高一数学典型例题分析 对数函数
高一数学对数函数的图像典型例题2
对数函数的图像典型例题(二)13函数在区间 上的最大值比最小值大2,则实数 =___.或;14已知函数 .① 判断函数的单调区间及在每一个单调区间内的单调性; ② 当时,求的最大值,最小值及相应的值.①在 上单调递减,在 上单调递增.②当 时, ,当时,.15、已知函数y=log a (1-a x)(a >0且a ≠1)。
(1)求函数的定义域和值域;(2)证明函数图象关于直线y=x 对称。
(1)当a >1时,函数的定义域和值域均为(-∞,0);当0<a <1时,函数的定义域和值域均为(0,+∞)。
(2)由y=log a (1-a x ),得1-a x =a y ,即a x =1-a y ,∴x=log a (1-a y ),∴f -1(x)=log a (1-a x)=f(x)。
∵f(x)与f -1的图象关于直线y=x 对称,函数y=loga(1-a x )的图象关于直线y=x 对称。
16、.设⎥⎦⎤⎢⎣⎡∈91,271x ,求函数)3(log 27log )(33x x x f ⎪⎭⎫ ⎝⎛=的最大值。
、1217、已知函数)(log )1(log 11log )(222x p x x x x f -+-+-+=。
(1)求函数f(x)的定义域;(2)求函数f(x)的值域。
(1)函数的定义域为(1,p)。
(2)当p >3时,f(x)的值域为(-∞,2log 2(p+1)-2); 当1<p=≤时,f(x)的值域为(-∞,1+log2(p+1))。
18、已知3log 7)(log 221221≤++x x , 求函数)4(log )2(log 212x x y ∙=的最大值和最小值 、41,2-19:已知[]y ax x a =-log ()201在,上是的减函数,则a 的取值范围是()A .(0,1)B .(1,2)C .(0,2)D .[)2,+∞答案:B 。
解析:本题作为选择题,用排除法求解较简,由于这里虽然有a a >≠01,,故u ax =-2在[0,1]上定为减函数,依题设必有a >1,故应排除A 和C ,在B 、D 中要作选择,可取a =3,则已知函数为y x =-log ()323,但是此函数的定义域为-∞⎛⎝ ⎫⎭⎪,23,它当然不可能在区间[0,1]上是减函数,故又排除了D ,从而决定选B 。
专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题10对数与对数函数对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,y≥当01x <<时,0y >,当1x ≥时,0y≤【方法技巧与总结】1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)a 增大a 增大【题型归纳目录】题型一:对数运算及对数方程、对数不等式题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域))题型四:对数函数中的恒成立问题题型五:对数函数的综合问题【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值;(3)若185a =,18log 9b =,用a ,b ,表示36log 45.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值.(2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c +=;(2)若60a =3,60b =5,求12(1)12a b b ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则()A .a +b =100B .b -a =eC .28ln 2ab <D .ln 6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=()A .2B .4C .6D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是()A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是()A .0a b +<B .1ab <-C .01b a <<D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为()A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则()A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2 ⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为()A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()Ab a<<B.b a<<Ca b<<D.a b <例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是()A .0B .1C .2D .a例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是()A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是()A .1116a ≤<B .1116a <<C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是()A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围.例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +.(1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0, +的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为()A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是().A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则()A .sin sin a b>B .11a b>C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则ab的取值可以是()A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2xf x x x -=+-的零点,则020e ln x x -+=_______.【过关测试】一、单选题1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)()A .1393.1610s ⨯B .1391.5810s ⨯C .1401.5810s⨯D .1403.1610s⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为()A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则()A .111x y z+=B .111y z x+=C .112x y z +=D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ()A .是奇函数,且在()0,1上单调递增B .是奇函数,且在()0,1上单调递减C .是偶函数,且在()0,1上单调递增D .是偶函数,且在()0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =,()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为()A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是()A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()A b a<<B .b a<<C a b<<D .a b <二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是()A .11a b+的最小值是4B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是()A .2ab bc ac+=B .ab bc ac+=C .4949b b a c⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是()A .()(lg f x x =B .()2f x x ax=+C .()21xaf x e =--D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为()ABCD三、填空题13.(2022·天津·二模)已知()42log 41log x y +=+,则2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论:①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--;④函数()y f x =在()(),1k k k +∈Z 上单调递减.其中所有正确结论的序号为______.四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ](m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1ax f x x -=-在其定义域上是奇函数,a 为常数.(1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M .(1)当t e =时,求切线l 的方程;(2)O 为坐标原点,记AMO 的面积为S ,求面积S 以t 为自变量的函数解析式,写出其定义域,并求单调增区间.。
