ADS射频电路课程设计——混频器设计与仿真
《2024年基于ADS的射频功率放大器设计与仿真》范文
《基于ADS的射频功率放大器设计与仿真》篇一一、引言随着无线通信技术的不断发展,射频功率放大器(RF Power Amplifier, 简称PA)作为无线通信系统中的关键组件,其性能的优劣直接影响到整个系统的性能。
因此,设计一款高性能的射频功率放大器显得尤为重要。
本文将介绍一种基于ADS(Advanced Design System)的射频功率放大器设计与仿真方法,以期为相关领域的研究人员和工程师提供一定的参考。
二、设计原理与方案1. 设计原理射频功率放大器的主要功能是将低功率的射频信号放大到适合传输的功率水平。
设计过程中需考虑的主要因素包括放大器的增益、效率、线性度以及稳定性等。
基于ADS的设计方法主要利用ADS软件进行电路仿真,通过优化电路参数,以达到设计目标。
2. 设计方案本文提出的设计方案主要包括以下几个步骤:(1)确定设计指标:根据系统需求,确定射频功率放大器的设计指标,如工作频率、增益、输出功率、效率等。
(2)选择器件:根据设计指标,选择合适的晶体管、电容、电感等器件。
(3)电路设计:利用ADS软件进行电路仿真,通过优化电路参数,以达到设计目标。
(4)仿真验证:对设计好的电路进行仿真验证,检查是否满足设计指标。
三、基于ADS的仿真过程1. 建立模型:在ADS软件中,根据选定的器件建立电路模型。
2. 参数设置:设置仿真参数,如工作频率、输入功率、负载阻抗等。
3. 仿真分析:进行电路仿真,分析放大器的增益、效率、线性度等性能指标。
4. 优化设计:根据仿真结果,对电路参数进行优化,以提高放大器的性能。
四、仿真结果与分析经过仿真验证,本文设计的射频功率放大器在以下几个方面表现出色:1. 增益:放大器的增益达到了设计要求,且在工作频率范围内保持稳定。
2. 效率:放大器的效率较高,达到了预期目标,有效提高了能量的利用率。
3. 线性度:放大器的线性度良好,输出信号失真较小,满足系统需求。
4. 稳定性:放大器在工作过程中表现出良好的稳定性,没有出现自激振荡等问题。
混频器的设计与仿真
目录前言 (1)工程概况 (1)正文 (2)3.1设计的目的及意义 (2)3.2 目标及总体方案 (2)3.2.1课程设计的要求 (2)3.2.2 混频电路的基本组成模型及主要技术特点 (2)3.2.3 混频电路的组成模型及频谱分析 (2)3.3工具的选择—Multiusim 10 (3)3.3.1 Multiusim 10 简介 (3)3.3.2 Multisim 10的特点 (3)3.4 混频器 (3)3.4.1混频器的简介 (4)3.4.2混频器电路主要技术指标 (4)3.5 混频器的分类 (5)3.6详细设计 (5)3.6.1混频总电路图 (5)3.6.2 选频、放大电路 (5)3.6.3 仿真结果 (6)3.7调试分析 (9)致谢 (9)参考文献 (9)附录元件汇总表 (10)混频器的设计与仿真前言混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。
在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。
特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。
移动通信中一次中频和二次中频等。
在发射机中,为了提高发射频率的稳定度,采用多级式发射机。
用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。
由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。
工程概况混频的用途是广泛的,它一般用在接收机的前端。
除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。
ADS射频电路课程设计——混频器设计与仿真
混频器的设计与仿真设计题目:混频器的设计与仿真学生姓名: ____________________________学院: _______________________________专业: _______________________________指导老师: ____________________________学号: _______________________________ 期:2011年12月20 日•、射频电路与ADS既述 (3)1、............................................................... 射频电路概述32、................................................................... ADS既述3 1、混频器的设计. (7)1. 混频器的基本原理 (7)2、混频器的技术指标 (9)三、混频器的设计 (9)1、3 D B定向耦合器的设计.................................................. .9...…1.1、建立工程............................................................ 9.......1.2、搭建电路原理图 (10)1.3、设置微带线参数 (11)1.4、耦合器的S参数仿真 (12)2、............................................................. 完整混频器电路设计173、低通滤波器的设计 ................................................................... 2.错误!未定义书签四、混频器性能仿真 (23)1、....................................................... 混频器功能仿真231.1、仿真原理图的建立 (23)1.2功能仿真 (25)2、....................................................... 本振功率的选择273、混频器的三阶交调点分析 (28)3.1、三阶交调点的测量 (28)3.2、三阶交调点与本振功率的关系 (31)4、混频器的输入驻波比仿真 (31)五、设计总结 (33)一、射频电路与ADS既述1、射频电路概述射频是指超高频率的无线电波,对于工作频率较高的电路,人们经常称为“高频电路”或“射频(RF电路”或“微波电路”等等。
