图形的初步认识知识点很全 配习题和答案
《图形认识初步》知识点
《图形认识初步》1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A 棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A 棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B 圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、 常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、 从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
例题:1、如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体的主视图和左视图:主视图 左视图例题:2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、 立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
图形的初步认识知识点及线段习题
⎧⎨⎩⎧⎨⎩图形的初步认识一、本章的知识构造图一、立体图形与平面图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形平面图形:三角形、四边形、圆等。
主〔正〕视图---------从正面看2、几何体的三视图侧〔左、右〕视图-----从左〔右〕边看俯视图---------------从上面看〔1〕会判断简单物体〔直棱柱、圆柱、圆锥、球〕的三视图。
〔2〕能根据三视图描述根本几何体或实物原型。
3、立体图形的平面展开图〔1〕同一个立体图形按不同的方式展开,得到的平现图形不一样的。
〔2〕了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体〔1〕几何图形的组成点:线和线相交的地方是点,它是几何图形最根本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
〔2〕点动成线,线动成面,面动成体。
例1 〔1〕如图1所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体。
〔2〕如图2所示,写出图中各立体图形的名称。
图1图2解:〔1〕①与d类似,②与c类似,③与a类似,④与b类似。
〔2〕①圆柱,②五棱柱,③四棱锥,④长方体,⑤五棱锥。
例2 如图3所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。
图3解:〔1〕左视图,〔2〕俯视图,〔3〕正视图练习1.以下图是一个由小立方体搭成的几何体由上而看得到的视图,小正方形中的数字表示该位置小立方块的个数,那么从正面看它的视图为〔〕3.如图,下面三个正方体的六个面按一样规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是〔〕A.蓝、绿、黑 B.绿、蓝、黑 C.绿、黑、蓝 D .蓝、黑、绿4.假设如下平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值。
5.一个物体从不同方向看的视图如下,画出该物体的立体图形。
人教版初中数学几何图形初步知识点总复习附答案
D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.
故选:B.
【点睛】
本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
【答案】C
【解析】
分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“时”相对的字是“奋”;
“代”相对的字是“新”;
“去”相对的字是“斗”.
故选C.
点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.
17.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()
A.是B.好C.朋D.友
【答案】A
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“我”与“是”是相对面,
“们”与“朋”是相对面,
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为4dm,圆柱高为2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=4+4=8,
∴AC=2 dm,
∴这圈金属丝的周长最小为2AC=4 dm.
故选D.
【点睛】
本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
《图形初步认识》的课后习题答案
《图形初步认识》的课后习题答案《图形初步认识》的课后习题答案数学网初中频道提供大量初中生学习资料,在第一时间更新初中资讯。
