移相器-相敏检波器-低通滤波器

合集下载

实验报告移相剖析

实验报告移相剖析

实验四移相实验一、实验目的了解移相电路的原理和应用。

二、实验仪器移相器、信号源、示波器(自备)三、实验原理由运算放大器构成的移相器原理图如下图所示:图4-1 移相器原理图通过调节Rw,改变RC充放电时间常数,从而改变信号的相位。

四、实验步骤1.将“信号源”的U S100幅值调节为6V,频率调节电位器逆时针旋到底,将U S100与“移相器”输入端相连接。

2.打开“直流电源”开关,“移相器”的输入端与输出端分别接示波器的两个通道,调整示波器,观察两路波形。

3.调节“移相器”的相位调节电位器,观察两路波形的相位差。

4.实验结束后,关闭实验台电源,整理好实验设备。

五、实验报告根据实验现象,对照移相器原理图分析其工作原理。

(1)当两波形的相位差最大时:(2)当两波形的相位差最小时:六、注意事项实验过程中正弦信号通过移相器后波形局部有失真,这并非仪器故障。

实验五相敏检波实验一、实验目的了解相敏检波电路的原理和应用。

二、实验仪器移相器、相敏检波器、低通滤波器、信号源、示波器(自备)、电压温度频率表三、实验原理开关相敏检波器原理图如图5-1所示,示意图如图5-2所示:图5-1 检波器原理图图5-2 检波器示意图图5-1中Ui为输入信号端,AC为交流参考电压输入端,Uo为检波信号输出端,DC为直流参考电压输入端。

当AC、DC端输入控制电压信号时,通过差动电路的作用使、处于开或关的状态,从而把Ui端输入的正弦信号转换成全波整流信号。

输入端信号与AC参考输入端信号频率相同,相位不同时,检波输出的波形也不相同。

当两者相位相同时,输出为正半周的全波信号,反之,输出为负半周的全波信号。

四、实验步骤1.打开“直流电源”开关,将“信号源”U S1 00输出调节为1kHz,Vp-p=8V的正弦信号(用示波器检测),然后接到“相敏检波器”输入端Ui。

2.将直流稳压电源的波段开关打到“±4V”处,然后将“U+”“GND1”接“相敏检波器”的“DC”“GND”。

2.移相器相敏检波器实验

2.移相器相敏检波器实验

实验二移相器相敏检波器实验一、实验目的:了解移相器、相敏检波器的工作原理。

二、基本原理:1、移相器工作原理:图2—1为移相器电路原理图与调理电路中的移相器单元面板图。

图2—1 移相器原理图与面板图图中,IC1、R1、R2、R3、C1构成一阶移相器(超前),在R2=R1的条件下,其幅频特性和相频特性分别表示为:K F1(jω)=Vi/V1=-(1-jωR3C1)/(1+jωR3C1)K F1(ω)=1ΦF1(ω)=-л-2tg-1ωR3C1其中:ω=2лf,f为输入信号频率。

同理由IC2,R4,R5,Rw,C3构成另一个一阶移相器(滞后),在R5=R4条件下的特性为:K F2(jω)=Vo/V1=-(1-jωRwC3)/(1+jωRwC3)K F2(ω)=1ΦF2(ω)=-л-2tg-1ωRwC3由此可见,根据幅频特性公式,移相前后的信号幅值相等。

根据相频特性公式,相移角度的大小和信号频率f及电路中阻容元件的数值有关。

显然,当移相电位器Rw=0,上式中ΦF2=0,因此ΦF1决定了图7—1所示的二阶移相器的初始移相角:即ΦF=ΦF1=-л-2tg-12лfR3C1若调整移相电位器Rw,则相应的移相范围为:ΔΦF=ΦF1-ΦF2=-2tg-12лfR3C1+2tg-12лfΔRwC3已知R3=10KΩ,C1=6800p,△Rw=10kΩ,C3=0.022μF,如果输入信号频率f一旦确定,即可计算出图2—1所示二阶移相器的初始移相角和移相范围。

2、相敏检波器工作原理:图2—2为相敏检波器(开关式)原理图与调理电路中的相敏检波器面板图。

图中,AC 为交流参考电压输入端,DC为直流参考电压输入端,Vi端为检波信号输入端,Vo端为检波输出端。

图2—2 相敏检波器原理图与面板图原理图中各元器件的作用:C1交流耦合电容并隔离直流;A1反相过零比较器,将参考电压正弦波转换成矩形波(开关波+14V ~ -14V);D1二极管箝位得到合适的开关波形V7≤0V(0 ~ -14V),为电子开关Q1提供合适的工作点;Q1是结型场效应管,工作在开或关的状态;A2工作在反相器或跟随器状态;R6限流电阻起保护集成块作用。

