(完整版)高考数学试题目分类整理汇编5——解析几何,推荐文档

合集下载

专题05 平面解析几何(选择题、填空题)-三年(2022–2024)高考数学真题分类汇编(原卷版)

专题05 平面解析几何(选择题、填空题)-三年(2022–2024)高考数学真题分类汇编(原卷版)

专题05平面解析几何(选择题、填空题)考点三年考情(2022-2024)命题趋势考点1:直线方程与圆的方程2022年全国II卷、2022年全国甲卷(文)2022年全国乙卷(理)近三年高考对解析几何小题的考查比较稳定,考查内容、频率、题型难度均变化不大,备考时应熟练以下方向:(1)要重视直线方程的求法、两条直线的位置关系以及点到直线的距离公式这三个考点.(2)要重视直线与圆相交所得弦长及相切所得切线的问题.(3)要重视椭圆、双曲线、抛物线定义的运用、标准方程的求法以及简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.考点2:直线与圆的位置关系2024年北京卷、2022年全国甲卷(理)2022年天津卷、2022年北京卷2023年全国Ⅰ卷、2024年北京卷考点3:圆与圆的位置关系2022年全国I卷考点4:轨迹方程及标准方程2023年北京卷、2023年天津卷2024年全国Ⅱ卷、2022年天津卷2022年全国甲卷(文)考点5:椭圆的几何性质2022年全国I卷2023年全国甲卷(理)2023年全国甲卷(文)考点6:双曲线的几何性质2022年北京卷2023年全国乙卷(理)考点7:抛物线的几何性质2024年北京卷、2024年天津卷2023年全国乙卷(理)2023年天津卷、2023年全国Ⅱ卷2024年全国Ⅱ卷、2022年全国I卷考点8:弦长问题2022年全国乙卷(理)2023年全国甲卷(理)考点9:离心率问题2024年全国Ⅰ卷、2022年全国甲卷(文)2023年全国Ⅰ卷、2022年浙江卷2022年全国乙卷(理)2024年全国甲卷(理)2023年全国Ⅰ卷、2022年全国甲卷(理)考点10:焦半径、焦点弦问题2022年全国II卷、2023年北京卷考点11:范围与最值问题2022年全国II卷2024年全国甲卷(文)2023年全国乙卷(文)考点12:面积问题2024年天津卷、2023年全国Ⅱ卷2023年全国Ⅱ卷考点13:新定义问题2024年全国Ⅰ卷考点1:直线方程与圆的方程1.(2022年新高考全国II 卷数学真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||23MA NB MN ==l 的方程为.2.(2022年高考全国甲卷数学(文)真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为.3.(2022年高考全国乙卷数学(理)真题)过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为.考点2:直线与圆的位置关系4.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214xy -=只有一个公共点,则k 的一个取值为.5.(2022年高考全国甲卷数学(理)真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.6.(2022年新高考天津数学高考真题)若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.7.(2022年新高考北京数学高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A .12B .12-C .1D .1-8.(2023年新课标全国Ⅰ卷数学真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D 649.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A 2B .2C .3D .32考点3:圆与圆的位置关系10.(2022年新高考全国I 卷数学真题)写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程.考点4:轨迹方程及标准方程11.(2023年北京高考数学真题)已知双曲线C 的焦点为(2,0)-和(2,0),离心率为2,则C 的方程为.12.(2023年天津高考数学真题)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF 的斜率为24,则双曲线的方程为()A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=13.(2022年新高考天津数学高考真题)已知抛物线21245,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为()A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=14.(2022年高考全国甲卷数学(文)真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=15.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)考点5:椭圆的几何性质16.(2022年新高考全国I 卷数学真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是.17.(2023年高考全国甲卷数学(理)真题)设O 为坐标原点,12,F F 为椭圆22:196x yC +=的两个焦点,点P 在C 上,123cos 5F PF ∠=,则||OP =()A .135B .302C .145D .35218.(2023年高考全国甲卷数学(文)真题)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅=,则12PF PF ⋅=()A .1B .2C .4D .5考点6:双曲线的几何性质19.(2022年新高考北京数学高考真题)已知双曲线221x y m +=的渐近线方程为3y =,则m =.20.(2023年高考全国乙卷数学(理)真题)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A .()1,1B .()1,2-C .()1,3D .()1,4--考点7:抛物线的几何性质21.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为.22.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.23.(2023年高考全国乙卷数学(理)真题)已知点(5A 在抛物线C :22y px =上,则A 到C 的准线的距离为.24.(2023年天津高考数学真题)已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.25.(多选题)(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个26.(多选题)(2022年新高考全国I 卷数学真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA⋅>D .2||||||BP BQ BA ⋅>27.(多选题)(2023年新课标全国Ⅱ卷数学真题)设O 为坐标原点,直线)31y x =--过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN 为等腰三角形考点8:弦长问题28.(2022年高考全国乙卷数学(理)真题)设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .22C .3D .3229.(2023年高考全国甲卷数学(理)真题)已知双曲线2222:1(0,0)x y C a b a b-=>>5C 的一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A 55B .255C .355D .455考点9:离心率问题30.(2024年新课标全国Ⅰ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.31.(2022年高考全国甲卷数学(文)真题)记双曲线2222:1(0,0)x y C a b a b -=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值.32.(2023年新课标全国Ⅰ卷数学真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A B ⊥=- ,则C 的离心率为.33.(2022年新高考浙江数学高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是.34.(多选题)(2022年高考全国乙卷数学(理)真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A 52B .32C .132D .17235.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 236.(2023年新课标全国Ⅰ卷数学真题)设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若213e e =,则=a ()A 233B 2C 3D 637.(2022年高考全国甲卷数学(理)真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A 32B .22C .12D .13考点10:焦半径、焦点弦问题38.(多选题)(2022年新高考全国II 卷数学真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则()A .直线AB 的斜率为26B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒39.(2023年北京高考数学真题)已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A .7B .6C .5D .4考点11:范围与最值问题40.(2022年新高考全国II 卷数学真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是.41.(2024年高考全国甲卷数学(文)真题)已知直线20ax y a ++-=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .642.(2023年高考全国乙卷数学(文)真题)已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A .3212+B .4C .132+D .7考点12:面积问题43.(2024年天津高考数学真题)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=44.(2023年新课标全国Ⅱ卷数学真题)已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值.45.(2023年新课标全国Ⅱ卷数学真题)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A .23B 23C .23D .23-考点13:新定义问题46.(多选题)(2024年新课标全国Ⅰ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+。