高一数学对数函数经典题及详细答案
高一数学对数函数经典题及详细答案1、已知3a=2,那么log3 8-2log3 6用a表示是()A、a-2.B、5a-2.C、3a-(1+a)。
D、3a-a2/2答案:A。
解析:由3a=2,可得a=log3 2,代入log3 8-2log3 6中得:log3 8-2log3 6=log3 2-2log3 (2×3)=3log3 2-2(log3 2+log33)=3a-2(a+1)=a-2.2、2loga(M-2N)=logaM+logaN,则M的值为()A、N/4.B、M/4.C、(M+N)2.D、(M-N)2答案:B。
解析:2loga(M-2N)=logaM+logaNloga(M-2N)2=logaMNM-2N=MNM=4N3、已知x+y=1,x>0,y>0,且loga(1+x)=m,loga(1-y)=n,则loga y等于()A、m+n-2.B、m-n-2.C、(m+n)/2.D、(m-n)/2答案:D。
解析:由已知可得1-x=y,代入loga(1+x)=m中得loga(2-x)=m,两式相减得loga[(2-x)/(1+x)]=m-n,化简得loga[(1-x)/x]=m-n,即loga y=m-n,所以答案为D。
4、若x1,x2是方程lg2x+(lg3+lg2)lgx+lg3·lg2=0的两根,则x1x2=()A、1/3.B、1/6.C、1/9.D、1/36答案:B。
解析:将lg2x+(lg3+lg2)lgx+lg3·lg2=0化为对数形式,得:log2x+(log23+log22)logx+log32=0log2x+(log2×3+log22)logx+log3+log2=0XXXlog2x+log2xlog23+log32+log2=0log2x(1+log23)+log32+log2=0log2x=log32+log2/(1+log23)x=2log32+log2/(1+log23)x1x2=2log32+log2/(1+log23)×2log32+log2/(1+log23)2log32+log2/(1+log23)22log32+2log2/(1+log23)2log2(3/2)2/(1+log23)2log2(9/4)/(1+log23)2log29/(1+log23)2log29/(1+log2+log23)2log29/(3+log23)2log29/(3+log2+log3)2log29/(3+1+log3)2log29/(4+log3)2log29/(4+log3/log10)2log29/(4+0.4771)1/61.答案D,已知lg2x+(lg2+lg3)lgx+lg2lg3=0的两根为x1、x2,则x1•x2的值为16.2.答案C,已知log7[log3(log2x)]=0,则x等于2^3=8,x-1/2=2^3-1/2=15/2,x1•x2=2^3•15/2=60.3.答案C,lg12=2a+b,lg15=b-a+1,比值为(2a+b)/(1-a+b),化简得到2a+b/(1-a+b)。
高一数学对数函数的图像与性质2(教师版)
学科教师辅导讲义例5、已知0>a 且1≠a ,()()12log 1a af x x x a -=⋅--, ⑴求函数()x f 的表达式;⑵判断()x f 的奇偶性和单调性;(不必证明)⑶当()x f 定义域为()1,1-时,解关于m 的不等式:()()0112<-+-mf m f参考解答:⑴()()21x xa f x a a a -=⋅--,⑵奇函数非偶函数,在R 上单调递增,⑶12m <<;【课堂小练】1、已知函数()2log 030x x x f x x >⎧=⎨≤⎩,则14f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦19;2、函数()21log f x x =+与函数()12x g x -+=在同一直角坐标系下的图象大致是—————————(C )3、函数()2lg 1y x =-的单调递减区间是(),1-∞-;4、定义在R 上奇函数()x f 满足()()x f x f =+2, 01x ≤<时()12-=xx f ,则=⎪⎪⎭⎫ ⎝⎛24log 21f 12-;5、关于x 的方程()()4lg lg 2=⋅ax ax 的所有解都大于1,求实数a 的取值范围;参考解答:10100a <<6、设函数()124lg 3x x af x ++⋅=()a R ∈,如果当(),1x ∈-∞时()f x 有意义,求实数a 的取值范围;参考解答:3,4⎡⎫-+∞⎪⎢⎣⎭7、()()⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛<-⎪⎭⎫ ⎝⎛≥=233lg 23lg x x x x x f ,若非空集合(){}m x f x A ==, 则实数m 的取值范围为3lg 2m ≥;【课后练习】练习一一、选择题1、函数)20lg(2x x y -=的值域是 ( ) A 、y >0 B 、y ∈R C 、y >0且y≠1 D 、y≤2 2、)1(log )1(n n n n ++-+= ( )A 、1B 、-1C 、2D 、-23、若log x y = -1,则函数的图象是 ( )4、已知f (x )= log a (2-ax )在区间[0,1]上是减函数,则实数a 的取值范围是 ( )A 、(0,1)B 、(1,2)C 、(0,2)D 、(2,+∞)5、下面结论中,不正确的是 ( )A 、若a >1,则xa y =与x y a log =在定义域内均为增函数B 、函数xy 3=与x y 3log =图象关于直线x y =对称C 、2log x y a =与x y a log 2=表示同一函数D 、若01,01a m n <<<<<,则一定有log log 0a a m n >>6、设2(log )2(0)xf x x =>,则f (3)的值是 ( )A 、128B 、256C 、512D 、8 二、填空题7、求函数y =212log (34)x x --的递增区间。
高一含绝对值的对数函数问题
高一含绝对值的对数函数问题高一数学中,绝对值的对数函数是一个常见的题型。
这类题目通常涉及到对数函数的性质和图像,以及绝对值函数的性质和图像。
我将从不同角度来解答这类问题。
首先,我们来看绝对值的对数函数的定义。
绝对值的对数函数通常表示为f(x) = log |x|,其中log表示以10为底的对数。
这个函数的定义域是所有实数,而值域是负无穷到正无穷。
当x大于0时,f(x) = log x;当x小于0时,f(x) = log(-x)。
这意味着函数图像会在x轴的正半轴和负半轴分别有一条对称的分支。
其次,我们可以讨论绝对值的对数函数的性质。
由于对数函数的性质,绝对值的对数函数在x大于0时是单调递增的,在x小于0时是单调递减的。
另外,绝对值的对数函数的图像会经过点(1, 0),并且在x=1处有一个垂直渐近线。
接着,我们可以探讨绝对值的对数函数的图像特点。
由于绝对值的对数函数的特殊性质,它的图像会呈现出两条分支,分别位于x轴的正负半轴。
这两条分支会在(1, 0)这一点相交,并且在这一点有一个水平切线。
最后,我们可以考虑一些与绝对值的对数函数相关的典型问题。
比如,求函数的定义域、值域;求函数在某个区间上的增减性;求函数与坐标轴的交点等等。
这些问题需要运用对数函数和绝对值函数的性质,以及图像特点来进行分析和解答。
综上所述,高一含绝对值的对数函数问题涉及到对数函数和绝对值函数的性质、图像特点以及相关的典型问题。
在解答这类问题时,我们需要全面理解和掌握这两类函数的知识,从而能够准确地分析和解决问题。
高一数学对数函数题型及解题技巧
高一数学对数函数题型及解题技巧
随着高一数学的学习深入,对数函数也成为了学习的重点内容之一。
下面我们来了解一下对数函数的题型和解题技巧。
一、对数函数的定义和性质
对数函数是指形如y=loga(x)的函数,其中a称为底数,x称为真数,y称为对数。
对数函数有以下性质:
1. 底数a必须大于0且不等于1.