移相器与相敏检波器实验

移相器与相敏检波器实验

移相器与相敏检波器实验
移相器和相敏检波器是实验室中常用的电子元器件,它们在电路设计和信号处理中广泛应用。

本文将介绍如何使用移相器和相敏检波器进行实验。

一、移相器实验
1. 实验目的
了解移相器的工作原理和应用范围,掌握基本的移相器电路实验方法。

2. 实验器材
移相器、示波器、信号发生器、电阻、电容、万用表等。

3. 实验原理
移相器是一种电路器件,可以将输入信号的相位移动一定角度,常用的移相器有RC移相器、LC移相器和T移相器等。

其中,RC移相器和LC移相器是最为常用的两种移相器。

RC移相器:RC移相器是由电阻和电容组成的,当输入信号经过电容、电阻后,会出现信号延迟的现象,从而实现相位移动。

4. 实验步骤
(1)连接RC移相器电路,将信号发生器的正极接入RC移相器的输入端,示波器的探头接在移相器的输出端。

调节信号发生器的频率和幅度,观察示波器上的波形变化。

(3)在RC移相器和LC移相器的电路中分别添加电阻和电容,观察输出波形的变化。

(4)改变移相器的输入信号的频率和幅度,观察输出波形的变化。

5. 实验结果
实验中观察到,当输入信号经过移相器后,输出信号的相位与原信号相比发生了一定程度的移动。

同时,添加电阻和电容可以改变移相器的相位移动量,调节输入信号的频率和幅度也会对输出信号的波形造成影响。

相敏检波器是一种用于调制和解调的电路器件,可以将高频信号转换为低频信号,广泛应用于通信、广播、雷达等领域。

相敏检波器的核心是相位检测器,它可以将输入信号与本地振荡信号进行相位比较,从而实现信号检测和解调。

实验报告移相

实验报告移相

实验四移相实验一、实验目的了解移相电路的原理和应用。

二、实验仪器移相器、信号源、示波器(自备)三、实验原理由运算放大器构成的移相器原理图如下图所示:图4-1 移相器原理图通过调节Rw,改变RC充放电时间常数,从而改变信号的相位。

四、实验步骤1.将“信号源”的U S100幅值调节为6V,频率调节电位器逆时针旋到底,将U S100与“移相器”输入端相连接。

2.打开“直流电源”开关,“移相器”的输入端与输出端分别接示波器的两个通道,调整示波器,观察两路波形。

3.调节“移相器”的相位调节电位器,观察两路波形的相位差。

4.实验结束后,关闭实验台电源,整理好实验设备。

五、实验报告根据实验现象,对照移相器原理图分析其工作原理。

(1)当两波形的相位差最大时:(2)当两波形的相位差最小时:六、注意事项实验过程中正弦信号通过移相器后波形局部有失真,这并非仪器故障。

实验五相敏检波实验一、实验目的了解相敏检波电路的原理和应用。

二、实验仪器移相器、相敏检波器、低通滤波器、信号源、示波器(自备)、电压温度频率表三、实验原理开关相敏检波器原理图如图5-1所示,示意图如图5-2所示:图5-1 检波器原理图图5-2 检波器示意图图5-1中Ui为输入信号端,AC为交流参考电压输入端,Uo为检波信号输出端,DC为直流参考电压输入端。

当AC、DC端输入控制电压信号时,通过差动电路的作用使、处于开或关的状态,从而把Ui端输入的正弦信号转换成全波整流信号。

输入端信号与AC参考输入端信号频率相同,相位不同时,检波输出的波形也不相同。

当两者相位相同时,输出为正半周的全波信号,反之,输出为负半周的全波信号。

四、实验步骤1.打开“直流电源”开关,将“信号源”U S1 00输出调节为1kHz,Vp-p=8V的正弦信号(用示波器检测),然后接到“相敏检波器”输入端Ui。

2.将直流稳压电源的波段开关打到“±4V”处,然后将“U+”“GND1”接“相敏检波器”的“DC”“GND”。

移相器实验报告

移相器实验报告

一、移相器与相敏检波器实验【实验目的】1. 理解移相器和相敏检波器的工作原理。

2. 学习传感器实验仪和交流毫伏表的使用。

3. 学习用双踪示波器测量相移的方法。

【实验原理】1. 移相器的工作原理移相器是由电阻、电抗元件、非线性元件和有源器件等构成的一种电路,当正弦信号经过移相器时其相位会发生改变。

理想的移相器在调整电路参数时,可使通过信号的相位在0?~360?之间连续变化,而不改变信号的幅度,即信号可不失真地通过,只是相位发生了变化,图1为移相器的工作原理,其中相角?为经过移相器所获得的。

2. 相敏检波器的工作原理相敏检波器是一种根据信号的相位来提取有用信号的处理电路,在外部同频控制信号作用下,用控制信号来截取输入信号,相敏检波器输出的直流分量为反映输入信号与控制信号相位差的直流电压,经低通滤波器lpf滤除高频分量后得到直流输出信号e;相敏检波器的组成框图见图2。

t?10?t??2 设控制信号表达式为: u??t?0?t?t2? ?t??),输入信号与控制信号在时域中的关系见图3。

设输入信号为:u?usin( 用控制信号截取输入信号后得到:u0?u?u,对u0积分并在一个周期内取平均得:1t/2ue?usin(?t??)dt??t0?t??t/20?t??)d(?t??)???sin(u/2[cos(?t??)]t0?tuuu[cos(???)?cos?]??[cos?cos??sin?sin??cos?]?cos?2?2?? ①由式①可以看出,相敏检波器经低通滤波器输出一个反映输入信号相位差的直流电压,当??0时,即输入信号与控制信号同相时e?交时,e?0。