单平衡混频器的ADS设计与仿真
1引 言
混频器的作用是把收到的射频信号转变为易于 进一步处理的中频信号,然后送到中频放大器进行 放大,一般是由一个或多个非线形元件、本振源、
滤波电路和输Ⅳ输出匹配回路所组成的非线形网
络,其中非线形元件是最为重要的部分,本文设计 实例中,射频输入频率为3.6 GHz,本振频率 3.8 GHz,中频输出频率在200 MHz,变频损耗小 于15 dB。ADS仿真设计软件可以模拟整个信号通 路,完成从电路到系统的各级仿真,当任何一级仿 真结果不理想时,都可以回到原理图中重新进行优 化,直到仿真结果满意为止。
— 实验科学与技术 design就可以得出对应的结构图。
Sub O口tlter·=11
J少Gilt
SubMag
SubPhase
耦合器由主线、副线和两条分支线组成,其中
分支线长度和间距均为中心波长的1/4,如图2所
示。设z。=厶,五=‰(k为阻抗变换比),五= zo,Z3=‰,平行连接线特性阻抗为zoP,2个分
从图3可以看出端口的相位差及功率关系均符 合设计要求,并且输出阻抗值得到良好的匹配。 3.2低通滤波器设计
图4射频及本振信号设置
3.3.2噪声系数分析
采用ADS的快速滤波器设计功能,设置好优化 目标的3 dB截止频率及阻带截止频率后,只需点击
只需把谐波平衡仿真器修改一下参数,就可以 (下转第14页)
2工作原理
图l为一微带单平衡混频器,功率混合电路采 用3 dB分支线定向耦合器,射频信号和本振信号 分别从隔离臂l、2端口加入时,初相位都是00, 考虑到传输相同的路径不影响相对相位关系,通过 定向耦合器,加到D。,D:上的信号电压(蝈,啦) 和本振电压(口舯%)分别为:
收稿日期:2008—05—19:修改日期:2008一06一04 作者简介:徐升槐(1982一),男,助理实验师。大学本科,
基于ADS的微波混频器的设计与仿真
湖南文理学院芙蓉学院本科生毕业论文(设计)题目:基于ADS的微波混频器的设计与仿真学生姓名:吴炜学号: 10160132专业班级:通信1001班指导教师:戴正科完成时间: 2014年4月22日目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景及意义 (1)1.2 微波混频器介绍 (2)1.3 国内外研究现状 (3)1.4 设计要求 (5)1.5 方案比较与选择 (5)1.5.1 方案一:基于ADS的微波混频器的设计与仿真 (5)1.5.2 方案二:基于microwave office的微波混频器的设计与仿真 (6)1.5.3 方案三:基于CMRC的微波混频器的设计与仿真 (6)第2章设计平台的介绍 (7)2.1 ADS的概述 (7)2.2 ADS的仿真设计方法 (7)第3章混频器的基本理论 (9)3.1 混频器的技术指标 (9)3.1.1 变频损耗 (9)3.1.2 噪声系数 (10)3.1.3 隔离度 (11)3.1.4 动态范围 (12)3.1.5 本振功率与工作点 (12)3.1.6 工作带宽 (12)3.2 混频器的电路形式 (13)3.2.1 单端混频器 (13)3.2.2 单平衡混频器 (13)3.2.3 双平衡混频器 (14)第4章混频器的设计与仿真 (16)4.1 混频器的原理 (16)4.1.1 混频器的基本原理 (16)4.1.2 混频器的技术指标 (17)4.2 混频器的设计 (18)4.2.1 3dB定向耦合器的设计 (18)4.2.2 完整混频器电路设计 (23)4.2.3 低通滤波器的设计 (25)4.3 混频器性能仿真 (27)4.3.1 混频器功能仿真 (27)4.3.2 本振功率选择 (32)4.3.3 混频器的三阶交调点分析 (34)4.3.4 混频器的输入驻波比仿真 (38)总结与展望 (40)参考文献 (41)致谢 (43)摘要混频器(mixer)是通信系统的重要组成部分,用于在所有的射频和微波系统进行频率变换,用于通信接收机,也是频率合成器等电子设备中的重要组成部分,用混频器可以实现频率加、减运算功能。
基于ADS的射频功率放大器设计与仿真
基于ADS的射频功率放大器设计与仿真基于ADS的射频功率放大器设计与仿真射频功率放大器(RFPA)是射频系统中关键的组成部分,其作用是将低功率的射频信号放大到足够的功率水平,以便驱动天线发射信号。
在无线通信、雷达、卫星通信等领域,射频功率放大器的设计和性能优化对于系统性能至关重要。
近年来,射频功率放大器的设计与仿真已成为研究的热点之一。
在这个领域中,ADS(Advanced Design System)成为了广泛使用的设计工具之一。
ADS是一款由美国Keysight Technologies公司推出的集成电路设计软件,其强大的射频仿真功能和友好的用户界面使其成为射频电路设计工程师的首选工具。
射频功率放大器的设计流程可以分为以下几个步骤:电路拓扑设计、参数选择、元件选型、仿真与优化。
在电路拓扑设计阶段,根据系统需求和设计目标选择适当的电路结构,常见的结构包括共射结构、共基结构、共集结构等。
参数选择是根据系统要求选择电路参数,如工作频率、增益、输出功率等,这些参数直接影响到电路性能。
元件选型是根据参数选择的结果来选取合适的射频元件,如二极管、电感器、电容器等。