以下是人教版七年级数学上册课后练习题答案:第四章图形认识初步4.1 多姿多彩的图形4.1.1几何图形练习(二)1.(1)上面(2)正面(3)背面2.⑷ ⑹ ⑶4.1.2 点、线、面、体练习(一)1.其中是平面的是(1) (2) 是曲面的是(3)、(4)、(5)2.略习题4.11.第一排的图形从左至右的名称依次是:棱柱、球、圆柱、棱锥、圆锥2.球、棱柱、长方体、正方体、圆柱等基本几何体组成3.三角形、圆、五边形、长方形、半圆等基本平面图形组成4.A、从正面看B、从上面看B、从左面看D、从后面看E、从右面看5.从左到右,上排的第一个图形对应下排的第三个几何体;上排的第二个图形对应下排的第四个几何体;上排的第三个图形对应下排的第二个几何体;上排的第四个图形对应下排的第一个几何体。
6.除了上排的第三个图形外,其它的图形都可以折叠成一个正方体。
还可以画出其它的一些图形(画图略)7.第一个图主要由(长方体)组成;第二个图形由长方体、球体和圆柱体组成;第三个圆形由长方体、棱柱和梭锥组成;第四个图形主要由圆柱体组成。
8.略9.从不同的方位看,几何体的形状不同。
10.略11.(1)可能是a或b两个图形的侧面展开图;(2)可能是b或c两个图形的侧面展开图;(3)可能是a或a两个图形的侧面展开图。
12.从左到右依次可折叠成:圆柱五棱柱圆锥三棱柱13.能看到6个或7个小正方体14.略4.2直线、射线、线段练习 (一)略练习 (二)略习题 4.21.略2.画图略3.画图略4.画图略5.画图略6.提示:折叠时,使AB边与AC边重合:这是基本作法。
7.略8.(1)A、B两地间河道的长度变为最短。
(2)可使游人更长时间地、更好地领略湖面的风光,如果修一座直的桥,则桥的路程大缩短,即减少了游人在桥上行走的路程,其依据是:两点之间,线段最短。
专题15 图形的初步认识(归纳与讲解)(解析版)
专题15 图形的初步认识【专题目录】技巧1:活用判定两直线平行的六种方法技巧2:与相交线、平行线相关的四类角的计算技巧3:应用平行线的判定和性质的几种常用作辅助线的方法【题型】一、线段的中点【题型】二、角的计算【题型】三、与角平分线有关的相关计算【题型】四、余角与补角的相关计算【题型】五、对顶角相等进行相关计算【题型】六、邻补角相等求角的度数【题型】七、平行线的判定【题型】八、平行线的应用【题型】九、求平行线间的距离【考纲要求】1、了解直线、线段、射线的相关性质以及线段中点和两点间距离的意义.2、理解角的有关概念,熟练进行角的运算.3、掌握相交线与平行线的定义,熟练运用垂线的性质,平行线的性质和判定.【考点总结】一、直线、射线、线段与角【技巧归纳】技巧1:活用判定两直线平行的六种方法【类型】一、利用平行线的定义1.下面的说法中,正确的是()A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【类型】二、利用“同位角相等,两直线平行”2.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,试判断EC与DF是否平行,并说明理由.【类型】三、利用“内错角相等,两直线平行”3.如图,已知∠ABC=∠BCD,∠1=∠2,试说明BE∥CF.【类型】四、利用“同旁内角互补,两直线平行”4.如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.【类型】五、利用“平行于同一条直线的两条直线平行”5.如图,已知∠B=∠CDF,∠E+∠ECD=180°.试说明AB∥EF.【类型】六、利用“垂直于同一条直线的两条直线平行(在同一平面内)”6.如图,AB⊥EF于B,CD⊥EF于D,∠1=∠2.(1)试说明:AB∥CD;(2)试问BM与DN是否平行?为什么?参考答案1.C点拨:根据定义判定两直线平行,一定要注意前提条件:“同一平面内”,同时要注意在同一平面内,不相交的两条线段或两条射线不能判定其平行.2.解:EC∥DF,理由如下:∵∠ABC=∠ACB,∠1=∠2,∴∠3=∠ECB.又∵∠3=∠F,∴∠ECB=∠F.∴EC∥DF(同位角相等,两直线平行).3.解:因为∠ABC=∠BCD,∠1=∠2,所以∠ABC-∠1=∠BCD-∠2,即∠EBC=∠FCB,所以BE∥CF(内错角相等,两直线平行).4.解:AB∥CD,理由如下:延长BE,交CD于点F,则直线CD,AB被直线BF所截.因为∠BEC=95°,所以∠CEF=180°-95°=85°.又因为∠DCE=35°,所以∠BFC=180°-∠DCE-∠CEF=180°-35°-85°=60°.又因为∠ABE=120°,所以∠ABE+∠BFC=180°.所以AB∥CD(同旁内角互补,两直线平行).点拨:本题利用现有条件无法直接判断AB与CD是否平行,我们可考虑作一条辅助线,架起AB 与CD之间的桥梁.5.解:因为∠B=∠CDF,所以AB∥CD(同位角相等,两直线平行).因为∠E+∠ECD=180°,所以CD∥EF(同旁内角互补,两直线平行).所以AB∥EF(平行于同一条直线的两直线平行).6.解:(1)∵AB⊥EF,CD⊥EF,∴AB∥CD(在同一平面内,垂直于同一条直线的两直线平行).(2)BM∥DN.理由如下:∵AB⊥EF,CD⊥EF,∴∠ABE=∠CDE=90°.又∵∠1=∠2,∴∠ABE-∠1=∠CDE-∠2.即∠MBE=∠NDE,∴BM∥DN(同位角相等,两直线平行).点拨:∠1和∠2不是同位角,不能误认为∠1和∠2是同位角,直接得出BM∥DN,要得到BM∥DN,可说明∠MBE=∠NDE.技巧2:与相交线、平行线相关的四类角的计算【类型】一、利用平角、对顶角转换求角1.如图,已知直线AB,CD相交于点O,OA平分∠EOC,若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:由∠EOC∶∠EOD=2∶3,设∠EOC=2x°,则∠EOD=3x°.