利用相敏检波器可以消除信号中干扰噪声的影响。

设输入信号中包含有噪声信号un和有用信号us,即:u?us?un,则:u0?u?uc?ucus?ucun,对u0积分并在一个周期内1t1t取平均得:e??ucussin(?t??s)dt??ucunsin(?t??n)dt t0t0 ?1u?,当??90?,即输入信号与控制信号正?[uscos(?s??c)?uncos(?n??c)] 通过移相器调节控制信号uc的相位,使噪声信号与控制信号相差90°相角,此时:则:e??n??c?90?,us?cos(?s??c),即相敏检波器的输出仅含有有用信号us分量,噪声信号被剔除。

移相器和相敏检波器实验

移相器和相敏检波器实验

实验名称:移相器和相敏检波器实验作者:头铁的小甘实验目的:了解运算放大器构成的移相器和相敏检波器实验实验仪器:音频振荡器、移相器、相敏检波器、直流稳压电源、低通滤波器、V/F表、示波器实验原理:移相器电路结构如下图所示传递函数Ko(jw)=VoV1=−1−jwR2C21+jwR2C2∗1−jwR W C11+jwR W C1振幅Ko(w)=1幅度ɸo(jw)=ɸ1+ɸ2=−π−2tg−1wR w C1−2tg−1wR2C2因此,当输入信号经过移相器,输出信号振幅并没有发生该改变,但是相位发生移动,移动的相位与ω、R2、C1、R w、C2有关,这要保持其他参数不变,单独改变R w就可以对输入信号进行移相位操作。

相敏检波器电路结构图如下图所示它主要包括运算放大器和门控电路组成。

而且门控电路有直流和交流两个输入端4和2,当再2端输入一个正弦波,当参考输入为正半周是,运算比较器ΙΙ将会输出低电平,因此场效应管栅极为低电平,场效应管导通,运算放大器Ι输出电压Vo=Vi当参考输入为负半周时,场效应管截止,运算放大输出I输出电压Vo=-Vi在交流应变电桥中,当传感器的应变极性相反时,输出的交流电压相位改变180°,如果相敏检波器参考输入没有发生改变,那么输出的全波整流信号也会反相,通过输出波形极性就可以判断应变的极性。

实验内容:1移相器实验:将音频信号发生器的0°或者180°输出接到移相器的输入端将示波器的CH1接到移相器的输入端,CH2接到输出端,调节移相器的Rw电阻,观察波形相位和幅值的变化改变音频信号的频率,分别在f=1、3、5、7、9KHz时移相范围。

2.相敏检波器实验将音频振荡器输出信号0°或180°输入到相敏检波器的输入端1,将稳压电源接入到参考输入端4,示波器的两个通道分别接到相敏检波器的输入端1,和输出端3,观察输入和输出的幅值和相位关系,改变参考电压的极性,观察波形的变化在前面的基础上,将音频信号也送入移相器的输入端,把直流参考输入改为交流参考输入,移相器的输出端接到交流参考输入端2,同时相敏检波器的输出端连接低通滤波器的输入端,低通滤波器的输出端连接到V/F表,观察输出电压,示波器的一个通道接到相敏检波器的输入端1,另一个通道接到相敏检波器的输出端3,并通过改变移相器的Rw电阻,使得输出端3的波形为全波整流波形,此时V/F表显示最大低通输出电压,然后测出1,5,6,3的波形并记录将相敏检波器的输入信号反相,重复前面操作,画出各端口的波形保持音频信号输出频率不变,同样在调相敏检波器的输出端为全波整流,此时用示波器和电压表测出低通输出和输入端1的VPP值的关系,VPP通过音频信号调节为0.5、1、2、4、8、16、20V时的直流电压,然后将相敏检波器的输入信号反相,重复上述操作。

移相器-相敏检波器-低通滤波器

移相器-相敏检波器-低通滤波器

3.以调幅波的载波为交流参考信号

(1)载波 (2)调制信号 (3)调幅波 (4)相敏检波输出 (5)低量低频振动中


若传感器不需要高频交流激励,可以将传 感获取的对应振动的放大后的低频交流信 号用三模块转换成直流测量其量值,并用 数显频率计测量其频率 若传感器测量电路需要高频交流激励,则 传感获取的信号为以振动信号为调制信号 的调幅波,用三模块可以检出调制信号。
The End
2.以交流信号为参考信号接AC

(3)用途
• 将交流信号转换成直流用直流电压表获取其量 值信息。适用于传感器测量系统中没有设置交 流测量功能模块的情况。 • 直流电压表的正负可以反映输入电压和参考电 压的相位关系。适用于传感器测量中其可动部 分从中间点向两侧移动不同方向对应反相相位 信号的情况。
3.以调幅波的载波为交流参考信号

• 若Vi 和VAC同相,则相敏检波模块输出为正极性的整流 信号;经低通滤波器接直流电压表可以指示正极性的 最大值。 • 反之则输出负极性的整流波形,经低通滤波器接直流 电压表可以指示负极性的最大值。 • 该模块的旋钮可以使整流效果在半波和全波整流之间 转变,即输出直流电压可以逐步从半波整流值增大到 全波整流值。
• 以交流信号为参考信号的特殊情况; • 条件

