同底数幂的乘法练习题及答案精编版

合集下载

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

0.5 10x 211 = =a 5m +115. (1)a • a 3 • a 5 =(2)(3a)(3a)= (3) x m x m1 x m , 同底数幕的乘法-练习一、填空题1. ___________________________ 同底数幕相乘,底数 , 指数 。

2. A ) • a 4=a 20.(在括号内填数)3. 若 102 • 1O m =1O 2003,则 m=.4. 23 • 83=2n ,则 n= ________ .5. -a 3 • (-a ) 5= __________ ; x • x 2 • x 3y= ________________ .6. a 5 • a n +a 3 • a n 2 — a • a n 4+a 2 • a n 3= __________ .7. (a-b ) 3 • (a-b ) 5= ______________; (x+y ) • (x+y ) 4 = ______________m 1n45.10 X10 = ___________________ , -6 x(—6) = __. _9. x 2x 3+xx 4=_ (x + y)2(x + y)5 =_ _.10. 103汉100汉10+100汉100><100 —10000汉10汉10 =11. 若 a m = a 3a 4,贝U m= __________若 x 4x a = x 16,贝U a= ____________ 12. 若 a m =2,a n =5,则 a m J _______________ .13. -32X 33= ______________ ; - (- a)2 = ___________ ; (-x)2 • (-x)3= _______________ ; (a + b) • (a + b)4(4)(x+5) 3 • (x+5) 2=(5)3a2 • a 4+5a • a 5= _________23458(6)4(m+n) • (m+n) -7(m+n)(m+n) +5(m+n) = ___________4 3 914. a ________= a ________= a、选择题1.下面计算正确的是()A . b3b? = b6; B . x3• x3= x6; C . a4a^ a6; D . mm5二m62.81 X 27 可记为()A. 93 B. 37 C. 36 D. 3123.若x = y,则下面多项式不成立的是()A. (y-x)2=(x-y)2B. (-x)3= -x3C. (-y)2二y2D. (x y)2=x2y24.下列各式正确的是( )A. 3a2• 5a3=15a6B.-3x4• (-2x2) =-6x6C. 3x3• 2x4=6x12D. (-b) 3• (-b) 5=b85.设a m=8,a n=16,则a mn=( )A .24 B.32C.64D.1286.若x2• x4• ( ) =x16,则括号内应填x的代数式为( )A. x10B. x8C. x4 D. x27.若a m= 2,a n= 3,贝S a m+= ( ).A.5 B.6 C.8 D.98.下列计算题正确的是()A.a m a2= a2m B.x3 x2 x = x5 C.x4 x 4=2x4 D.y a+1 y a-1= y2a9.在等式a3 a2( )= a11中,括号里面的代数式应当是()A.a7B.a8 C.sfc.a510.x3m+3可写成(丄A.3x m+1 B.x3m+x3 C.x3 x m+1 D.x3m x311:①(-a)3 (-a)2 (-a)=a6;②(-a)2 (-a) (-a)4=a7;③(-a)2 (-a)3 (-a2)=-a7;④(-a2) (-a3) (-a)3=-a8.其中正确的算式是()A. ①和②B.②和③C.①和④D.③和④12 一块长方形草坪的长是x a+1米,宽是x b-1米(a、b为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-bB.x a+b13. 计算a -2 • a 4的结果是()A . a -2 14. 若X M y ,则下面各式不能成立的是 A . (x- y)2 = (y- x)2C . (x + y)(x-y) = (x + y)(y-x)15. a 16可以写成()A . a 8 + a 8 B . a 8 •16. 下列计算中正确的是() C.x a+b-1 D.x a-b+2B . a 2C . a 8D . a 8()B . (x- y)3 = - (y- x)3D . (x + y)2= (-x- y)2 a 2C . a 8 • a 8D . a4 • a 4C . t 3 +13= 2t 6D . 347X • x • X = x三•判断下面的计算是否正确(正确打“"”3 2 5 1.(3x+2y) - (3x+2y) = (3x+2y)(3. t m. (-t 2n)=严n()5. m3- m3= 2m3( )7. a2- a3= a6( )49. (- m)41 - m3= - m7( )四、解答题 1.计算(1)(-2)323(-2)2n+1 n-1 4-3n (3)x x x2、计算题(1) 2 3x x x (2)⑶ 2 3(-x) x-2x3(-X)2-x x4⑷(5)(丄) 4-(丄)3;10 10(7) a m「a3-2a m- a4-3a2- a m2.,错误打“X” ))2 . -p2. (-P) 4- (-p) 3= (-P) 9()4 4 16.P - P= P ()6 . m2+ m2= m4( )8 . x2- x3= x5( )(2)81 X(4)4 g+2-2 X n+12 3(a - b) (a - b) (a - b)m 4 2 m -2 3 m -3x x x x - 3 x x 。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底数幂的乘法-练习之勘阻及广创作一、填空题1.同底数幂相乘, 底数, 指数 . 2.A( )·a 4=a 20.(在括号内填数)3.若102·10m =102003, 则m=. 4.23·83=2n , 则n=.5.-a 3·(-a )5=; x ·x 2·x 3y=. 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n =.7.(a-b )3·(a-b )5=; (x+y )·(x+y )4=. 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;10×211=_________;a ·a m ·_________=a5m +115.(1)a ·a 3·a 5=(2)(3a)·(3a)=(3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2=(5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9二、选择题1. 下面计算正确的是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+4.下列各式正确的是( )A .3a 2·5a 3=15a 64·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 85.设a m =8, a n =16, 则a n m +=( )A .24 B.32 C6.若x 2·x 4·( )=x 16, 则括号内应填x 的代数式为( )A .x 10B. x 8C. x 4D. x 27.若a m=2,a n=3, 则a m+n=( ).A.5 B.6 C8.下列计算题正确的是( )m·a2=a2m3·x2·x=x5 C.x4·x4=2x4a+1·y a-1=y2a9.在等式a3·a2( )=a11中, 括号里面的代数式应当是( )78 C.a6510.x3m+3m+13m+x3 C.x3·x m+13m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一块长方形草坪的长是x a+1米, 宽是x b-1米a-ba+ba+b-1a-b+2 13.计算a-2·a4的结果是( )A.a-2B.a2 C.a-8D.a8 14.若x≠y, 则下面各式不能成立的是( )A.(x-y)2=(y-x)2B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x)D.(x+y)2=(-x-y)2 15.a16可以写成()A.a8+a8B.a8·a2 C.a8·a8D.a4·a416.下列计算中正确的是( )A.a2+a2=a4 B.x·x2=x3C.t3+t3=2t6D.x3·x·x4=x717.下列题中不能用同底数幂的乘法法则化简的是( )A.(x+y)(x+y)2 B.(x-y)(x+y)2C.-(x-y)(y-x)2 D.(x-y)2·(x-y)3·(x-y)18. 计算200920082 B、 2 C、1-即是( ) A、200822D、20092-19.用科学记数法暗示(4×102)×(15×105)的计算结果应是( )A.60×107×107 C×108×1010三.判断下面的计算是否正确(正确打“√”, 毛病打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p2·(-p)4·(-p)3=(-p)9( )3.t m·(-t2n)=t m-2n( ) 4.p4·p4=p16( )5.m3·m3=2m3( ) 6.m2+m2=m4( )7.a2·a3=a6() 8.x2·x3=x5( )9.(-m)4·m3=-m7( )(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x4-3n(4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2)23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4)122333m m m x x x x x x ---⋅+⋅-⋅⋅.(5)(101)4·(101)3; (6)(2x-y )3·(2x-y )·(2x-y )4; (7)a 1=m ·a 3-2a m ·a 4-3a 2·a 2+m . 3、计算并把结果写成一个底数幂的形式: (1)43981=⨯⨯(2)66251255=⨯⨯4.已知321(0,1)x x a a a a ++=≠≠, 求x5、62(0,1)xxp p p p p ⋅=≠≠, 求x6.已知x n -3·x n +3=x 10, 求n 的值.7.已知2m =4, 2n 2m +n 的值.8.若10,8abx x ==, 求a bx +9.一台电子计算机每秒可运行4×109次运算, 它工作5×102秒可作几多次运算?×107km, 冥王星和太阳的平均距离约是水星和太阳的平均距离的102倍, 那么冥王星和太阳的平均距离约为几多km?五、m=2,a n=3, 求a3m+2n的值.2011的个位数字. (1)x5·x3-x4·x4+x7·x+x2·x6(2)y2·y m-2+y·y m-1-y3·y m-34.已知:x=255, y=344,z=433, 试判断x、y、z的年夜小关系, 并说明理由 . 5.x m·x m+1+x m+3·x m-2+(-x)2·(-x)2m-1。