因为∠EOC+∠________=180°(____________),所以2x +3x =180,解得x =36.所以∠EOC =72°.因为OA 平分∠E OC(已知),所以∠AOC =12∠EOC =36°. 因为∠BOD =∠AOC(______________),所以∠BOD =________.【类型】二、利用垂线求角2.如图,已知FE ⊥AB 于点E ,CD 是过点E 的直线,且∠AEC =120°,则∠DEF =________°.3.如图,MO①NO 于点O ,OG 平分①MOP ,①PON =3①MOG ,则①GOP 的度数为________.4.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC ∶∠AOD =7∶11.(1)求∠COE 的度数;(2)若OF ⊥OE ,求∠COF 的度数.【类型】三、直接利用平行线的性质求角5.如图,已知AB ∥CD ,∠AMP =150°,∠PND =60°.试说明:MP ⊥PN.【类型】四、综合应用平行线的性质与判定求角6.如图,∠1与 ∠2互补,∠3=135°,则∠4的度数是( )A .45°B .55°C .65°D .75°7.如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.参考答案1.EOD ;平角的定义;对顶角相等;36° 2.303.54° 点拨:设∠GOP =x°,则∠MOG =x°,∠PON =3x°,由题意得x +x +3x =360-90,解得x =54.∴∠GOP =54°.4.解:(1)∵∠AOC ∠AOD =711,∠AOC +∠AOD =180°,∴∠AOC =70°,∠AOD =110°.又∵OE 平分∠BOD ,∴∠DOE =12∠DOB =12∠AOC =12×70°=35°.∴∠COE =180°-∠DOE =180°-35°=145°.(2)∵OF ⊥OE ,∴∠FOE =90°.又∵∠DOE =35°,∴∠FOD =90°-∠DOE =90°-35°=55°.∴∠COF =180°-∠FOD =180°-55°=125°.5.解:如图,过点P 向左侧作PE ∥AB ,则∠AMP +∠MPE =180°.∴∠MPE =180°-∠AMP =180°-150°=30°.∵AB ∥CD ,PE ∥AB ,∴PE ∥CD ,∴∠EPN =∠PND =60°.∴∠MPN =∠MPE +∠EPN =30°+60°=90°,[来源:学,科,网Z,X,X,K]即MP ⊥PN.6.A7.解:∵∠1=72°,∠2=72°,∴∠1=∠2.∴a∥b.∴∠3+∠4=180°.又∵∠3=60°,∴∠4=120°.技巧3:应用平行线的判定和性质的几种常用作辅助线的方法【类型】一、加截线(连接两点或延长线段相交)1.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°【类型】二、过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,求∠1的度数.b.“”形图3.(1)如图①,若AB∥DE,∠B=135°,∠D=145°.求∠BCD的度数.(2)如图①,在AB∥DE的条件下,你能得出∠B,∠BCD,∠D之间的数量关系吗?请说明理由.(3)如图②,AB∥EF,根据(2)中的猜想,直接写出∠B+∠C+∠D+∠E的度数.c.“”形图4.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?d.“”形图5.如图,已知AB∥DE,∠BCD=30°,∠CDE=138°,求∠ABC的度数.e.“”形图6.(1)如图,AB∥CD,若∠B=130°,∠C=30°,求∠BEC的度数;(2)如图,AB∥CD,探究∠B,∠C,∠BEC三者之间有怎样的数量关系?试说明理由.【类型】三、平行线间多折点角度问题探究7.(1)在图①中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图②中,若AB∥CD,又能得到什么结论?参考答案1.C2.解:方法一:过点P作射线PN∥AB,如图①.∵PN∥AB,AB∥CD,∴PN∥CD.∴∠4=∠2=28°.∵P N∥AB,∴∠3=∠1.又∵∠3=∠BPC-∠4=58°-28°=30°.∴∠1=30°.方法二:过点P作射线PM∥AB,如图②.∵PM∥AB,AB∥CD,∴PM∥C D.∴∠4=180°-∠2=180°-28°=152°.∵∠4+∠BP C+∠3=360°,∴∠3=360°-∠BPC-∠4=360°-58°-152°=150°.∵AB∥PM,∴∠1=180°-∠3=180°-150°=30°.3.解:(1)过点C向左作CF∥AB,∴∠B+∠BCF=180°.又∵AB∥DE,∴CF∥DE,∴∠FCD+∠D=180°,∴∠B+∠BCF+∠FCD+∠D=180°+180°,即∠B+∠BCD+∠D=360°,∴∠BCD=360°-∠B-∠D=360°-135°-145°=80°.(2)∠B+∠BCD+∠D=360°.理由如下:过点C向左作CF∥AB,∴∠B+∠BCF=180°.又∵AB∥DE,∴CF∥DE,∴∠FCD+∠D=180°,∴∠B+∠BCF+∠FCD+∠D=180°+180°,即∠B +∠BCD+∠D=360°.(3)∠B+∠C+∠D+∠E=540°.4.解:∠BCD=∠B-∠D.理由如下:如图,过点C作CF∥AB.