相敏检波模块的输入为调幅波; 参考信号为调幅波的载波;
• 在调制信号的正半周,调幅波与载波同相;在负半周, 调幅波与载波反相。
• 输出效果


在调制信号的正半周,输出正极性的半波~全波 整流信号。 在调制信号的负半周,输出负极性的半波~全波 整流信号。
“移相器-相敏检波器-低通滤波 器”在传感器测量电路中的应 用
2013年5月12日

锁定放大器的设计(C题)

锁定放大器的设计(C题)

1
������ ������ ������5
������ ������������5
+ ������28
=
1 1 + ������������������5 ������28
������29 ������29 1 ������������ + (1 + ) ������27 ������27 1 + ������������������5 ������28 ������������ = 1 − ������������������5 ������28 1 + ������������������5 ������28
图 11 开关乘法器电路图 调整移相器得到与待测信号同相的方波,CD4053 得到如图 12 所示的输出波形
图 12 整流输出波形 3.1.9 低通滤波及直流放大电路 开关乘法器输出的电压值并不是直流, 经过一个截止频率很低的低通滤波器 可以得到直流,经过直流放大输出到单片机进行显示。
OPA4227PA VCC
12V
图 5 交流放大电路图 3.1.4 带通滤波器的设计 本系统要求带通滤波器的通频带为 900Hz~1100Hz,通带窄,而且要求通频带之 外的频率衰减的越快越好,因此我们要选择二阶带通滤波器。我们使用 TI 公司 提供滤波器设计软件 Filter Pro 进行初步设计,并在 Multisim 中进行参数的微 调,在实际电路中将 R17 和 R21 变为滑动变阻器,使得带通滤波器的截止频率和 Q 值可以微调。最终形成图 6 所示的带通滤波器。其幅频特性如图 7 所示:
图 1 整体系统框图
2 理论分析与计算
2.1 锁相放大器原理 锁相放大器由信号通道、参考通道、相敏检波器以及输出电路组成,是一种 对交变信号进行相敏检波的放大器。 它利用和被测信号有相同频率和相位关系的 参考信号作为比较基准,只对被测信号本身和那些与参考信号同频、同相的信号 有响应。所以它能大幅度抑制噪声信号,提取出有用信号。一般锁相放大器具有

压阻式压力传感器的压力测量实验+移相器、相敏检波器实验

压阻式压力传感器的压力测量实验+移相器、相敏检波器实验

压阻式压力传感器的压力测量实验学校:汕头大学专业:电子信息工程年级:10级姓名:胡丹一、实验目的了解扩散硅压阻式压力传感器测量压力的原理和方法。

二、基本原理扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应。

在弹性元件受到压力时,其上的半导体会暂时改变晶体结构的对称性,导电机理和电阻率也随之改变,引起电阻的变化,经电桥转换成电压输出。

输出的电压的变化反映了所受的压力的变化。

三、实验设备与元器件主机箱、压阻式压力传感器、压力传感器实验模板、引压胶管。

四、数据处理压阻式压力传感器测压力实验数据1. 计算单臂测量系统的灵敏度S :的平均值为:灵敏度2.计算非线性误差:这里以理论拟合直线,即以输出0%为起点,满量程输出(此处为350mV)的100%作终点的直线()为基准直线。

从上图中的偏差曲线可以看出,当P=4KPa时有最大偏差。

而,所以,。

五、思考题查阅传感器相关理论知识,说明压阻式压力传感器大致有几种类型,在应用上各有什么特点。

答:压阻式压力传感器主要有以下三种类型:1.扩散硅扩散硅传感器灵敏度和精度最高,适合测量1kpa到40Mpa的压力范围。

2.陶瓷压阻陶瓷压阻式压力传感器过载能力低一些,抗冲击压力较差,但灵敏度较高,适合测量50Kpa以上的高量程范围,而且耐腐蚀,温度范围也很宽.3.应变片过载能力强和抗冲击压力强,适合测量高量程范围的压力变化,尤其在1Mpa 以上时,线性很好,精度也很高,并适合测量与应变材料兼容的各类介质.移相器、相敏检波器实验一、实验目的深入了解移相器、相敏检波器的工作原理。

二、实验设备与元器件主机箱中的(步进可调)直流稳压电源、直流稳压电源、音频振荡器;移相器/相敏检波器/低通滤波器实验模板;双踪示波器。

三、数据处理(一)移相器实验1.f=2KHz,T=486.60(us),,波形如下图所示(波峰的高度更低的是):,,波形如下图所示(波峰的高度更低的是):2.f=9KHz,T=110.00(us),,波形如下图所示(波峰的高度更低的是):,波形如下图所示(波峰的高度更低的是):(二)相敏检波器实验1.DC参考电压=+2V:相敏检波器的输入、输出波形如下图所示:输入与输出波形重合。

相敏检波器

相敏检波器

1 2 3 4 2 4 1 4 实验二十相敏检波器实验一、实验目的 说明由施密特开关电路及运放组成的相敏检波电路的原理。

二、实验原理相敏检波电路如图所示: 图为输入信号端 ,为交流参考电压输入端,为输出端。

为直流参考电压输入端。

当、端 输入控制电压信号时,通过差动放大器的作用使 D 和 J 处于开关状态, 从而把端输入的正弦信号转换成半波整流信号。

三、实验所需部件相敏检波器、移相器、音频振荡器、直流稳压电源、低通滤波器、电压表、示波器四、1.实验步骤将音频振荡器频率幅度旋钮居中,输出信号信号(0°或 180°均可),接相敏检波器输入端。