2. 若a>1,则y随着x的增大而增大;若0<a<1,则y随着x的增大而减小。
3. 对于任何正数x,loga(a^x)=x,a^loga(x)=x。
二、对数函数的题型及解题技巧
1. 求解对数方程
对数方程通常形如loga(x)=b,其解法为将等式两边用底数a进行指数运算,得到x=a^b。
2. 求解不等式
求解不等式的关键是找到等式左右两边的交点。
对于对数函数的不等式,需要注意底数的大小关系。
3. 求解复合函数
复合函数是指将一个函数的输出作为另一个函数的输入,形如
f(x)=g(loga(x))。
解题时需要根据函数的定义和性质进行推导。
4. 求解导数和极值
对数函数的导数可以通过链式法则求解,即f'(x)=g'(u)*u'(x),
其中g(u)=loga(u),u(x)为x的函数。
极值的求解需要将导数等于0,并根据函数的定义和性质进行判断。
总之,对数函数的掌握需要不断的练习和思考,希望以上内容对你有所启发。
高一数学对数函数题型及解题技巧
高一数学对数函数题型及解题技巧对数函数是高一数学中的一个重要概念,它的应用非常广泛。
下面我们来了解一些对数函数的题型及解题技巧。
一、基本概念对数函数的定义是:设a>0且a≠1,那么我们称y=loga(x)为以a为底,x的对数。
其中a称为底数,x称为真数,y称为以a为底,x的对数。
以10为底的对数函数常用符号是log(x),而以e(自然对数)为底的对数函数常用符号是ln(x)。
二、题型分类1. 求解对数函数的定义域和值域。
定义域是x>0,值域是R(实数集)。
2. 计算对数函数的值。
根据定义,可以用对数的转化公式来计算对数函数的值。
例如log3(81)=4,因为3的4次方等于81。
3. 求解对数方程。
对数方程一般可以转化为指数方程来求解。
例如,求解log2(x)=3,可以将其转化为2的3次方等于x,即x=8。
4. 求解等比数列。
等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
如果要求等比数列的第n项,则有an=a1*q^(n-1),其中q=loga(r),a是公比的底数。
5. 求解对数函数的性质。
对数函数有多种性质,如对称轴、单调性、奇偶性等。
可以根据对数函数的图像来分析求解。
三、解题技巧1. 掌握对数函数的基本概念,理解对数函数的定义、性质和应用。
2. 熟练掌握对数函数的计算方法,掌握对数的转化公式、对数方程的转化方法和等比数列的求解方法。
3. 学会对数函数的图像分析方法,掌握对数函数的对称轴、单调性、奇偶性等特点,从而更好地解决对数函数相关的问题。
以上是关于高一数学对数函数题型及解题技巧的介绍,希望能够帮助大家更好地掌握对数函数的应用。
高一数学典型例题分析 指数函数、对数函数、换底公式 试题
卜人入州八九几市潮王学校指数函数和对数函数·换底公式·例题例1-6-38log34·log48·log8m=log416,那么m 为[ ]解 B 由有[ ]A.b>a>1B.1>a>b>0C.a>b>1D.1>b>a>0解 A 由不等式得应选A.[ ]应选A.[ ]A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,2) 2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数,[ ]A.m>p>n>qB.n>p>m>qC.m>n>p>qD.m>q>p>n例1-6-43(1)假设log a c+log b c=0(c≠0),那么ab+c-abc=____;(2)log89=a,log35=b,那么log102=____(用a,b表示).但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1.例1-6-44函数y=f(x)的定义域为[0,1],那么函数f[lg(x2-1)]的定义域是____.由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得.例1-6-45log1227=a,求log616的值.例1-6-46比较以下各组中两个式子的大小:例1-6-47常数a>0且a≠1,变数x,y满足3log x a+log a x-log x y=3(1)假设x=a t(t≠0),试以a,t表示y;(2)假设t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解(1)由换底公式,得即log a y=(log a x)2-3log a x+3当x=a t时,log a y=t2-3t+3,所以y=a r2-3t+3(2)由t2-4t+3≤0,得1≤t≤3.值,所以当t=3时,u max=3.即a3=8,所以a=2,与0<a<1矛盾.此时满足条件的a值不存在.。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.已知函数,且,则使成立的的取值范围是().A.B.C.D.【答案】C【解析】,且,,即,,则,即.【考点】对数不等式.2.定义在上的函数满足,则的值为_____.【答案】.【解析】由题意,得,,,,;即是周期函数,且,所以.【考点】函数的周期性.3.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.4.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.函数的定义域为A.B.C.D.【答案】A【解析】要使函数有意义,必须:解得:所以函数的定义域是所以,应选A.【考点】1、函数定义域的求法;2、对数函数.7.函数的定义域为___________.【答案】【解析】因为依题意可得,解得.所以填.本小题的关键是考察了两个知识点.一是偶次方根的被开方数要大于或等于零,另一个就是对数函数的真数要大于零.取这两个的解集的公共部分即可得结论.【考点】1.对数知识.2.根式的知识.8.函数y =2+(x-1)的图象必过定点, 点的坐标为_________.【答案】【解析】令,则,此时,故原函数过定点.【考点】对数函数的图像性质,对数函数横过定点(1,0).9.若函数是幂函数,且满足,则的值等于 .【答案】【解析】可设,则有,即,解得,所以函数的解析式为,故,所以所求的值为.【考点】1.幂函数;2.对数的运算.10.已知函数若函数有3个零点,则实数的取值范围是_______________.【解析】将函数的图像向左移动一个单位,可得函数在区间上为单调递增函数且,因为二次函数在上单调递增且,在上单调递减且,故若函数有3个零点,即函数与函数的图像有3个交点,所以所求的取值范围为.【考点】1.对数函数;2.二次函数;3.分段函数;4.函数的零点.11.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.12.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.13.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2),②f(x1x2)=f(x1)+f(x2),③,④,当f(x)=lnx时,上述结论中正确结论的序号是_____________.【答案】②④.【解析】把函数代入结论①②:,,结合对数的运算法则,知②正确,①错误;③说明时,,从而为减函数,但函数是增函数,故③错误;④等价于,当且时,上式显然成立.故④也是正确的.【考点】1、对数的运算法则;2、对数函数的性质;3、基本不等式.14.计算:= .【答案】【解析】解.【考点】对数的运算.15.如果,那么的最小值是()A.4B.C.9D.18【解析】∵,∴mn=81,∴,当且仅当m=n=9时“=”成立,故选D【考点】本题考查了对数的运算及基本不等式的运用点评:熟练掌握对数的运算法则及基本不等式的运用是解决此类问题的关键,属基础题16.求(lg2)2+lg2·lg50+lg25的值.【答案】2【解析】原式=(lg2)2+lg2·(lg2+2lg5)+2lg5 2分=2(lg2)2+2lg2·lg5+2lg5 4分=2lg2(lg2+lg5)+2lg5 6分=2lg2+2lg5 8分=2(lg2+lg5) 10分=2. 12分【考点】本题考查了对数的运算点评:熟练掌握对数的运算法则是解决此类问题的关键,属基础题17.(本小题满分12分)设关于x的方程=0.(Ⅰ) 如果b=1,求实数x的值;(Ⅱ) 如果且,求实数b的取值范围.【答案】(Ⅰ) . (Ⅱ) 。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.下列区间中,函数在其上为减函数的是().A.(-∞,1]B.C.D.【答案】D【解析】当时,,在区间上为减函数,当时,在区间上是增函数.【考点】函数的单调性.2.函数=的值域为.【答案】【解析】由于,因此,因此的值域为【考点】与对数函数有关的值域.3.函数的单调减区间为 .【答案】【解析】由题意可得函数的定义域为,又在其定义域上为增函数,的减区间即为的减区间,故的减区间为.故答案为.【考点】复合函数的单调性.4.已知函数.(1)求函数的定义域;(2)若不等式有解,求实数的取值范围.【答案】(1);(2).【解析】解题思路:(1)利用对数式的真数为正数,列出不等式组,求不等式的解集即可;(2)不等式有解,即,先求出的最大值,再求的范围即可.规律总结:1.求函数的定义域时要注意以下几点:①分式中分母不为零;②偶次方根被开方数非负;③对数式中,真数大于零,底数为大于零且不等于1的实数;④中,底数不为零;要注意区别以下两条:;.试题解析:(1)须满足,∴,∴所求函数的定义域为.说明:如果直接由,得到定义域,不得分.但不再影响后面的得分. (2)∵不等式有解,∴令,由于,∴∴的最大值为∴实数的取值范围为 .说明:也可以结合的是偶函数和单调性,求得的最大值,参照给分.【考点】1.函数的定义域;2.解不等式.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.已知函数(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为-4,求a的值.【答案】(1)函数的定义域为;(2的零点是;(3).【解析】(1)函数的定义域是使函数有意义的取值范围,而对数有意义则真数大于0,即;(2)函数的零点等价于方程的根,可先利用对数运算性质进行化简,即,要注意定义域的范围,检验解得的根是否在定义域内;(3)可利用函数的单调性求最值来解参数,由(2)可知,令,在单调递减,则在取最大值时函数的最小值取-4,而,当时,则,.试题解析:21.(普通班)(1)要使函数有意义,则有解之得,所以函数的定义域为.(2)函数可化为由,得,即,,,的零点是.21.(联办班)(1)要使函数有意义:则有,解之得:,所以函数的定义域为:.(2)函数可化为由,得,即,,,的零点是.(3).,,.由,得,.【考点】1、对数函数的定义域;2对数的运算性质;3、函数的零点;4、对数方程的解法;5、复合函数的最值问题;6、二次函数的最值.7.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.8.设a>0,则()A.1B.2C.3D.4【答案】D【解析】。
