef.png)
有限元理论基础有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
釆用不同的权函数和插值函数形式,便构成不同的有限元方法。
4.加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。
(Weighted residual method WRM)是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。
加权余量法是求解微分方程近似解的一种有效的方法。
设问题的控制微分方程为:在V域内厶(")-八0 (5.1.1)在S 边界上〃(“)-& = 0 (5.1.2)式中:L、B——分别为微分方程和边界条件中的微分算子;f、g ——为与未知函数u无关的己知函数域值;u——为问题待求的未知函数当弄!J用力u权余•肚法求近丁以解首先在求耳军域上理立一个T式閑数H 一般兵升如下形式:仁土CN=NC(5.1.3)T M式中:c{----------- 彳寺定系数. 也可称为广义坐标;N:--- 取白完备函冬攵*S线.性无关的基函孕攵°由于〃一般只圮彳守求函缨攵U的近1以耳岂因u匕将式(5 1.3) 代入式(5 1 1)牙口式(5 1.2)后将诃•不誉斯兄,昔迅:| R] = L(flb— f在V域内\R B =B(^~g在S 边界上("14)城然 & 、尽反映了r式函竽攵与实解之问的偏差. 它丁门分另U称做内召卩牙口边界余覺。
若在域\'内引入内部权函数硏,在边界S上引入边界权函数W B 则可理立11个消除余甘的条件.一般可农示为:L兀W B1R B dS = 0 (/ = L2.L ,〃) (51-5)• V • S不同的权函数幵;和jr R反映了不同的消除余•眩的准则。
有限元法基础重点归纳(精)
![有限元法基础重点归纳(精)](https://img.taocdn.com/s3/m/c7b5f81f02020740be1e9bb3.png)
30、有限元法的任务:建立和求解整个弹性体的节点位移和节点力之间的关系的平衡方程。31、单元刚度矩阵:表达了单元节点位移与节点力之间的转换关系。
32、单元刚度矩阵的性质:①单元刚度矩阵中每个元素有明确的物理意义②K e是对称矩阵③K e的每一行或每一列元素之和为零,因此K e为奇异矩阵④K e不随单元的平行移动或作n π角度的转动而改变。33、刚度集成法集成规律:①先对每个单元求出其单元刚度矩阵K e ,而且以分块形式按节点编号顺序排列②将单元刚度矩阵扩大阶数为2n*2n ,并将单元刚度矩阵中的子块按局部码与总码的对应关系,搬到扩大后的矩阵中,形成单元贡献矩阵K e。③将所有单元贡献矩阵同一位置上的分块矩阵简单叠加成总体刚度矩阵中的一个子矩阵,各行各列都按以上步骤即形成总体刚度矩阵K。34、整体刚度矩阵的性质:①整体刚度矩阵是对称矩阵②整体刚度矩阵中每一元素的物理意义:整体刚度矩阵的第一列元素代表使第一个节点在x方向有一单元位移,而其余节点位移皆为零时必须在节点上施加的里。对于K的其余各列也有类似意义③整体刚度矩阵K的主对角线上的元素总是正的④整体刚度矩阵K是一个稀疏阵⑤整体刚度矩阵K是一个奇异阵。35、带形矩阵:整体刚度矩阵K的非零元素分布在以主对角线为中心的斜带形区域内的矩阵。
γxy
=E 1−μ
2∗
1−μ2
γxy
42、制造位移函数:{u (x,y =α1+α2x +α3y
v (x,y =α4+α5x +α6y
43、等参单元精度比四边形单元高,四边形精度比三角形精度高。
44、轴对称问题:很多工程物件,它们的几何形状承受的载荷以及约束条件都对称于其一固定轴,这即为对称轴,此时载荷作用下的位移、应变和应力也对称于该对称轴的问题。45、等参数单元:优点:①形状方位任意,适应性好,精度高,容易构造高阶单元②具有统一形式,规律性强,采用数值积分算,程序处理方便③高阶等参单元精度高,描述复杂边界,形状能力强,所需单元少。缺点:①单元各方向尺寸要尽量接近②单元边界不能过于曲折,不能有拐点折点,尽量接近直线或抛物线③边之间夹角要尽量接近直角④单元形状不能过度畸变,边中节点不能过于偏离中间。46、有限元法基础理论:弹性力学,材料力学
有限元基本知识
![有限元基本知识](https://img.taocdn.com/s3/m/66116c1b227916888486d7cf.png)
有限元的基本概念
单元特性分析的重要内容是选择单元中物理量的变化函 数。例如,结构分析的不同有限元方法有: a. 位移法:以节点位移作为基本未知量称为位移法; b. 力法:以节点力作为基本未知量称为力法; c. 混合法:取一部分节点力和一部分节点位移作为基 本未知量时称为混合法。 以结构位移法为例: 选择单元内部的位移模式 (形状函数) 以及与单元位移 模式匹配的单元节点处的物理量,如:节点处的位移、转角 (位移的一次导数)、曲率(位移的二次导数)。 最常用的形状函数是多项式函数。 选择节点自由度和单元形状函数后,就可以根据相应的 几何、物理方程推导出相应的单元矩阵。