2.3.将直流稳压电压 2V 档输出电压(正负均可)接相敏检 波器端。

示波器两通道分别接相敏输入、输出端,观察输入、输出波形的相位关系和幅集学科优势- 5 -求改革创新4 25 6值关系。

4.改 变端参考电压的极性,观察输入、输出波形的相位和幅值关系。

由此可以得出结论:当参考电压为正时,输入与输出同相,当参考电压为负时,输入与输出反相。

5.将音频振荡器 0°端输出信号送入移相器输入端,移相器的输出端与相敏检波器的参考输入端连接,相敏检波器的信号输入端接音频 0°输出。

6.用示波器两通道观察附加观察插口 、的波形。

可以看出,相敏检波器中整形电路的作用是将输入的正弦波转换成方波,使相敏检波器中的电子开关能正常工作。

7.20V 。

8. 9.将相敏检波器的输出端与低通滤波器的输入端连接,低通输出端接数字电压表示波器两通道分别接相敏检波器输入输出端。

适当调节音频振荡器幅值旋钮和移相器“移相”旋钮,观察示波器中波形变化和电压表电压值变化,然后将相敏检波器的输入端改接至音频振荡器 180°输出端口, 观察示波器和电压表的变化。

由此可以看出,当相敏检波器的输入信号和开关信号反相时,输出为正极性的全波整流信号,电压表只是正极性方向最大值,反之,则输出负极性的全波整流波形, 电压表指示负极性的最大值。

相敏检波器实验

相敏检波器实验

实验八相敏检波器实验一、实验目的:了解相敏检波器的原理及工作情况。

二、基本原理:相敏检波器模块示意图如下所示,图中Vi为输入信号端,Vo为输出端,AC为交流参考电压输入端,DC为直流参考电压输入。

当有脉冲符号的两个端子为附加观察端。

三、需用器件与单元:移相器/相敏检波器/低通滤波器模块、音频振荡器、双踪示波器(自备)、直流稳压电源±15V、±2V、转速/频率表、数显电压表。

四、旋钮初始位置:转速/频率表置频率档,音频振荡器频率为4KHz左右,幅度置最小(逆时针到底),直流稳压电源输出置于±2V档。

五、实验步骤:1、了解移相器/相敏检波器/低通滤波器模块面板上的符号布局,接入电源±15V及地线。

2、根据如下的电路进行接线,将音频振荡器的信号0˚输出端和移相器及相敏检波器输入端Vi相接,把示波器两根输入线分别接至相敏检波器的输入端Vi和输出端Vo组成一个测量线路。

3、将主控台电压选择拨段开关拨至+2V档位,改变参考电压的极性(通过DC端输入+2V或者-2V),观察输入和输出波形的相位和幅值关系。

由此可得出结论,当参考电压为正时,输入和输出同相;当参考电压为负时,输入和输出反相。

4、调整好示波器,调整音频振荡器的幅度旋钮,示波器输出电压为峰-峰值4V,通过调节移相器和相敏检波器的电位器,使相敏检波器的输出Vo为全波整流波形。

六、思考题:根据实验结果,可以知道相敏检波器的作用是什么?移相器在实验线路中的作用是什么?(即参考端输入波形相位的作用)。

实验九交流全桥的应用——振动测量实验一、实验目的:了解利用交流电桥测量动态应变参数的原理与方法。

二、基本原理:对于交流应变信号用交流电桥测量时,桥路输出的波形为一调制波,不能直接显示其应变值,只有通过移相检波和滤波电路后才能得到变化的应变信号,此信号可以从示波器读得。

三、需用器件与单元:音频振荡器、低频振荡器、万用表(自备)、应变式传感器实验模块、移相/相敏检波/低通滤波器模块、振动源模块、示波器(自备)。

传感器综合实验报告

传感器综合实验报告

传感器综合实验报告( 2014-2015年度第二学期)名称:传感器综合实验报告题目: 利用传感器测量重物质量院系:自动化系班级:测控1201 班姓名:蔡攀学号:201202030101指导教师:仝卫国实验周数:一周成绩:日期:2015 年7 月7日传感器综合实验报告一、实验目的1、了解各种传感器的工作原理与工作特性。