高一数学指数函数和对数函数试题答案及解析
高一数学指数函数和对数函数试题答案及解析1.已知求的值.【答案】2【解析】解析:由可得x+x-1=7∴=……=18,故原式=2【考点】本题主要考查有理指数幂的运算。
点评:有理指数幂的运算,注意运用乘法公式,简化运算过程。
2.已知在上有,则是()A.在上是增加的B.在上是减少的C.在上是增加的D.在上是减少的【答案】C【解析】因为在上有,所以。
又在是减函数,所以是在上是增加的,故选C。
【考点】本题主要考查指数函数对数函数的性质,复合函数的单调性。
点评:注意讨论对数的底数取值情况。
3.函数的定义域是。
【答案】【解析】由解得,故答案为【考点】本题主要考查对数函数的性质。
点评:简单题,注意利用对数的底数大于0且不等于1。
4.已知函数,(1)求的定义域;(2)判断的奇偶性。
【答案】(1);(2)为非奇非偶函数.【解析】(1)∵,∴,又由得,∴的定义域为。
(2)∵的定义域不关于原点对称,∴为非奇非偶函数。
【考点】本题主要考查对数函数的图象和性质,复合函数,函数的奇偶性。
点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。
5.在下列图象中,二次函数y=ax2+bx+c与函数y=()x的图象可能是()【答案】A【解析】首先由图可知,c=0.根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴-<0,可排除B与D选项C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确故选:A【考点】本题主要考查二次函数、指数函数的图象和性质。
点评:确定同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b 的正负情况是求解的关键。
6.函数在上的最大值与最小值的和为3,则.【答案】2;【解析】因为,指数函数是单调函数,所以函数在上的最大值与最小值在区间[0,1]端点处取到,=3,a=2.【考点】本题主要考查指数函数的图象和性质,指数不等式解法。
点评:指数函数是重要函数之一,其图象和性质要牢记。
高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析
.
2
a 3 3a
【法二】 8 x 8 x 2 x
2
3 2
x 3
2 2 2 x 2 x 2 x 2 x 2 x 2 x
1
2 3
3
37 48
5 9 37 100 3 100 . 3 16 48
4
(4)原式 0.4 1 1 2 2 3 0.1
5 1 1 1 143 . 1 2 16 8 10 80
4.函数 f x a 2 7a 7 a x 是指数函数,求实数 a 的值. 【解析】∵函数 f x a 2 7a 7 a x 是指数函数,
1
0 a2 a1 1 a4 a3 . 1 又由题知: 0 10 1 3 10 ,∴ A 项正确. 3
1 x
a1 a2
O
x 1 x
b 7.已知二次函数 y ax 2 bx 与指数函数 y 的图象只能是下列图形中的 a y
1 1
1 2
1 1 , y x 2 的图像,了解它们的变化情况. x
二、重点知识总结
1.指数与指数幂运算 (1)①
a
n n n
n
a. a , 当n是奇数时 . a , 当n是偶数时
② a
(2)分数指数幂 ①a ②a
m n
n a m ( a 0 , m, n N * ,且 n 1 )
x y
2
是非负数,故④对.
7 (3) 2 9
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。
有分析可知在这两种情况下均为单调函数,所以的值域即为。
解关于m的不等式即可求得m。
所以本问的重点就是讨论单调性求其值域。
试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.若,,则().A.B.0C.1D.2【答案】A【解析】令,即;所以.【考点】复合函数求值.2.函数的定义域是().A.[2,+∞)B.(2,+∞)C.(﹣∞,2]D.(﹣∞,2)【答案】D【解析】要使有意义,则,即,所以定义域为.【考点】函数的定义域.3.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.4.求的值是 .【答案】【解析】【考点】对数运算公式5.已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)且【解析】(1)对数中真数大于0(2)思路:要先求真数的范围再求对数的范围。
求真数范围时用配方法,求对数范围时用点调性(3)要使函数的图像恒在直线的上方,则有在上恒成立。
把看成整体,令即在上恒成立,转化成单调性求最值问题试题解析:(Ⅰ)所以定义域为(Ⅱ)时令则因为所以,所以即所以函数的值域为(Ⅲ)要使函数的图像恒在直线的上方则有在上恒成立。
令则即在上恒成立的图像的对称轴为且所以在上单调递增,要想恒成立,只需即因为且所以且【考点】(1)对数的定义域(2)对数的单调性(3)恒成立问题6.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算7.已知,函数,若实数、满足,则、的大小关系为 .【答案】【解析】因为所以函数在R上是单调减函数,因为,所以根据减函数的定义可得:.故答案为:.【考点】对数函数的单调性与特殊点;不等关系与不等式.8.已知函数,则实数t的取值范围是____.【答案】【解析】令,值域为由题意函数的值域为则是函数值域的子集所以即【考点】对数函数图象与性质的综合应用.9.计算:=.【答案】【解析】根据题意,由于可以变形为,故可知结论为【考点】指数式的运用点评:主要是考查了指数式的运算法则的运用,属于基础题。
带答案对数与对数函数经典例题
经典例题透析类型一、指数式与对数式互化及其应用1.将以下指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求以下各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示以下各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质〔如定义域、值域及单调性〕在解题中的重要作用.6. 求以下函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求以下函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)假设a>2,则函数定义域为(k,+∞);(ii)假设0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)假设a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4]. 类型七、函数图象问题7.作出以下函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较以下各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】〔2011 天津理7〕已知则〔〕A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2 则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,假设t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不管a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1〕上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断以下函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域确实定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)假设函数f(x)的定义域为R,求实数a的取值范围;(2)假设函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,此题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)假设S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。
对数函数解答题(有解题步骤)
14.欲使x∈(-∞,1]时,f(x)有意义,需1+2x+4xa>0恒成立,也就是a>-[( )x+( )x](x≤1)恒成立.