有限元的基本概念
(3) 增强可视化的前、后处理功能 随着数值分析方法的逐步完善和计算机运算速度的飞速 发展,用于求解运算的时间越来越少,而数据准备和结果的 处理问题却日益突出。 在现在的工作站上,求解一个包含10万个方程的有限元 模型只需要用几十分钟。工程师在分析计算一个工程问题时 有 80% 以上的精力都花在数据准备和结果分析上。 因此,强大的前、后处理功能既是广大用户对通用有限 元软件的需要,也是衡量有限元软件水平的重要标志。 目前几乎所有的商业化有限元软件系统都有功能很强的 前、后处理模块,使用户能以可视图形方式直观快速地进行 几何建模、网格自动划分,生成有限元分析所需数据,并按 要求将大量的计算结果整理成变形图、等值分布云图或相关 曲线,便于极值搜索和所需数据的列表输出。
有限元入门
![有限元入门](https://img.taocdn.com/s3/m/d4b66ac44431b90d6d85c787.png)
有限差分方法
(Finite Differential Method)
该方法将求解域划分为差分网格,用有限 个网格节点代替连续的求解域。有限差分 法以泰勒级数展开等方法,把控制方程中 的导数用网格节点上的函数值的差商代替 进行离散,从而建立以网格节点上的值为 未知数的代数方程组。该方法是一种直接 将微分问题变为代数问题的近似数值解法, 数学概念直观,表达简单,是发展较早且 比较成熟的数值方法。
三、 塑性加工中的有限元法概述
有限元法与其它塑性加工模拟方法相比,功能最 强、精度最高、解决问题的范围最广。它可以采 用不同形状、不同大小和不同类型的单元离散任 意形状的变形体,适用于任意速度边界条件,可 以方便地处理模具形状、工件与模具之间的摩擦 、材料的硬化效应、速度敏感性以及温度等多种 工艺因素对塑性加工过程的影响,能够模似整个 金属成形过程的流动规律,获得变形过程任意时 刻的力学信息和流动信息,如应力场、速度场、 温度场以及预测缺陷的形成和扩展。
1-7 有限单元法的基本内容
有限元法的力学基础是弹性力学,而方程求解的原理是泛 函极值原理,实现的方法是数值离散技术,最后的技术载 体是有限元分析软件。必须掌握的基本内容应包括: 1、基本变量和力学方程(即弹性力学的基本概念) 2、数学求解原理(即能量原理) 3、离散结构和连续结构的有限元分析实现(有限元分析 步骤) 4、有限元法的应用(即有限元法的工程问题研究) 5、各种分析建模技巧及计算结果的评判 6、学习典型分析软件的使用,初步掌握一种塑性有限元 软件 注意:会使用有限元软件不等于掌握了有限元分析工具
有限单元法 数学术语
![有限单元法 数学术语](https://img.taocdn.com/s3/m/ab71973015791711cc7931b765ce0508763275d8.png)
有限单元法有限单元法,是一种有效解决数学问题的解题方法。
其基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
内容简述在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。
第二章有限元分析基本理论
![第二章有限元分析基本理论](https://img.taocdn.com/s3/m/a412b50dff4733687e21af45b307e87101f6f81e.png)
第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。
有限元法介绍
![有限元法介绍](https://img.taocdn.com/s3/m/1c7bdb09964bcf84b9d57b42.png)
有限元法介绍周宇 2012330300302 12机制(1)班理论研究、科学实验以及计算分析是人们进行科学研究和解决实际工程问题的重要手段,随着计算机技术及数值分析方法的发展,以有限元方法为代表的数值计算技术得到越来越广泛的应用。
有限元法是一种高效能、常用的数值计算方法。
科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。
有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。
一、基本思想有限元方法是一种求解复杂对象方程的方法,基本思想来源于“化整为零”、“化弧为直”的直观思路,将实体的对象分割成不同大小、种类、小区域称为有限元。
根据不同领域的需求推导出每一个元素的作用力方程,组合整个系统的元素并构成系统方程组,最后将方程组求解。