2、掌握多种传感器应用于电子称的原理。

3、根据不同传感器的特性,选择不同的传感器测给定物体的重量。

4、能根据原理特性分析结果,加深对传感器的认识与应用。

5、测量精度要求达到1%。

二、实验设备、器材1、差动变压器:差动变压器、音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微器。

2、霍尔式传感器:直流稳压电源、电桥、霍尔传感器、差动放大器、电压表。

3、电涡流式传感器:电涡流式传感器、测微器、铝测片、铁测片、铜测片、电压表、示波器。

三、传感器工作原理1、差动变压器的工作原理:差动变压器的基本元件有衔铁、初级线圈、次级线圈和线圈骨架。

初级线圈作为差动变压器激励用,相当于变压器的原边。

而次级线圈由两个结构尺寸和参数相同的两个线圈反相串接而成,形成变压器的副边。

差动变压器是开磁路,工作是建立在互感变化的基础上。

当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。

但实际上,当使用电桥式电路时,在零点仍有一个微小的电压值(从零点几mv到数十mv)存在,称为零点残余电压。

零点残余电压的存在造成零点附近的不灵敏区,零点残余电压输出放大器内会使放大器末级趋向饱和,影响电路正常工作等。

因此需采用适当的方法进行补偿。

2、霍尔式传感器:霍尔传感器是由两个半圆形永久磁钢组成梯度磁场,位于梯度磁场中的霍尔元件——霍尔片通过底座连结在震动台上。

当霍尔片通以恒定的电流时,霍尔元件就有电压输出。

改变振动台的位置,霍尔片就在梯度磁场中上下移动,输出的霍尔电势U 值取决于其在磁场中的位移量Y ,所以由霍尔电势的大小便可获得振动台的静位移。

检测技术题目一

检测技术题目一

第一部分:设计题:题目一、交流全桥应变片电子秤提示:所需单元及部件:音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、F/V表、砝码、主、副电源、双平行梁、应变片。

题目二、差动变压器电子秤提示:所需单元及部件:音频振荡器、电桥、差动放大器、相敏检波器、移相器、低通滤波器、F/V表、砝码、主、副电源、振动平台、差动变压器。

实训三、电涡流电子秤提示:所需单元及部件:涡流传感器、涡流变换器、F/V表、砝码、铁测片(铝测片)、主、副电源。

第二部分:简答题:热电阻复习思考题1.什么叫热电阻效应?试述金属热电阻效应的特点和形成的原因。

2.阐述热电阻式传感器的概念、功能及分类。

3.制造电阻体的材料应具备哪些特点?常用热电阻材料有哪几种?4.用热电阻传感器进行测温时,经常采用哪种测量线路?热电阻与测量线路有几种连接方式?通常采用哪种连接方式?为什么?差动变压器式复习思考题1.概述变隙式差动变压器的组成、工作原理和输出特性。

2.根据螺线管式差动变压器的基本特性,说明其灵敏度和线性度的主要特点。

3.为什么螺线管式差动变压器比变隙式差动变压器的测量范围大?4.何谓零点残余电压?说明该电压的产生原因及消除方法。

5.差动变压器的测量电路有几种类型?试述它们的组成和基本原理。

为什么这类电路可以消除零点残余电压?6.概述差动变压器的应用范围,并说明用差动变压器式传感器检测振动的基本原理。

电容式传传感器复习思考题1.试述电容式传感器的工作原理与分类?2.说明部分固体介质的变间隙式电容传感器的设计目的和特点3.为什么变面积式传感器的测位移范围较大?4.为什么采用变介质电常数式传感器测量介质介电常数变化,比测量介电材料厚度变化的性能要好?5. 电容式传感器配用的测量电路有哪几种?它们的工作原理和主要特点是什么?压电式复习思考题1.什么叫正、逆压电效应和纵向、横向压电效应?2.比较、一下石英晶体和压电陶瓷各自的特点?3.电荷放大器的特点是什么?4.压电片叠在一起的特点及连接方式是什么?5.简述压电传感器的特点及应用?题目一、交流全桥应变片电子秤所需单元及部件:音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、F/V表、砝码、主、副电源、双平行梁、应变片。

传感器原理实验报告

传感器原理实验报告

《传感器原理实验报告》指导教师:张学锋班级:物联网131班组序:第七组组员:程少锋 139074366陈习武139074364高扬 139074373孙明明139074386目录实验一金属箔式应变片性能——单臂电桥 (1)实验二金属箔式应变片:单臂、半桥、全桥比较 (4)实验三金属箔式应变片温度效应及补偿 (7)实验四热电偶原理及分度表的应用 (8)实验五移相器实验 (11)实验六相敏检波器实验 (13)实验七金属箔式应变片——交流全桥 (16)实验十二差动变压器(互感式)零残余电压的补偿 (23)实验十三差动变压器(互感式)的标定 (24)实验十九电涡流式传感器的静态标定 (34)实验二十三霍尔传感器的直流激励特性 (38)实验二十五霍尔式传感器的交流激励特性 (41)实验二十六霍尔式传感器的应用——振幅测量之四 (43)实验二十七磁电式传感器的性能 (45)实验二十九压电传感器引线电容对电压放大器、电荷放大器的影响 (47)实验三十一双平行梁的动态特性 (51)实验三十二电涡流传感器位移特性实验 (52)实验三十三 PN结温度传感器测温实验 (53)实验三十四热敏电阻演示实验 (55)实验三十五半导体扩散硅压阻式压力传感器实验 (56)实验三十六光纤位移传感器静态实验 (58)12电源连到加热器的上插口,加热器下插口接地,打开加热开关4电压/频率表的显示在变化,待电压/频率表显示稳定后,记下显示数值,并用液晶温度表测出温度,记下温度值。