∵CF∥AB,∴∠B=∠BCF(两直线平行,内错角相等).∵AB∥DE,CF∥AB,∴CF∥DE(平行于同一条直线的两条直线平行).∴∠DCF =∠D(两直线平行,内错角相等).∴∠B-∠D=∠BCF-∠DCF.∵∠BCD=∠BCF-∠DCF,∴∠BCD=∠B-∠D.点拨:已知图形中有平行线和折线或拐角时,常过折点或拐点作平行线,构造出同位角、内错角或同旁内角,这样就可利用角之间的关系求解了.5.解:如图,过点C作CF∥AB.∵AB∥DE,CF∥AB,∴DE∥CF.∴∠DCF=180°-∠CDE=180°-138°=42°.∴∠BCF=∠BCD+∠DCF=30°+42°=72°.又∵AB∥CF,∴∠ABC=∠BCF=72°.6.解:(1)过点E向左侧作EF∥AB,∴∠B+∠BEF=180°,∴∠BEF=180°-∠B=50°,又∵AB∥CD,且EF∥AB,∴EF∥CD,∴∠FEC=∠C=30°,∴∠BEC=∠BEF+∠FEC=50°+30°=80°.(2)∠B+∠BEC-∠C=180°.理由如下:过点E向左侧作EF∥AB,又∵AB∥CD,∴EF∥CD,∴∠FEC=∠C,又∵∠BEF=∠BEC-∠FEC,∴∠BEF=∠BEC-∠C.∵AB∥EF,∴∠B+∠BEF=180°,∠B+∠BEC-∠C=180°.7.解:(1)∠E+∠G=∠B+∠F+∠D.理由:过折点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,如图所示,由A B∥CD,得AB∥EM∥FN∥GH∥CD,这样∠1=∠B,∠2=∠3,∠4=∠5,∠6=∠D.因此∠BEF+∠FGD=∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D=∠B+∠EFG+∠D.(2)∠E1+∠E2+∠E3+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D.【题型讲解】【题型】一、线段的中点例1、如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为_____cm.【答案】1【提示】先根据中点定义求BC的长,再利用线段的差求CD的长.【详解】解:①C为AB的中点,AB=8cm,①BC=12AB=12×8=4(cm),①BD=3cm,①CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.【题型】二、角的计算例2、如图,直线m①n,直角三角板ABC的顶点A在直线m上,则①α的余角等于()A.19°B.38°C.42°D.52°【答案】D【解析】试题分析:过C作CD①直线m,①m①n,①CD①m①n,①①DCA=①FAC=52°,①α=①DCB,①①ACB=90°,①①α=90°﹣52°=38°,则①a的余角是52°.故选D.考点:平行线的性质;余角和补角. 【题型】三、与角平分线有关的相关计算例3、如图,AB ①CD ,①EFD =64°,①FEB 的角平分线EG 交CD 于点G ,则①GEB 的度数为( )A .66°B .56°C .68°D .58°【答案】D 【提示】根据平行线的性质求得①BEF ,再根据角平分线的定义求得①GEB . 【详解】 解:①AB①CD , ①①BEF+①EFD =180°, ①①BEF =180°﹣64°=116°; ①EG 平分①BEF , ①①GEB =58°. 故选:D .【题型】四、余角与补角的相关计算例4、如图,E 是直线CA 上一点,40FEA ∠=︒,射线EB 平分CEF ∠,GE EF ⊥.则GEB ∠=( )A .10︒B .20︒C .30D .40︒【答案】B 【提示】先根据射线EB 平分CEF ∠,得出①CEB=①BEF=70°,再根据GE EF ⊥,可得①GEB=①GEF -①BEF 即可得出答案. 【详解】 ①40FEA ∠=︒, ①①CEF=140°,①射线EB 平分CEF ∠, ①①CEB=①BEF=70°, ①GE EF ⊥,①①GEB=①GEF -①BEF=90°-70°=20°, 故选:B .【题型】五、对顶角相等进行相关计算例5、如图,AB 和CD 相交于点O ,则下列结论正确的是( )A .①1=①2B .①2=①3C .①1>①4+①5D .①2<①5【答案】A【提示】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案. 【详解】解:由两直线相交,对顶角相等可知A 正确; 由三角形的一个外角等于它不相邻的两个内角的和可知 B 选项为①2>①3, C 选项为①1=①4+①5,D 选项为①2>①5. 故选:A .【题型】六、邻补角相等求角的度数例6、如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .若40BOE ∠=︒,则AOC ∠的度数为( )A .40︒B .50︒C .60︒D .140︒【答案】B 【提示】已知OE CD ⊥,40BOE ∠=︒,根据邻补角定义即可求出AOC ∠的度数. 【详解】 ①OE CD ⊥ ①90COE ∠=︒ ①40BOE ∠=︒①180?180904050AOC COE EOB ∠=-∠-∠=︒-︒-︒=︒ 故选:B【题型】七、平行线的判定例7、如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ①b ,理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 【答案】B【提示】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:①由题意a①AB ,b①AB , ①①1=①2 ①a①b所以本题利用的是:同一平面内,垂直于同一条直线的两条直线平行, 故选:B .