仿真与优化是使用ADS进行电路性能仿真和优化,分析电路的增益、功率、效率等性能指标,并进行相应的调整和优化,以满足设计要求。
在ADS软件中,可以通过搭建电路原理图来进行射频功率放大器的仿真。
首先,根据电路拓扑设计阶段的结果,使用ADS的元件库选取合适的射频元件,并将其拖拽到电路原理图中。
然后,调整元件的参数和连接方式,搭建出完整的放大电路。
接下来,设置仿真参数,如工作频率、输入功率等,并运行仿真。
此时,ADS会根据电路拓扑和元件参数进行电磁仿真,计算电路的增益、功率、效率等性能指标。
根据仿真结果,可以对电路进行调整和优化,以达到设计要求。
除了仿真功能之外,ADS还提供了许多其他有用的工具。
例如,可以使用ADS的优化器来自动调整电路的参数,以实现最佳的性能。
基于ADS的射频低通滤波器设计与仿真
射频系统仿真实验报告射频滤波器设计姓名:学号:一、设计要求设计一个三阶原型Butterworth 低通滤波器。
要求:H f =10GHz ,电长度4πθ=。
二、设计方案在三阶原型Butterworth 低通滤波器的基础上,采用kuroda 变换。
变为可实现的结构。
1) 三阶原型Butterworth 低通滤波器:注:并联元件的单位是电纳,串联元件的单位是电抗2) 传输线实现集总参数的电感电容:θtg jZ jX Z L L 0== (8λ的短路线) θjtg 记为S θtg jY jB Y c c 0== (8λ的开路传输线)3) 插入单位元件后再进行Kuroda 规则变换。
目的是变成可实现的物理结构。
采用如下变换:取121Z Z Z N +=时两者等效。
所以Z=1的单位元件并联Y=1的8λ开路传输线变为:Z=1/2的8λ短路传输线和Z=1/2的单位元件相串联。
上图交换为如下:4) 再插入一个单位元件,如下图:⇔利用Kuroda 规则:取121Z Z Z N +=即可。
所以Z=1的单位元件串联Z=1/2的8λ短路传输线变为:并联的Y=3的8λ开路传输线和Z=1.5的单位元件。
所以Z=1/2的单位元件串联Z=2的8λ短路传输线变为:并联的Y=8/5的8λ开路传输线和Z=2.5的单位元件。
整个电路如下图:5) 阻抗交换:采用8λ开路传输线单位值Ω⨯50。
∴ 变换后特征阻抗为:⇔0.333333 16.66671.5 75.0000 0.625 31.25002.5 125.0000 1 50.00006) 物理尺寸计算得到另外4段微带线尺寸如下:归一化值 Z 的特征阻抗宽度W 长度P 单位:mil 频率:10GHz 电长度:45°1/3 Ω67.16 126.6 103.098 1.5 Ω75 15.0051 110.234 5/8 Ω25.31 58.2277 105.493 2.5 Ω125 4.3755113.6 1Ω5029.9473107.84三、仿真分析①Project 导航条内。
ADS课程设计混频器
湖南理工学院射频电路课程设计序号:609论文题目:混频器的设计*名:***院别:信息与通信工程专业:电子信息工程学号:***********指导老师:粟向军目录摘要 (4)一、混频器基本原理 (4)二、具体设计过程 (5)1.创建一个新项目 (5)2.3dB定向耦合器设计 (6)3.低通滤波器 (9)4.混频器频谱分析 (10)(1)设计完整的电路 (10)(2)设置变量 (12)(3)配置仿真器 (13)5.噪音系数仿真 (15)6.噪声系数随RF频率的变化 (15)7.三阶交调系数 (16)8.功率-三阶交调系数 (18)三、总结 (19)参考文献: (20)摘要在无线通信系统中,混频器是一种常见的射频电路组件,主要用来将不同频率的信号相乘,以实现频率的变换。
它最基本的两个作用:上变频和下变频。
其中上变频的作用是将中频信号与射频本振信号混频成为发射的射频信号,通过天线发射出去;下变频的作用是将天线接收到的射频信号与本地载波信号混频,经过滤波后得到中频信号,并送到中频处理模块进行处理。
本设计通过ADS 仿真掌握射频电路的工程设计方法和技巧,熟悉射频电路的调试过程,建立 设计、开发射频电路和产品的系统概念,提高专业素质和工程实践能力。
关键字:混频器、ADS 、变频一、混频器基本原理图1为一微带平衡混频器,其功率混合电路采用3dB 分支线定向耦合器,在各端口匹配的条件下,1、2为隔离臂,1到3、4端口以及从2到3、4端口都是功率平分而相位差90°。
图1设射频信号和本振分别从隔离臂1、2端口加入时,初相位都是0°,考虑到传输相同的路径不影响相对相位关系。
通过定向耦合器,加到D1,D2上的信号和本振电压分别为:D1上电压 )2cos(1πω-=t V v s s s 1-1)cos(1πω-=t V v L L L 1-2 D2上电压)cos(2t V v s s s ω= 1-3 )2cos(2πω+=t V v L L L 1-4可见,信号和本振都分别以2π相位差分配到两只二极管上,故这类混频器称为2π型平衡混频器。
《2024年基于ADS的射频功率放大器设计与仿真》范文
《基于ADS的射频功率放大器设计与仿真》篇一一、引言射频功率放大器(RF Power Amplifier,简称RFPA)是现代无线通信系统中的关键部件之一。
设计一款性能优异的射频功率放大器对提升整个通信系统的性能具有重大意义。
本文以ADS (Advanced Design System)软件为平台,对射频功率放大器进行设计与仿真,旨在为实际产品开发提供理论依据和设计指导。
二、设计目标与要求在设计射频功率放大器时,我们主要关注以下几个方面的性能指标:增益、输出功率、效率、线性度以及稳定性。
根据实际需求,我们设定了以下设计目标:1. 增益:在所需频段内,保持较高的功率增益;2. 输出功率:满足实际应用中对输出功率的需求;3. 效率:提高功率附加效率(PAE),以降低能耗;4. 线性度:在保证增益的同时,尽可能减小失真,提高线性度;5. 稳定性:确保放大器在宽频带内稳定工作。
三、设计思路与原理在ADS软件中,我们采用微波晶体管作为功率放大的核心器件。