关闭主、副电源,等待数分钟使梁体冷却到室温。

7、将 电压/频率表的切换开关置20V 档,把4组应变片中的任一组换成标有→符号的应变片(补偿片),重复4-6过程。

8、比较两种情况的 电压/频率表数值:在相同温度下比较,补偿后的输出变化小很多。

9、实验完毕,关闭主、副电源,所有旋钮转至初始位置。

实验四 热电偶原理及分度表的应用一、实验目的:了解热电偶的原理及分度表的应用。

传感器与检测技术实验指导书

传感器与检测技术实验指导书

实验一金属箔式应变片性能研究一、实验目的1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。

2、了解金属箔式应变片,半桥的工作原理和工作情况。

3、了解金属箔式应变片,全桥的工作原理和工作情况。

4、验证单臂、半桥、全桥的性能及相互之间的关系。

二、实验原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。

它可用于能转化成形变的的各种物理量的检测。

本实验以金属箔式应变片为研究对象。

箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或者金属箔制成,如图所示:(a)丝式应变片(b) 箔式应变片图1-1金属箔式应变片结构金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为△R/R=Kε。

式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数,ε=△L/L为电阻丝长度相对变化。

为了将电阻应变式传感器的电阻变化转化成电压或者电流信号,在应用中一般采用电桥电路作为测量电路。

电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。

能较好地满足各种应变测量要求,因此在测量应变中得到了广泛的应用。

电路电桥按其工作方式分有单臂、半桥、全桥三种,单臂工作输出信号最小,线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂的四倍,性能最好。

因此,为了得到较大的输出电压一般采用半桥或者全桥工作。

三、需用器件与单元:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源。

实验02(移相器)实验报告

实验02(移相器)实验报告

实验二-移相器、相敏检波器及交流电桥实验实验1:移相器实验:一、实验目的了解运算放大器构成的移相电路的原理及工作情况二、实验原理图三、实验器械移相器、音频振荡器、双线(双踪)示波器、主、副电源四、实验数据记录和数据处理实验数据如下:5Khz时,移相范围为15us7Khz时,移相范围为14us9Khz时,移相范围为15us五、实验思考题根据图2-1,分析本移相器的工作原理,并解释所观察到的现象答:任何传输介质对在其中传导的波动都会引入相移。

实验2:相敏检波器实验一、实验目的了解相敏检波器的原理和工作情况二、实验原理图相敏检波电路如图2-2 所示,图中(1)端为输入信号端,(3)为输出端,(2)为交流参考电压输入端,(4)为直流参考电压输入端。

(5)、(6)为两个观察口。

三、实验器械相敏检波器、移相器、音频振荡器、示波器、直流稳压电源、低通滤波器四、实验数据记录和数据处理实验数据如下:实验数据拟合图像如下:五、思考题1、根据相敏检波器原理图2-2,定性分析此相敏检波器电路的工作原理。

答:模拟PSD:使用乘法器,通过与待测信号频率相同的参考信号与待测信号相乘,其结果通过低通滤波器得到与待测信号幅度和相位相关的直流信号。

2、根据实验结果,可以知道相敏检波器的作用是什么?移相器在实验线路中的作用是什么?答:相敏检波器鉴别调制信号相位和选频,移相器对波的相位进行调整实验3:交流全桥的测重实验一、实验目的了解交流供电的四臂应变电桥的原理和工作情况二、实验原理交流全桥侧重原理与直流电桥一样,也是利用箔式应变片的电阻应变效应来完成的。

将R1、R2、R3、R4 四个箔式应变片按它们的受力方向接入组成全桥,从音频振荡器的LV 端给全桥电路一个音频信号,当电桥对应两边的阻抗乘积相等时,电桥达到平衡,输出为零。

交流电桥工作时增大相角差可以提高灵敏度,传感器最好是纯电阻性或纯电抗性的。

交流电桥只有在满足输出电压的实部和虚部均为零的条件下才会平衡。

移相器与相敏检波实验

移相器与相敏检波实验

③ 开启实验仪、移相器模块电源,用示波器的“CH2”通道观察移相器的输出端 ②的输出信号波形。
④ 分别将实验仪中的音频振荡器输出的标准信号“0度或180度”改为1KHZ/2Vpp、4KHZ/2Vp-p,按实验1步骤中的⑤—完成实验。

⑤ 旋转移相器旋钮置最小(逆时针到底),用示波器检测此时输入信号与输出 信号。并绘出两信号的电波形,计算出两信号的相位差。
感测技术实验二
移相器与相敏检波器
专业综合实验室
一、实验目的:
通过本次实验了解并掌握感测技术中常用的 信号处理电路的组成与功能.
1.熟悉由运算放大器构成移相电路的组成与工作原理。 2.熟悉相敏检波器的工作原理及其使用方法。 3.观测移相电路的功能及其使用方法。 4.熟悉相敏检波器在检测技术中的运用。 5.进一步熟悉并掌握常用电子测量仪器的运用。
2.相敏检波器的电路组成
能够鉴别调制信号的相位,同时还具有选频能力的电子电路,称为相敏检波器. 实验仪中的相敏检波器电路组成与面板布局如图所示:
相敏检波器模块主要由三部分组成:一是由运算放大器A1构成的整形电路部 分,用于对参考信号的处理;二是由场效应管构成的电子开关电路部分,控制 相敏检波器;三是由运算放大器A2构成的相敏检波器部分。当(2)端的控制 电压为高电平时,二极管D截止,开关管栅极G为低电平,BG截止,相当开关断 开。此时,相敏检波器为反相运算放大器,输入与输出信号反相。当(2)端 的控制电压为低电平时,二极管D导通,开关管栅极G为高电平,BG导通,相当 开关接通。此时,相敏检波器为同相运算放大器,输入与输出信号同相。
通过以上实验结果,可以得出结论:相敏检波器中的整形电 路的作用是将输入的 波转换变成 ,使相敏检波 器中的电子开关电路能正常工作。