∵u(x)=-[( )x+( )x]在(-∞,1]上是增函数,
∴当x=1时,[u(x)]max=- .
于是可知,当a>- 时,满足题意,
∴ ≤a<1或a≤-2,故当B A时,实数a的取值范围是:(-∞,-2)∪[ ,1)
5.需满足x>1且3>ax
当a≥3时,此时原函数的定义域为Ф;
当0<a<3时,此时原函数的定义域为:
当a=0时,得不等式组x>1且x>0此时原函数的定义域为x∈(1,+∞);
a<0时,此时原函数的定义域为x∈(1,+∞);
24.原方程等价于 。
即等价于 。②③
令y1=-x2+5x-3,y2=a,问题转化为求抛物线弧y1=-x2+5x-3= (1<x<3)与直线y=a的交点个数,如图所示,由此可见:
ⅰ)当a∈(-∞, 1]∪ 时,原方程无实数解;
ⅱ)当a∈(1, 3]∪ 时,原方程只有一个实数解;
ⅲ)当a∈ 时,原方程有两个不同的实数解。
又a>1,所以1<a<3.
27.(1)易知x∈(2, 6),y .原方程可变为lg(6-x)= lg2y,
由此得y= (x-6)2.注意到y ,故函数y=f(x)= (x-6)2,x∈(2, 5)∪(5, 6),其中图象是抛物线的一部分。
(1)求A;(2)若B A,求实数a的取值范围.
5.求函数f(x)=lg(x-1)+lg(3-ax)的定义域。
kxodbs高一数学典型例题分析对数函数 (1)
生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。
--泰戈尔对数函数·例题解析【例1】 (1)y =log (2)y =11log (a 0a 1)(3)f(x)[01]y =f[log (3x)]12a 13求函数的定义域.求函数>,且≠的定义域.已知函数的定义域是,,求函数-的定义3221x x x a ---+()域.解(1)由≥>≠≤>≠≤<或>≠log ()()1232210322102103221132210121210122312x x x x x x x x x x x x x x x -----⎧⎨⎪⎪⎪⎩⎪⎪⎪⇒----⎧⎨⎪⎪⎩⎪⎪⇒--⎧⎨⎪⎪⎪⎩⎪⎪⎪⇒121122312231<≤<或>≠<≤x x x x x ⎧⎨⎪⎪⎪⎩⎪⎪⎪⇒ ∴所求定义域为<≤ {x|23x 1}解 (2)∵1-log a (x +a)>0,∴log a (x +a)<1.当a >1时,0<x +a <a ,∴函数的定义域为(-a ,0). 当0<a <1时,x +a >a ,∴函数的定义域为(0,+∞).解 (3)f(x)[01]y =f[log (3x)]13∵的定义域为,,∴函数-有意义,必须满足≤-≤,即≤-≤,∴≤-≤,∴≤≤.故函数-的定义域为,.0log (3x)1log log (3x)log 13133x 12x y =f[log (3x)][2]131313131318383【例2】 y =10x已知函数,试求它的反函数,以及反函数的定义110+x域和值域.解y=10y1y=10 (1y)10=y10=y1y00y1x x x x已知函数的定义域为,∵∴≠,由得-,∴><<,即为函数的值域.R110110++-⇒x x 由得,即反函数.10=y1yx=lgy1yf(x)=lgx1xx1----反函数的定义域为(0,1),值域为y∈R.【例3】作出下列函数的图像,并指出其单调区间.(1)y=lg(-x),(2)y=log2|x+1|(3)y=|log(x1)|(4)y log(1x)122-,=-.解(1)y=lg(-x)的图像与y=lgx的图像关于y轴对称,如图2.8-3所示,单调减区间是(-∞,0).解(2)先作出函数y=log2|x|的图像,再把它的图像向左平移1个单位就得y=log2|x+1|的图像如图2.8-4所示.单调递减区间是(-∞,-1).单调递增区间是(-1,+∞).解 (3)y=log x1y=log(x1)1212把的图像向右平移个单位得到-的图像,保留其在x轴及x轴上方部分不变,把x轴下方的图像以x轴为对称轴翻折到轴上方,就得到-的图像.如图.-x y=|log(x1)|28512所示.单调减区间是(-1,2].单调增区间是[2,+∞).解(4)∵函数y=log2(-x)的图像与函数y=log2x的图像关于y轴对称,故可先作y=log2(-x)的图像,再把y=log2(-x)的图像向右平移1个单位得到y=log2(1-x)的图像.如图2.8-6所示.单调递减区间是(-∞,1).【例4】 图2.8-7分别是四个对数函数,①y=log a x ②y=log b x ③y=log c x ④y=log d x 的图像,那么a 、b 、c 、d 的大小关系是[ ]A .d >c >b >aB .a >b >c >dC .b >a >d >cD .b >c >a >d解 选C ,根据同类函数图像的比较,任取一个x >1的值,易得b >a >1>d >c .故选C .【例5】 已知log a 3>log b 3,试确定a 和b 的大小关系.解法一 令y 1=log a x ,y 2=log b x ,∵log a x >log b 3,即取x =3时,y 1>y 2,所以它们的图像,可能有如下三种情况:(1)当log a 3>log b 3>0时,由图像2.8-8,取x=3,可得b >a >1. (2)当0>log a 3>log b 3时,由图像2.8-9,得0<a <b <1. (3)当log a 3>0>log b 3时,由图像2.8-10,得a >1>b >0.解法二 由换底公式,化成同底的对数.当>>时,得>>,∴>>,log 3log 300log b log a 0a b 331133log log a b∵函数y=log 3x 为增函数,∴b >a >1.当<<时,得<<,∴>>,log 3log 3000log b log a b a 331133log log b a∵函数y=log 3x 为增函数,∴0<a <b .当>>时,得>>∴>>,log 30log 30 log a 0log b a b 331133log log a b即a >1>b >0.【例6】 a b a 1log log log a log b 2ab b a 若>>>,则、、、的大小a b ba顺序是:________.解 a b a 1011log a b 0log ba00log a 1log b 1a b a 1a 1log log a 1log log log a log b 2a b b a 2b b a b b a ∵>>>,∴<<,>,∴<,>,<<,>.由>>>得>>∴<<,故得:<<<.a b b a b a baa b ba说明 本题解决的思路,是把已知的对数值的正负,或大于1,小于1分组,即借助0、1作桥梁这个技巧,使问题得以解决.【例7】 设0<x <1,a >1,且a ≠1,试比较|log a (1-a)|与|log a (1+x)|的大小.解法一 求差比大小. |log a (1-x)|-|log a (1+x)|=|lg(1x)lga |--+=--+|lg()lg ||lg |(|lg()||lg()|1111x aa x x=1|lga|(lg(1x)lg(1x) (01x 111x)=lg(1x )02---+∵<-<<++-·->1|lg |a∴|log a (1-x)|>|log a (1+x)| 解法二 求商比较大小|log ()||log ()||log ()log ()|a a a a x x x x 1111-+=-+=|log (1+x )(1-x)|=-log 1+x (1-x) ∵(1+x >1,而0<1-x <1)∴原式>+=log =log log (1x)=1(1+x)(1+x)(1+x)11112-+-x xx ∴|log a (1-x)|>|log a (1+x)|【例8】 f(x)=log (x )(a 0a 1)a 已知函数+>,且≠,判断其12+x奇偶性.