同底数幂的乘法练习题及标准答案

同底数幂的乘法练习题及标准答案

同底数幕的乘法-练习、填空题1. 同底数幕相乘,底数,指数2. A)• a4=a20.(在括号内填数)3. 若102• 1O m=1O 2003,则m=.4. 23• 83=2n,则n=.5. -a3• (-a) 5= ;x• x2• x3y=.6. a5• a n+a3• a n 2- a • a n 4+a2• a n 3二.7. (a-b) 3• (a-b) 5 = ;(x+y) • (x+y) 4 =.8. 10m110n1 = 4 5, 6(6)= .9. x2x3xx4=_2(x y) (x y)5 =_ _.10. 103100 10100 100 10010000 10 10= .11.若a m 3 4a a ,贝y m=_ 若x4x a x16,则a=。

12.若a m n2,a5,则a m n =13. _________________ -32X 33= _________; - (- a)2 = _____________ ; (-x)2• (-x)3= ; (a+ b) • (a+ b)4- ._________ ?0.510x 211 = _______ ; a a m•= a5m+12 3 4 5(6)4(m+n) • (m+n) -7(m+n)(m+n) +5(m+n)=14. a4 - = a3 - = a9二、选择题1. 下面计算正确的是()A . b3b2b6; B . x3x3x6; C . a4a2a6; D . mm5m615. (1)a • a3• a5= (2)(3a) • (3a)=⑶X m x m1X m13 2 24 5(4)(x+5) • (x+5) = (5)3a • a +5a • a =2. 81 X 27 可记为()A. 93 B. 37 C. 36 D. 3123. 若x y,则下面多项式不成立的是()A. (y x)2(x y)2B. ( x)3x3C. ( y)2y2D. (x y)2x2y24. 下列各式正确的是( )A. 3a2• 5a3=15a6B.-3x4•(-2x2)=-6x6C. 3x3• 2x4=6x12D.(-b)3•(-b)5=b85. 设a m=8,a n=16,则a mn=( )A .24 B.32 C.64 D.1286. 若x2• x4• ( ) =x16,则括号内应填x的代数式为( )A. x10B. x8C. x4 D. x27. 若a m= 2,a n= 3,贝S a m+= ( ).A.5 B.6 C.8 D.98. 下列计算题正确的是()A.a m a2= a2m B.x3 x2 x = x5 C.x4 x 4=2x4 D.y a+1 y a-1= y2a9. 在等式a3 a"( )= a11中,括号里面的代数式应当是()A.a7B.a8 C.s6D.a510. x3m+3可写成()A3x m+1B.x3m+x3 C.x3 x m+1D.x3m x311:①(-a)3 (-a)2 (-a)二a6。

整式乘法练习1:同底数幂乘法精选练习5套(含答案)

整式乘法练习1:同底数幂乘法精选练习5套(含答案)

同底数幂的乘法精选练习5套(含答案)(一)一、选择题(每小题5分,共30分) 1、计算a 2·a 3的结果是( )A.a 5B. a 6C. a 8D. a 92、下列各式中,计算过程正确的是( )A. x 3+x 3=x 3+3=x 6B.x 3·x 3=2x 3=x 6C. x ·x 3·x 5=x0+3+5=x 8 D. x ·(-x)3= -x 2+3= -x 53、计算(-2)100+(-2)101的结果是( )A. -2B.2C.-2100D. 21004、x ·x 6·( )x 12,括号内填( )A.x 6B. x 2C. x 5D. x5、若5260m n x x x -⋅-=,则m 、n 的关系是( ) A. m-n=6 B.2m+n=5 C.m+2n=11 D.m-2n=76、若1221253()()m n n m ab a b a b ++-⋅⋅⋅=,则m+n 的结果是( )A.1B.2C.3D.-3 二、填空题(每小题5分,共30分)7、计算37a a ⋅=_______,23x x -⋅=______,222248⋅⋅=______ 8、当m=_____时,239m m x x x -+⋅=成立.9、计算3()()x x -⋅-=_______;22()b b -⋅=_______;23()()()x y y x x y -⋅-⋅-=_____. 10、若10x a =,10y b =,则10x y +=_______. 11、若2336x +=,则32x=______.12、345x n +⨯=,则用含n 的代数式表示5x 为_________. 三、解答题(每题10分,共40分) 13、计算:⑴32210101010⨯+⨯;⑵23324x x x x x x-⋅-+⋅---⋅-()3()4()()14、已知一块长方形空地,长100000m,宽10000m,求长方形的面积(用科学计数法表示)15、比较1810⨯的大小。

同底数幂的乘法专项练习50题(有答案)

同底数幂的乘法专项练习50题(有答案)

同底数幂的乘法专项练习50题(有答案)一、 知识点:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+(5)若m 、n 均为正整数,则a m ·a n =_______,即同底数幂相乘,底数______,指数_____.二、专项练习: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n(9)=-⋅23b b (10)=-⋅3)(a a(11)=--⋅32)()(y y (12)=--⋅43)()(a a(13)=-⋅2433 (14)=--⋅67)5()5((15)=--⋅32)()(q q n(16)=--⋅24)()(m m(17)=-32 (18)=--⋅54)2()2((19)=--⋅69)(b b (20)=--⋅)()(33a a(21) 111010m n +-⨯= (22) 456(6)-⨯-=(23)234x x xx += (24)25()()x y x y ++=(25)31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=(26) 若34ma a a =,则m=________; 若416ax x x =,则a=__________;若2345yxx x x x x =,则y=______; 若25()x a a a -=,则x=_______.(27) 若2,5m na a ==,则m na +=________.(28)19992000(2)(2)-+-=(29)2323()()()()x y x y y x y x -⋅-⋅-⋅- (30)23()()()a b c b c a c a b --⋅+-⋅-+(31)2344()()2()()x x x x x x -⋅-+⋅---⋅; (32)122333m m m x xx x x x ---⋅+⋅-⋅⋅。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底数幂的乘法-练习之南宫帮珍创作一、填空题1.同底数幂相乘,底数, 指数 。