测试的技术实验指导

测试的技术实验指导

第二部分基本实验指导1 机械参数综合测试系统的组成一、实验目的1、建立对机械参数电测技术的感性认识,了解测试系统的基本组成。

2、了解计算机测试系统的组成。

3、巩固和加深理解电阻应变片测量原理。

4、认识常用的各类传感器,了解其工作原理及应用。

二、实验原理1、实验装臵的组成:由一自由端受动载荷激振的等强度梁,并在其上安装了各种类型的传感器如图1所示。

图1 实验装臵组成2、典型的测试系统:3、信号变换:悬臂梁在动载激振力的作用下,其力学、运动学参数分别由各类传感器将这些待测的非电参数的变化转换成电量的变化。

应变(ε)——电阻应变片的阻值变化(ΔR/R)-——电压变化位移(S)——差动变压器传感器的电压变化速度(V)——磁电式速度传感器的电压变化加速度(a)——压电式加速度传感器的电荷的变化频率(f)——光电转速传感器的光电流的变化4、信号测量:由于经传感器转换所得的电量一般都是很微弱的,不能直接显示或记录下来,必须经过测量电路将这些微弱信号进行放大处理,其测量所用的仪器如下:5、信号分析悬臂梁在受迫振动下,由上述方法测得的五个参数,根据示波图可进行计算、分析。

6、包含信号处理功能的测试系统用典型的CRAS采集、分析处理系统,对信号测试过程的各个环节进行计算机采集、分析处理实验。

三、主要仪器及耗材静态数字电阻应变仪、悬臂梁实验台、压电式加速度传感器、电荷放大器、YD28-A型动态电阻应变仪、DRVI虚拟仪器、计算机。

四、实验内容和步骤1、利用金属材料的特性,将非电量的变化转换成电量的变化,应变测量的转换元件为应变片,用粘结剂将应变片牢固地贴在试件上,当被测试件受到外力作用长度发生变化时,粘贴在试件上的应变片也发生相应变化,应变片的电阻值也随着发生了变化,这样就把机械量——变形,转换成电量——电阻值的变化。

用灵敏的电阻测量仪器——电桥,测出电阻值的变化,就可以换算出相应的应变,如果这个电桥用应变来刻度,就可以直接读出应变,完成非电量的电测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.以调幅波的载波为交流参考信号

(பைடு நூலகம்)载波 (2)调制信号 (3)调幅波 (4)相敏检波输出 (5)低通滤波器输出




在用传感器测量低频振动中


若传感器不需要高频交流激励,可以将传 感获取的对应振动的放大后的低频交流信 号用三模块转换成直流测量其量值,并用 数显频率计测量其频率 若传感器测量电路需要高频交流激励,则 传感获取的信号为以振动信号为调制信号 的调幅波,用三模块可以检出调制信号。
• 以交流信号为参考信号的特殊情况; • 条件

相敏检波模块的输入为调幅波; 参考信号为调幅波的载波;
• 在调制信号的正半周,调幅波与载波同相;在负半周, 调幅波与载波反相。
• 输出效果


在调制信号的正半周,输出正极性的半波~全波 整流信号。 在调制信号的负半周,输出负极性的半波~全波 整流信号。
2.以交流信号为参考信号接AC

(3)用途
• 将交流信号转换成直流用直流电压表获取其量 值信息。适用于传感器测量系统中没有设置交 流测量功能模块的情况。 • 直流电压表的正负可以反映输入电压和参考电 压的相位关系。适用于传感器测量中其可动部 分从中间点向两侧移动不同方向对应反相相位 信号的情况。
3.以调幅波的载波为交流参考信号
“移相器-相敏检波器-低通滤波 器”在传感器测量电路中的应 用
三模块面板图
一 移相器

改变输入信号的相位并输出。
• 一个输入端口 • 一个输出端口 • 一个相位差调节旋钮
二 低通滤波器

通过低频信号,抑制高频 信号
• 一个输入端口 • 一个输出端口
三 相敏检波

检波
• VI:信号输入端; • AC:交流参考信号输入端; • DC:直流参考信号输入端; • VO:信号输出端
• D两侧的两个端子用来观察参考信号在电 路内部被转换成矩形波的情况。
1.以直流电压为参考信号接DC

输出效果
• 当参考电压为正时,相敏检波器的输入与输出 信号同相; • 当参考电压为负时,相敏检波器输入与输出信 号反相。
2.以交流信号为参考信号接AC

(1)条件

(2)输出效果
• 相敏检波输入Vi为交流信号; • AC参考信号VAC为Vi或与之有相位差的交流信号
The End
• 若Vi 和VAC同相,则相敏检波模块输出为正极性的整流 信号;经低通滤波器接直流电压表可以指示正极性的 最大值。 • 反之则输出负极性的整流波形,经低通滤波器接直流 电压表可以指示负极性的最大值。 • 该模块的旋钮可以使整流效果在半波和全波整流之间 转变,即输出直流电压可以逐步从半波整流值增大到 全波整流值。
相关文档
最新文档