2020年高考数学大题分解专题05--解析几何

2020年高考数学大题分解专题05--解析几何

2020年高考数学(理)大题分解专题05--解析几何(含答案)(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB .【肢解1】若4||||=+BF AF ,求l 的方程;【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知12342AF BF x x +=++=,所以1252x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x , 由0144)1212(22>--=∆m m 得12m <, 所以121212592m x x -+=-=,解得78m =-,所以直线l 的方程为3728y x =-,即12870x y --=.【肢解2】若3AP PB =,求||AB .大题肢解一直线与抛物线【解析】设直线l 方程为23x y t =+,联立2233x y t y x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)3(4294123134.设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p.弦长的计算方法:求弦长时可利用弦长公式,根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后进行整体代入弦长公式求解.温馨提示:注意两种特殊情况:(1)直线与圆锥曲线的对称轴平行或垂直;(2)直线过圆锥曲线的焦点.【拓展1】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若27||||=+BF AF ,求l 在y 轴上的截距. 【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知123722AF BF x x +=++=,所以122x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x ,由0144)1212(22>--=∆m m 得12m <, 所以12121229m x x -+=-=,解得21m =-,所以直线l 的方程为3122y x =-,令0=x 得21-=y , 所以直线l 在y 轴上的截距为21-.【拓展2】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若2AP PB =,)0,4(-M ,求ABM ∆的面积.【解析】设直线l 方程为23x y t =+, 联立2233x y ty x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,t y y 321-=,因为PB AP 2=,所以212y y -=,所以22-=y ,41=y ,所以821-=y y .38-=t ,所以=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)8(429412132, 直线l 方程为2833x y =-,即0823=+-y x ,所以点)0,4(-M 到l 的距离13413|812|=+-=d , 所以ABM ∆的面积为413413221||21=⨯⨯=⋅d AB .1.(2019年山西太原一模)已知抛物线x y 42=的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若AOB ∆的面积为6,求||AB .【解析】由题意知抛物线x y 42=的焦点F 的坐标为)0,1(, 易知当直线AB 垂直于x 轴时,AOB ∆的面积为2,不满足题意, 所以可设直线AB 的方程为)0)(1(≠-=k x k y , 与x y 42=联立,消去x 得0442=--k y ky , 设),(11y x A ,),(22y x B ,由韦达定理知k y y 421=+,421-=y y , 变式训练一所以1616||221+=-k y y , 所以AOB ∆的面积为616161212=+⨯⨯k,解得2±=k , 所以6||11||212=-⋅+=y y kAB . 2.(2019年湖北荆州模拟)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于,A B 两点.(1)若3AF FB =,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.【解析】(1)依题意可设直线:1AB x my =+,将直线AB 与抛物线联立214x my y x =+⎧⎨=⎩⇒2440y my --=,设11(,)A x y ,22(,)B x y ,由韦达定理得121244y y my y +=⎧⎨=-⎩,因为3AF FB =,所以213y y -=,即312=m ,所以直线AB 的斜率为3或3-. (2)2212121212122()4161642OACB AOB S S OF y y y y y y y y m ∆==⋅⋅-=-=+-=+≥, 当0m =时,四边形OACB 的面积最小,最小值为4.(2020届广东省珠海市高三上学期期末)中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.大题肢解二【肢解1】求椭圆C 的方程; 【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【肢解1】求椭圆C 的方程;【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎛⎫ ⎪⎝⎭两点得()222222221011321m n m n ⎧-+=⎪⎪⎪⎨⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎩ 解得21n =,24m =, 所以椭圆:C 2214x y +=.【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【解析】将直线1:,(0)2l y x m m =+>代入2214x y +=得:221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<.由韦达定理得122x x m +=-,21222x x m =-.()()22221212124442284x x x x x x m m m -=+-=--=-242121222OPQ S m x x m m m m ∆=-=-=-+. 由二次函数可知当21m =即1m =时,OPQ ∆的面积的最大.直线与圆锥曲线的相交弦长问题:设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2.【变式1】中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:>+=m m x y l 与椭圆C 交于P ,Q 两点,若APQ ∆的面积为1+m ,求m 的值.【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎫⎪⎭两点得()22222221011321m n n ⎧-+=⎪⎪⎪⎨⎛⎫ ⎪⎝⎭+= 解得21n =,24m =. 所以椭圆:C 2214x y +=.(2)将直线1:,(0)2l y x m m =+>代入2214x y +=得221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<设),(11y x P ,),(22y x Q ,韦达定理得122x x m +=-,21222x x m =-.所以)22(4)2()21(1||222---⋅+=m m PQ 252+-⋅=m ,由点到直线的距离公式得点)1,0(-A 到直线l 的距离5|22|m d +=. 变式训练二所以APQ ∆的面积为255|22|212+-⋅⋅+⋅m m 2|1|2+-⋅+=m m , 因为APQ ∆的面积为1+m ,所以12|1|2+=+-⋅+m m m ,解得1=m 或1-=m (舍去). 所以1=m .【变式2】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,其中左焦点为)0,2(-F .(1)求椭圆C 的方程;(2)若直线m x y +=与椭圆C 交于不同的两点A ,B ,1ABF ∆的面积为)2(6-m ,求直线的方程.【解析】(1)由题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===222222c b a c a c 解得⎩⎨⎧==222b a ,所以椭圆C 的方程为14822=+y x . (2)设点),(11y x A ,),(22y x B ,由⎪⎩⎪⎨⎧+==+m x y y x 14822消去y 得0824322=-++m mx x , 由0)84(12)4(22>--=∆m m 得3232<<-m ,由韦达定理知3421mx x -=+,382221-=m x x ,所以)82(4)34(2||22---⋅=m m AB 367342+-=m , 由点到直线的距离公式得)0,2(1-F 到直线m x y +=的距离2|2|m d -=, 所以1ABF ∆的面积为36342|2|212+-⋅-⋅m m )2(6-=m ,解得3±=m ,满足3232<<-m ,所以所求直线方程为3+=x y 或3-=x y .1.(2019年山东高考模拟)已知圆22:4O x y +=,抛物线2:2(0)C x py p =>.(1)若抛物线C 的焦点F 在圆O 上,且A 为抛物线C 和圆O 的一个交点,求AF ; (2)若直线l 与抛物线C 和圆O 分别相切于,M N 两点,设()00,M x y ,当[]03,4y ∈时,求MN 的最大值.【解析】(1)由题意知(0,2)F ,所以4p =. 所以抛物线C 的方程为28x y =.将28x y =与224x y +=联立得点A 的纵坐标为2(52)A y =, 结合抛物线定义得||2522A pAF y =+=. (2)由22x py =得22x y p =,x y p'=,所以直线l 的斜率为0x p ,故直线l 的方程为()000xy y x x p-=-.即000x x py py --=. 又由0220||2py ON x p -==+得02084y p y =-且240y ->, 所以2222200||||||4MN OM ON x y =-=+- 220000020824244y py y y y y =+-=+-- ()2202200022001644164444y y y y y y -+=+-=+--- 2020641644y y =++--.令24t y =-,0[3,4]y ∈,则[5,12]t ∈,令64()16f t t t =++,则264()1f t t'=-; 当[5,8]t ∈时()0f t '≤,()f t 单调递减, 当(8,12]t ∈时()0f t '>,()f t 单调递增, 又64169(5)16555f =++=,64100169(12)16121235f =++=<, 所以max 169()5f x =,即||MN.2.(2020黑龙江省齐市地区普高联谊高二上学期期末)已知椭圆C :22221(0)x y a b a b+=>>过点)23,22(与点)22,1(--. (1)求椭圆C 的方程;(2)设直线l 过定点1(0,)2-,且斜率为()10k k -≠,若椭圆C 上存在A ,B 两点关于直线l 对称,O 为坐标原点,求k 的取值范围及AOB ∆面积的最大值.【解析】(1)由题意,可得2222231441214a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得222,1a b ==,所以椭圆的方程为2212x y +=.(2)由题意,设直线AB 的方程为(0)y kx m k =+≠,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,整理得222(12)4220k x kmx m +++-=, 所以∆>0,即2221k m +>,……….①且2121222422,1212km m x x x x k k-+=-=++, 所以线段AB 的中点横坐标02212km x k =-+,纵坐标为00212my kx m k=+=+,将00,x y 代入直线l 方程112y x k =--,可得2122k m += ……… ②,由①②可得232k <,又0k ≠,所以((0,22k ∈-⋃,又AB ==且原点O 到直线AB的距离d =所以2122(12)AOB m S AB d k ∆==+== 所以1m =时,AOB S ∆最大值2,此时2k =±,所以2k =±时,AOB S ∆最大值2.3.(2020福建省宁德市高三第一次质量检查)已知抛物线2:2C y px =的焦点为F,1(2Q 在抛物线C 上,且32QF. (1)求抛物线C 的方程及t 的值;(2)若过点(0,)M t 的直线l 与C 相交于,A B 两点,N 为AB 的中点,O 是坐标原点,且3AOBMONSS,求直线l 的方程.【解析】(1)因为3||2QF ,所以13222p ,所以2p =, 抛物线C 的方程为:24y x =, 将1(2Q 代入24y x =得2t =,(2)设1122(,),(,),A x y B x y 00(,),(0,2)N x y M ,显然直线l 的斜率存在,设直线l :2(0)y kx k =+≠,联立242y x y kx ⎧=⎨=+⎩,消去y 得224(1)40k x k x --+=,因为22Δ16(1)160k k ,得12k <且0k ≠, 所以1212224(1)4,k x x x x k k -+==, 因为ΔΔ3AOBMON S S ,所以||3||AB MN ,所以1200x -=-,即120x x x -=, 因为N 是AB 的中点,所以1202x x x +=, 所以22121212()()434x x x x x x ,整理得21212()16x x x x +=所以2224(1)64[]k k k ,解得1211,3k k =-=, 所以直线l 的方程为:2y x =-+或123y x =+.4.(2020福建省龙岩市上杭县第一中学月考)已知点A(0,-2),椭圆E:22221x y a b+=(a>b>0)的离心率为F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 【解析】(1)设(),0F c ,因为直线AF()0,2A-, 所以23c =,c =又222,2c b a c a ==-,解得2,1a b ==, 所以椭圆E 的方程为2214x y +=.(2)设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立22142,x y y kx +==-⎧⎪⎨⎪⎩,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,所以k <或k >由韦达定理知1212221612,1414k x x x x k k+==++.所以PQ ===, 点O 到直线l 的距离d =12OPQS d PQ ∆==设0t =>,则2243k t =+,所以244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号,满足234k >, 所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-.5.(2020广东省佛山市高三教学质量检测)已知椭圆C :()222210x y a b a b +=>>的离心率为12,点31,2A ⎛⎫⎪⎝⎭在椭圆C 上,直线1l 过椭圆C 的右焦点与上顶点,动直线2l :y kx =与椭圆C 交于M ,N 两点,交1l 于P 点.(1)求椭圆C 的方程;(2)已知O 为坐标原点,若点P 满足14OP MN =,求此时MN 的长度. 【解析】(1)由题意得12c e a ==,2223121ab ⎛⎫ ⎪⎝⎭+=,结合222a bc =+, 解得24a =,23b =,21c =,故所求椭圆C 的方程为22143x y +=. (2)易知定直线1l0y +=.联立22143y kxx y =⎧⎪⎨+=⎪⎩,整理得()223412k x +=,解得x =令M 点的坐标为221212,3434k k k ⎛⎫⎪ ⎪++⎝⎭. 因为14OP MN =,由对称性可知,点P 为OM 的中点,故2212123434(,)22k k k P ++, 又P 在直线1l :330x y +-=上,故221212343433022k k k ++⨯+-=, 解得10k =,2233k =,所以M 点的坐标为()2,0或643,55⎛⎫ ⎪ ⎪⎝⎭, 所以2OM =或2215,所以MN 的长度为4或4215.6.(2020广西名校高三上学期12月高考模拟)如图,中心为坐标原点O 的两圆半径分别为11r =,22r =,射线OT 与两圆分别交于A 、B 两点,分别过A 、B 作垂直于x 轴、y 轴的直线1l 、2l ,1l 交2l 于点P .(1)当射线OT 绕点O 旋转时,求P 点的轨迹E 的方程;(2)直线l :3y kx =+E 交于M 、N 两点,两圆上共有6个点到直线l 的距离为12时,求MN 的取值范围. 【解析】(1)设(),P x y ,OT 与x 轴正方向夹角为θ,则cos sin x OA y OB θθ⎧=⎪⎨=⎪⎩,即cos 2sin x y θθ=⎧⎨=⎩,化简得2214y x +=,即P 点的轨迹E 的方程为2214y x +=.(2)当两圆上有6个点到直线1的距离为12时,原点O 至直线l 的距离13,22d ⎛⎫∈ ⎪⎝⎭,即1322<<,解得21,113k ⎛⎫∈ ⎪⎝⎭,联立方程2214y kx y x ⎧=+⎪⎨+=⎪⎩得()22410k x ++-=, 设()11,M x y ,()22,N x y ,则12x x +=,12214x x k =-+, 所以MN ==()2224134144k k k +⎛⎫==- ⎪++⎝⎭, 则1616,135MN ⎛⎫∈ ⎪⎝⎭.7.(2020辽宁省沈阳市东北育才学校高三模拟)已知(2,0)P 为椭圆2222:1(0)x y C a b a b+=>>的右顶点,点M 在椭圆C 的长轴上,过点M 且不与x 轴重合的直线交椭圆C 于A B 、两点,当点M 与坐标原点O 重合时,直线PA PB 、的斜率之积为14-.(1)求椭圆C 的标准方程;(2)若2AM MB =,求OAB ∆面积的最大值. 【解析】(1)设1(A x ,1)y ,1(B x -,1)y -,则2121144PA PBy k k x ==--. 又2211221x y a b +=,代入上式可得2214b a -=-,又2a =,解得1b =. 所以椭圆C 的标准方程为:2214x y +=.(2)设直线AB 的方程为:(0)x ty m t =+≠,(22)m -.1(A x ,1)y ,2(B x ,2)y ,联立2244x ty m x y =+⎧⎨+=⎩,化为222(4)240t y mty m +++-=, 由韦达定理知12224mty y t+=-+,212244m y y t -=+, 因为2AM MB =,所以122y y =-,所以122152y y y y +=-,代入可得:22241694t m t +=+.所以OAB ∆的面积12213|()|||22S m y y my =-=,22222222222299416161694494(4)(94)(94)t t t S m y t t t t +==⨯⨯=⨯++++.所以212||1214949||||t S t t t ==++,当且仅当249t =时取等号. 所以OAB ∆面积的最大值为1.。

高考数学全国卷分类汇编(解析几何)

高考数学全国卷分类汇编(解析几何)