解法一 已知函数的定义域为R ,则-x ∈Rf(x)=log (1+x x)=log a 2a--()()111222+-++++x x x x x x=log =log =log a aa 1111122222+-++++-++=-x x x x x xx x f x ()()∴f(x)是奇函数.解法二 已知函数的定义域为R由+-++-f(x)f(x)=log (1+x x)log(1+x x)=log 1+x 1+x a 22a 22[()()]+-x x=log a 1=0∴f(x)=-f(x),即f(x)为奇函数.【例9】 (1)f(x)=log (01)2已知函数,那么它在,上是增函数xx1- 还是减函数?并证明.(2)讨论函数y=log a (a x -1)的单调性其中a >0,且a ≠1. (1)证明 方法一 f(x)在(0,1)上是增函数. 设任取两个值x 1,x 2∈(0,1),且x 1<x 2.∵--<f(x )f(x )=log log =log =log x log x x =01222222222x x x x x x x x x x x x x x x x x x x x x 1122112221221112121212111111----=------log ()() (∵0<x 1<x 2<1,∴x 1-x 1x 2<x 2-x 1x 2).∴f(x 1)<f(x 2)故f(x)在(0,1)上是增函数.方法二 u =x 1x 令-=---111x ∵-在,上是增函数,又∵>,在,u =1(01)u 0y =log u (0211x -+∞上是增函数,∴=在,上是增函数.)f(x)log (01)2xx1-(2)解 由对数函数性质,知a x -1>0,即a x >1,于是,当0<a <1时,函数的定义域为(-∞,0),当a >1时,定义域为(0,+∞).当0<a <1时,u =a x -1在(-∞,0)上是减函数,而y=log a u 也是减函数,∴y=log a (a x -1)在(-∞,0)上是增函数.当a >1时,u =a x -1在(0,+∞)上是增函数,而y=log a u 也是增函数,∴y =log a (a x -1)在(0,+∞)上是增函数.综上所述,函数y=log a (a x -1)在其定义域上是增函数.【例10】 (1)设0<a <1,实数x 、y 满足log a x +3log x a -log x y=3,如果有最大值,求这时与的值.y a x 24(2)f(x)=log x 3log x 212212讨论函数---的单调性及值域.解 (1)log x =3log y =log x a a a 2由已知,得+,∴-3log log log a a a x y x- 3log x 3=(log x )a a 2+-+.3234∵<<,∴关于为减函数.即有最大值时,0a 1log y y y log y a a 24有最小值log 24a∴当时,,log x =3log =34a a 224∴,,得,.a x =a a =14x =183432 24解R (2)t =log x x 0t t =log x (0)1212设,则>,∈,且是,+∞上的减函数.f(t)=t 3t 2(][)2---是-∞,-上的增函数,是-,+∞上的3232减函数.-时,t =x =2232∴函数---在,上是增函数,在,f(x)=log x 3log x 2(022]12212[22 +∞)上是减函数.又∵-++,∴值域是-∞,.f(x)=(t )(]3214142。
高一数学对数函数经典题及详细答案
一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选 项中,只有一项是符合题目要求的)答案A oA 、 m 答案Do■/ loga(1+x)=m loga [1/(1-x)]=n•/ 3a =2 ••• a=log 3 2 则:log 3 8-2log 36=log 323-2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-22、2log a (M 2N) log a M log a N ,则—的值为( N 1 4 答案B oB 、4 C、 ••• 2log a (M-2N ) =log a M+log a N,• log a (M-2N) 2=log a (MN ,•( M-2N)2 =MN M 2 -4MN+4N 2 =MN -5mn+4n 2=0 (两边同除 n 2) 瞪) 2-5 吟 +4=0,设 2x -5 x+4=0 (x -2*5 x+2:)- 2 + =0(x--9 =0(x- 5)x- 5= 5 3 x= 22 3 2 mn m n又••• 2log a (M 2N) log a M log a N ,看出 M-2N>0 M>0 N>0• m =1即M=N 舍去, 得M=4N 即m =4 •••答案为:3、已知2 .y 1,x0, y 0, 且 log a (1 x)n,则log a y 等于loga(1-x 2)=m-n•/ x 2+y2=1, x>0, y>0,y 2=1- x 2 loga(y 2)=m-n1、已知3a2,那么log 3 8 2log 36用a 表示 是(B 、5a 2C 、3a (1 a)2D 、 3a a 2,loga(1-x)=-n两式相加得: loga [(1+x)(1-x)]=m-n/• 2loga(y)=m-n loga(y)= ; (m-n)4.若x 1 ,x 2是方程lg x + (lg3 + lg2)lgx + lg3 • lg2 = 0 的两根, (A) . lg3 • lg2 (B) (C) 则x 1x 2的值是() 1 6(D)答案D •••方程 lg 2x+ (lg2+lg3 把lgx 看成能用X ,这是二次方程。
第18讲 对数及对数式运算5大考题型总结(解析版)高一数学同步教学题型(人教A版2019必修第一册)
第18讲对数及对数式运算5大常考题型总结【考点分析】考点一:对数式的运算①对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.②常见对数的写法:1.一般对数:以(0a a >且1)a ≠为底,记为log Na,读作以a 为底N 的对数;2.常用对数:以10为底,记为lg N ;3.自然对数:以e 为底,记为ln N ;③对数的性质:1.特殊对数:1log 0a =;log 1aa =;其中0a >且1a ≠2.对数恒等式:log Na a N =(其中0a >且1a ≠,0N >)3.对数换底公式:log log log c a c b b a =如:252log 7lg7ln 7log 7=log 5lg5ln 7==.倒数原理:1log log a b b a =如:321log 2log 3=.约分法则:log log log a b a b c c⋅=④对数的运算法则:1.log ()log log a a a MN M N =+;2.log log log aa a MM N N=-;3.log log (m na a nb b m m=,)n R ∈; 4.log a b a b =和log b a a b =.【题型目录】题型一:对数的定义题型二:指数对数的互化题型三:对数的运算求值题型四:换底公式的应用题型五:对数式的应用题【典型例题】题型一:对数的定义【例1】(2021·全国高一课前预习)在()()31log 32a b a -=-中,实数a 的取值范围为______.