2.A( )·a 4=a 20.(在括号内填数)3.若102·10m =102003,则m=. 4.23·83=2n ,则n=.5.-a 3·(-a )5=; x ·x 2·x 3y=. 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n =.7.(a-b )3·(a-b )5=; (x+y )·(x+y )4=. 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;10×211=_________;a ·a m ·_________=a5m +115.(1)a ·a 3·a 5=(2)(3a)·(3a)=(3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2=(5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9二、选择题1. 下面计算正确的是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+4.下列各式正确的是( )A .3a 2·5a 3=15a 64·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 85.设a m =8,a n =16,则a n m +=( )A .24 B.32 C6.若x 2·x 4·( )=x 16,则括号内应填x 的代数式为( )A .x 10B. x 8C. x 4D. x 27.若a m=2,a n=3,则a m+n=( ).A.5 B.6 C8.下列计算题正确的是( )m·a2=a2m3·x2·x=x5 C.x4·x4=2x4a+1·y a-1=y2a9.在等式a3·a2( )=a11中,括号里面的代数式应当是( )78 C.a6510.x3m+3m+13m+x3 C.x3·x m+13m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米a-ba+ba+b-1a-b+2 13.计算a-2·a4的结果是( )A.a-2B.a2 C.a-8D.a8 14.若x≠y,则下面各式不克不及成立的是( )A.(x-y)2=(y-x)2B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x)D.(x+y)2=(-x-y)2 15.a16可以写成()A.a8+a8B.a8·a2 C.a8·a8D.a4·a416.下列计算中正确的是( )A.a2+a2=a4 B.x·x2=x3C.t3+t3=2t6D.x3·x·x4=x717.下列题中不克不及用同底数幂的乘法法则化简的是( )A.(x+y)(x+y)2 B.(x-y)(x+y)2C.-(x-y)(y-x)2 D.(x-y)2·(x-y)3·(x-y)18. 计算200920082 B、 2 C、1-等于( ) A、200822D、20092-19.用科学记数法暗示(4×102)×(15×105)的计算结果应是( )A.60×107×107 C×108×1010三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p2·(-p)4·(-p)3=(-p)9( )3.t m·(-t2n)=t m-2n( ) 4.p4·p4=p16( )5.m3·m3=2m3( ) 6.m2+m2=m4( )7.a2·a3=a6() 8.x2·x3=x5( )9.(-m)4·m3=-m7( )(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x4-3n(4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2)23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4)122333m m m x x x x x x ---⋅+⋅-⋅⋅。

同底数幂的乘法练习题(含答案)

同底数幂的乘法练习题(含答案)

13.1.1 同底数幂的乘法◆随堂检测1、判断(1) x 5·x 5=2x 5 ( ) (2) x 13+x 13=x 26 ( )(3) m ·m 3=m 3 ( ) (4) x 3(-x)4=-x 7 ( )2、填空:(1)54m m = (2)n n y y y--∙∙533= (3)()()32a a --= (4)()()22x x --= 3、计算:(1)103×104 (2)(-2)2·(-2) 3·(-2) (3)a·a 3·a 5(4) (a+b)(a+b)m (a+b)n (5) a 4n a n+3a(6)-a 2·a 3 (7) (-a )2·a 3 (8) ()()5222x y y x -∙- ◆典例分析若 3m =5, 3n =7, 求3m+n+1的值分析:本题的切入点是同底数幂的乘法性质的逆用:a m+n =a m ·a n (m,n 为正整数)。

运用此法则,可以把一个幂分解成两个(或两个以上)同底数幂的积。

其中,拆分所得的(两个或两个以上)同底数幂的底数与原来幂的底数相同,指数之和等于原来幂的指数。

解:∵3m =5, 3n =7,∴3m+n+1=3m ·3n·3=5×7×3=105 ◆课下作业●拓展提高1、填空(1)()()()[]m n p y x x y y x 32--∙-∙-= (2)已知2x+2=m,用含m 的代数式表示2x = _____2、选择: (1)下列计算中 ① b 5+b 5=2b 5 ②b 5·b 5=b 10 ③y 3·y 4=y 12 ④m·m 3=m 4 ⑤m 3·m 4=2m 7 其中正确的个数有( )A 1个B 2个C 3个D 4个(2)x 3m+2不等于( )A x 3m ·x 2B x m ·x 2m+2C x 3m +2D x m+2·x 2m3、解答题:(1)5,35==+++b a c b a x x ,求c x 的值.(2)若,14x x x x n m =∙∙求m+n. (3)若61a a a n m n =∙++,且m-2n=1,求n m 的值.(4)计算:4353x x x x x ∙∙+∙.●体验中考1.(2009年重庆市江津区) 下列计算错误的是 ( )A .2m + 3n=5mnB .426a a a =÷C .632)(x x =D .32a a a =⋅ 2. (2009年山西省太原市)下列计算中,结果正确的是( )A .236a a a =·B .()()26a a a =·3C .()326a a =D .623a a a ÷= 参考答案:随堂检测1、判断:本题考查同底数幂的乘法法则及合并同类项(1)×(2)×(3)×(4)×2、填空: (1)m 9 (2)y 5 (3)本题要注意符号错误 -a 5(4)注意符号 -x 43、计算:(1)107 (2)26 (3) a 9 ( 4)(a+b)m+n+1 (5)a 5n+4 (6) -a 5 (7) a 5 (8) (2y-x)7 拓展提高1、填空;(1)()()()[]m n p y x x y y x 32--∙-∙-=-(x-y )p ·(x-y )2n ·(x-y )3m =-(x-y)p+2n+3m(2)2x+2=2x ·22=m,∴2x=4m2、选择:(1)A 本题考查同底数幂的乘法性质的运用(2)C 由同底数幂的乘法性质可知A 、B 、D 运算结果均为x3m+2,故选 C 3、解答题(1) ∵x a+b+c =x a+b ·x c =35,x a+b =5,∴cx =7(2) 由,14x x x x n m =∙∙得x 1+m+n =x 14,∴1+m+n=14,∴m+n=13 (3)∵a n+1·a m+n =a 6 ∴n+1+m+n=6,即m+2n=5 ,又∵m -2n=1,∴m=3,n=1,∴m n =3(4) 4353x x x x x ∙∙+∙=x 8+x 8=2x 8 体验中考1、幂的运算【答案】A2、解析:本题考查整式的有关运算,235a a a =,选项A 是错的,()()226a a a =·3,选项B 是错的,()326aa =,选项C 是正确的,故选C。