2010-2017新课标全国卷分类汇编(解读几何)1.(2017课标全国Ⅰ,理10)已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .10【答案】A【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴同理1cos PAF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ21616sin 2θ=≥,当π4θ=取等号,即AB DE +最小值为16,故选A2.(2017课标全国Ⅰ,理15)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b aθ=b a =,解得223a b =∴e ==3.(2017课标全国Ⅰ,理20)(12分)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P 又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--当2x =时,1y =-,所以l 过定点()21-,.4.(2017课标全国Ⅱ,理9)若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .332 【答案】A【解读】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d =,则点()2,0到直线0b x a y +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.(2017课标全国Ⅱ,理16)已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则=FN . 【答案】6 【解读】试卷分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解读式可得准线方程为2x =-,则2,4A N F F '==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.【考点】抛物线的定义、梯形中位线在解读几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.6.(2017课标全国Ⅱ,理20)(12分)设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M 作x 轴的垂线,垂足为N ,点P 满足= (1)求点P 的轨迹方程; (2)设点Q 在直线3-=x 上,且1=⋅. 证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设)(y x P ,,则)22(y x M ,,将点M 代入C 中得12222=+y x ,所以点P 的轨迹方程为222=+y x .(2)由题可知)01(,-F ,设)()3(n m P t Q ,,,-,则)1( )3(n m t ---=-=,,,, )3( )(n t m n m ---==,,,.由1=⋅得1322=-+--n tn m m ,由(1)有222=+n m ,则有033=-+tn m ,所以033 =-+=⋅tn m ,即过点P 且垂直于OQ 的直线l 过C 的左焦点F .7.(2017课标全国Ⅲ,理1)已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A ⋂B 中元素的个数为A .3B .2C .1D .0【答案】B【解读】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故AB 表示两直线与圆的交点,由图可知交点的个数为2,即AB 元素的个数为2,故选B.8.(2017课标全国Ⅲ,理5)已知双曲线C 22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A. 221810x y -=B. 22145x y -=C. 22154x y -=D. 22143x y -=【答案】B【解读】∵双曲线的一条渐近线方程为y,则b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b =C 的方程为22145x y -=,故选B. 9.(2017课标全国Ⅲ,理10)已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为D.13【答案】A【解读】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a ==又∵0,0a b >>,则上式可化简为223a b = ∵222b ac =-,可得()2223a a c=-,即2223c a =∴c e a == A10.(2017课标全国Ⅲ,理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为() A .3B.D .2【答案】A【解读】由题意,画出右图.设BD 与C 切于点E ,连接CE . 以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.()A O Dxy BP gCE12||||22||||||BCDBC CDSECBD BD⋅⋅⋅====△即C.∵P在C上.∴P点的轨迹方程为224(2)(1)5x y-+-=.设P点坐标00(,)x y,可以设出P点坐标满足的参数方程如下:21xyθθ⎧=⎪⎪⎨⎪=⎪⎩而00(,)AP x y=,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB ADλμλμμλ=+=+=∴112xμθ==+,1yλθ==+.两式相加得:112)2sin()3λμθθθϕθϕ+=+++=++=++≤(其中sinϕcosϕ=)当且仅当π2π2kθϕ=+-,k∈Z时,λμ+取得最大值3.11.(2017课标全国Ⅲ,理20)(12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B 两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解:(1)设()()11222A x,y,B x,y,l:x my=+由222x myy x=+⎧⎨=⎩可得212240则4y my,y y--==-又()22212121212==故=224y yy yx,x,x x=4因此OA 的斜率与OB 的斜率之积为1212-4==-14y y x x 所以OA ⊥OB故坐标原点O 在圆M 上.(2)由(1)可得()2121212+=2+=++4=24y y m,x x m y y m + 故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点P (4,-2),因此0AP BP =,故()()()()121244220x x y y --+++= 即()()121212124+2200x x x x y y y y -++++= 由(1)可得1212=-4,=4y y x x ,所以2210m m --=,解得11或2m m ==-.当m=1时,直线l 的方程为x-y-2=0,圆心M 的坐标为(3,1),圆M ,圆M 的方程为()()223110x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91,-42⎛⎫ ⎪⎝⎭,圆M 的半径为4,圆M 的方程为229185++4216x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭12.(2016课标全国Ⅰ,理5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0(【解读】:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m =∴13n -<<,故选A .13.(2016课标全国Ⅰ,理10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于ED ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为|||M N MN y y =- (A )2 (B )4 (C )6 (D )8【解读】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0A x ,2pD ⎛- ⎝,点(0A x 在抛物线22y px =上,∴082px =……①;点2pD ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =, 焦点到准线的距离为4p =.故选B .14.(2016课标全国Ⅰ,理20)(本小题满分12分)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线两点,求四边形MPNQ【解读】:⑴圆A 整理为(x BE AC Q ∥,则C =∠EBD D ∴=∠∠,则EB ⑵221:143x yC +=;设:l x 联立1l C 与椭圆:24x x =⎧⎪⎨⎪⎩圆心A 到PQ 距离d ==F所以||PQ==,()2212111||||2234MPNQmS MN PQm+⎡∴=⋅=⋅==⎣+15.(2016课标全国Ⅱ,理4)圆2228130x y x y+--+=的圆心到直线10ax y+-=的距离为1,则a=()(A)43-(B)34-(C(D)216.(2016课标全国Ⅱ,理11)已知12,F F是双曲线2222:1x yEa b-=的左,右焦点,点M在E上,1MF与x轴垂直,211sin3MF F∠=,则E的离心率为()(A(B)32(C(D)217.(2016课标全国Ⅱ,理20)(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ);(Ⅱ).【解读】试卷分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试卷解读:(I )设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为. 将代入得.解得或,所以.因此的面积.(II )由题意,,.将直线的方程代入得. 由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系.18.(2016课标全国Ⅲ,理11)已知O为坐标原点,F是椭圆C:22221(0)x ya ba b+=>>的左焦点,,A B分别为C的左,右顶点.P为C上一点,且PF x⊥轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A)13(B)12(C)23(D)34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .19.(2016课标全国Ⅲ,理16)已知直线l :30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =||CD =__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解读几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.20.(2016课标全国Ⅲ,理20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解读;(Ⅱ)21y x =-.试卷解读:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解读几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.21.(2015课标全国Ⅰ,理5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是(A)((B)( (C)((D)( 答案:A解读:由条件知F1(-,0),F2(,0),=(--x0,-y0),=(-x0,-y0),-3<0.①又=1,=2+2.代入①得,∴-<y0<22.(2015课标全国Ⅰ,理14)一个圆经过椭圆221164x y+=的三个顶点,且圆心在x轴的正半轴上,则该圆的规范方程为答案:+y2=解读:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以=4-a,解得a=,故圆心为,此时半径r=4-,因此该圆的规范方程是+y2=23.(2015课标全国Ⅰ,理20)在直角坐标系xOy中,曲线2:4xC y=与直线:(0)l y kx a a=+>交于,M N两点。

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。

高考数学试题分类汇编大全——解析几何精编版

高考数学试题分类汇编大全——解析几何精编版
(2)直线PA的方程
解得
于是 直线AC的斜率为
(3)解法一:
将直线PA的方程 代入

故直线AB的斜率为
其方程为
解得 .
于是直线PB的斜率
因此
解法二:
设 .
设直线PB,AB的斜率分别为 因为C在直线AB上,所以
从而
因此
27.(安徽理21)设 ,点 的坐标为(1,1),点 在抛物线 上运动,点 满足 ,经过 点与 轴垂直的直线交抛物线于点 ,点 满足 ,求点 的轨迹方程。
当 时,
由 ,
可得
令 ,
则由 ,
从而 ,
于是由 ,
可得
综上可得:
当 时,在C1上,存在点N,使得
当 时,在C1上,存在点N,使得
当 时,在C1上,不存在满足条件的点N。
32.(湖南理21)
如图7,椭圆 的离心率为 ,x轴被曲线 截得的线段长等于C1的长半轴长。
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的焦点为M,过坐标原点O的直线 与C2相交于点A,B,直线MA,MB分别与C1相交与D,E.
(ii)设直线MA的斜率为k1,则直线MA的方程为 解得
则点A的坐标为 .
又直线MB的斜率为 ,
同理可得点B的坐标为
于是
由 得
解得
则点D的坐标为
又直线ME的斜率为 ,同理可得点E的坐标为
于是 .
因此
由题意知,
又由点A、B的坐标可知,
故满足条件的直线l存在,且有两条,其方程分别为
33.(辽宁理20)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.

全国高考数学专题汇编:解析几何(含答案)

全国高考数学专题汇编:解析几何(含答案)