由有限元的发展,该法具有下列的特色:1、整个系统散为有限个元素;2、利用能量最低原理与泛函数值定理(见附录)转换成一组线性联立方程;3、处理过程简明;4、整个区域左离散处理,需庞大的资料输出空间与计算机内存,解题耗时;5、线性、非线性均适用;6、无限区域的问题较难仿真。
二、基本概念1、有限元法是把分析的连续体假想地分割成有限个单元所组合成的组合体;2、这些单元仅在顶角处相互联接,这些联接点称为结点。
离散化的组合体和真实的弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。
但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠——单元之间只能通过结点来传递内力。
通过结点来传递的内力称为结点力,作用在结点上的载荷称为结点载荷。
当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,称为结点位移。
在有限元中,常以结点位移作为基本未知量。
并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理(见附录)或其他方法,建立结点里与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。
有限元法的基本概念和特点
![有限元法的基本概念和特点](https://img.taocdn.com/s3/m/38cc094c91c69ec3d5bbfd0a79563c1ec5dad7ea.png)
边界条件和载荷对分析结果的影 响
边界条件和载荷的设置直接影响分析结果 的精度和可靠性,因此需要仔细考虑和验 证。
03 有限元法的特点
适应性
有限元法能够适应各种复杂形状和边 界条件,通过将连续的求解域离散化 为有限个小的单元,实现对复杂问题 的近似求解。
有限元法的适应性表现在其能够处理 不规则区域、断裂、孔洞等复杂结构 ,并且可以根据需要自由地组合和修 改单元,以适应不同的求解需求。
降低制造成本。
THANKS FOR WATCHING
感谢您的观看
通过将不同物理场(如结构、流体、电磁等)耦 合在一起,可以更准确地模拟复杂系统的行为。
多物理场耦合分析将为解决复杂工程问题提供更 全面的解决方案面具有重要作用。
通过先进的建模技术和优化 算法,可以更有效地设计出 高性能、轻量化的结构。
有限元法在结构优化方面的应 用将有助于提高产品的性能和
近似性
利用数学近似方法对每个单元体的行 为进行描述,通过求解代数方程组来 获得近似解。
通用性
适用于各种复杂的几何形状和边界条 件,可以处理多种物理场耦合的问题。
高效性
通过计算机实现,能够处理大规模问 题,提高计算效率和精度。
02 有限元法的基本概念
离散化
离散化
将连续的物理系统分割成有限个小的、相互连接的单元,每个单 元称为“有限元”。
随着计算机技术的发展,有限元法的精度不断提高,对于一些高精度要求的问题 ,有限元法已经成为一种重要的数值分析工具。
04 有限元法的应用领域
工程结构分析
01
02
03
结构强度分析
通过有限元法,可以对工 程结构进行强度分析,评 估其在各种载荷条件下的 稳定性。
单位分解有限元方法求解应力强度因子
![单位分解有限元方法求解应力强度因子](https://img.taocdn.com/s3/m/4241495430b765ce0508763231126edb6f1a762c.png)
单位分解有限元方法求解应力强度因子
一、有限元法的基本概念
有限元法(Finite Element Method,FEM)是一种应用于结构力学、流体力学以及固
体力学等众多研究领域的数值计算方法,是建立在离散一阶相对论基础上的数学解析方法。
其基本思路是:将对象划分成若干小的有限域,然后对每个有限域建立起离散的误差限制
条件,把原本的等价边界条件经过离散化处理后作为这些有限域的边界条件,将未知的空
间量化,然后分别针对这些有限元的非线性函数建立数学模型,最后求解出各元素的空间量,从而得到对象的总体函数解析模型。
二、应力强度因子有限元法求解
1、基本原理
应力强度因子(Stress Intensity Factor, SIF)是用于分析结构力学中弯曲、压缩、扭转、拉伸等力学载荷情况下结构的破坏程度,它的基本原理是根据St. Venant-
Kirchhoff理论,建立起材料应力应变关系和对应的力学载荷,并计算在周边某点结构的
分析结果,从而得出该点的SIF值。
2、有限元法求解
有限元法可以很好地用于求解应力强度因子。
若要求解某个结构的应力强度因子,首
先应当将其划分成多个相互交错的有限域,每个有限域内进行逐一求解,并使用对应的离
散构件模型与约束条件,得出不同结点的截断应力和截断应变的变化规律,最终归并各节
点的解析结果,从而计算出相应结构的应力强度因子。
有限元基本原理与概念
![有限元基本原理与概念](https://img.taocdn.com/s3/m/c365c366e3bd960590c69ec3d5bbfd0a7956d584.png)