(完整版)同底数幂的乘法练习题与答案

(完整版)同底数幂的乘法练习题与答案

同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。

2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y ≠,則下面多項式不成立の是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正確の是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.設a m =8,a n =16,則a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,則括號內應填x の代數式為( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,則a m+n =( ).A.5 B.6 C.8 D.9 8.下列計算題正確の是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括號裏面の代數式應當是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可寫成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a 、b 為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.計算a -2·a 4の結果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,則下面各式不能成立の是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以寫成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

同底数幂的乘法练习题及标准答案

同底数幂的乘法练习题及标准答案

1.2. 3. 4. 5. 6. 、填空题同底数幕相乘,底数 同底数幕的乘法-练习A ( ) • a 4二a 20.(在括号内填数) 若 102• 10m =1 02003,则 m 二..23• 83=2n,则 n= -a 3• (-a ) 5指数2• x 3y=J Q .亠 3 J 2 _ J 4 ,亠 2 _n 3 a • a +a • a — a • a +a • a (x+y ) - (x+y ) 48. 10m110n1=, 64( 6)5=9. x 2x 3 xx 4=_(x 2 5y) (x y) =_ _.10. 103 100 10 100 100 100 10000 10 10 =11.若 a m3 4a a ,则m=牡 4 a 16若 x x x ,12.若 amcn2, a 5,则 a m n 二13. -32X 33=;-(-a)2=7. ;(-X)2• (-x)3=则a=(a-b ) 3• (a-b ) 5;(a + b) • (a + b)40.5 10x 211=;a a m•=a5m +115. (1)a • a 3• a 5= (2)(3a) (3a)=⑶X m x m1 x m 1(4)(x+5) 3• (x+5) 2(5)3a 24 -5• a +5a • a= 2 3(6)4(m+n) - (m+n) -7(m+n)(m+n)4+5(m+n)5=14. a 4•=a 3-=a 9二、选择题3.若x y ,则下面多项式不成立的是4.下列各式正确的是(A . (x- y)2= (y- x)2C . (x + y)(x-y) = (x + y)(y-x)A . a 2+ a 2= a 4B . x • x 2 = x 3C . t 3+13= 2t 6D . x 3 • x • x 4=x71.下面计算正确的是()A . b 3b 2b 6;B . x 3 x 3 x 6:C . a 4a 2a 6 : D . mm 5 m 62. 81 X 27 可记为()A.93B. 37C. 36D. 312A . 3a 2 • 5a 3=15a 6 B.-3x 4 - (-2x 2) =-6x 6 C . 3x 3 • 2x 4=6x 12D. (-b ) 3 • (-b ) 5=b 8 5.设 a m=8,a n=16,则 a m n)A .24 B.32C.64D.1286. 若x 2• x 4• ( ) =x 16,则括号内应填x 的代数式为( )A . x 10B. x 8C. x 4D. x 27. 若 a = 2,a = 3,贝J a = ( ).A.5B.6C.8D.98. F 列计算题正确的是()A.a m a 2 = a 2m B.x 3 x 2 x = x 5 C.x 4 x 4=2x 4 D.y a+1 y a-1 = y 2a 9. 在等式a 3a 2()= a 11中,括号里面的代数式应当是()A.a 7B.a 8 C.s f D.a 510. x 3m+3可写成()A3x m+1B.x 3m +x 3C.x 3 x m+1D.x 3m x 311:①(-a)3(-a)2(-a)=a 6;②(-a)2(-a) (-a)4=a 7;③(-a)2(-a)3(-a 2)=-a 7:④(-a 2) (-a 3) (-a)3二-a 8其中正确的算式是()A.①和②B.②和③C.①和④D.③和④12 一块长方形草坪的长是x a+1米,宽是x b-1米(a 、b 为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-b B.x a+bC.x a+b-1D.x a-b+2a 2C . a -8D . a 814. 若xMy ,则下面各式不能成立的是15. a 16 可以写成()A . a 8 + a 8B . a 8•a 2C . a 8 • a 8D . a 4 • a 416. F 列计算中正确的是()A. (y x)2 (x y)2B. ( x)3x 3C. y)2 y 2D. (xy)2(x- y)3 = - (y- x)3D . (x + y)2= (-x-y)217.下列题中不能用同底数幕的乘法法则化简的是()19.用科学记数法表示(4X 102) X (15X 105)的计算结果应是(三.判断下面的计算是否正确(正确打“/”,错误打“X” )4 4 16/ 、.P • P =P ()9. (- m)4 - m 3= - m 7(四、解答题1.计算(1)(-2)3 23(-2)2、计算题7.已知2m = 4, 2n = 16.求2汩n的值.7 a m1 - a 3-2a m - a 4-3a 2(1) x x 2 x 3(a b) (a b)2 (a b)3⑶(x)2 x 3 2x 3( x)2x 4(5)( 10) 4 •( 10) 3 ;(6) (2x-y ) 3 - (2x-y ) • (2x-y ) 4;(1) 34 9 81 = (2)625 125 56= 4.已知 a x3 a 2x1(a 0,a 1),求 x 6.已知 君3 x n + 3=x 10,求n 的值.A .(X +y)(x + y)2B . (x-y)(x + y)2C . -(x-y)(y-x)2D • (x-y)2(x-y)3(x-y)18.计算 22009 22008等于()A、22008B 、2C 、1D 、22009A. 60X 107B. 6.0X 107C. 6.0X 108D. 6.0X10101. (3x+2y) 3 - (3x+2y) 2 = (3x+2y) 5( .