全国高考数学专题汇编:解析几何一.选择题(共21小题)1.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.42.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3C.D.23.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.4.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.325.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD ⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(2019•新课标Ⅰ)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin40°B.2cos40°C.D.7.(2019•新课标Ⅰ)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过点F2的直线与椭圆C交于A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=18.(2019•新课标Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.89.(2019•新课标Ⅱ)设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.10.(2019•新课标Ⅲ)已知F是双曲线C:﹣=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.11.(2018•新课标Ⅰ)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.12.(2018•新课标Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣113.(2018•新课标Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 14.(2018•新课标Ⅲ)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2C.D.215.(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A 的坐标是(1,3),则△APF的面积为()A.B.C.D.16.(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)17.(2017•新课标Ⅱ)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)18.(2017•新课标Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l 为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.319.(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.20.(2016•新课标Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.21.(2016•新课标Ⅲ)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.二.填空题(共4小题)22.(2019•新课标Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为.23.(2018•新课标Ⅰ)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|=.24.(2017•新课标Ⅲ)双曲线(a>0)的一条渐近线方程为y=x,则a=.25.(2016•新课标Ⅰ)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.参考答案一.选择题(共21小题)1.B;2.B;3.B;4.B;5.B;6.D;7.B;8.D;9.A;10.B;11.C;12.D;13.A;14.D;15.D;16.A;17.C;18.C;19.A;20.B;21.A;二.填空题(共4小题)22.(3,);23.2;24.5;25.4π;三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:(1)由题设得,A(﹣a,0),B(a,0),G(0,1),则,,由得a2﹣1=8,即a=3,所以E的方程为.(2)设C(x1,y1),D(x2,y2),P(6,t),若t≠0,设直线CD的方程为x=my+n,由题可知,﹣3<n<3,由于直线P A的方程为,所以,同理可得,于是有3y1(x2﹣3)=y2(x1+3)①.由于,所以,将其代入①式,消去x2﹣3,可得27y1y2=﹣(x1+3)(x2+3),即②,联立得,(m2+9)y2+2mny+n2﹣9=0,所以,,代入②式得(27+m2)(n2﹣9)﹣2m(n+3)mn+(n+3)2(m2+9)=0,解得n=或﹣3(因为﹣3<n<3,所以舍﹣3),故直线CD的方程为,即直线CD过定点(,0).若t=0,则直线CD的方程为y=0,也过点(,0).综上所述,直线CD过定点(,0).27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【解答】解:(1)由题意设抛物线C2的方程为:y2=4cx,焦点坐标F为(c,0),因为AB⊥x轴,将x =c代入抛物线的方程可得y2=4c2,所以|y|=2c,所以弦长|CD|=4c,将x=c代入椭圆C1的方程可得y2=b2(1﹣)=,所以|y|=,所以弦长|AB|=,再由|CD|=|AB|,可得4c=,即3ac=2b2=2(a2﹣c2),整理可得2c2+3ac﹣2a2=0,即2e2+3e﹣2=0,e∈(0,1),所以解得e=,所以C1的离心率为;(2)由椭圆的方程可得4个顶点的坐标分别为:(±a,0),(0,±b),而抛物线的准线方程为:x=﹣c,所以由题意可得2c+a+c+a﹣c=12,即a+c=6,而由(1)可得=,所以解得:a=4,c=2,所以b2=a2﹣c2=16﹣4=12,所以C1的标准方程为:+=1,C2的标准方程为:y2=8x.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.【解答】解:(1)由e=得e2=1﹣,即=1﹣,∴m2=,故C的方程是:+=1;(2)代数方法:由(1)A(﹣5,0),设P(s,t),点Q(6,n),根据对称性,只需考虑n>0的情况,此时﹣5<s<5,0<t≤,∵|BP|=|BQ|,∴有(s﹣5)2+t2=n2+1①,又∵BP⊥BQ,∴s﹣5+nt=0②,又+=1③,联立①②③得或,当时,则P(3,1),Q(6,2),而A(﹣5,0),则(法一)=(8,1),=(11,2),∴S△APQ==|8×2﹣11×1|=,同理可得当时,S△APQ=,综上,△APQ的面积是.法二:∵P(3,1),Q(6,2),∴直线PQ的方程为:x﹣3y=0,∴点A到直线PQ:x﹣3y=0的距离d=,而|PQ|=,∴S△APQ=••=.数形结合方法:如图示:①当P点在y轴左侧时,过P点作PM⊥AB,直线x=6和x轴交于N(6,0)点,易知△PMB≌△BQN,∴NB=PM=1,故y=1时,+=1,解得:x=±3,(x=3舍),故P(﹣3,1),易得BM=8,QN=8,故S△APQ=S△AQN﹣S△APB﹣S△PBQ﹣S△BQN=(11×8﹣10×1﹣(1+65)﹣1×8)=,②当P点在y轴右侧时,同理可得x=3,即P(3,1),BM=2,NQ=2,故S△APQ=,综上,△APQ的面积是.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.【解答】解:∵⊙M过点A,B且A在直线x+y=0上,∴点M在线段AB的中垂线x﹣y=0上,设⊙M的方程为:(x﹣a)2+(y﹣a)2=R2(R>0),则圆心M(a,a)到直线x+y=0的距离d=,又|AB|=4,∴在Rt△OMB中,d2+(|AB|)2=R2,即①又∵⊙M与x=﹣2相切,∴|a+2|=R②由①②解得或,∴⊙M的半径为2或6;(2)∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∵⊙M与直线x+2=0相切,∴|MA|=|x+2|,∴|x+2|2=|OM|2+|OA|2=x2+y2+4,∴y2=4x,∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,∴|MA|﹣|MP|=|x+2|﹣|MP|=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.【解答】解:(1)连接PF1,由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故曲线C的离心率e==﹣1.(2)由题意可知,满足条件的点P(x,y)存在当且仅当:|y|•2c=16,•=﹣1,+=1,即c|y|=16,①x2+y2=c2,②+=1,③由②③及a2=b2+c2得y2=,又由①知y2=,故b=4,由②③得x2=(c2﹣b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4,当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.【解答】(1)证明:设D(t,﹣),A(x1,y1),则,由于y′=x,∴切线DA的斜率为x1,故,整理得:2tx1﹣2y1+1=0.设B(x2,y2),同理可得2tx2﹣2y2+1=0.故直线AB的方程为2tx﹣2y+1=0.∴直线AB过定点(0,);(2)解:由(1)得直线AB的方程y=tx+.由,可得x2﹣2tx﹣1=0.于是.设M为线段AB的中点,则M(t,),由于,而,与向量(1,t)平行,∴t+(t2﹣2)t=0,解得t=0或t=±1.当t=0时,||=2,所求圆的方程为;当t=±1时,||=,所求圆的方程为.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解答】解:(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,所以M(2,2)或M(2,﹣2),直线BM的方程:y=x+1,或:y=﹣x﹣1.(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得,消x得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有k BN+k BM=+===0,所以直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)由(1)可得AB的中点坐标为D(3,2),则直线AB的垂直平分线方程为y﹣2=﹣(x﹣3),即y =﹣x+5,设所求圆的圆心坐标为(x0,y0),则,解得:或,因此,所求圆的方程为(x﹣3)2+(y﹣2)2=16或(x﹣11)2+(y+6)2=144.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.【解答】解:(1)设A(x1,y1),B(x2,y2),∵线段AB的中点为M(1,m),∴x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即6(x1﹣x2)+8m(y1﹣y2)=0,∴k==﹣=﹣点M(1,m)在椭圆内,即,解得0<m∴k=﹣.(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,∴x3=1由椭圆的焦半径公式得则|F A|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.则|F A|+|FB|=4﹣,∴|F A|+|FB|=2|FP|,35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解答】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为•=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+m sinα﹣2sin2α=1,当α=0时,上式不成立,则0<α<2π,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由•=(﹣1﹣cosα,﹣sinα)•(﹣3,)=3+3cosα﹣3(1+cosα)=0.可得过点P且垂直于OQ的直线l过C的左焦点F.另解:设Q(﹣3,t),P(m,n),由•=1,可得(m,n)•(﹣3﹣m,t﹣n)=﹣3m﹣m2+nt﹣n2=1,又P在圆x2+y2=2上,可得m2+n2=2,即有nt=3+3m,又椭圆的左焦点F(﹣1,0),•=(﹣1﹣m,﹣n)•(﹣3,t)=3+3m﹣nt=3+3m﹣3﹣3m=0,则⊥,可得过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.【解答】解:(1)曲线y=x2+mx﹣2与x轴交于A、B两点,可设A(x1,0),B(x2,0),由韦达定理可得x1x2=﹣2,若AC⊥BC,则k AC•k BC=﹣1,即有•=﹣1,即为x1x2=﹣1这与x1x2=﹣2矛盾,故不出现AC⊥BC的情况;(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由题意可得y=0时,x2+Dx+F=0与x2+mx﹣2=0等价,可得D=m,F=﹣2,圆的方程即为x2+y2+mx+Ey﹣2=0,由圆过C(0,1),可得0+1+0+E﹣2=0,可得E=1,则圆的方程即为x2+y2+mx+y﹣2=0,另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),则由相交弦定理可得|OA|•|OB|=|OC|•|OH|,即有2=|OH|,再令x=0,可得y2+y﹣2=0,解得y=1或﹣2.即有圆与y轴的交点为(0,1),(0,﹣2),则过A、B、C三点的圆在y轴上截得的弦长为定值3.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.【解答】解:(I)由椭圆E的方程:+=1知,其左顶点A(﹣2,0),∵|AM|=|AN|,且MA⊥NA,∴△AMN为等腰直角三角形,∴MN⊥x轴,设M的纵坐标为a,则M(a﹣2,a),∵点M在E上,∴3(a﹣2)2+4a2=12,整理得:7a2﹣12a=0,∴a=或a=0(舍),∴S△AMN=a×2a=a2=;(II)设直线l AM的方程为:y=k(x+2),直线l AN的方程为:y=﹣(x+2),由消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴x M﹣2=﹣,∴x M=2﹣=,∴|AM|=|x M﹣(﹣2)|=•=∵k>0,∴|AN|==,又∵2|AM|=|AN|,∴=,整理得:4k3﹣6k2+3k﹣8=0,设f(k)=4k3﹣6k2+3k﹣8,则f′(k)=12k2﹣12k+3=3(2k﹣1)2≥0,∴f(k)=4k3﹣6k2+3k﹣8为(0,+∞)的增函数,又f()=4×3﹣6×3+3﹣8=15﹣26=﹣<0,f(2)=4×8﹣6×4+3×2﹣8=6>0,∴<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△P AR≌△F AR,∴∠P AR=∠F AR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠P AF=2∠P AR,∴∠FQB=∠P AR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF=|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.。

2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)

2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)

专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .2.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2 C .22 D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解析】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+,解得:2p =(6p =-舍去).故选:B. 3.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C、D.【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD 4.【2022年新高考2卷】已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为B.C.D.【答案】ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A 正确;对于B ,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B 错误;对于C ,由抛物线定义知:,C 正确;对于D ,,则为钝角, 又,则为钝角,又,则,D 正确.故选:ACD.5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =【答案】ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-4MP =,由勾股定理可得2232BP BM MP =-=CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【解析】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养. 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 【答案】或或【分析】先判断两圆位置关系,分情况讨论即可. 【解析】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.9.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.【答案】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【解析】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解; 【解析】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以, 即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程.【解析】由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == ,所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.【答案】(1);(2).【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1);(2)见解析【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.∴C的方程为:;(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件①在上,等价于;两渐近线的方程合并为,联立消去y并化简整理得:设,线段中点为,则,设,则条件③等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,∴由,∴,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,∴∴, ∴条件②等价于,综上所述:条件①在上,等价于;条件②等价于;条件③等价于;选①②推③:由①②解得:,∴③成立;选①③推②:由①③解得:,,∴,∴②成立;选②③推①:由②③解得:,,∴,∴,∴①成立.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【解析】(1) 因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立,如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x --.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦. 由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【解析】(1)由题意,椭圆半焦距c =c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212324x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==()22310k -=,所以1k =±, 所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+, 代入椭圆方程消去y 并整理得:()222124260kxkmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP =, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny .将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP =.[方法三]:建立曲线系 A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k .则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==.[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny ,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=, 化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离, 利用平行线之间的距离公式可得:12514d ==+由两点之间距离公式可得||AM =.所以△AMN 的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【】专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .62.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1B .2C .22D .43.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .4.【2022年新高考2卷】已知O 为坐标原点,过抛物线焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点,若,则( ) A .直线的斜率为B .C .D .5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C nC .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 9.【2022年新高考1卷】已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过且垂直于的直线与C 交于D ,E 两点,,则的周长是________________. 10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a 的取值范围是________.11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.14.【2020年新高考1卷(山东卷)】斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点在C 上,且.过P 且斜率为的直线与过Q 且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【】三年专题05 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】 ∵ 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,,所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是.故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A .4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,。

高考数学试题分类汇编解析几何(填空题)及参考答案

高考数学试题分类汇编解析几何(填空题)及参考答案

高考数学试题分类汇编 ---解析几何及解答(2)1.(重庆文)已知变量x ,y 满足约束条件23033010x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩。

若目标函数z ax y =+(其中0a >)仅在点(3,0)处取得最大值,则a 的取值范围为 。

a >21 2.(重庆理)已知变量,x y 满足约束条件14,2 2.x y x y ≤+≤-≤-≤若目标函数z ax y =+(其中0a >)仅在点()3,1处取得最大值,则a 的取值范围为 。

(1,+∞)3.(浙江文13)双曲线221x y m-=上的点到左焦点的距离与到左准线的距离的比是3,则m 等于 (81)4.(天津文)若半径为1的圆分别与y 轴的正半轴和射线3(0)3y x x =≥相切,则这个圆的方程为____。

22(1)(3)1x y -+=5.(四川文)设x 、y 满足约束条件:1,1,2210.x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩则2z x y =-的最小值为______________。

-66.(四川文理)如图把椭圆2212516x y +=的长轴AB 分成8分,过每个分点作x轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点,F 是椭圆的一个焦点,则127......PF P F P F +++=____________.35 7.(上海文)已知两条直线12:330,:4610.l ax y l x y +-=+-=若12//l l ,则a =____.2 8.(上海文)已知双曲线中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,则双曲线的标准方程是____________________.116922=-y x9.(上海文)已知实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,则2y x -的最大值是_________.010.(上海文)若曲线21x y =+与直线y b =没有公共点,则b 的取值范围是_________.-1<b<111.(上海文)如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(),p q 是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是____________.412.(上海理)已知圆2x -4x -4+2y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 .513.(上海理)已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .162x +42y =114.(上海理)在极坐标系中,O 是极点,设点A (4,3π),B (5,-65π),则△OAB的面积是 .515.(上海理)若曲线2y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条件是 .0,(1,1)k b =∈-16.(山东文)已知抛物线x y 42=,过点P(4,0)的直线与抛物线相交于A(),(),2211y x B y x 、两点,则y 2211y +的最小值是 3217.(山东理)已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 . 32山东理(16)下列四个命题中,真命题的序号有 (写出所有真命题的序号). ○3○4①将函数y =1+x 的图象按向量y =(-1,0)平移,得到的图象对应的函数表达式为y =x②圆x 2+y 2+4x -2y +1=0与直线y =x 21相交,所得弦长为2 ③若sin(α+β)=21 ,则sin(α+β)=31,则tan αcot β=5④如图,已知正方体ABCD- A 1B 1C 1D 1,P 为底面ABCD 内一动点,P 到平面AA 1D 1D 的距离与到直线CC 1的距离相等,则P 点的轨迹是抛物线的一部分.(18.(全国II 文)过点(1,2)的直线l 将圆22(2)4x y -+=分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率____.k =解:(数形结合)由图形可知点A (1,2)在圆22(2)4x y -+=的内部, 圆心为O(2,0)要使得劣弧所对的圆心角最小,只能是直线l OA ⊥,所以1222l OA k k =-=-=- 19.(全国理II )过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k = .22k =20.(全国I 文)设2z y x =-,式中变量x y 、满足下列条件21x y -≥- 3223x y +≤ 1y ≥则z 的最大值为_____________。