有限元基本原理与概念有限元分析是一种数值计算方法,用于求解连续体力学中的边界值问题。
它是通过将连续体划分为有限数量的离散单元,然后在每个单元内进行力学行为的近似计算来实现的。
有限元基本原理和概念是进行有限元分析的关键。
有限元方法的基本原理包括以下几个方面:1.连续体离散化:连续体被分割为许多有限数量的小单元,例如三角形或四边形,这些小单元被称为有限元。
离散化的目的是将大问题转化为小问题,简化求解过程。
2.描述形函数:在每个有限元内,通过选择适当的形函数来描述位移、应力和应变之间的关系。
它们通常是基于其中一种插值函数,用于近似描述连续体内的位移场。
3.线性方程系统:通过应力和位移之间的平衡关系,可以得到与每个有限元相关的线性方程系统。
该方程系统可以通过组装所有单元的贡献来得到,其中每个单元内的节点位移被认为是未知数。
4.边界条件:为了解决线性方程系统,必须定义适当的边界条件。
这些条件通常包括位移或力的给定值,并且用于将无法由方程系统唯一解决的自由度限制为已知值。
5.求解方程系统:通过解决线性方程系统,可以得到每个节点的位移。
这可以使用各种求解线性方程系统的方法,如直接法(例如高斯消元法)或迭代法(例如共轭梯度法)来实现。
有限元方法的基本概念包括以下几个方面:1.单元:连续体被划分为有限数量的单元,在每个单元内进行近似计算。
常见的单元类型包括一维线元、二维三角形和四边形元,以及三维四面体和六面体元。
2.节点:单元的连接点被称为节点,每个节点在有限元分析中是一个自由度。
节点的数量与单元的选择密切相关,节点的位置和数量会影响结果的精确度。
3.局部坐标系:为了描述单元内的位移和应力,通常引入局部坐标系。
在局部坐标系中,单元的尺寸和形状可以更容易地进行描述和计算。
4.材料特性:有限元分析中需要定义材料的特性参数,例如弹性模量、泊松比、屈服强度等。
这些参数用于描述材料的力学行为和应力-应变关系。
5.后处理:通过有限元分析所得到的结果通常以节点或单元的形式给出,这些结果还需要进行后处理以得到更有意义的结果,如应变、应力分布或变形情况。
有限单元法知识点总结
![有限单元法知识点总结](https://img.taocdn.com/s3/m/08a13c47f68a6529647d27284b73f242336c31f7.png)
有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。
有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。
有限元法广泛应用于工程、材料、地球科学等领域。
2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。
离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。
加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。
形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。
3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。
建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。
建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。
施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。
求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。
后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。
4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。
结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。
板壳单元包括各种压力单元、弹性单元、混合单元等。
梁单元包括梁单元、横梁单元、大变形梁单元等。
壳单元包括薄壳单元、厚壳单元、折叠单元等。
体单元包括六面体单元、锥体单元、八面体单元等。
5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。
有限元法的概念
![有限元法的概念](https://img.taocdn.com/s3/m/9bf61733f56527d3240c844769eae009581ba230.png)
有限元法,它的基本概念和思想是什么?