-P 2・ (-P) 4 - (-P) 3= (-P) 9()3.5. m 3 - m 3= 2m 3( 6. m 2+ m 2= m 4( )7. a 2 - a 3 = a 6()8. x 2 - x 3= x 5( )(2)81(3)x 2n+1 x n-1 x 4-3n(4)4 创+2-2 X n+15、p x p 6p 2x( p 0, p 1),求 X8.若 x a 10,x b 8,求 x a b 9.一台电子计算机每秒可运行 4X 109次运算,它工作5X102秒可作多少次运算?10.水星和太阳的平均距离约为5.79X 107km ,冥王星和太阳的平均距离约是水星和太阳的平均距离的102倍,那么冥王星和太阳的平均距离约为多少 km ?五、1.已知 a m = 2,cf = 3,求 a3m+2n的值.3.计算下列各式4.已知:x=255, y=344,z=433,试判断X 、y 、z 的大小关系,并说明理由5. x mx m+1+x m+3x m-2+(-x)2(-x)2m-1一次函数同步练习选择题a a y _ X _, be 0,则直线b c经过的象限为( )(B)—、二、四.(C )二、三、四. (D )一、二、四.y 1)和点B ( x 2, y 2)在同一直线y kxb上,且 k 0 .若 x 1X 2,则 y 1 , y 23x —3x - (D) 2的关系是((A)y 1 y 2. (B)y 1 y 2. (C) y 1y 2. ( D )无法确定.3 .对于直线y kx b ,若b 减小一个单位,则直线将((A )向左平移一个单位. 向右平移一个单位.(C )向上平移一个单位.向下平移一个单位.4.若两个一次函数y 3x 2与y2x 3的函数值同为正数,贝J X 的取值范围是()5 .若直线y3x b 与两坐标轴围成的三角形的面积为 6,则b 的值为()(A) 6.(B) 6(C )3(D)62.试确定32011的个位数字. (2)y 2 y m-2+y y m-1-y 3 y m-3(1)x 5 x 3-x 4x 4+x 7x+x 2x 61 .已知,ab 2.点 A ( X 1,无论m 为何实数,直线y X 2m与y x 4的交点不可能在()函数y x , y 2x 4, y 3x 1的共同性质是( )二、填空题6. (A) 第一象限.(B) 第二象限. (C) 第二象限.(D) 第四象限.(A )它们的图象不过第二象限. (B )都不经过原点. (C) y 随x 的增大而增大. (D) y 随x 的减小而增大.8. 无论m 取何值,函数y mx2 m 2的图象经过的一个确定的点的坐标为((A) (0, 2).(B) (1, 3).(C ) ( 2, 4).(D ) (2, 4)7.y9.一次函数 1-X 31 的图象与 x 轴的交点坐标是,与y 轴的交点坐标是---10 .如果点(x ,3)在连结点(0, 8)和点(4, 0)的线段上,那么x 的值为11.某一次函数的图象经过点(1, 3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式12.直线y 2x b与x 轴、y 轴的正半轴分别交于A 、B 两点,若OA + OB = 12,则此直线的解析式为13. 一次函数y kx 3,当x 减少2时,y 的值增加6,则函数的解析式为 14. 一个长为120m ,宽为100m 的长方形场地要扩建成一个正方形场地,设长增加x (m ),宽增加y (m ),则y 与x y f6 -之间的函数解析式为15. 一次函数y kx b的图象经过A 、B 两点,则△ AOC 的面积为16.已知y y 1 y 2, y 1、y 2与x 都成正比例,且当x 1时 (第 15 题)y 3,则y 与x 之间的函数关系为三、解答题17.已知,直线ykx b经过点 A (3, 8)和 B ( 6, 4). 求:⑵当x 3时,y 的值.(1)试求直线y nx 的解析式;(2)在x 轴上找一点P ,使PA + PB 最短,求出满足条件的点P 的坐标.23.如图所示,是汽车行驶的路程s (千米)与时间t (分)函数关系图.观察图中所提供 A S (千米)(2)旅客最多可免费携带行李多少千克?22.已知,点 A (4, 1), B (6,2), C (y(元)* L10 64, n )在同一条直线上.460 80 x(千克)(1) k 和b 的值; 18.已知,函数y1 3k x 2k 1,试回答:(1) k 为何值时,3图象交x 轴于点(4 , 0)?(2) k 为何值时, y 随x 增大而增大? (3) k 为何值时, 图象过点(2,13)y19. 一次函数y kx b的图象过点(2 , 5),并且与y 轴相交于点P ,直线与y 轴相交于点Q ,点Q 与点P 关于x 轴对称,求这个一次函数的解析式.20.如图所示,是某校一电热淋浴器水箱的水量 y (升)与供水时间x (分)的函数关系.(1)求y 与x 的函数关系式;(2)在(1)的条件下,求在30分钟时水箱有多少升水 21.某地长途汽车客运公司规定旅客可以随身携带50+H定重量的行李0,如分果超出规定,则需 购买行李票,行李票费用y (元)是行李重量(千克)的一次函数,如图所示.求:的信息,解答下列问题:40(1)汽车在前9分钟内的平均速度是多少?12(2)汽车在中途停了多长时间?9 16 30 * 份)'肿(升)150(3)当 16 t 30时,求S 与t 的函数解析式.答案 一、选择题1. C2. B3. D4. A5. D6. C7. D二、填空题24.如图,正方形 ABCD 的边长是4,将此正方形置于平面直角坐标系 xOy 中,使AB在x 轴的正半轴上,4 y - xC 、D 落在第一象限,经过点C 的直线 383交x 轴于点E .(1)求四边形AECD 的面积;(2)在坐标平面内,经过点E 的直线能否将正方形ABCD 分成面积相等的两部分?若能,求出这条直线的解析式,若不能,说明理由.t y25.某企业有甲、乙两个长方体的蓄水池,将甲池中 DC的水以每小池,甲、乙两个蓄水池中水的深度 y (米)与注水时间 结合图象回答下列问题:A /E BX(1) 分别求出甲、乙两个蓄水池中水的深度 y 与注水时间x 之间的函数关系式;J. y(米)(2) 求注水多长时间甲、乙两个蓄水池水的深度相同; (3)求注水多长时间甲、乙两个蓄水池的蓄水量相同 2 26.如图,三人在相距10千米的两地练习骑自行车线 OPQ 、线段MN 和TS 分别表 1示甲、乙和丙距某地的路程y 与时间x 之间的函数 甲以18千米/时的速度走x(时) 完6千米后改变速度匀速前进,20分钟到达终点.(1)求线段PQ 的函数解析式;(2)求乙和丙从甲出发多少分钟相遇,相遇点距甲出发地多少千米.6立方米的速度注入乙x 寸)之间的函数图象如图所示,系 已知 y (千米) 解々 P6O 丄6-3 F 列问题:13 .计算a -2• a 4的结果是()A . a -2m 12 m2c3 m 3x x x x 3 x x3、计算并把结果写成一个底数幕的形式(C) 2(1) y 与x 之间的函数解析式;9. (3, 0), (0, 1) 10. 2.5 11. y 3x 12. y 2x13.3x 314. y x 2015. 9 16. y 3x三、解答题417. (1) 3 4. (2) 0. 18. (1) k19.4x3. 20.2521. .(2) 6.22. (1) y3x14(3 , 0)23.7分钟. s 2t 2024. (1) 10. (2) y 2x 425. (1)甲:y乙:26. (1) y 12x 2 . (2)255440 9。