2023年高考文科数学解析分类汇编解析几何(逐题详解)

2023年高考文科数学解析分类汇编解析几何(逐题详解)

2023年高考文科数学解析分类汇编解析
几何(逐题详解)
本文档的主要内容包括以下几个方面:
1. 知识点梳理:对解析几何的相关知识点进行梳理和总结,确保学生对所需知识有全面的了解。

2. 题目分类:将解析几何的高考题目进行分类,包括直线与圆的性质、三角形与四边形的性质等,便于学生有针对性地进行研究和练。

3. 逐题详解:对每个题目进行详细解析,包括题目的分析、解题思路、解题方法和解答过程,帮助学生理解和掌握相应的解题技巧。

4. 错题讲解:针对学生在解析几何中常犯的错误进行讲解和纠正,帮助学生避免类似错误的发生。

5. 题练:提供一定数量的题,供学生进行练和巩固所学知识。

本文档的编写采用简洁明了的语言,力求清晰易懂,注重解题过程的逻辑性和规范性。

所有内容均经过合法权威渠道确认,确保内容的正确性和准确性。

希望本文档能为考生提供有价值的研究资料,并对2023年高考文科数学解析几何有所帮助。

注:本文档的内容仅供参考和学习使用,不得用于非法用途。

所有权利和解释权归原作者所有。

最新高考数学分类汇编 解析几何 强力推荐

最新高考数学分类汇编 解析几何 强力推荐

解析几何H1 直线的倾斜角与斜率、直线的方程21.B12,H1[新课标全国卷Ⅱ] 已知函数f(x)=x 2e -x. (1)求f(x)的极小值和极大值;(2)当曲线y =f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 21.解:(1)f(x)的定义域为(-∞,+∞).f ′(x)=-e -xx(x -2).①当x∈(-∞,0)或x∈(2,+∞)时,f′(x)<0; 当x∈(0,2)时,f′(x)>0.所以f(x)在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增.故当x =0时,f(x)取得极小值,极小值为f(0)=0;当x =2时,f(x)取得极大值,极大值为f(2)=4e -2.(2)设切点为(t ,f(t)),则l 的方程为 y =f′(t)(x-t)+f(t). 所以l 在x 轴上的截距为m(t)=t -f (t )f′(t )=t +t t -2=t -2+2t -2+3.由已知和①得t∈(-∞,0)∪(2,+∞).令h(x)=x +2x (x≠0),则当x∈(0,+∞)时,h(x)的取值范围为[2 2,+∞);当x∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[2 2+3,+∞). 综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[2 2+3,+∞).5.H1,H4[天津卷] 已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =( )A .-12 B .1C .2 D.125.C [解析] 设过点P(2,2)的圆的切线方程为y -2=k(x -2),由题意得|k -2|1+k2=5,解之得k =-12.又∵切线与直线ax -y +1=0垂直,∴a=2.15.H1,C8,E8[四川卷] 在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.15.(2,4) [解析] 在以A ,B ,C ,D 为顶点构成的四边形中,由平面几何知识:三角形两边之和大于第三边,可知当动点落在四边形两条对角线AC ,BD 交点上时,到四个顶点的距离之和最小.AC 所在直线方程为y =2x ,BD 所在直线方程为y =-x +6,交点坐标为(2,4),即为所求.H2 两直线的位置关系与点到直线的距离20.H2,H4[新课标全国卷Ⅱ] 在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为2 2,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 20.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P(x 0,y 0),由已知得 |x 0-y 0|2=22. 又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧x 0-y 0=1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=-1. 此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧x 0-y 0=-1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=1, 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.4.H2、H3和H4[重庆卷] 设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6B .4C .3D .24.B [解析] |PQ|的最小值为圆心到直线距离减去半径.因为圆的圆心为(3,-1),半径为2,所以|PQ|的最小值d =3-(-3)-2=4.H3 圆的方程14.H3[江西卷] 若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________.14.(x -2)2+⎝ ⎛⎭⎪⎫y +322=254 [解析] r 2=4+(r -1)2,得r =52,圆心为⎝⎛⎭⎪⎫2,-32.故圆C的方程是(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.21.F2、F3、H3、H5和H8[重庆卷] 如图1-5所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4. (1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.图1-521.解:(1)由题意知点A(-c ,2)在椭圆上,则(-c )2a 2+22b 2=1,从而e 2+4b 2=1. 由e =22得b 2=41-e =8,从而a 2=b 21-e =16.故该椭圆的标准方程为x 216+y28=1.(2)由椭圆的对称性,可设Q(x 0,0),又设M(x ,y)是椭圆上任意一点,则|QM|2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝ ⎛⎭⎪⎫1-x 216 =12(x -2x 0)2-x 20+8(x∈[-4,4]). 设P(x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点,因此,上式当x =x 1时取最小值,又因为x 1∈(-4,4),所以上式当x =2x 0时取最小值,所以x 1=2x 0,且|QP|2=8-x 20.由对称性知P′(x 1,-y 1),故|PP′|=|2y 1|,所以S =12|2y 1||x 1-x 0|=12³2 8⎝ ⎛⎭⎪⎫1-x 2116|x 0|=2(4-x 20)x 20=2-(x 20-2)2+4.当x 0=±2时,△PP′Q 的面积S 取到最大值2 2.此时对应的圆Q 的圆心坐标为Q(±2,0),半径|QP|=8-x 20=6,因此,这样的圆有两个,其标准方程分别为(x +2)2+y 2=6,(x -2)2+y 2=6.4.H2、H3和H4[重庆卷] 设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6B .4C .3D .24.B [解析] |PQ|的最小值为圆心到直线距离减去半径.因为圆的圆心为(3,-1),半径为2,所以|PQ|的最小值d =3-(-3)-2=4.H4 直线与圆、圆与圆的位置关系6.H4[安徽卷] 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A .1 B .2 C .4 D .4 66.C [解析] 圆的标准方程是(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =1,所以直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0所截得的弦长l =2r 2-d 2=4.7.H4[广东卷] 垂直于直线y =x +1且与圆x 2+y 2=1相切于第Ⅰ象限的直线方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=07.A [解析] 设直线方程为y =-x +m ,且原点到此直线的距离是1,即1=m 2,解得m=± 2.当m =-2时,直线和圆切于第Ⅲ象限,故舍去,选A.14.H4[湖北卷] 已知圆O :x 2+y 2=5,直线l :x cos θ+y sin θ=1⎝ ⎛⎭⎪⎫0<θ<π2.设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.14.4 [解析] 圆心到直线的距离d =1,r =5,r -d>d ,所以圆O 上共有4个点到直线的距离为1,k =4.10.H4[江西卷] 如图1-3所示,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 在t =0时与l 2相切于点A ,圆O 沿l 1以1 m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y =cos x ,则y 与时间t(0≤t≤1,单位:s)的函数y =f(t)的图像大致为( )图1-3图1-410.B [解析] 如图,设∠MOA=α,cos α=1-t ,cos 2α=2cos 2α-1=2t 2-4t +1,x =2α²1=2α,y =cos x =cos 2α=2t 2-4t +1,故选B.20.H2,H4[新课标全国卷Ⅱ] 在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为2 2,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 20.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P(x 0,y 0),由已知得 |x 0-y 0|2=22. 又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧x 0-y 0=1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=-1. 此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧x 0-y 0=-1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=1, 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.13.H4[山东卷] 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 13.2 2 [解析] 设弦与圆的交点为A 、B ,最短弦长以(3,1)为中点,由垂径定理得⎝ ⎛⎭⎪⎫|AB|22+(3-2)2+(2-1)2=4,解之得|AB|=2 2.8.H4[陕西卷] 已知点M(a ,b)在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定8.B [解析] 由题意点M(a ,b)在圆x 2+y 2=1外,则满足a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线ax +by =1与圆O 相交. 5.H1,H4[天津卷] 已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =( )A .-12 B .1C .2 D.125.C [解析] 设过点P(2,2)的圆的切线方程为y -2=k(x -2),由题意得|k -2|1+k2=5,解之得k =-12.又∵切线与直线ax -y +1=0垂直,∴a=2.20.H4,E8,B1[四川卷] 已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)设Q(m ,n)是线段MN 上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n 表示为m 的函数.20.解:(1)将y =kx 代入x 2+(y -4)2=4,得(1+k 2)x 2-8kx +12=0.(*)由Δ=(-8k)2-4(1+k 2)³12>0,得k 2>3.所以,k 的取值范围是(-∞,-3)∪(3+∞).(2)因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1),(x 2,kx 2),则|OM|2=(1+k 2)x 21,|ON|2=(1+k 2)x 22.又|OQ|2=m 2+n 2=(1+k 2)m 2, 由2|OQ|2=1|OM|2+1|ON|2,得 2(1+k 2)m 2=1(1+k 2)x 21+1(1+k 2)x 22, 即2m 2=1x 21+1x 22=(x 1+x 2)2-2x 1x 2x 21x 22. 由(*)式可知,x 1+x 2=8k 1+k 2,x 1x 2=121+k 2,所以m 2=365k 2-3.因为点Q 在直线y =kx 上,所以k =n m ,代入m 2=365k 2-3中并化简,得5n 2-3m 2=36.由m 2=365k 2-3及k 2>3,可知0<m 2<3,即m∈(-3,0)∪(0,3). 根据题意,点Q 在圆C 内,则n>0, 所以n =36+3m 25=15m 2+1805. 于是,n 与m 的函数关系为n =15m 2+1805(m∈(-3,0)∪(0,3)).13.H4[浙江卷] 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.13.4 5 [解析] 圆的标准方程为(x -3)2+(y -4)2=25,圆心到直线的距离为d =|2³3-4+3|5=5,所以弦长为252-(5)2=220=4 5. 4.H2、H3和H4[重庆卷] 设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6B .4C .3D .24.B [解析] |PQ|的最小值为圆心到直线距离减去半径.因为圆的圆心为(3,-1),半径为2,所以|PQ|的最小值d =3-(-3)-2=4.H5 椭圆及其几何性质21.H5,H10[安徽卷] 已知椭圆C :x 2a 2+y2b 2=1(a>b>0)的焦距为4,且过点P(2,3).(1)求椭圆C 的方程;(2)设Q(x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E ,取点A(0,22),联结AE ,过点A 作AE 的垂线交x 轴于点D ,点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.21.解:(1)因为焦距为4,所以a 2-b 2=4.又因为椭圆C 过点P(2,3),所以2a 2+3b 2=1,故a 2=8,b 2=4,从而椭圆C 的方程为x 28+y24=1.(2)由题意,E 点坐标为(x 0,0),设D(x D ,0),则AE →=(x 0,-22),AD →=(x D ,-22). 再由AD⊥AE 知,AE →²AD →=0,即x 0x D +8=0.由于x 0y 0≠0,故x D =-8x 0.因为点G 是点D 关于y 轴的对称点,所以G 8x 0,0,故直线QG 的斜率k QG =y 0x 0-8x 0=x 0y 0x 20-8.又因Q(x 0,y 0)在椭圆C 上,所以x 20+2y 20=8.① 从而k QG =-x 02y 0.故直线QG 的方程为y =-x 02y 0x -8x 0.②将②代入椭圆C 方程,得(x 20+2y 20)x 2-16x 0x +64-16y 20=0.③再将①代入③,化简得x 2-2x 0x +x 20=0,解得x =x 0,y =y 0,即直线QG 与椭圆C 一定有唯一的公共点.19.M2,H5,H10[北京卷] 直线y =kx +m(m≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.19.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,即t =± 3. 所以|AC|=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC⊥OB,所以k≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0.