【题型】八、平行线的应用例8、如图,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若64EFG ∠=︒,则EGD ∠的大小是( )A .132︒B .128︒C .122︒D .112︒【答案】C【提示】利用平行线的性质求解FEB ∠,利用角平分线求解BEG ∠,再利用平行线的性质可得答案. 【详解】解://AB CD ,180,EFG FEB ∴∠+∠=︒ 64,EFG ∠=︒18064116,FEB ∴∠=︒-︒=︒EG 平分BEF ∠,58,FEG BEG ∴∠=∠=︒//AB CD180,BEG EGD ∴∠+∠=︒ 18058122.EGD ∴∠=︒-︒=︒故选C.【题型】九、求平行线间的距离例9、设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD 的距离是5cm,则AB与EF的距离等于_____cm.【答案】7或17.【提示】分两种情况讨论,EF在AB,CD之间或EF在AB,CD同侧,进而得出结论.【详解】解:分两种情况:①当EF在AB,CD之间时,如图:①AB与CD的距离是12cm,EF与CD的距离是5cm,①EF与AB的距离为12﹣5=7(cm).①当EF在AB,CD同侧时,如图:①AB与CD的距离是12cm,EF与CD的距离是5cm,①EF与AB的距离为12+5=17(cm).综上所述,EF与AB的距离为7cm或17cm.故答案为:7或17.图形的初步认识(达标训练)一、单选题1.如图所示,下列条件中能说明a b ∥的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=︒D .14180∠+∠=︒【答案】B【分析】利用平行线的判定定理对各选项进行分析即可.【详解】解:A .当①1=①2时,不能判定a ①b ,故选项不符合题意; B .当①3=①4时,①3与①4属于同位角,能判定a ①b ,故选项符合题意;C .当①2+①4=180°时,①2与①4属于同旁内角,能判定c ①d ,故选项不符合题意;D .当①1+①4=180°时,不能判定a ①b ,故选项不符合题意; 故选:B .【点睛】此题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用. 2.如图,a b ∥,143∠=︒,则2∠的度数是( )A .137°B .53°C .47°D .43°【答案】D【分析】根据两直线平行,同位角相等即可得. 【详解】解:1,43a b ∠=︒,2143∴∠=∠=︒,故选:D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键. 3.如图,若AB CD ,CD EF ,那么①BCE =( )A .180°-①2+①1B .180°-①1-①2C .①2=2①1D .①1+①2【答案】A【分析】先利用平行线的性质说明①3、①1、①4、①2间关系,再利用角的和差关系求出①BCE . 【详解】解:如图,①AB CD ,CD EF , ①①1=①3,①2+①4=180°, ①①4=180°-①2,①①BCE =①4+①3=180°﹣①2+①1. 故选:A .【点睛】本题主要考查了平行线的性质,掌握“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解决本题的关键.4.如图,AB CD ∥,GH 平分AGF ∠,166∠=︒,则2∠的度数为( )A .114︒B .66︒C .75︒D .57︒【答案】D【分析】根据平行的性质可得①1=①BGF ,则可求出①AGF ,再根据HG 平分①AGF ,即可求出①2. 【详解】①AB CD ∥,①1=66°, ①①1=①BGF =66°,①①AGF =180°-①BGF =180°-66°=114°, ①HG 平分①AGF ,①①2=12①AGF =114°×12=57°, 故选:D .【点睛】本题考查了平行线的性质、角平分线的性质,根据平行线的性质得到①1=①BGF 是解答本题的关键.5.如图,AB CD ,140CDE ∠=︒,则A ∠的度数为( )A .40︒B .50︒C .60︒D .140︒【答案】A【分析】根据补角的定义,两直线平行内错角相等,计算求值即可; 【详解】解:①AB ①CD , ①①A =①CDA ,①①CDA =180°-①CDE =180°-140°=40°, ①①A =40°, 故选:A .【点睛】本题考查了相交线和平行线,掌握平行线的性质是解题关键. 6.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .75︒B .105︒C .120︒D .135︒【答案】B【分析】利用直角三角形的两锐角互余先求出2∠和3∠的度数,再根据平角的定义求出4∠的度数,最后由平行线的性质即可得出答案. 【详解】解:如图, ①2906030∠=︒-︒=︒,3904545∠=︒-︒=︒,①41803045105∠=︒-︒-︒=︒, ①a b ∥,①14105∠=∠=︒. 故选:B .【点睛】本题考查平行线的性质,直角三角形的两锐角互余,平角的定义.