(完整版)同底数幂乘法练习题含详细答案解析

(完整版)同底数幂乘法练习题含详细答案解析

《同底数幂的乘法》习题1.下列各式中,计算过程正确的是( ) A .x 3+x 3=x 3+3=x 6 B .x 3·x 3=2x 3C .x ·x 3·x 5=x 0+3+5=x 8D .x 2·(-x )3=-x 2+3=-x 5 2.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010 3.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数 B .负数 C .非正数 D .非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为( ) 立方厘米.(结果用科学记数法表示)A .2×109B .20×108C .20×1018D .8.5×108 5.下面计算正确的是( )A .326b b b =;B .336x x x +=;C .426a a a +=;D .56mm m = 6.81×27可记为( ) A.39; B.73; C.63; D.1237.若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-; B.33()()y x x y -=--; C.22()()y x x y --=+; D.222()x y x y +=+ 8.计算:(-2)3·(-2)2=______. 9.计算:a 7·(-a )6=_____.10.计算:(x +y )2·(-x -y )3=______.11.计算:(3×108)×(4×104)=_______.(结果用科学记数法表示) 12.(一题多解题)计算:(a -b )2m-1·(b -a )2m·(a -b )2m+1,其中m 为正整数.13. 计算并把结果写成一个底数幂的形式:①43981⨯⨯;②66251255⨯⨯14.一个长方形农场,它的长为3×107m ,宽为5×104m ,试求该农场的面积.(结果用科学记数法表示)15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km ,木星的体积大约是多少km 3(π取3.14)?参考答案1.答案:D解析:【解答】x3+x3=2x3,所以A错误;x3·x3=x3+3=x6,所以B错误;x·x3·x5=x1+3+5=x9,所以C错误;x2·(-x)3=x2·(-x3)=-(x2·x3)=-x2+3=-x5.所以D是正确的.故选D.【分析】根据合并同类项、同底数幂的乘法,可得答案.2.答案:B解析:【解答】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.【分析】根据提取公因式的方法计算3.答案:A解析:【解答】(-a)5·(-a)2n=(-a)2n+5,因为a<0,所以-a>0,所以(-a)2n+5>0,故选A.【分析】运用同底数幂的乘法计算得出答案.4.答案:A解析:【解答】长主体的体积为4×103×2×102×2.5×103=20×108=2×109(立方厘米),因为用a×10n表示一个大于10的数时,1≤a<10,n是正整数,故选A.【分析】先根据题意列出4×103×2×102×2.5×103再运用同底数幂的乘法计算.5.答案:D解析:【解答】A应为b5所以A错误;B应为2x3所以B错误;C不能就算所以C错误.故选D.【分析】根据同底数幂相乘,底数不变,指数相加即可求6.答案:B解析:【解答】81×27=37,故选B .【分析】先化为底数是3的同底数的幂,在运用法则计算 7.答案:D解析:【解答】A.22()()y x x y -=-正确; B.33()()y x x y -=--正确; C.22()()y x x y --=+正确; D.222()x y x y +=+错误 故选D .【分析】根据奇数次幂,偶数次幂的性质得出答案. 8.答案:-32解析:【解答】(-2)3·(-2)2=(-2)5=-25=-32. 【分析】运用同底数幂的乘法计算. 9.答案:a解析:【解答】a 7·(-a )6=a 7·a 6=a 7+6=a 13. 【分析】运用同底数幂的乘法计算. 10.答案:-(x +y )5解析:【解答】(x +y )2·(-x -y )3=(x +y )2·[-(x +y )] 3 =(x +y )2·[-(x +y )3]=-[(x +y )2·(x +y )3]=-(x +y )5. 【分析】先画出同底数幂的乘法,在运用法则计算. 11.答案:1.2×1013解析:【解答】(3×108)×(4×104)=3×108×4×104=12×1012=1.2×1013. 【分析】先把3与4相乘,108与104相乘,再求积 12.答案:(a -b )6m , (b -a )2m 解析:【解答】① 因为m 为正整数,所以2m 为正偶数,则(b -a )2m =(a -b )2m ,(a -b )2m -1·(b -a )2m ·(a -b )2m+1 =(a -b )2m -1·(a -b )2m ·(a -b )2m+1=(a -b )2m-1+2m+2m+1=(a -b )6m .② 因为m 为正整数,所以2m -1,2m +1都是正奇数, 则(a -b )2m -1=-(b -a )2m -1,(a -b )2m+1=-(b -a )2m+1, (a -b )2m -1·(b -a )2m ·(a -b )2m+1=[-(b -a )2m -1] ·(b -a )2m ·[-(b -a )2m+1] =(b -a )2m-1+2m+2m+1=(b -a )2m .【分析】在转化为同底数幂的过程中,要根据指数的奇偶性讨论符号问题. 13.答案:310,513解析:【解答】①424103333⨯⨯=,②436135555⨯⨯= 【分析】先确定同底数,化成同底数幂的形式再计算. 14.答案:1.5×1012m 2解析:【解答】3×107×5×104=15×1011=1.5×1012(m 2) 答:该农场的面积是1.5×1012m 2.【分析】根据题意列出式子3×107×5×104再计算. 15.答案:1.44×1015km 3 解析:【解答】 V=43πR 3 =43π×(7×104)3 =43π×73×1012 ≈43×3.14×73×1012≈1436×1012≈1.44×1015(km 3) 答:木星的体积大约是1.44×1015km 3. 【分析】根据球的体积公式V=43πR 3,将木星看作球,即可求出结果.。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底数幂的乘法-练习一、填空题1.同底数幂相乘,底数 , 指数 。

2.A ( )·a 4=a 20.(在括号内填数) 3.若102·10m =102003,则m= . 4.23·83=2n ,则n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、选择题1. 下面计算正确的是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y ≠,则下面多项式不成立的是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正确的是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.设a m =8,a n =16,则a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,则括号内应填x 的代数式为( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,则a m+n =( ).A.5 B.6 C.8 D.9 8.下列计算题正确的是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括号里面的代数式应当是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可写成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米(a 、b 为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.计算a -2·a 4的结果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,则下面各式不能成立的是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以写成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列计算中正确的是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列题中不能用同底数幂的乘法法则化简的是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 计算2009200822-等于( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科学记数法表示(4×102)×(15×105)的计算结果应是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答题1.计算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、计算题(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