设A(x 1,y 1),C(x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k²x 1+x 22+m =m1+4k2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2. 因为M 为AC 和OB 的交点,且m≠0,k≠0,所以直线OB 的斜率为-14k.因为k²⎝ ⎛⎭⎪⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.15.H5[全国卷] 若x ,y 满足约束条件⎩⎪⎨⎪⎧x≥0,x +3y≥4,3x +y≤4,则z =-x +y 的最小值为________.15.0 [解析] 已知不等式组表示区域如图中的三角形ABC 及其内部,目标函数的几何意义是直线y =x +z 在y 轴上的截距,显然在点A 取得最小值,点A(1,1),故z min =-1+1=0.8.H5[全国卷] 已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB|=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y24=1 8.C [解析] 设椭圆C 的方程为x 2a 2+y 2b 2=1(a>b>0),与直线x =1联立得y =±b2a (c =1),所以2b 2=3a ,即2(a 2-1)=3a ,2a 2-3a -2=0,a>0,解得a =2(负值舍去),所以b 2=3,故所求椭圆方程为x 24+y23=1.15.H5,H8[福建卷] 椭圆Γ:x 2a 2+y2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.15.3-1 [解析] 如图,△MF 1F 2中,∠MF 1F 2=60°,所以∠MF 2F 1=30°,∠F 1MF 2=90°.又|F 1F 2|=2c ,所以|MF 1|=c ,|MF 2|=3c.根据椭圆定义得2a =|MF 1|+|MF 2|=c +3c ,得e =c a =23+1=3-1. 9.H5[广东卷] 已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y23=1 C.x 24+y 22=1 D.x 24+y23=1 9.D [解析] 设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a>b>0),由题知c =1,c a =12,解得a =2,b 2=a 2-c 2=4-1=3,选D.12.H5[江苏卷] 在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y2b 2=1(a>0,b>0),右焦点为F ,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若d 2=6d 1,则椭圆C 的离心率为________.12.33 [解析] 由题意知F(c ,0),l :x =a 2c ,不妨设B(0,b),则直线BF :x c +yb =1,即bx +cy -bc =0.于是d 1=|-bc|b 2+c2=bca , d 2=a 2c -c =a 2-c 2c =b2c.由d 2=6d 1,得⎝ ⎛⎭⎪⎫b 2c 2=6⎝ ⎛⎭⎪⎫bc a 2,化简得6c 4+a 2c 2-a 4=0,即6e 4+e 2-1=0,解得e 2=13或e 2=-12(舍去),故e =33,故椭圆C 的离心率为33. 20.H5,H8[江西卷] 椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图1-8所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m.证明:2m -k 为定值.图1-820.解:(1)因为e =32=c a, 所以a =23c ,b =13c ,代入a +b =3得,c =3,a =2,b =1,故椭圆C 的方程为x 24+y 2=1.(2)方法一:因为B(2,0),P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)⎝⎛⎭⎪⎫k≠0,k≠ ±12,① ①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D(0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N(x ,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0.所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)-2(2k -1)=2k +14, 则2m -k =2k +12-k =12(定值).方法二:设P(x 0,y 0)(x 0≠0,±2),则k =y 0x 0-2. 直线AD 的方程为:y =12(x +2),直线BP 的方程为:y =y 0x 0-2(x -2),直线DP 的方程为:y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0,联立⎩⎪⎨⎪⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2. 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值). 11.H5[辽宁卷] 已知椭圆C :x 2a 2+y2b 2=1(a>b>0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,联结AF ,BF.若|AB|=10,|BF|=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.6711.B [解析] 设椭圆的右焦点为Q ,由已知|BF|=8,利用椭圆的对称性可以得到|AQ|=8,△FAQ 为直角三角形,然后利用椭圆的定义可以得到2a =14,2c =10,所以e =57.5.H5[新课标全国卷Ⅱ] 设椭圆C :x 2a 2+y2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,P 是C上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36 B.13C.12D.335.D [解析] 设PF 2=x, 则PF 1=2x ,由椭圆定义得3x =2a ,结合图形知,2a 32c =33 ca =33,故选D. 22.H5,H8[山东卷] 在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22. (1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.22.解:(1)设椭圆C 的方程为x 2a 2+y2b2=1(a >b >0),故题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(i)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m ,由题意-2<m <0或0<m < 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|=2-m22. 所以S △AOB =|m|2-m 22=64. 解得m 2=32或m 2=12.①又OP →=tOE →=12t(OA →+OB →)=12t(2m ,0)=(mt ,0),因为P 为椭圆C 上一点, 所以(mt )22=1.②由①②得 t 2=4或t 2=43,又因为t>0,所以t =2或t =2 33.(ii)当A ,B 两点关于x 轴不对称时, 设直线AB 的方程为y =kx +h.将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4khx +2h 2-2=0, 设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2, 此时x 1+x 2=-4kh 1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k2, 所以|AB|=1+k2(x 1+x 2)2-4x 1x 2=2 21+k 21+2k 2-h21+2k 2. 因为点O 到直线AB 的距离d =|h|1+k2,所以S △AOB =12|AB|d=12³2 21+k 2 1+2k 2-h 21+2k 2|h|1+k2= 2 1+2k 2-h 21+2k |h|. 又S △AOB =64, 所以 2 1+2k 2-h 21+2k 2|h|=64.③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0, 解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④又OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫-2kht 1+2k 2,ht 1+2k 2, 因为P 为椭圆C 上一点,所以t 2⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫-2kh 1+2k 22+⎝ ⎛⎭⎪⎫h 1+2k 22=1,即h 21+2k2t 2=1.⑤ 将④代入⑤得t 2=4或t 2=43,又知t>0,故t =2或t =2 33,经检验,适合题意.综合(i)(ii)得t =2或t =2 33.20.H5,H8[陕西卷] 已知动点M(x ,y)到直线l :x =4的距离是它到点N(1,0)的距离的2倍.(1)求动点M 的轨迹C 的方程;(2)过点P(0,3)的直线m 与轨迹C 交于A ,B 两点.若A 是PB 的中点,求直线m 的斜率.20.解: (1)设M 到直线l 的距离为d ,根据题意,d =2|MN|. 由此得|4-x|=2(x -1)2+y 2.化简得x 24+y23=1,所以,动点M 的轨迹方程为x 24+y23=1.(2)方法一:由题意,设直线m 的方程为y =kx +3,A(x 1,y 1),B(x 2,y 2).将y =kx +3代入x 24+y 23=1中,有(3+4k 2)x 2+24kx +24=0,其中,Δ=(24k)2-4³24(3+4k 2)=96(2k 2-3)>0. 由求根公式得,x 1+x 2=-24k3+4k 2,①x 1x 2=243+4k.②又因A 是PB 的中点,故x 2=2x 1.③ 将③代入①,②,得 x 1=-8k 3+4k 2,x 21=123+4k2,可得⎝ ⎛⎭⎪⎫-8k 3+4k 22=123+4k 2,且k 2>32, 解得k =-32或k =32,所以,直线m 的斜率为-32或32.方法二:由题意,设直线m 的方程为y =kx +3,A(x 1,y 1),B(x 2,y 2). ∵A 是PB 的中点,∴x 1=x 22,①y 1=3+y 22.②又x 214+y 213=1,③ x 224+y 223=1,④ 联立①,②,③,④解得⎩⎪⎨⎪⎧x 2=2,y 2=0或⎩⎪⎨⎪⎧x 2=-2,y 2=0, 即点B 的坐标为(2,0)或(-2,0), 所以,直线m 的斜率为-32或32.9.H5[四川卷] 从椭圆x 2a 2+y2b 2=1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB∥OP(O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22 D.329.C [解析] 由已知,P 点坐标为⎝ ⎛⎭⎪⎫-c ,b 2a ,A(a ,0),B(0,b),于是由k AB =k OP 得-b a =b2a -c ,整理得b =c ,从而a =b 2+c 2=2c.于是,离心率e =c a =22. 18.H5,H8[天津卷] 设椭圆x 2a 2+y 2b 2=1(a>b>0)的左焦点为F ,离心率为33,过点F 且与x轴垂直的直线被椭圆截得的线段长为4 33.(1)求椭圆的方程; (2)设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →²DB →+AD →²CB →=8,求k 的值.18.解:(1)设F(-c ,0),由c a =33,知a =3c.过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b 3.于是2 6b 3=4 33,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y22=1.(2)设点C(x 1,y 1),D(x 2,y 2),由F(-1,0)得直线CD 的方程为y =k(x +1).由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A(-3,0),B(3,0),所以AC →²DB →+AD →²CB →=(x 1+3,y 1)²(3-x 2,-y 2)+(x 2+3,y 2)²(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k2.由已知得6+2k 2+122+3k2=8,解得k =± 2.21.H5、H9、H10[新课标全国卷Ⅰ] 已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.21.解:由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=3.设圆P 的圆心为P(x ,y),半径为R.(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM|+|PN|=(R +r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y23=1(x≠-2).(2)对于曲线C 上任意一点P(x ,y),由于|PM|-|PN|=2R -2≤2,所以R≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q , 则|QP||QM|=Rr 1,可求得Q(-4,0),所以可设l :y =k(x +4). 由l 与圆M 相切得|3k|1+k2=1,解得k =±24. 当k =24时,将y =24x +2代入x 24+y 23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±6 27, 所以|AB|=1+k 2|x 2-x 1|=187.当k =-24时,由图形的对称性得|AB|=187.综上,|AB|=2 3或|AB|=187.9.H5,H6[浙江卷] 如图1-4所示,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )图1-4A. 2B. 3C.32D. 629.D [解析] 设双曲线实半轴长为a ,焦半距为c ,|AF 1|=m ,|AF 2|=n ,由题意知c =3,⎩⎪⎨⎪⎧m +n =4,m 2+n 2=(2c )2=12,2mn =(m +n)2-(m 2+n 2)=4,(m -n)2=m 2+n 2-2mn =8,2a =m -n =2 2,a =2,则双曲线的离心率e =c a =32=62,选择D.21.F2、F3、H3、H5和H8[重庆卷] 如图1-5所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4. (1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.图1-521.解:(1)由题意知点A(-c ,2)在椭圆上,则(-c )2a 2+22b 2=1,从而e 2+4b 2=1. 由e =22得b 2=41-e 2=8,从而a 2=b 21-e 2=16.故该椭圆的标准方程为x 216+y28=1.(2)由椭圆的对称性,可设Q(x 0,0),又设M(x ,y)是椭圆上任意一点,则|QM|2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝ ⎛⎭⎪⎫1-x 216 =12(x -2x 0)2-x 20+8(x∈[-4,4]). 设P(x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点,因此,上式当x =x 1时取最小值,又因为x 1∈(-4,4),所以上式当x =2x 0时取最小值,所以x 1=2x 0,且|QP|2=8-x 20.由对称性知P′(x 1,-y 1),故|P P′|=|2y 1|,所以S =12|2y 1||x 1-x 0|=12³2 8⎝ ⎛⎭⎪⎫1-x 2116|x 0|=2(4-x 20)x 20=2-(x 20-2)2+4.当x 0=±2时,△PP′Q 的面积S 取到最大值2 2.