关键是根据两直线平行,同位角相等进行解答.二、填空题7.如图,直线a b ∥,则1 的度数为______.【答案】30°##30度【分析】根据两直线平行,内错角相等,即可求解. 【详解】解:①a b ∥, ①①1=30°. 故答案为:30°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,内错角相等是解题的关键. 8.如图,AB ①CD ,点E 在CA 的延长线上.若①BAE =50°,则①ACD 的大小为 _____.【答案】130°##130度【分析】延长DC ,根据平行线的性质得①ECF =①BAE =50°,即可得. 【详解】解:如图所示,延长DC ,,①AB ①CD ,①①ECF =①BAE =50°,①①ACD =180°﹣①ECF =180°﹣50°=130°. 故答案为:130°.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质“两直线平行,同位角相等”.三、解答题9.已知,ABC ∠和DEF ∠中,AB DE ∥,BC EF ∥.试探究:(1)如图1,B 与E ∠的关系是______,并说明理由; (2)如图2,写出B 与E ∠的关系,并说明理由; (3)根据上述探究,请归纳得到一个真命题. 【答案】(1)B E ∠=∠,理由见解析 (2)180B E ∠+∠=︒,理由见解析(3)如果两个角的两边分别平行,那么这两个角相等或者互补【分析】(1)根据平行线的性质得出①B =①1,①1 =①E ,即可得出答案; (2)根据平行线的性质得出①B +①1 = 180°,①1=①E ,即可得出答案;(3)根据(1) (2)可推出,如果两个角的两边分别平行,那么这两个角相等或者互补. (1)解:B E ∠=∠,理由如下: 如下图,①AB ①DE , ①①B =①1, 又①BC ①EF , ①①1=①E , ①①B =①E ;故答案为:B E ∠=∠; (2)解:180B E ∠+∠=︒,理由如下: 如下图,①AB ①DE , ①①B +①1=180°, 又①BC ①EF , ①①E =①1, ①①B +①E =180°故答案为:180B E ∠+∠=︒; (3)解:由题意得:如果两个角的两边分别平行,那么这两个角相等或者互补.【点睛】本题主要考查平行线的性质、命题与证明,熟练掌握平行线的性质是解题的关键.图形的初步认识(提升测评)一、单选题1.如图,直线12l l ∥,等腰直角ABC 的两个顶点A 、B 分别落在直线1l 、2l 上,90ACB ∠=︒,若118∠=︒,则2∠的度数是( )A .35︒B .30C .27︒D .20︒【答案】C【分析】根据等腰直角三角形的性质可得45CAB ∠=︒,根据平行线的性质可得23∠∠=,进而可得答案.【详解】解:如图标记①3,ABC ∆是等腰直角三角形, 45CAB ∴∠=︒,12//l l ,23∴∠=∠, 118∠=︒,2451827∴∠=︒-︒=︒,故选:C .【点睛】此题主要考查了平行线的性质,等腰直角三角形的性质,解题的关键是掌握两直线平行,内错角相等,等腰直角三角形的性质.2.如图,ABD ∠为ABC ∆的外角,BE 平分ABD ∠,EB ∥AC ,65A ∠=︒,则EBD ∠的度数为( )A .50︒B .65︒C .115︒D .130︒【答案】B【分析】根据平行线的性质,得到65A EBA ∠=∠=︒,再根据BE 平分ABD ∠,即可得到EBD ∠的度数. 【详解】解:①EB ∥AC ,65A ∠=︒,65EBA ∴∠=︒,又BE 平分ABD ∠,65EBD EBA ∴∠=∠=︒,故选:B .【点睛】此题考查了平行线的性质:两直线平行内错角相等,以及角平分线的定义,熟记平行线的性质是解题的关键.3.如图,AB CD ∥,EF 交AB 、CD 于点E 、F ,FG 平分EFD ∠,若=70AEF ∠︒,则EGF ∠的度数为( )A .70︒B .35︒C .50︒D .55︒【答案】B【分析】根据平行线的性质,求出EFD ∠的度数,再根据角平分线的定义求出GFD ∠的度数,再由平行线的性质得出结论即可. 【详解】解:AB CD ,①==70AEF EFD ∠∠︒FG 平分EFD ∠交AB 于点G ,①11==?70=3522GFD EFD ∠∠︒︒AB CD ,==35∠∠︒EGF GFD故选:B.【点睛】本题考查平行线的性质:两直线平行,内错角相等,熟练掌握该性质是解决本题的关键.4.将一副直角三角尺按如图所示放置(其中①GEF=①GFE=45°,①H=60°,①EFH=30°),满足点E在AB上,点F在CD上,AB①CD,①AEG=20°,则①HFD的大小是()A.70°B.40°C.35D.65°【答案】C【分析】由角的和差可求解①AEF的度数,结合平行线的性质可求解①EFD的度数,利用三角形的内角和定理可求解①EFH的度数,进而可求解.【详解】解:①①AEG=20°,①GEF=45°,①①AEF=20°+45°=65°,①AB①CD,①①EFD=①AEF=65°,①①EFH=30°,①①HFD=65°﹣30°=35°.故选:C.【点睛】本题主要考查平行线的性质,求解①EFD的度数是解题的关键.5.如图,已知直线a,b,c,d中,c a⊥,直线b,c,d交于一点,若236⊥,c b∠等∠=︒,则1于()A.34︒B.36︒C.56︒D.54︒【答案】D【分析】首先根据同一平面内垂直于同一条直线的两条直线平行,得出a,b互相平行,再运用平行线的性质,得出13∠=∠,再根据平角定义,可得出2390∠+∠=︒,结合已知可求出1∠的度数. 