根据其工作原理和实际需求,设计思路如下:1. 选择合适的晶体管:根据设计目标和应用需求,选择具有高功率、高效率和高线性度的晶体管;2. 设计电路拓扑结构:根据晶体管的特性,设计合适的电路拓扑结构,如共源、共栅等;3. 优化匹配网络:通过优化输入输出匹配网络,提高放大器的增益、效率以及线性度;4. 仿真验证:利用ADS软件进行仿真验证,对设计结果进行评估和优化。
四、具体设计与仿真1. 晶体管选择与电路拓扑设计根据设计目标和应用需求,我们选择了某型号的微波晶体管作为功率放大的核心器件。
根据其特性,我们设计了共源结构的电路拓扑。
2. 匹配网络设计与优化为了获得高增益、高效率和良好的线性度,我们设计了输入输出匹配网络。
通过优化匹配网络的元件参数,使得晶体管在所需频段内具有最佳的匹配性能。
同时,我们还采用了负载牵引技术,进一步优化了输出匹配网络。
3. 仿真验证与结果分析利用ADS软件进行仿真验证,我们将设计好的电路模型导入ADS中,设置仿真参数和条件。
基于ADS的微波混频器设计分析
基于ADS的微波混频器设计分析微波混频器是一种将两个不同频率的信号合并或者拆分的电路器件。
混频器广泛应用于通信系统、雷达系统、卫星通信系统等领域。
基于交互调制混频原理的微波混频器通常采用二端口抗磁非线性器件实现,如二极管。
本文将以ADS软件作为设计工具,对一种基于交互调制混频原理的微波混频器进行设计和分析。
设计过程包含以下几个步骤:1. 混频器的基本原理和工作方式分析:混频器的基本原理是将两个不同频率的信号在非线性器件中进行交互调制,通过非线性特性实现频率混合。
常见的混频器工作方式有环形混频器、对数混频器、平衡混频器等。
2. 设计频率选择器:在设计混频器之前,需要先设计频率选择器,用于选择所需的输入和输出频率。
频率选择器通常由带通滤波器和匹配器组成。
使用ADS软件中的滤波器设计工具,可以选择合适的滤波器参数,并优化匹配网络。
3. 选择非线性器件:根据设计要求,选择合适的非线性器件。
常见的非线性器件有二极管和MOSFET。
使用ADS软件中的器件库,可以选择并进行仿真非线性器件的性能。
4. 设计和优化混频器电路:根据选择的非线性器件,结合所需的输入和输出频率,设计混频器电路。
使用ADS软件进行电路仿真,并进行优化,达到所需的性能指标,如插入损耗、转换增益等。
5. 电路布局和射频匹配:根据设计电路的布局和所需的射频匹配,进行电路布局和射频匹配。
使用ADS软件进行射频匹配仿真,并进行优化。
6. 电路仿真和分析:使用ADS软件进行混频器电路的全面仿真和分析。
进行各种性能指标的分析,如转换增益、带外抑制比、相位均匀性等。
通过以上步骤,可以完成基于ADS的微波混频器的设计和分析。
利用ADS软件强大的仿真和优化功能,可以提高混频器的性能和可靠性,并减少设计周期和成本。
基于ADS的微波混频器的设计与仿真
湖南文理学院芙蓉学院本科生毕业论文(设计)题目:基于ADS的微波混频器的设计与仿真学生姓名:**学号: ********专业班级:通信1001班指导教师:***完成时间: 2014年4月22日目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景及意义 (1)1.2 微波混频器介绍 (2)1.3 国内外研究现状 (3)1.4 设计要求 (5)1.5 方案比较与选择 (5)1.5.1 方案一:基于ADS的微波混频器的设计与仿真 (5)1.5.2 方案二:基于microwave office的微波混频器的设计与仿真 (6)1.5.3 方案三:基于CMRC的微波混频器的设计与仿真 (6)第2章设计平台的介绍 (7)2.1 ADS的概述 (7)2.2 ADS的仿真设计方法 (7)第3章混频器的基本理论 (9)3.1 混频器的技术指标 (9)3.1.1 变频损耗 (9)3.1.2 噪声系数 (10)3.1.3 隔离度 (11)3.1.4 动态范围 (12)3.1.5 本振功率与工作点 (12)3.1.6 工作带宽 (12)3.2 混频器的电路形式 (13)3.2.1 单端混频器 (13)3.2.2 单平衡混频器 (13)3.2.3 双平衡混频器 (14)第4章混频器的设计与仿真 (16)4.1 混频器的原理 (16)4.1.1 混频器的基本原理 (16)4.1.2 混频器的技术指标 (17)4.2 混频器的设计 (18)4.2.1 3dB定向耦合器的设计 (18)4.2.2 完整混频器电路设计 (23)4.2.3 低通滤波器的设计 (25)4.3 混频器性能仿真 (27)4.3.1 混频器功能仿真 (27)4.3.2 本振功率选择 (32)4.3.3 混频器的三阶交调点分析 (34)4.3.4 混频器的输入驻波比仿真 (38)总结与展望 (40)参考文献 (41)致谢 (43)摘要混频器(mixer)是通信系统的重要组成部分,用于在所有的射频和微波系统进行频率变换,用于通信接收机,也是频率合成器等电子设备中的重要组成部分,用混频器可以实现频率加、减运算功能。
基于ADS的微波混频器设计与仿真
2混 频器 的设计
献 及充 分 的理 论 进行分 析, 最 后再 确 定 电路 拓扑如 下 图所示 。 由 二 极管 和 直流 电路 和 匹配 荷载 构 成 图。 再 经由定 向耦 合 器入 口 l 输 入微 波 信号 , 又 从该器 另 一个 进 入 口 2 进 入本 振功 率 。 进 入 本 振 口的信号要 与该 耦 合器 有一定 的分离 , 通 常为 1 0 d B 。 该耦 合 器 与 混频 管之间 通常 须要 有阻抗 , 波长为1 / 4 , 用来 完成 阻抗 的匹配 ,
2 . 5 混 频 器的 选 型和 技 术 性 能指 标
非 线 性器 件 , 选择 无 源器件 二极 管。 在微 波 混频 器 处理 微 波 /毫 米波 、 频段 时, 具 体采 用 S B D二极 管。 S B D是 一种 热 载流 子 参 考文献