此时对应的圆Q 的圆心坐标为Q(±2,0),半径|QP|=8-x 20=6,因此,这样的圆有两个,其标准方程分别为(x +2)2+y 2=6,(x -2)2+y 2=6.H6 双曲线及其几何性质22.H6、H8、D3[全国卷] 已知双曲线C :x 2a 2-y2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB|,|BF 2|成等比数列.22.解:(1)由题设知c a =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,并求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199. 由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|²|BF 2|=3(x 1+x 2)-9x 1x 2-1=16.因而|AF 2|²|BF 2|=|AB|2,所以|AF 2|,|AB|,|BF 2|成等比数列.4.H6[福建卷] 双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ) A.12 B.22 C .1 D. 24.B [解析] 取一顶点(1,0),一条渐近线x -y =0,d =12=22,故选B. 2.H6[湖北卷] 已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等2.D [解析] c 1=c 2=sin 2θ+cos 2θ=1,故焦距相等.14.H6[湖南卷] 设F 1,F 2是双曲线C :x 2a 2-y2b 2=1(a>0,b>0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.14.3+1 [解析] 如图,因PF 1⊥PF 2,且∠PF 1F 2=30°,故|PF 2|=12|F 1F 2|=c ,则|PF 1|=3c ,又由双曲线定义可得|PF 1|-|PF 2|=2a ,即3c -c =2a ,故c a =23-1=3+1.3.H6[江苏卷] 双曲线x 216-y29=1的两条渐近线的方程为________.3.y =±34x [解析] 令x 216-y 29=0,得渐近线方程为y =±34x.11.H6,H7[山东卷] 抛物线C 1:y =12p x 2(p>0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316 B.38 C.2 33 D.4 3311.D [解析] 抛物线C 1:y =12p x 2()p>0的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),连线的方程为y =-p 4(x -2),联立⎩⎪⎨⎪⎧y =-p4(x -2),y =12px 2得2x 2+p 2x -2p 2=0.设点M 的横坐标为a ,则在点M 处切线的斜率为y′|x =a =⎝ ⎛⎭⎪⎫12p x 2′错误!错误!=错误!.又∵双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,∴a p =33,即a =33p ,代入2x 2+p 2x -2p 2=0得,p =4 33或p =0(舍去).11.H6[陕西卷] 双曲线x 216-y29=1的离心率为________.11.54 [解析] 由双曲线方程中a 2=16, b 2=9,则c 2=a 2+b 2=25,则e =c a =54. 11.H6,H7[天津卷] 已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.11.x 2-y 23=1 [解析] 由抛物线的准线方程为x =-2,得a 2+b 2=4,又∵双曲线的离心率为2,得c a =2,得a =1,b 2=3,∴双曲线的方程为x 2-y 23=1.7.A2,H6[北京卷] 双曲线x 2-y2m=1的离心率大于2的充分必要条件是( )A .m>12 B .m ≥1C .m>1D .m>27.C [解析] 双曲线的离心率e =ca=1+m>2,解得m>1.故选C.4.H6[新课标全国卷Ⅰ] 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x4.C [解析] 52=ca=1+⎝ ⎛⎭⎪⎫b a 2,所以b a =12,故所求的双曲线渐近线方程是y =±12x. 9.H5,H6[浙江卷] 如图1-4所示,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )图1-4A. 2B. 3C.32D. 629.D [解析] 设双曲线实半轴长为a ,焦半距为c ,|AF 1|=m ,|AF 2|=n ,由题意知c =3,⎩⎪⎨⎪⎧m +n =4,m 2+n 2=(2c )2=12,2mn =(m +n)2-(m 2+n 2)=4,(m -n)2=m 2+n 2-2mn =8,2a =m -n =22,a =2,则双曲线的离心率e =c a =32=62,选择D.10.E1、H6和H8[重庆卷] 设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤2 33,2 B.⎣⎢⎡⎭⎪⎫2 33,2 C.⎝ ⎛⎭⎪⎫2 33,+∞ D.⎣⎢⎡⎭⎪⎫2 33,+∞10.A [解析] 设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的斜率ba 必须满足33<b a ≤3,所以13<⎝ ⎛⎭⎪⎫b a 2≤3,43<1+⎝ ⎛⎭⎪⎫b a 2≤4,即有23 3<1+⎝ ⎛⎭⎪⎫b a 2≤2.又双曲线的离心率为e =c a=1+⎝ ⎛⎭⎪⎫b a 2,所以23 3<e ≤2.H7 抛物线及其几何性质9.H7[北京卷] 若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________.9.2 x =-1 [解析] ∵抛物线y 2=2px 的焦点坐标为(1,0),∴p 2=1,解得p =2,∴准线方程为x =-1.20.H7,H8[福建卷] 如图1-5,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A.点C 在抛物线E 上,以C 为圆心,|CO|为半径作圆,设圆C 与准线l 交于不同的两点M ,N.(1)若点C 的纵坐标为2,求|MN|;(2)若|AF|2=|AM|²|AN|,求圆C 的半径.图1-520.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2), 所以点C 到准线l 的距离d =2,又|CO|=5,所以|MN|=2 |CO|2-d 2=2 5-4=2.(2)设C ⎝ ⎛⎭⎪⎫y 204,y 0,则圆C 的方程为⎝ ⎛⎭⎪⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 22=0.设M(-1,y 1),N(-1,y 2),则⎩⎪⎨⎪⎧Δ=4y 20-4⎝ ⎛⎭⎪⎫1+y 202=2y 20-4>0,y 1y 2=y 22+1.由|AF|2=|AM|²|AN|,得|y 1y 2|=4, 所以y 22+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝ ⎛⎭⎪⎫32,6或⎝ ⎛⎭⎪⎫32,-6, 从而|CO|2=334,|CO|=332,即圆C 的半径为332.20.H7,H8,H10[广东卷] 已知抛物线C 的顶点为原点,其焦点F(0,c)(c>0)到直线l :x -y -2=0的距离为3 22,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P(x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF|²|BF|的最小值. 20.解:21.B12[广东卷] 设函数f(x)=x 3-kx 2+x(k∈R ). (1)当k =1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k ,-k]上的最小值m 和最大值M. 21.解:9.H7[江西卷] 已知点A(2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|∶|MN|=( )A .2∶ 5B .1∶2C .1∶ 5D .1∶39.C [解析] FA :y =-12x +1,与x 2=4y 联立,得x M =5-1,FA :y =-12x +1,与y=-1联立,得N(4,-1),由三角形相似知|FM||MN|=x M 4-x M =15,故选C.10.H7[新课标全国卷Ⅱ] 设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF|=3|BF|,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1)C .y =3(x -1)或y =-3(x -1)D .y =22(x -1)或y =-22(x -1)10.C [解析] 抛物线的焦点为F(1,0),若A 在第一象限,如图1-5,设AF =3m ,BF =m.过B 作AD 的垂线交AD 于G ,则AG =2m ,由于AB =4m ,故BG =23m ,tan ∠GAB = 3.∴直线AB 的斜率为 3.同理,若A 在第四象限,直线AB 的斜率为-3,故答案为C.图1-511.H6,H7[山东卷] 抛物线C 1:y =12p x 2(p>0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316 B.38 C.2 33 D.4 3311.D [解析] 抛物线C 1:y =12p x 2()p>0的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),连线的方程为y =-p 4(x -2),联立⎩⎪⎨⎪⎧y =-p4(x -2),y =12px 2得2x 2+p 2x -2p 2=0.设点M 的横坐标为a ,则在点M 处切线的斜率为y′|x =a =⎝ ⎛⎭⎪⎫12p x 2′⎪⎪⎪ )x =a =ap.又∵双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,∴a p =33,即a =33p ,代入2x 2+p 2x -2p 2=0得,p =4 33或p =0(舍去).11.H6,H7[天津卷] 已知抛物线y 2=8x 的准线过双曲线x 2a 2-y2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.11.x 2-y 23=1 [解析] 由抛物线的准线方程为x =-2,得a 2+b 2=4,又∵双曲线的离心率为2,得c a =2,得a =1,b 2=3,∴双曲线的方程为x 2-y 23=1.5.H7,H8[四川卷] 抛物线y 2=8x 的焦点到直线x -3y =0的距离是( )A .2 3B .2 C. 3 D .15.D [解析] 抛物线y 2=8x 的焦点为F(2,0),该点到直线x -3y =0的距离为d =|2|12+(-3)2=1.8.H7[新课标全国卷Ⅰ] O 为坐标原点,F 为抛物线C :y 2=4 2x 的焦点,P 为C 上一点,若|PF|=4 2,则△POF 的面积为( )A .2B .2 2C .2 3D .48.C [解析] 设P(x 0,y 0),根据抛物线定义得|PF|=x 0+2,所以x 0=3 2,代入抛物线方程得y 2=24,解得|y|=2 6,所以△POF 的面积等于12²|OF|²|y|=12³2³2 6=2 3.H8 直线与圆锥曲线(AB 课时作业)22.H6、H8、D3[全国卷] 已知双曲线C :x 2a 2-y2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB|,|BF 2|成等比数列.22.解:(1)由题设知c a =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,并求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k -8,x 1x 2=9k 2+8k -8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199. 由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|²|BF 2|=3(x 1+x 2)-9x 1x 2-1=16.因而|AF 2|²|BF 2|=|AB|2,所以|AF 2|,|AB|,|BF 2|成等比数列.12.F3、H8[全国卷] 已知抛物线C :y 2=8x 与点M(-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →²MB →=0,则k =( )A.12B.22C. 2 D .212.D [解析] 抛物线的焦点坐标为(2,0),设直线l 的方程为x =ty +2,与抛物线方程联立得y 2-8ty -16=0.设A(x 1,y 1),B(x 2,y 2),则y 1y 2=-16,y 1+y 2=8t ,x 1+x 2=t(y 1+y 2)+4=8t 2+4,x 1x 2=t 2y 1y 2+2t(y 1+y 2)+4=-16t 2+16t 2+4=4.MA →²MB →=(x 1+2,y 1-2)²(x 2+2,y 2-2)=x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4 =4+16t 2+8+4-16-16t +4=16t 2-16t +4=4(2t -1)2=0,解得t =12,所以k =1t =2.20.H7,H8[福建卷] 如图1-5,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A.点C 在抛物线E 上,以C 为圆心,|CO|为半径作圆,设圆C 与准线l 交于不同的两点M ,N.(1)若点C 的纵坐标为2,求|MN|;(2)若|AF|2=|AM|²|AN|,求圆C 的半径.图1-520.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2,又|CO|=5,所以|MN|=2 |CO|2-d 2=2 5-4=2.(2)设C ⎝ ⎛⎭⎪⎫y 204,y 0,则圆C 的方程为⎝ ⎛⎭⎪⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 22=0.设M(-1,y 1),N(-1,y 2),则⎩⎪⎨⎪⎧Δ=4y 20-4⎝ ⎛⎭⎪⎫1+y 202=2y 20-4>0,y 1y 2=y 22+1.由|AF|2=|AM|²|AN|,得|y 1y 2|=4, 所以y 22+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝ ⎛⎭⎪⎫32,6或⎝ ⎛⎭⎪⎫32,-6, 从而|CO|2=334,|CO|=332,即圆C 的半径为332.15.H5,H8[福建卷] 椭圆Γ:x 2a 2+y2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.15.3-1 [解析] 如图,△MF 1F 2中,∠MF 1F 2=60°,所以∠MF 2F 1=30°,∠F 1MF 2=90°.又|F 1F 2|=2c ,所以|MF 1|=c ,|MF 2|=3c.根据椭圆定义得2a =|MF 1|+|MF 2|=c +3c ,得e =c a =23+1=3-1. 20.H7,H8,H10[广东卷] 已知抛物线C 的顶点为原点,其焦点F(0,c)(c>0)到直线l :x -y -2=0的距离为3 2 2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P(x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF|²|BF|的最小值. 20.解:21.B12[广东卷] 设函数f(x)=x 3-kx 2+x(k∈R ). (1)当k =1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k ,-k]上的最小值m 和最大值M. 21.解:22.H8,H10[湖北卷] 如图1-5所示,已知椭圆C 1与C 2的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n(m>n),过原点且不与x 轴重合的直线l 与C 1,C 2的四个交点按纵坐标从大到小依次为A ,B ,C ,D.记λ=mn,△BDM 和△ABN 的面积分别为S 1和S 2.(1)当直线l 与y 轴重合时,若S 1=λS 2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.。