(完整版)同底数幂的乘法(含答案

(完整版)同底数幂的乘法(含答案

同底数幂的乘法(含答案)A卷:基础题一、选择题1.下列各式中,计算过程正确的是()A.x3+x 3=x3+3=x6B.x3•x3=X2x3C.x•x3•x5= x0+3+5=x8D.x2•(-x)3=-x2+3=-x5 2.计算(-2)2009+(-2)2010的结果是()A.22019B.22009C.-2 D.-22010 3.当a<0,n为正整数时,(-a)5•(-a)2n的值为()A.正数B.负数C.非正数D.非负数4.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示)A.2×109B.20×108C.20×1018 D.8.5×108二、填空题5.计算:(-2)3•(-2)2=______.6.计算:a7•(-a)6=_____.7.计算:(x+y)2•(-x-y)3=______.8.计算:(3 ×108)×(4×104)=_______.(结果用科学记数法表示)三、计算题9.计算:x m•x m+x2•x2m-2.四、解答题10.一个长方形农场,它的长为3×107m,宽为5×104m,试求该农场的面积.(结果用科学记数法表示)B卷:提高题一、七彩题1.(一题多解题)计算:(a-b)2m-1•(b-a)2m•(a-b)2m+1,其中m为正整数.2.(一题多变题)已知x m=3,x n=5,求x m+n.(1)一变:已知x m=3,x n=5,求x2m+n;(2)二变:已知x m=3,x n=15,求x n.二、知识交叉题3.(科内交叉题)已知(x-y)•(x-y)3•(x-y)m=(x-y)12,求(4m2+2m+1)-2(2m2-m-5)的值.4.(科外交叉题)据生物学统计,一个健康的成年女子体内的血量一般不低于4×103毫升,每毫升血中红细胞的数量约为4.2×106个, 问一个健康的成年女子体内的红细胞一般不低于多少个?(结果用科学记数法表示)三、实际应用题5.我国自行设计制造的“神舟六号”飞船进入圆形轨道后的飞行速度为7.9 ×103米/秒,它绕地球一周需5.4×103秒,问该圆形轨道的一周有多少米?(结果用科学记数法表示)四、经典中考题6.计算:-m2•m3的结果是()A.-m6B.m5C.m6D.-m57.计算:a•a2=______.C卷:课标新型题1.(规律探究题)a3表示3个a相乘,(a3)4表示4个_____相乘, 因此(a3)4 = ____=____,由此推得(a m)n=______,其中m,n都是正整数,并利用你发现的规律计算:(1)(a4)5;(2)[(a+b)4] 5.2.(条件开放题)若a m•a n=a11,其中m,n都是正整数,请写出三组符合条件的m,n的值.参考答案A卷1.D 点拨:x3+x3=2x3,所以A错误;x3•X3=x3+3=x6,所以B错误;x•x3•x5=x1+3+5=x9,所以C错误;2.B 点拨:(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B,注意逆用同底数幂的乘法法则.3.A 点拨:(-a)5•(-a)2n=(-a)2n+5,因为a<0,所以-a>0,所以(-a)2n+5>0,故选A.4.A 点拨:长主体的体积为4×103×2×102×2.5×103=20×108=2×109(立方厘米),因为用a×10n表示一个大于10的数时,1≤a<10,n是正整数,故选A.二、5.-32 点拨:(-2)3•(-2)2=(-2)5=-25=-32.6.a 点拨:a7•(-a)6=a7•a6=a 7+6=a13.7.-(x+y)5点拨:(x+y)2•(-x-y)3=(x+y)2•[-(x+y)] 3=(x+y)2•[-(x+y)3]=-[(x+y)2• (x+y)3]=-(x+y)5.8.1.2×1013点拨:(3×108)×(4×104)=3×108×4×104=12×1012=1.2×1013.三、9.解:x m•x m+x2•x2m-2=x m+m+x2+2m-2=x2m+x2m=2x2m.10.解:3×107×5×104=15×1011=1.5×1012(m2).答:该农场的面积是1.5×1012m2.B卷一、1.解法一:因为m为正整数,所以2m为正偶数,则(b-a)2m=(a-b)2m,(a-b)2m-1•(b-a)2m•(a-b)2m+1 =(a-b)2m-1•(a-b)2m•(a-b)2m+1=(a-b)2m-1+2m+2m+1=(a-b)6m.解法二:因为m为正整数,所以2m-1,2m+1都是正奇数,则(a-b)2m-1=-(b-a)2m-1,(a-b)2m+1=-(b-a)2m+1,(a-b)2m-1•(b-a)2m•(a-b)2m+1=[-(b-a)2m-1] •(b-a)2m•[-(b-a)2m+1]=(b-a)2m-1+2m+2m+1=(b-a)2m.点拨:在转化为同底数幂的过程中,要根据指数的奇偶性讨论符号问题.2.解:因为x m=3,x n=5,所以x m+n=x m•x n=3×5=15.(1)因为x m=3,x n=5,所以x2m+n=x2m•x n=x m•x m•x n=3×3×5=45.(2)因为x m+n=x m•x n=15,把x m=3代入得3•X n=15,所以x n=5.二、3.解:由(x-y)•(x-y)3•(x-y)m=(x-y)1+3+ m= (x-y)4+m=(x-y)12,得4+m=12,m=8.(4m2+2m+1)-2(2m2-m-5)=4m2+2m+1-4m2+2m+10=4m+11,当m=8时,原式=4×8+11=32+11=43.点拨:先根据同底数幂的乘法法则求出m的值,再化简多项式,最后代入求值.4.解:4×103×4.2×106=16.8×109=1.68×1010(个).答:一个健康的成年女子体内的红细胞一般不低于1.68×1010个.三、5.解:7.9×103×5.4×103=42.66×106=4.266×107(米).答:该圆形轨道的一周有4.266×107米.四、6.D .7.a 点拨:a•a2=a1+2=a3,注意a的指数为1,不要遗漏.C卷1.解:a3;a3•a3•a3•a3;a12;a mn(1)(a4)5=a 4×5=a20,(2)[(a+b)4] 5=(a+b)4×5=(a+b)20.2.解:m=1,n=10;m =2,n=9;m=3,n=8.点拨:本题答案不唯一,只要写出三组符合条件的m,n的值即可.。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底数幕的乘法-练习一、填空题1. _________________________ 同底数幕相乘,底数, 指数。

2. A)• a4=a20.(在括号内填数)3. 若102• 1O m=1O 2003,则m=_.4. 23• 83=2n,则n= ____ .5. __________________ -a3• (-a) 5= _________ ; x • x2• x3y= .6. _____________________________________ a5• a n+a3• a n 2- a • a n 4+a2• a n 3= _______________________________________ .7. _________________________ (a-b) 3• (a-b) 5= __________ ; (x+y) • (x+y) 4 = .8m 1 n 1 4 5.10 10 = ______________ ,6 ( 6) = __. _9. x2x3xx4=_ (x y)2(x y)5 = ____ . \.10. 103100 10 100 100 100 10000 10 10= ____________ .11. 若a m a3a4,贝U m= ______ 若x4x a x16,贝U a= __________ ;12. __________________________ 若a m2,a n5,则a m n= .13. -32X 33= __________ ;-(- a)2 = ________ ; (-x)2• (-x)3= ________ ; (a+ b)「(a + b)4 - •_________ ?x 211 = ________ ;a a m _______= a5m+1/3 515. (1)a • a • a = (2)(3a) • (3a)= ⑶X m x m1x m1______________(4)(x+5) 3• (x+5) 2= (5)3a 2• a4+5a • a5= ___(6)4(m+n) 2• (m+n)3-7(m+n)(m+n) 4+5(m+n)5 = _____14. a4 - = a3 - = a9二、选择题3. 若x y ,则下面多项式不成立的是4. 下列各式正确的是(C ^m+1 3m x 3 11:①(-a)3 (-a)2 (-a)=a 6;②(-a)2 (-a) (-a)4=a 7;③(-a)2 (-a)3 (-a 2)=-a 7;④(-a 2) (-a 3) (-a)3=-a 8.其中正确的算式是()A.①和②B.②和③C.①和④D.③和④12 一块长方形草坪的长是x a+1米,宽是x b-1米(a 、b 为大于1的正整数),则此长方形草坪 的面积是()平方米.+b +b-1+213.计算a -2 • a 4的结果是()A . a -21.下面计算正确的是()A . b 3b 2b6;B3 3 6 4.x x x ; C . a a6; D5mm2. 81 X 27 可记为()A.93 B. 37 C. 36D.312A. (y x)2 (x y)2B. ( x)3 x 3C. (y)2 y 2D. (x y)2A . 3a 2 • 5a 3=15a 6 4 • (-2x 2) =-6x 6 C . 3x 3 • 2x 4=6x 12D. (-b ) -(-b ) 5=b 85. 设 a m =8, a n =16,则 a m n = ( ) A . 24 .326.若x 2 • x 4 • ( ) =x 16,则括号内应填x 的代数式为( x 10B. x 8C. X 4D. x 27. 若 a = 2,a = 3,贝卩 a =( )..6 C8. F 列计算题正确的是()a 2= a 2mx 2x =5C x 4= 2x 4 +1y a-1 =y 2a9. 在等式a 3 a 2( )= a 11中, 括号里面的代数式应当是()8 C 3m 可写成( ).+1 3m +3 a 2C . a -8D . a 814. 若X M y ,则下面各式不能成立的是A . (x- y)2 = (y- x)2(x-y)3=- (y- x)3 C . (x + y)(x-y) = (x + y)(y-x)D . (x + y)2= (-x-y)2 15. a 16 可以写成()A . a 8 + a 8 B . a 8 •a 2 C . a 8 • a 8D . a 4 • a 416. F 列计算中正确的是()A . a 2+ a 2= a 4B . x • x 2 = x 3C . t 3+13= 2t 6D . x 3 • x • x 4= x 73、计算并把结果写成一个底数幕的形式 (1) 349 81 = _________________ (2) _______17. F 列题中不能用同底数幕的乘法法则化简的是 ()A . (x + y)(x + y)2B . (x-y)(x + y)2C . -(x-y)(y-x)2D . (x-y)2 (x-y)3 (x-y)18. 计算 22009 22008 等于()A 、22008B 、 2C 、1D 、^2009219. 用科学记数法表示(4X 102) X (15 x 105)的计算结果应是( A . 60X 107B . x 107C .x 108三•判断下面的计算是否正确(正确打“"”1. (3x+2y) 3- (3x+2y) 2= (3x+2y) 5( D . x 10103. t m - (-t2n) = t m-2n ()45. m 3-m 3= 2m 3()7. a 2 - a 3 = a 6()9. (- m)4 - m 3= - m 7( )四、解答题 1.计算(1)(-2)3 23 (-2)(3)x 2n+1 x n-1 x 4-3n2、 计算题(1) x x 2 x 3(2)⑶ 2 3(x) x2x 3 ( x)2 x x 4⑷(5)(丄) 4 -(丄)3 ;10 10(7) a m1 - a 3-2a m - a 4-3a 2 - a m2.,错误打“X” ))2. -p 2. (-P ) 4 - (-p) 3= (-P ) 9()4416.P - P = P () 6 . m 2+ m 2= m 4() 8 . x 2 - x 3= x 5()(2)81 X (4)4 雷2-? x n+1(a b)(a b)2 (a b)3m 12m2c3m 3/x x x x 3 x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同底数幂的乘法-练习
一、填空题
1.同底数幂相乘,底数 , 指数 。