【详解】如图,①c a ⊥,c b ⊥, ①a b ∥ ①13∠=∠ ①c b ⊥ ①490∠=︒①234180∠+∠+∠=︒, ①2390∠+∠=︒, ①1290∠+∠=︒ ①236∠=︒①190254∠=︒-∠=︒. 故选:D【点睛】本题主要考查了平行线的性质与判定,垂直定义和平角定义,熟练掌握平行线的性质与判定是解本题的关键.二、填空题6.已知12l l ∥,一个含有30角的三角尺按照如图所示的位置摆放,若165∠=︒,则2∠=__________度.【答案】25【分析】先利用平行线的性质得出13∠=∠,24∠∠=,最后利用直角三角形的性质即可.【详解】解:如图,过直角顶点作直线1//l l ,12//l l ,12////l l l ∴,13∠∠∴=,24∠∠=, 3490∠+∠=︒,2190∴∠+∠=︒,又165︒∠=,2906525∴∠=︒-︒=︒.故答案为:25.【点睛】此题主要考查了平行线的性质,三角板的特征,解题的关键是作出辅助线,是一道基础题目. 7.如图所示,AB CD ∥,点E 在CD 上,BE DF ⊥,垂足为B ,已知34BED ∠=︒,则ABF ∠的度数为________.【答案】56°【分析】先根据平行线的性质求出①ABE 的度数,然后根据角的和差关系求①ABF 度数即可. 【详解】解:①AB CD ∥, ①①ABE =①BED =34°, ①BE DF ⊥,即①EBF =90°, ①①ABF =①EBF -①ABE =90°-34°=56°. 故答案为:56°.【点睛】本题考查了平行线的性质,角的和差与垂直的定义,解题的关键是根据平行线的性质求出①ABE 的度数.三、解答题8.(1)课题研究:“尺规作图:过直线外一点作这条直线的平行线”.做法一:①以B为圆心,任意长为半径作弧,分别交AB,BC于点E,F;①以C为圆心,BE长为半径作弧,交BC的延长线于点M;①再以M为圆心,EF长为半径作弧,与前弧交于点N;①连接CN,则CN AB∥.做法二:①以A为圆心,BC长为半径作弧;①以C为圆心,AB长为半径作弧;两弧交于点D,连接CD;则CD AB∥.请根据以上作法,写出这两种方法用到的数学定理或基本事实:(各写出一个即可)做法一:____________________________________做法二:____________________________________(2)如图,ABCD中,DE BF,请你再加一个条件,使四边形AECF为菱形,并证明.【答案】(1)做法一:同位角相等,两直线平行做法二:两组对边分别相等的四边形是平行四边形(2)AF=FC,见解析【分析】(1)利用平行线的判定定理,平行四边形的判定定理即可.(2)根据平行四边形的性质,菱形的判定定理解答即可.【详解】(1)做法一:同位角相等,两直线平行.做法二:两组对边分别相等的四边形是平行四边形.(2)添加条件:AF=FC,理由如下:① 四边形ABCD是平行四边形,①AB=CD,AB∥CD,①DE=BF,①EC=AF,AF∥CE,①四边形AFCE是平行四边形,① FC=AF,①四边形AFCE是菱形.【点睛】本题考查了平行线的判定,平行四边形的判定,菱形的判定,熟练掌握各种判定定理是解题的关键.。
图形的初步认识分章节含答案
第一节多姿多彩的图形(一)一. 本周教学内容:多姿多彩的图形(一)二. 教学目标:(1)会辨认基本几何体(直棱柱、圆柱、圆锥、球等);(2)了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;(3)能想象基本几何体的截面形状;(4)会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型;(5)能从丰富的现实背景中抽象出空间几何体和基本平面图形,进一步认识点、线、面。
三. 教学过程:立体图形:1)像长方体、正方体、球体、圆柱体、圆锥体等都是立体图形。
2)还有一些立体图形:帐篷、螺母给我们的形象是棱柱的形象,金字塔给我们的形象是棱锥的形象。
棱柱、长方体、正方体的关系:3)认识简单的常见平面图形,如三角形、四边形、五边形等多边形和圆。
会判断一个复杂的平面图形中包含了哪些简单图形。
4)从观察到的实物中常见立体图形:柱体包括圆柱和棱柱;锥体包括圆锥和棱锥;及球体5)平面图形:像长方形、正方形、三角形、圆等图形都是平面图形。
6)由几个立方体组成正多面体,如:正八面体,正二十面体。
7)展开图:许多立体图形是由一些平面图形围成的,将它们适当剪开就可以展开成平面图形。
【典型例题】例1:填空:(1)长方体、正方体都有个面,长方体的6个面可能都是形,也有可能都有2个面是形,它的面完成相同。
答:6个面,长方形,正方形,对(2)正方体的6个面都是形,6个面的面积是。
答:正方形,相等(3)圆柱的上、下底面是;(4)圆锥的底面是答:圆,圆例2:填空:(1)三棱柱的上、下底面是;侧面是。
答:三角形,四边形(2)四棱柱的上、下底面是;侧面是。
答:四边形四边形例3:一个三棱柱的底面边长为acm,侧棱长为bcm。
(1)这个三棱柱共有几个面?它们分别是什么形状?哪些面的形状、面积完全相同? (2)这个三棱柱共有多少条棱,它们的长度分别是多少?答:(1)5个面,其中3个侧面是长方形,两个底面是三角形,两个底面形状完全相同,三个侧面形状完全相同。
第六章图形的初步认识答案
(3) 了解学生在教室内的测量实践活动,及时纠正一些不正确的操作. (4) 在适当的时候组织学生相互交流户外测量的案例. 6.5角与角的度量课内练习: 做一做: 1.