概念:将待解区域进行分割,离散成有限个元素的集合。
元素(单元)的形状原则上是任意的。
二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等。
每个单元的顶点称为节点(或结点)。
思想:有限单元法最早可上溯到20世纪40年代。
Courant第一次应用定义在三角区域上的分片连续函数和最小位能原理来求解St.Venant扭转问题。
现代有限单元法的第一个成功的尝试是在1956年,Turner、Clough等人在分析飞机结构时,将钢架位移法推广应用于弹性力学平面问题,给出了用三角形单元求得平面应力问题的正确答案。
1960年,Clough 进一步处理了平面弹性问题,并第一次提出了"有限单元法",使人们认识到它的功效。
有限元分析常用基本概念
![有限元分析常用基本概念](https://img.taocdn.com/s3/m/ed84b34433687e21af45a9cb.png)
平面应力状态平面应变状态平面应力问题:所有应力都在一个平面内,Z向应力0,如薄板受与板平行且共面的力作用下一般是平面应力问题。
平面应变问题:所有应变都在一个平面内,Z向应变为0,如坝体,炮筒等,Z 向尺寸远远大于另外两个方向的尺寸,而且不考虑沿Z向的外力,只考虑垂直Z 向的外力。
平面应力就是说一个方向的应力可忽略,当然平面应变就是一个方向的应变可以忽略.如果某一方向(Z轴吧)在空间很长(相对其他两个方向而言),那么在这个方向的应变就可以忽略不计,但是这个方向的应力不一定为零。
----这就是平面应变问题。
长圆筒、水坝、等等都属于平面应变问题。
如果研究对象z轴不是很长(相对其他两个方向而言),且在z轴俩外表面上不受力,则在这个方向上应力可以忽略,但其应变不一定为零,-----这就是平面应力问题,板也可以看作属于平面应力问题。
对一般我门处理的问题,根据z轴的长短可简单判断其属于那个问题,长--平面应变;短----平面应力。
沙漏模式沙漏模式也就零能模式,他在理论上是一种存在的一种变形模式,但是在实际模型中是不可能存上的。
零能模式就是指有变形,但是不消耗能量。
显然是一种伪变形模式,若不加以控制,计算模型会变得不稳定,并且计算出来的结果也是没有多大意义的。
要加抵制这种变形模式就得相应的消耗一定的能量,也就是沙漏能,如果这个比值太多,就说明模型和实际的变形有很大的差别,当然是不正确的。
这也是缩减积分所付出的代价。
用全积分单元可以解决这个问题,但是效率不高,有可能导致体积锁死,过刚的一些问题。
剪切锁死shear locking 是FEM 造成的數值誤差, 發生於細長結構的分析,圣维南原理分布于弹性体上一小块面积(或体积)内的载荷所引起的物体中的应力,在离载荷作用区稍远的地方,基本上只同载荷的合力和合力矩有关;载荷的具体分布只影响载荷作用区附近的应力分布。
还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的载荷的合力和合力矩都等于零,则在远离载荷作用区的地方,应力就小得几乎等于零。
有限元基本理论
![有限元基本理论](https://img.taocdn.com/s3/m/2cf8124e0a1c59eef8c75fbfc77da26924c59652.png)
一、有限单元法的基本思想(1)将一个连续域化为有限个单元并通过有限个结点相连接的等效集合体。
由于单元能按照不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。
(2)有限元法利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场数。
单元内的近似函数由未知场函数在单元的各个结点的数值和其插值函数来表达。
(3)一个问题的有限元分析中,未知场函数在各个结点上的数值就成为新的未知量,从而使一个连续的无限自由度问题变成离散的有限自由度问题。
(4)一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。
显然,随着单元数目的增加,也即单元尺寸的缩小,或者随着单元自由度的增加以及插值函数精度的提高,解的近似程度将不断改进,如果单元是满足收敛要求的,近似解最后将收敛于精确解。
图1 有限元分析流程图二、有限元分析过程概述1 结构的离散化结构的离散化是有限单元法分析的第一步,它是有限单元法的基本概念。
所谓离散化简单地说,就是将要分析的结构物分割成有限个单元体,并在单元体的指定点设置结点,使相邻单元的有关参数具有一定的连续性,并构成一个单元的集合体,以它代替原来的结构。
如果分析的对象是桁架,那么这种划分十分明显,可以取每根杆件作为一个单元,因为桁架本来是由杆件组成的。