【答案】1223,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【解析】由题意,要使式子()()31log 32a b a -=-有意义,则满足310311320a a a ->⎧⎪-≠⎨⎪->⎩,解得1233a <<或2332a <<,即实数a 的取值范围为1223,,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故答案为:1223,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.【题型专练】1.(2022江苏省江阴市第一中学高一期中)使式子(31)log (3)x x --有意义的x 的取值范围是()A .3x >B .3x <C .133x <<D .133x <<且23x ≠()1k +有意义,则实数k 的取值范围是______.【答案】()()1,00,1-U 【分析】结合对数性质建立不等关系,即可求解.【详解】若()()1log 1k k +-有意义,则满足101110k k k +>⎧⎪+≠⎨⎪->⎩,解得()()1,00,1k ∈-⋃.故答案为:()()1,00,1-U 题型二:指数对数的互化【例1】(2022全国高一专题练习)将下列指数式化为对数式,对数式化为指数式.(1)53=125;(2)4-2=116;(3)log 3127=-3.【答案】(1)log 5125=3;(2)41log 216=-;(3)31327-=【解析】(1)∵53=125,∴log 5125=3.(2)∵21416-=,∴41log 216=-.(3)∵31log 327=-,∴31327-=【题型专练】1.(2022全国高一课前预习)把下列指数式化为对数式,对数式化为指数式.(1)3128-=;(2)17ab ⎛⎫= ⎪⎝⎭;(3)1lg31000=-.【答案】(1)21log 38=-;(2)17log b a =;(3)31101000-=.【解析】(1)由3128-=可得21log 38=-;(2)由17ab ⎛⎫= ⎪⎝⎭得17log b a =;(3)由1lg31000=-可得31101000-=.2.(2022全国高一课时练习)指数式和对数式互相转化:(1)4e a =⇒____________.(2)31327-=⇒____________.(3)21log 416=-⇒____________.(4)2log 83=⇒____________.【答案】ln 4a =31log 327=-41216-=328=【解析】log (0,1,0)ba a Nb N a a N =⇔=>≠>.故答案为:ln 4a =,31log 327=-,41216-=,328=.题型三:对数的运算求值【例1】(2022·浙江·高考真题)已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .53【例2】(2022陕西·长安一中高一期中)设函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)(log 6)f f -⋅=()A .3B .6C .9D .12【答案】C【分析】根据给定分段函数直接计算即可得解【详解】函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)1log 43f -=+=,2log 62(log 6)223f =÷=,所以2(2)(log 6)9f f -⋅=.故选:C【例3】(2022全国高一专题练习)计算:(1)659log 25log 3log 6⋅⋅=_________.(2)()()24525log 5log 0.2log 2log 0.5++=_________.(3)235111log log log 2589⋅⋅=_________.(4)()24892log 3log 9log 27log 3log n n ++++⋅=L __________.(5)6log +=__________.【答案】11412-5212【解析】(1)原式226565365331log 5log 3log 62log 5log 3log 6log 5log 3log 62=⋅⋅=⋅⨯=⋅⋅lg5lg3lg 61lg 6lg5lg3=⋅⋅=(2)原式25log 5log log 2log log ⎛⎫⎛⎫=++=⋅ ⎪⎪ ⎪⎪⎝⎭⎝⎭25111log 5log 2224=⨯=(3)原式232235235log 5log 2log 32log 5(3)log 2(2)log 3---=⋅⋅=-⨯-⨯-23512log 5log 2log 312=-⋅⋅=-(4)原式()2322322223log 3log 3log 3log 3log n n =++++⋅L ()22522222335log 3log 3log 3log 3log 2log 35lo 2g 22nn n =++++⋅=⨯=L(5)26662log log log 61===Q 所以原式12故答案为:1,14,12-,52,12【例4】(2022·全国·高一课时练习)已知()122021log 5a x x x ⋅⋅⋅=,则222122021log log log a a a x x x ++⋅⋅⋅+=______.【答案】10【分析】由同底数对数加法公式以及log log ba a Nb N =,可得答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数·例题解析【例1】 (1)y =log (2)y =11log (a 0a 1)(3)f(x)[01]y =f[log (3x)]12a 13求函数的定义域.求函数>,且≠的定义域.已知函数的定义域是,,求函数-的定义3221x x x a ---+()域.解(1)由≥>≠≤>≠≤<或>≠log ()()1232210322102103221132210121210122312x x x x x x x x x x x x x x x -----⎧⎨⎪⎪⎪⎩⎪⎪⎪⇒----⎧⎨⎪⎪⎩⎪⎪⇒--⎧⎨⎪⎪⎪⎩⎪⎪⎪⇒121122312231<≤<或>≠<≤x x x x x ⎧⎨⎪⎪⎪⎩⎪⎪⎪⇒∴所求定义域为<≤ {x|23x 1}解 (2)∵1-log a (x +a)>0,∴log a (x +a)<1.当a >1时,0<x +a <a ,∴函数的定义域为(-a ,0). 当0<a <1时,x +a >a ,∴函数的定义域为(0,+∞).解 (3)f(x)[01]y =f[log (3x)]13∵的定义域为,,∴函数-有意义,必须满足≤-≤,即≤-≤,∴≤-≤,∴≤≤.故函数-的定义域为,.0log (3x)1log log (3x)log 13133x 12x y =f[log (3x)][2]131313131318383【例2】 y =10x已知函数,试求它的反函数,以及反函数的定义110+x域和值域.解y=10y1y=10 (1y)10=y10=y1y00y1x x x x已知函数的定义域为,∵∴≠,由得-,∴><<,即为函数的值域.R110110++-⇒x x 由得,即反函数.10=y1yx=lgy1yf(x)=lgx1xx1----反函数的定义域为(0,1),值域为y∈R.【例3】作出下列函数的图像,并指出其单调区间.(1)y=lg(-x),(2)y=log2|x+1|(3)y=|log(x1)|(4)y log(1x)122-,=-.解(1)y=lg(-x)的图像与y=lgx的图像关于y轴对称,如图2.8-3所示,单调减区间是(-∞,0).解(2)先作出函数y=log2|x|的图像,再把它的图像向左平移1个单位就得y=log2|x+1|的图像如图2.8-4所示.