二 极管 。 采用 S B D二 极管 能够 使得 电路结 构更 简单 , 运行 效果 更 作带宽 可 以做 得比较 宽 , 倍 频程有 时能 够达 到几个, 或 者几十个。 除此 之 外 , S B D二 极管 的 线性 程度 好。 综上 各优 点 , 在 微 波 /毫 米波 混频 器 中, 主要 变频 元件通 常采 取 S B D二极 管为材 料。 由于 作者 简介 毫 米波 混频 器 的应用场 合 比较 广泛 , 性能 要求 通常也 是不 同的 。 在实 际工程 中, 微 波混 频器 的指标 如下 :
1引 青
( 1 ) 重要 指标 : 噪 声系数、 变频 损耗 ; ( 2 ) 其他 指标 : 端 口隔离 、 输入 驻波 比、 动态 范围、 频带 宽度 。
基于ADS的微波混频器设计与仿真
差 频分 量 完 成 混频 网 。混 频 器主 要 组 成 如 图 1 示 。 所
★基金项 目 : 国家 自然科学基金 资助 (1 7 13 。 6 0 19 )
2 ,8 口1 I
T s D, e t s& So u i n l to
线性变换 ,电流 中包含直 流分量 、基波 、谐 波 、和频 、差
辅助设计 ,电路仿真和04 。  ̄L - 预期 目标技术指标要求 : 射频频率为 4 GH 本振频 . z; 8 率为 5 H 变频损耗 ≤ 1 d 噪声 系数 ≤ 1d 。 G z; 2 B; 5B
频分 量等 。其 中差 频分 量 一就 是混 频所 需要 的 中频 成分 ,
绍了 3B定向耦合器的仿真 ,分析了低通滤波器 ,最后对 d
整个电路进行设计和仿真, 所测结果基本满足设计参数要求。
t h e i fm c o v x rt e r , h n l s fmir wa e mi es b sd o h rn i l,t e d s n c n e O t ed s n g o r wa e mi e h o y t e a ay i o co v x r a e n t e p i cp e h ei e tr i s g r q e c f5 fe u n y o GHz s ge b a c d m ir wa e mi e ,c mp e e t e s g e b l c d mi e s3 B ie t n lc u l r i l — a n e c o v x r o l t h i l — aa e x r d d r ci a o p e , n l n n o
基于ADS的微波混频器设计分析
基于ADS的微波混频器设计分析
微波混频器是一种常见的射频电路,它可以实现信号的频谱转换,通常用于无线通信
系统中的频率合成和调制。
本文主要介绍基于ADS的微波混频器设计分析。
一、微波混频器的基本原理
微波混频器的基本原理是利用非线性元件(例如二极管)将两个不同频率的信号混合,产生新的信号,其中混频器的输出频率为输入频率之差或和。
通常,混频器的输入信号分
别为本振信号和射频信号,本振信号的频率比射频信号高一个固定的频率,它们在混频器
中相互作用,产生混频信号。
在设计混频器时,需要考虑许多的参数,例如频带、噪声系数、转换损耗等。
基于ADS平台,可以使用EM仿真工具和非线性电路仿真工具来进行混频器的设计和分析。
首先,我们可以通过EM仿真工具来设计混频器的传输线和阻抗匹配网络。
设计过程中,需要将传输线的长度和宽度进行优化,以达到所需的带宽和阻抗匹配。
此外,还需要考虑
传输线的损耗和串扰等因素,以保证传输线的性能。
其次,我们可以使用非线性电路仿真工具来模拟二极管等非线性元件的特性。
在模拟
过程中,需要考虑元件的阻抗匹配和偏置电压等因素,以提高混频器的线性度和转换效
率。
最后,我们对整个电路进行集成仿真,从而得到混频器的实际性能表现。
此时,可以
调整电路参数和元件配置等因素,以进一步优化混频器的性能,例如增加谐波滤波器、考
虑垂直耦合等。
三、结论
基于ADS的设计方法可以帮助工程师优化混频器的性能,减少设计周期和成本。
此外,在混频器的设计和分析中,还需要考虑所需的带宽、噪声系数、动态范围等因素,以满足
不同的应用需求。
ADS混频器设计
实验三混频器的设计与仿真
班级电子(3)座号姓名
一.实验目的
1、了解微波混频器的原理及其设计方法。
2、学习使用ADS软件进行微波电路的设计,优化,仿真。
二.实验内容
1、使用ADS软件设计一个微带混频器,并对其参数进行优化、仿真。
2、根据软件设计的结果绘制电路版图,并加工成电路板。
三.微带滤波器的技术指标
1、射频:3.6GHZ
2、本振:3.8GHZ
3、噪音系数:<15
四.ADS软件的使用
本节内容是介绍使用ADS软件设计微带带通滤波器的方法:包括原理图绘制,电路参数的优化、仿真,版图的仿真等。
五.混频器的设计
设计一个90°平衡混频器,具体内容包括3dB分支桥定向耦合器设计、低通滤波器电路设计、输入输出匹配电路设计、混频器总电路特性测试:变频增益,隔离度、IF输出功率,输出频谱等
六.生成混频器的原理图
在原理图设计窗口中选择混频电路的工具栏,窗口左侧的工具栏变为右图所示,在工具栏中点击选择耦合线Mcfil,并在右侧的绘图区放置选择微带线MLIN ,以及控件MSUB 分别放置在绘图区中
选择画线工具将电路连接好,
混频器件参数后的原理图
设计完整的电路图
定向耦合器设计
七.观察仿真曲线。
混频器的ADS优化设计与仿真
混频器的ADS优化设计与仿真张翠芳【摘要】在射频系统中,混频器可以将较高频率的输入信号变换为较低频率的输出信号,以便对信号进行后续的调整和处理,一般通过混频二极管实现频率的变换。
文章主要采用ADS软件对接收电路中的混频部分进行性能上的优化设计,运用软件的HARMONICBALANCE仿真器中的参数扫描(Sweep)功能和扫描控制器进行仿真,得到三阶交调图和最理想的本振功率。
通过ADS对射频混频器的仿真,得到了混频器的一些重要性能指标,大大提高了设计效率,缩短设计周期,并对混频器的参数进一步优化,提高了混频器性能。