2.A ( )·a 4=a 20.(在括号内填数) 3.若102·10m =102003,则m= . 4.23·83=2n ,则n= .
5.-a 3
·(-a )5
= ; x ·x 2
·x 3
y= . 6.a 5
·a n
+a 3
·a
2
+n –a ·a
4
+n +a 2·a
3
+n = .
7.(a-b )3
·(a-b )5
= ; (x+y )·(x+y )4
= . 8. 1
110
10m n +-⨯=__ _____,456(6)-⨯-= __.
9. 234
x x xx +=_ 2
5
()()x y x y ++=_ _.
10. 3
1010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __. 11. 若34m a a a =,则m=________;若416
a x x x =,则a=__________;
12. 若2,5m
n
a a ==,则m n
a +=________.
13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;
0.510×211=_________;a ·a m ·_________=a 5m +1 15.(1)a ·a 3
·a 5
= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X
(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5

(6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5
= 14.a 4·_________=a 3·_________=a 9 二、选择题
1. 下面计算正确的是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56
mm m = 2. 81×27可记为( )A.39 B.73 C.63 D.12
3 3. 若x y ≠,则下面多项式不成立的是( )
A.2
2
()()y x x y -=- B.3
3
()x x -=- C.2
2
()y y -= D.2
2
2
()x y x y +=+ 4.下列各式正确的是( )
A .3a 2
·5a 3
=15a 6
B.-3x 4
·(-2x 2
)=-6x 6
C .3x 3
·2x 4
=6x 12
D.(-b )3
·(-b )5
=b 8
5.设a m
=8,a n
=16,则a
n
m +=( )A .24 B.32 C.64 D.128
6.若x 2·x 4·( )=x 16,则括号内应填x 的代数式为( )A .x 10B. x 8C. x 4D. x 2
7.若a m
=2,a n
=3,则a m+n
=( ).A.5 B.6 C.8 D.9 8.下列计算题正确的是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括号里面的代数式应当是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可写成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 3 11:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.
其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④
12一块长方形草坪的长是x a+1米,宽是x b-1米(a 、b 为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2
13.计算a -2·a 4的结果是( )A .a -2 B .a 2 C .a -8 D .a 8 14.若x ≠y ,则下面各式不能成立的是( )
A .(x -y )2=(y -x )2
B .(x -y )3=-(y -x )3
C .(x +y )(x -y )=(x +y )(y -x )
D .(x +y )2=(-x -y )2
15.a 16可以写成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8 D .a 4·a 4 16.下列计算中正确的是( )
A .a 2+a 2=a 4
B .x ·x 2=x 3
C .t 3+t 3=2t 6
D .x 3·x ·x 4=x 7 17.下列题中不能用同底数幂的乘法法则化简的是( )
A .(x +y )(x +y )2
B .(x -y )(x +y )2
C .-(x -y )(y -x )2
D .(x -y )2·(x -y )3·(x -y ) 18. 计算2009
20082
2-等于( ) A 、20082 B 、 2 C 、1 D 、20092-
19.用科学记数法表示(4×102)×(15×105)的计算结果应是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判断下面的计算是否正确(正确打“√”,错误打“×”)
1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9
( )
3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16
( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( )
9.(-m )4·m 3=-m 7( ) 四、解答题1.计算
(1)(-2)3·23·(-2) (2)81×3n
(3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1
2、计算题
(1) 23
x x x ⋅⋅ (2) 2
3
()()()a b a b a b -⋅-⋅-
(3) 2
3
3
2
4
()2()x x x x x x -⋅+⋅--⋅ (4) 122
333m m m x x x x
x x ---⋅+⋅-⋅⋅。

(5)(
101)4·(10
1)3; (6)(2x-y )3·(2x-y )·(2x-y )4;
(7)a 1=m ·a 3-2a m ·a 4-3a 2·a 2+m .
3、计算并把结果写成一个底数幂的形式:
(1) 43981=⨯⨯ (2) 6
6251255=⨯⨯ 4.已知3
21(0,1)x x a a a a ++=≠≠,求x
5、6
2(0,1)x
x
p p p p p ⋅=≠≠,求x
6.已知x n -3·x n +
3=x 10,求n 的值.
7.已知2m =4,2n =16.求2m +
n 的值.
8.若10,8a
b
x x ==,求a b
x +
9.一台电子计算机每秒可运行4×109
次运算,它工作5×102
秒可作多少次运算?
10.水星和太阳的平均距离约为5.79×107
km ,冥王星和太阳的平均距离约是水星和太阳的平均距离的102倍,那么冥王星和太阳的平均距离约为多少km ?
五、1.已知a m =2,a n =3,求a 3m+2n 的值.
2.试确定32011的个位数字.
3.计算下列各式
(1)x 5·x 3-x 4·x 4+x 7·x+x 2·x 6
(2)y 2·y m-2+y·y m-1-y 3·y m-3
4.已知:x=255,y=344,z=433,试判断x、y、z的大小关系,并说明理由. 5.x m·x m+1+x m+3·x m-2+(-x)2·(-x)2m-1。

相关文档
最新文档