单调递减区间是(-∞,-1).单调递增区间是(-1,+∞).解 (3)y=log x1y=log(x1)1212把的图像向右平移个单位得到-的图像,保留其在x轴及x轴上方部分不变,把x轴下方的图像以x轴为对称轴翻折到轴上方,就得到-的图像.如图.-x y=|log(x1)|28512所示.单调减区间是(-1,2].单调增区间是[2,+∞).解(4)∵函数y=log2(-x)的图像与函数y=log2x的图像关于y轴对称,故可先作y=log2(-x)的图像,再把y=log2(-x)的图像向右平移1个单位得到y=log2(1-x)的图像.如图2.8-6所示.单调递减区间是(-∞,1).【例4】 图2.8-7分别是四个对数函数,①y=log a x ②y=log b x ③y=log c x ④y=log d x 的图像,那么a 、b 、c 、d 的大小关系是[ ]A .d >c >b >aB .a >b >c >dC .b >a >d >cD .b >c >a >d解 选C ,根据同类函数图像的比较,任取一个x >1的值,易得b >a >1>d >c .故选C .【例5】 已知log a 3>log b 3,试确定a 和b 的大小关系.解法一 令y 1=log a x ,y 2=log b x ,∵log a x >log b 3,即取x =3时,y 1>y 2,所以它们的图像,可能有如下三种情况:(1)当log a 3>log b 3>0时,由图像2.8-8,取x=3,可得b >a >1. (2)当0>log a 3>log b 3时,由图像2.8-9,得0<a <b <1. (3)当log a 3>0>log b 3时,由图像2.8-10,得a >1>b >0.解法二 由换底公式,化成同底的对数.当>>时,得>>,∴>>,log 3log 300log b log a 0a b 331133log log a b∵函数y=log 3x 为增函数,∴b >a >1.当<<时,得<<,∴>>,log 3log 3000log b log a b a 331133log log b a∵函数y=log 3x 为增函数,∴0<a <b .当>>时,得>>∴>>,log 30log 30 log a 0log b a b 331133log log a b即a >1>b >0.【例6】 a b a 1log log log a log b 2a b b a 若>>>,则、、、的大小a b ba顺序是:________.解 a b a 1011log a b 0log ba00log a 1log b 1a b a 1a 1log log a 1log log log a log b 2a b b a 2b b a b b a ∵>>>,∴<<,>,∴<,>,<<,>.由>>>得>>∴<<,故得:<<<.a b b a b a b aa b ba说明 本题解决的思路,是把已知的对数值的正负,或大于1,小于1分组,即借助0、1作桥梁这个技巧,使问题得以解决.【例7】 设0<x <1,a >1,且a ≠1,试比较|log a (1-a)|与|log a (1+x)|的大小.解法一 求差比大小. |log a (1-x)|-|log a (1+x)|=|lg(1x)lga |--+=--+|lg()lg ||lg |(|lg()||lg()|1111x aa x x=1|lga|(lg(1x)lg(1x) (01x 111x)=lg(1x )02---+∵<-<<++-·->1|lg |a∴|log a (1-x)|>|log a (1+x)| 解法二 求商比较大小|log ()||log ()||log ()log ()|a a a a x x x x 1111-+=-+=|log (1+x )(1-x)|=-log 1+x (1-x) ∵(1+x >1,而0<1-x <1)∴原式>+=log =log log (1x)=1(1+x)(1+x)(1+x)11112-+-x xx ∴|log a (1-x)|>|log a (1+x)|【例8】 f(x)=log (x )(a 0a 1)a 已知函数+>,且≠,判断其12+x奇偶性.解法一 已知函数的定义域为R ,则-x ∈Rf(x)=log (1+x x)=log a 2a--()()111222+-++++x x x x x x=log =log =log a aa 1111122222+-++++-++=-x x x x x xx x f x ()()∴f(x)是奇函数.解法二 已知函数的定义域为R由+-++-f(x)f(x)=log (1+x x)log(1+x x)=log 1+x 1+x a 22a 22[()()]+-x x=log a 1=0∴f(x)=-f(x),即f(x)为奇函数.【例9】 (1)f(x)=log (01)2已知函数,那么它在,上是增函数xx1- 还是减函数?并证明.(2)讨论函数y=log a (a x -1)的单调性其中a >0,且a ≠1. (1)证明 方法一 f(x)在(0,1)上是增函数. 设任取两个值x 1,x 2∈(0,1),且x 1<x 2.∵--<f(x )f(x )=log log =log =log x log x x =01222222222x x x x x x x x x x x x x x x x x x x x x 1122112221221112121212111111----=------log ()()(∵0<x 1<x 2<1,∴x 1-x 1x 2<x 2-x 1x 2). ∴f(x 1)<f(x 2)故f(x)在(0,1)上是增函数.方法二 u =x 1x 令-=---111x ∵-在,上是增函数,又∵>,在,u =1(01)u 0y =log u (0211x - +∞上是增函数,∴=在,上是增函数.)f(x)log (01)2xx1-(2)解 由对数函数性质,知a x -1>0,即a x >1,于是,当0<a <1时,函数的定义域为(-∞,0),当a >1时,定义域为(0,+∞).当0<a <1时,u =a x -1在(-∞,0)上是减函数,而y=log a u 也是减函数,∴y=log a (a x -1)在(-∞,0)上是增函数.当a >1时,u =a x -1在(0,+∞)上是增函数,而y=log a u 也是增函数,∴y =log a (a x -1)在(0,+∞)上是增函数.综上所述,函数y=log a (a x -1)在其定义域上是增函数.【例10】 (1)设0<a <1,实数x 、y 满足log a x +3log x a -log x y=3,如果有最大值,求这时与的值.y a x 24(2)f(x)=log x 3log x 212212讨论函数---的单调性及值域.解 (1)log x =3log y =log x a a a 2由已知,得+,∴-3log log log a a a x y x- 3log x 3=(log x )a a 2+-+.3234∵<<,∴关于为减函数.即有最大值时,0a 1log y y y log y a a 24有最小值log 24a∴当时,,log x =3log =34a a 224 ∴,,得,.a x =a a =14x =183432=24解R (2)t =log x x 0t t =log x (0)1212设,则>,∈,且是,+∞上的减函数.f(t)=t 3t 2(][)2---是-∞,-上的增函数,是-,+∞上的3232减函数.-时,t =x =2232∴函数---在,上是增函数,在,f(x)=log x 3log x 2(022]12212[22 +∞)上是减函数.又∵-++,∴值域是-∞,.f(x)=(t )(]3214142。