%The RF system, The mixer can transform the high frequency input signal into lower frequency output signal, In order to more easily to adjust and process signal. Usually by frequency mixing diode to transform frequency, this paper mainly use the ADS software to perform the mixing part of receiving circuit, Using the Scan (Sweep) function parameters of the HARMONIC and scanning controller to simulation, get the first three into the figure and the most ideal vibration power, improve the design efficiency greatly, shorten the design cycle, and the parameters of the mixer further optimization toimt~rove the. miY~r n~rf,~rm【期刊名称】《电子与封装》【年(卷),期】2011(011)010【总页数】3页(P28-30)【关键词】ADS;混频器;输出功率;驻波比【作者】张翠芳【作者单位】太原科技大学,太原030006【正文语种】中文【中图分类】TN62混频器是射频系统中用于频率变换的部件,具有广泛的应用领域,其具有可以将输入信号频率升高或降低而不改变原信号的特性。
混频器设计及仿真
,cos ,cos t V v t V v LO LO LO RF RF RF ωω==DL RF R R vi i +=-2232)(22141πω-+=-t K R R v i i LO DL RF实验名称:混频器设计及仿真一、实验目的1、理解和掌握二极管双平衡混频器电路组成和工作原理。
2、理解和掌握二极管双平衡混频器的各种性能指标。
3、进一步熟悉电路分析软件。
二、实验原理混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。
两个输入端分别为射频端RF 和本振LO 。
输出端称为中频端IF 。
基本原理图如图:本实验采用二极管环形混频器如图:由于RF LOV V >>,二极管主要受到大信号LO V 控制,四个二极管均按开关状态工作, 将二极管用开关等效,开关函数表示为:)(1t K LO ω,因此在LO v 正半周期间开关闭合,上下回路方程为:0)(,0)(233322=---+-=---+L D LO RF L D LO RF R i i R i v v R i i R i v v ,求得: , 与之相应的开关函数)(1t K LO ω,因此一般形式为: ,与之相应的开关函数)(1t K LO ω,因此一般形式为:,同理分析得在LO v 负半周期间有:专业:信息对抗(12083511) 学生姓名:刘美琪(12083103) 实验名称:混频器设计及仿真)(22132t K R R v i i L DL RFω+=-)(22132t K R R v i i L DL RFω+=-所以通过L R 的总电流为:...]3cos 34cos 4[cos 22)()(3241+-+-=---=t t t R R V i i i i i LO LO LO D L RF o ωπωπω所以知:双平衡混频器的输出电流中仅包括 的组合频率分量,而抵消了RF LO ωω,即p 为偶数的众多组合频率分量。
基于ADS的微波混频器设计与仿真
基于ADS的微波混频器设计与仿真赵晶亮;吕晶晶;赵永亮【期刊名称】《电子测试》【年(卷),期】2011(000)008【摘要】随着射频通信技术和微电子技术的迅速发展,微波混频器正广泛应用于移动通信、雷达、电子对抗及射频和微波电路等领域,其性能好坏直接影响到整个系统的性能。
根据微波混频器设计理论,在分析微波混频器原理的基础上,设计中心频率为5GHz单平衡微波混频器,完成单平衡混频器中3dB定向耦合器、低通滤波器、二极管和匹配网络电路设计。
阐述利用Agilent公司的ADS软件进行分析和优化设计该电路过程,仿真结果完全满足设计指标,对微波电路的噪声特性进行了分析,对微波混频器的设计研究有着重要的参考价值。
%With the RF communication technology and the rapid development of microelectronicstechnology,microwave mixers are widely used in mobile communications,radar,electronic warfare and radio frequency and microwave circuits and other fields,and its performance will affect the performance of the whole system.According to the design of microwave mixer theory,the analysis of microwave mixers based on the principle,the design center frequency of 5GHz single-balanced microwavemixer,complete the single-balanced mixers 3dB directional coupler,low-pass filter,diode,and Matching network circuit.Described using Agilent's ADS software to analyze and optimize the design of the circuitprocess,simulation results fully meet the design specifications of the noisecharacteristics of microwave circuits are analyzed,the design of microwave mixer has important reference value.