新课标全国高考数学试题分类汇编-解析几何

新课标全国高考数学试题分类汇编-解析几何

新课标全国高考文科数学试题分类汇编-解析几何2016-120.(本小题满分12分)在直角坐标系xoy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON ; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.2016-2 21、(本小题满分12分)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k(k>0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM|=|AN|时,求△AMN 的面积.(2)当2|AM|=|AN|时,证明:3<k<2.2016-3(20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.2017-120、(12分)设A ,B 为曲线C :y=x 24上两点,A 与B 的横坐标之和为4。

(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程。

2017-220、(12分)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 做x 轴的垂线,垂足为N ,点P 满足向量NP =2NM .(1)求点P 的轨迹方程;(2)设点Q 在直线x=–3上,且向量OP ·PQ =1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2017-320.(12分)在直角坐标系xOy 中,曲线y =x 2+mx –2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.2018-120.(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.2018-220.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.2018-320.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.。

高考真题汇编-平面解析几何(学生版)

高考真题汇编-平面解析几何(学生版)

高考真题汇编--平面解析几何1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y += C .22143x y +=D .22154x y += 2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .83.【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C的离心率为A B .2D4.【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4 B .2C .D .5.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是A .①B .②C .①②D .①②③7.【2019年高考天津卷理数】已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A 2B 3C .2D 58.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是 A .22B .1C 2D .29.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.10.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.11.【2019年高考全国Ⅲ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.12.【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB=,120F B F B ⋅=,则C 的离心率为____________.13.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .14.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 .15.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =,求|AB |.16.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.17.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.18.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.19.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4 (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程;(2)求点E 的坐标.21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.。

2024年高考数学试题分类汇编07:解析几何

2024年高考数学试题分类汇编07:解析几何

解析几何一、单选题1.(2024·全国)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)2.(2024·全国)已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 23.(2024·全国)已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .254.(2024·北京)求圆22260x y x y +-+=的圆心到20x y -+=的距离()A .23B .2C .32D 65.(2024·天津)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=二、多选题6.(2024·全国)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+7.(2024·全国)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个三、填空题8.(2024·全国)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.9.(2024·北京)已知双曲线2214x y -=,则过()3,0且和双曲线只有一个交点的直线的斜率为.10.(2024·北京)已知抛物线216y x =,则焦点坐标为.11.(2024·天津)22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.12.(2024·上海)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.四、解答题13.(2024·全国)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.14.(2024·全国)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.15.(2024·全国)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.16.(2024·北京)已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .17.(2024·天津)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.18.(2024·上海)已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2,3b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.参考答案:1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 2.C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【解析】由题意,()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.3.C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【解析】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===,此时24AB AP ====.故选:C 4.C【分析】求出圆心坐标,再利用点到直线距离公式即可.【解析】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+=221323211++=+,故选:C.5.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin 5θ=121212::sin :sin :sin 902:1:5PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ===,由1212112822PF F S PF PF m m =⋅=⋅= 得22m =则211222PF PF F F c =====由双曲线第一定义可得:122PF PF a -==a b ==所以双曲线的方程为22128x y -=.故选:C 6.ABD【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【解析】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a ⨯-=,解得2a =-,故A 正确.对于B 24x +=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.7.ABD【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【解析】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD8.32【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x y a b -=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:329.12±【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【解析】联立3x =与2214x y -=,解得52y =,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点()3,0且斜率为k 的直线方程为()3y k x =-,联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222Δ244364140k k k =++-=,解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:12±.10.()4,0【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,由此即可得解.【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.故答案为:()4,0.11.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以d a 4
5
x2 y2
21.(全国大纲理 15)已知 F1、F2 分别为双曲线 C: 9 - 27 =1 的左、右焦点,点 A∈C,
,则线段 AB 的中点到 y 轴的距离为
3 (A) 4
【答案】C
(B)1
5 (C) 4
7 (D) 4
二、填空题
''
'
15.(湖北理 14)如图,直角坐标系 xOy 所在的平面为 ,直角坐标系 x Oy (其中 y 轴
一与 y 轴重合)所在的平面为 ,xOx' 45 。
(Ⅰ)已知平面 内有一点 P' (2 2, 2) ,则点 P在' 平面 内的射影 的P
坐标为

(Ⅱ)已知平面
内的曲线C'
的方程是(x
'
2)2 2 y'2 2 0 ,则曲线C' 在平面 内
的射影C 的方程是

【答案】(2,2) (x 1)2 y2 1
x2
F ,F
2y
16.(浙江理 17)设 1 2 分别为椭圆 3
1
A, B
的左、右焦点,点 在椭圆上,若
F1A 5F2B ;则点 A 的坐标是
C: x2 y 2 6x 5 0
相切,且双曲线的右焦点为圆 C 的圆心,则该双曲线的方程为
x2 y2 1 A. 5 4
x2 y2 1 B. 4 5
x2 y2 1 C. 3 6
x2 y2 1 D. 6 3
【答案】A 6.(全国新课标理 7)已知直线 l 过双曲线 C 的一个焦点,且与 C 的对称轴垂直,l 与 C 交
五、解析几何
一、选择题
1.(重庆理 8)在圆 x
y
2
2
2x
6
y
0
内,过点
E(0,1)的最长弦和最短弦分别是
AC 和 BD,则四边形 ABCD 的面积为
A.5 2
B.10 2
C.15 2
D. 20 2
【答案】B
C1 :
2.(浙江理 8)已知椭圆
x2 y2 a2 b2
ቤተ መጻሕፍቲ ባይዱ(a>b
0)
C1: x 2
与双曲线
于 A,B 两点, | AB | 为 C 的实轴长的 2 倍,C 的离心率为
(A) 2 (B) 3
(C) 2
(D) 3
【答案】B
7.(全国大纲理
10)已知抛物线
C:
y 2
4x 的焦点为
F,直线
y 2x 4 与
C 交于
A,B
两点.则cos AFB =
4 A. 5
3 B. 5
3 C. 5
4 D. 5
过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2 5 y2 36 相
切,则抛物线顶点的坐标为
A. (2, 9)
B.(0, 5)
C. (2, 9)
D.(1, 6)
【答案】C
【解析】由已知的割线的坐标(4,11 4a),(2, 2a 1), K 2 a ,设直线方程为
36 b2 y (a 2)x b ,则 5 1 (2 a)2
PF1 : F1F2 : PF2 =4:3:2,则曲线 r 的离心率等于
1或3 A. 2 2
2 B. 3 或 2
1或 C. 2 2
2 或3 D. 3 2
【答案】A
A0, 0 B4, 0 Ct 4, 4 Dt, 4t R N t
12.(北京理 8)设
,

,
.记
为平行四边形
ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函
9.(湖南理 5)设双曲线 a2 9
的渐近线方程为3x 2 y 0 ,则 a 的值为
A.4
B.3
C.2
D.1
【答案】C
10.(湖北理
4)将两个顶点在抛物线
y
2
2
px(
p
0)
上,另一个顶点是此抛物线焦点的
正三角形个数记为 n,则
A.n=0
B.n=1 C. n=2 D.n 3
【答案】C
11.(福建理 7)设圆锥曲线 r 的两个焦点分别为 F1,F2,若曲线 r 上存在点 P 满足
a
2

其中,所有正确结论的序号是

【答案】②③
x2 y2 =1上一点到双曲线右焦点的距离是,4那么
20.(四川理 14)双曲线 64 36 点
P到
左准线的距离是

56 【答案】 5
【解析】 a 8, b 6, c 10 ,点 P 显然在双曲线右支上,点 P 到左焦点的距离为 14,所
14 c 5 d 56
【答案】D
8.(江西理
9)若曲线C1:
x 2
y 2
2x
0
与曲线C2 :
y( y
mx
m)
0
有四个不同的
交点,则实数 m 的取值范围是
3 3 A.( 3 , 3 )
3
3
B.( 3 ,0)∪(0, 3 )
3 3 C.[ 3 , 3 ]
3
3
D.( , 3 )∪( 3 ,+ )
【答案】B
x2 y2 1a 0
y2 4
1
有公共的焦点,
C1的一条渐近线与以C1的长轴为直径的圆相交于 A, B 两点,若C1恰好将线段 AB 三
等分,则
a2 13
A.
2
B.a2 13
b2 1 C. 2
D. b2 2
【答案】C
3.(四川理 10)在抛物线
y x2 ax 5(a≠0) 上取横坐标为
x1 4
x ,2
2 的两点,
y x2 ax 5

y
(a
2)x
b
b
6
a4
( 2, 9)
4.(陕西理 2)设抛物线的顶点在原点,准线方程为 x 2 ,则抛物线的方程是
A. y2 8x
【答案】B
B. y2 8x
C. y2 4x
D. y2 4x
x2 y2
5.(ft东理 8)已知双曲线
a2
b2
1(a>0,>b 0) 的两条渐近线均和圆
N t

的值域为
9,10,11
A.
9,11,12
C.
9,10,12
B.
10,11,12
D.
【答案】C
13.(安徽理
2)双曲线2x2
y 2
8
的实轴长是
(A)2
(B) 2 2
(C) 4 (D)4 2
【答案】C 14.(辽宁理 3)已知 F 是抛物线 y2=x 的焦点,A,B 是该抛物线上的两点,
AF BF =3

【答案】(0, 1)
y2 x2
17.(上海理
3)设 m
为常数,若点 F(0,5)
是双曲线
m
9
1
的一个焦点,则
m

【答案】16
x2 y2
1
18.(江西理 14)若椭圆 a2 b2 1的焦点在 x 轴上,过点(1, 2 )作圆 x2 +y2 =1的切 线,切点分别为 A,B,直线 AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是
x2 y2 1 【答案】 5 4
19.(北京理 14)曲线 C 是平面内与两个定点 F1(-1,0)和 F¬2(1,0)的距离的积等于
a 2 (a 1)
常数
的点的轨迹.给出下列三个结论:
① 曲线 C 过坐标原点;
② 曲线 C 关于坐标原点对称;
1
③若点
P
在曲线
C
上,则△F1 PF
2
的面积大于
2
相关文档
最新文档