但是如果分析的对象是连续体,那么为了有效地逼近实际的连续体,就需要考虑选择单元的形状和分割方案以及确定单元和结点的数目等问题。
2 选择位移模式在完成结构的离散之后,就可以对典型单元进行特性分析。
此时,为了能用结点位移表示单元体的位移、应变和应力,在分析连续体问题时,必须对单元中位移的分布作出一定的假设,也就是假定位移是坐标的某种简单的函数,这种函数称为位移模式或插值函数。
选择适当的位移函数是有限单元法分析中的关键。
通常选择多项式作为位移模式。
其原因是因为多项式的数学运算(微分和积分)比较方便,并且由于所有光滑函数的局部,都可以用多项式逼近。
有限元中, 是怎样处理分布载荷的。 并用圣维南定理解释
![有限元中, 是怎样处理分布载荷的。 并用圣维南定理解释](https://img.taocdn.com/s3/m/0209e863905f804d2b160b4e767f5acfa0c78346.png)
有限元中, 是怎样处理分布载荷的。
并用圣维南定理解释一、有限元基本概念及分布载荷的处理方法1.有限元基本概念有限元分析是一种数值分析方法,它将连续体的力学问题转化为离散点的平衡问题。
在有限元分析中,我们将所研究的问题划分为若干个小的部分,即单元,然后用有限数量的未知量来描述这些单元的应力、应变等状态。
通过对这些未知量的求解,我们可以得到整个连续体的力学性能。
2.分布载荷的处理方法在有限元分析中,分布载荷的处理方法主要有以下几种:(1)等效节点载荷法:将分布载荷等效为一个节点上的集中载荷,然后按照常规的有限元方法进行求解。
(2)单元载荷法:将分布载荷直接作用在单元上,通过单元的刚度矩阵来传递载荷,从而实现分布载荷的求解。
(3)分区法:将载荷分区,对每个分区内的分布载荷进行积分,得到集中载荷,然后与常规有限元方法相结合进行求解。
二、圣维南定理及其应用1.圣维南定理的定义及意义圣维南定理(Saint-Venant"s theorem)是指在弹性力学中,对于某一区域内,当载荷作用在局部区域时,只要局部区域的尺寸远小于整个结构的其他尺寸,那么该局部区域的应力分布可以近似地看作是均匀的。
2.圣维南定理在有限元分析中的应用在有限元分析中,圣维南定理可以用来简化局部区域的应力分析。
当分布载荷作用在局部区域时,我们可以将局部区域的应力分布近似为均匀分布,从而简化计算。
此外,圣维南定理还可以用于判断局部区域的强度设计是否合理。
三、有限元中分布载荷的处理实例1.二维平面问题实例考虑一个二维平面问题,载荷沿x轴正方向均匀分布。
我们可以将该问题划分为若干个小的矩形单元,然后采用等效节点载荷法或单元载荷法进行求解。
根据圣维南定理,我们可以将分布载荷近似为均匀分布,从而简化计算。
2.三维空间问题实例考虑一个三维空间问题,载荷沿一个球壳表面均匀分布。
我们可以将该问题划分为若干个小的球壳单元,然后采用等效节点载荷法或单元载荷法进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诚信·公平·开放·共赢
Loyalty Fair Opening Win-win
有限元法中的几个基本概念
有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。
这些单元仅在顶角处相互联接,称这些联接点为结点。
离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。
但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。
显然,单元之间只能通过结点来传递内力。
通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。
当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。
在有限元中,常以结点位移作为基本未知量。
并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。
然后利用插值函数确定单元集合体上的场函数。
显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。
附:FELAC 2.0软件简介
FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。
FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。
该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。
并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与调试。
其中并行版在前后处理上进行了相应的改进。