【总页数】4页(P65-68)【作者】赵晶亮;吕晶晶;赵永亮【作者单位】中北大学信息探测与处理技术研究所,山西太原030051;中北大学信息探测与处理技术研究所,山西太原030051;中北大学信息探测与处理技术研究所,山西太原030051【正文语种】中文【中图分类】TN71【相关文献】1.基于ADS的微波低噪声放大器的设计与仿真 [J], 赵晶亮;陈娟;胡冠华2.基于ADS的S波段微带混频器的设计与仿真 [J], 刘静;石晓原;姜恒;胡向顺;辛军3.基于ADS的微波混频器设计分析 [J], 汤永康4.基于ADS宽带微波低噪声放大器设计与仿真 [J], 马翠红;靳伟超;陈宇擎;杨友良5.基于ADS的微波混频器设计 [J], 陶霞; 蔡雪芳; 杜顺勇因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混频器的设计与仿真设计题目:混频器的设计与仿真学生姓名:学院:专业:指导老师:学号:日期: 2011年12 月20 日目录一、射频电路与ADS概述 (3)1、射频电路概述 (3)2、ADS概述 (3)二、混频器的设计 (7)1.混频器的基本原理 (7)2、混频器的技术指标 (9)三、混频器的设计 (9)1、3 D B定向耦合器的设计 (9)1.1、建立工程 (9)1.2、搭建电路原理图 (10)1.3、设置微带线参数 (11)1.4、耦合器的S参数仿真 (12)2、完整混频器电路设计 (17)3、低通滤波器的设计 ................................................................ 2错误!未定义书签。
四、混频器性能仿真 (23)1、混频器功能仿真 (23)1.1、仿真原理图的建立 (23)1.2功能仿真 (25)2、本振功率的选择 (27)3、混频器的三阶交调点分析 (28)3.1、三阶交调点的测量 (28)3.2、三阶交调点与本振功率的关系 (31)4、混频器的输入驻波比仿真 (31)五、 设计总结 (33)一、 射频电路与ADS 概述1、 射频电路概述射频是指超高频率的无线电波,对于工作频率较高的电路,人们经常称为“高频电路”或“射频(RF )电路”或“微波电路”等等。
工程上通常是指工作频段的波长在10m ~ 1mm 或频率在30MHz ~ 300GHz 之间的电路。
此外,有时还含有亚毫米波( 1mm ~0.1mm 或300GHz ~ 3000GHz )等。
一方面,随着频率升高到射频频段,通常在分析DC 和低频电路时乐于采用的基尔霍夫定律、欧姆定律以及电压电流的分析工具,已不精确或不再适用。
分布参数的影响不容忽略。
另一方面,纯正采用电磁场理论方法,尽管可以很好的)()/(1038Hz f s m f c ⨯==λ全波分析和计及分布参数等的影响,但很难触及高频放大器、VCO、混频器等实用内容。
所以,射频电路设计与应用已成为信息技术发展的关键技术之一。
2、ADS概述ADS电子设计自动化(EDA软件全称为 Advanced Design System,是美国安捷伦(Agilent)公司所生产拥有的电子设计自动化软件;ADS功能十分强大,包含时域电路仿真 (SPICE-like Simulation)、频域电路仿真 (Harmonic Balance、Linear Analysis)、三维电磁仿真 (EM Simulation)、通信系统仿真(Communication System Simulation)和数字信号处理仿真设计(DSP);支持射频和系统设计工程师开发所有类型的 RF设计,从简单到复杂,从离散的射频/微波模块到用于通信和航天/国防的集成MMIC,是当今国内各大学和研究所使用最多的微波/射频电路和通信系统仿真软件软件。
2.1 ADS的仿真设计方法ADS软件可以提供电路设计者进行模拟、射频与微波等电路和通信系统设计,其提供的仿真分析方法大致可以分为:时域仿真、频域仿真、系统仿真和电磁仿真;ADS仿真分析方法具体介绍如下:2.1.1 高频SPICE分析和卷积分析(Convolution)高频SPICE分析方法提供如SPICE仿真器般的瞬态分析,可分析线性与非线性电路的瞬态效应。
在SPICE仿真器中,无法直接使用的频域分析模型,如微带线带状线等,可于高频SPICE仿真器中直接使用,因为在仿真时可于高频SPICE仿真器会将频域分析模型进行拉式变换后进行瞬态分析,而不需要使用者将该模型转化为等效RLC电路。
因此高频SPICE除了可以做低频电路的瞬态分析,也可以分析高频电路的瞬态响应。
此外高频SPICE也提供瞬态噪声分析的功能,可以用来仿真电路的瞬态噪声,如振荡器或锁相环的jitter。
卷积分析方法为架构在SPICE高频仿真器上的高级时域分析方法,藉由卷积分析可以更加准确的用时域的方法分析于频率相关的元件,如以S参数定义的元件、传输线、微带线等。
2.1.2 线性分析线性分析为频域的电路仿真分析方法,可以将线性或非线性的射频与微波电路做线性分析。
当进行线性分析时,软件会先针对电路中每个元件计算所需的线性参数,如S、Z、Y和H参数、电路阻抗、噪声、反射系数、稳定系数、增益或损耗等(若为非线性元件则计算其工作点之线性参数),在进行整个电路的分析、仿真。
2.1.3 谐波平衡分析( Harmonic Balance)谐波平衡分析提供频域、稳态、大信号的电路分析仿真方法,可以用来分析具有多频输入信号的非线性电路,得到非线性的电路响应,如噪声、功率压缩点、谐波失真等。
与时域的SPICE仿真分析相比较,谐波平衡对于非线性的电路分析,可以提供一个比较快速有效的分析方法。
谐波平衡分析方法的出现填补了SPICE的瞬态响应分析与线性S参数分析对具有多频输入信号的非线性电路仿真上的不足。
尤其在现今的高频通信系统中,大多包含了混频电路结构,使得谐波平衡分析方法的使用更加频繁,也越趋重要。
另外针对高度非线性电路,如锁相环中的分频器,ADS也提供了瞬态辅助谐波平衡(Transient Assistant HB)的仿真方法,在电路分析时先执行瞬态分析,并将此瞬态分析的结果作为谐波平衡分析时的初始条件进行电路仿真,藉由此种方法可以有效地解决在高度非线性的电路分析时会发生的不收敛情况。
2.1.4 电路包络分析(Circuit Envelope)电路包络分析包含了时域与频域的分析方法,可以使用于包含调频信号的电路或通信系统中。
电路包络分析借鉴了SPICE与谐波平衡两种仿真方法的优点,将较低频的调频信号用时域SPICE仿真方法来分析,而较高频的载波信号则以频域的谐波平衡仿真方法进行分析2.1.5 射频系统分析射频系统分析方法提供使用者模拟评估系统特性,其中系统的电路模型除可以使用行为级模型外,也可以使用元件电路模型进行习用响应验证。
射频系统仿真分析包含了上述的线性分析、谐波平衡分析和电路包络分析,分别用来验证射频系统的无源元件与线性化系统模型特性、非线性系统模型特性、具有数字调频信号的系统特性。
2.1.6 拖勒密分析(Ptolemy)拖勒密分析方法具有可以仿真同时具有数字信号与模拟、高频信号的混合模式系统能力。
ADS中分别提供了数字元件模型(如FIR滤波器、IIR滤波器,AND逻辑门、OR逻辑门等)、通信系统元件模型(如QAM调频解调器、Raised Cosine滤波器等)及模拟高频元件模型(如IQ编码器、切比雪夫滤波器、混频器等)可供使用。
2.1.7 电磁仿真分析(Momentum)ADS软件提供了一个2.5D的平面电磁仿真分析功能——Momentum (ADS2005A版本Momentum已经升级为3D电磁仿真器),可以用来仿真微带线、带状线、共面波导等的电磁特性,天线的辐射特性,以及电路板上的寄生、耦合效应。
所分析的S参数结果可直接使用于些波平衡和电路包络等电路分析中,进行电路设计与验证。
在Momentum电磁分析中提供两种分析模式:Momentum微波模式即Momentum和Momentum射频模式即Momentum RF;使用者可以根据电路的工作频段和尺寸判断、选择使用。
2.2 ADS的设计辅助功能ADS软件除了上述的仿真分析功能外,还包含其他设计辅助功能以增加使用者使用上的方便性与提高电路设计效率。
ADS所提供的辅助设计功能简介如下:2.2.1 设计指南(Design Guide)设计指南是藉由范例与指令的说明示范电路设计的设计流程,使用者可以经由这些范例与指令,学习如何利用ADS软件高效地进行电路设计。
目前ADS所提供的设计指南包括:WLAN设计指南、Bluetooth设计指南、CDMA2000设计指南、RF System设计指南、Mixer设计指南、Oscillator设计指南、Passive Circuits设计指南、Phased Locked Loop设计指南、Amplifier 设计指南、Filter设计指南等。
除了使用ADS软件自带的设计指南外,使用者也可以通过软件中的DesignGuide Developer Studio建立自己的设计指南。
2.2.2 仿真向导(Simulation Wizard)仿真向导提供step-by-step的设定界面供设计人员进行电路分析与设计,使用者可以藉由图形化界面设定所需验证的电路响应。
ADS提供的仿真向导包括:元件特性(Device Characterization)、放大器(Amplifier)、混频器(Mixer)和线性电路(Linear Circuit)。
2.2.3 仿真与结果显示模板(Simulation & Data Display Template)为了增加仿真分析的方便性,ADS软件提供了仿真模板功能,让使用者可以将经常重复使用的仿真设定(如仿真控制器、电压电流源、变量参数设定等)制定成一个模板,直接使用,避免了重复设定所需的时间和步骤。
结果显示模板也具有相同的功能,使用者可以将经常使用的绘图或列表格式制作成模板以减少重复设定所需的时间。
除了使用者自行建立外,ADS软件也提供了标准的仿真与结果显示模板可供使用。
2.2.3 电子笔记本(Electronic Notebook)电子笔记本可以让使用者将所设计电路与仿真结果,加入文字叙述,制成一份网页式的报告。
由电子笔记本所制成的报告,不需执行ADS软件即可以在浏览器上浏览。
2.3 ADS与其他EDA软件和测试设备间的连接由于现今复杂庞大的的电路设计,每个电子设计自动化软件在整个系统设计中均扮演着螺丝钉的角色,因此软件与软件之间、软件与硬件之间、软件与元件厂商之间的沟通与连接也成为设计中不容忽视的一环。
ADS软件与其他设计验证软件、硬件的连接简介如下:2.3.1 SPICE电路转换器(SPICE Netlist Translator)SPICE电路转换器可以将由Cadence、Spectre、PSPICE、HSPICE及Berkeley SPICE所产生的电路图转换成ADS使用的格式进行仿真分析、另外也可以将由ADS产生的电路转出成SPICE格式的电路,做布局与电路结构检查(LVS,Layout Versus Schematic Checking)与布局寄生抽取(Layout Parasitic Extraction)等验证。
2.3.2 电路与布局文件格式转换器(IFF Schematic and Layout Translator)电路与布局格式转换器提供使用者与其他EDA软件连接沟通的桥梁,藉由此转换器可以将不同EDA软件所产生的文件,转换成ADS可以使用的文件格式。