(1) 180个. (2) ∠A为53°,∠B为91°多,可见角度的单位光有度还不够,应
当有更小的单位. 课内练习: 1. 图中有3个角,它们分别是∠α,∠1,∠AOB. 2. (1) 121°22′48″.(2) 10°45′. 3. (1) 50.675°.(2) 118.345°. 4. (1) 82°17′.(2) 51.8°. 作业题: 1.平角,周角. 2.(1) 65°30′.(2) 121°20′24″. 3. (1) 72.2°.(2) 100.7°. 4. (1) 110°0′0″.(2) 62.8°. 5. 图中有8个角,它们是:∠A, ∠ABC, ∠α, ∠β,∠C,∠2, ∠1,∠ADC. 6.6角的大小比较 做一做: (1) ∠A=∠B.(2) ∠P>∠Q.(3) ∠Q<∠A<∠C. 课内练习: 1. 量得∠α=70°,∠β=75°,∴ ∠β>∠α. 2. ∠BAC>∠ADB>∠BAD=∠CAD,其中锐角有∠BAD,∠CAD, 直角有∠ADB,钝角有∠BAC. 作业题: 1. 不相等.因为12.30°=12°18′<12°30′. 2. ∠B<∠A<∠C,可用量角器量出度数得到,也可以把它们剪下来 用叠合法比较得到. 3. 略.
4. 略. 5. ∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD.∠AOB= ∠COD<∠BOC<∠AOC=∠BOD<∠AOD.其中锐角有∠AOB, ∠COD,∠BOC,直角有∠AOC,∠BOD,钝角有∠AOD. 6. 9:00时针与分针所成的角α为90°的角;3:30时针与分针所成的角β 为75°的角;6:40时针与分针所成的角γ为40°的角.∠γ<∠β<∠α. 6.7角的和差 做一做: ∠AOC;110°;∠AOB;30°;∠AOB;80°. 课内练习:
初中数学几何图形初步知识点总复习附答案
【答案】C
【解析】
【分析】
根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点
【详解】
解:A、AC=BC,则点C是线段AB中点;
B、AB=2AC,则点C是线段AB中点;
C、AC+BC=AB,则C可以是线段AB上任意一点;
A. B.
C. D.
【答案】A
【解析】
【分析】
设正六棱柱的底面边长为acm,高为hcm,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a=2,h=9− ,再根据六棱柱的侧面积是6ah求解.
【详解】
解:设正六棱柱的底面边长为acm,高为hcm,
如图,正六边形边长AB=acm时,由正六边形的性质可知∠BAD=30°,
8.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()
A. B.
C. D.
【答案】A
【解析】
【分析】
将展开图折叠还原成包装盒,即可判断正确选项.
【详解】
解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;
B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;
C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;
∴∠ACD=38°,
∴∠2=∠BCD=60°﹣38°=22°,
故选:B.
【点睛】
本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.
14.如图, 为等边三角形,点 从A出发,沿 作匀速运动,则线段 的长度y与运动时间x之间的函数关系大致是()
A析】
【分析】
根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.
第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)
第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。
4.几何图形的结构:点、线、面、体组成几何图形。
点是构成图形的基本元素。
4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。
2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。
(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。
简述为,两点确定一条直线。
(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。
(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。
(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。
(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。
(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
4.线段:直线上两点和它们之间的部分叫做线段。
(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。
(3)线段的基本性质:两点的所有连线中,线段最短。
图形认识初步中考复习知识点及典型例题(含答案解析)
图形认识初步-中考复习知识点及典型例题知识网络结构图重点题型总结及应用题型一计算几何图形的数量1.数直线条数例1 已知n(n≥2)个点P1,P2,P3,…,P n在同一平面上,且其中没有任何三点在同一直线上.设S n 表示过这n个点中的任意2个点所作的全部直线的条数,显然,S2=1,S3=3,S4=6,S6=10,…,由此推断,S n=.答案:(1)2n n-点拨经过第一个点可以引出(n-1)条直线,经过第二个点可以新引出(n-2)条直线,经过第三个点可以新引出(n-3)条直线,...,所以n个点一共可以引出S n=(n-1)+(n-2)+(n-3)+ (1)(1)2n n-条直线.2.数线段条数例2 如图4—4—1所示,C、D为线段AB上的任意两点,那么图有多少条线段?解:按照从左到右的顺序去数线段条数,以A为一个端点的线段有3条:AC、AD、AB;以C为一个端点的新线段有2条:CD、CB;以D为一个端点的新线段有1条:DB.所以共有线段3+2+1=6(条).点拨线段的条数与线段上固定点(包含线段两个端点)的个数有紧密联系,线段上有n个点(包含线段两个端点)时,共有线段(1)2n n-条.例3 小明在看书时发觉这样一个问题:在一次聚会中,共有6人参加,如果每两人都握一次手,共握几次手呢?小明通过认真思考得出了答案.为了解决一般问题,小明设计了以下图表进行探究:参加人数 2 3 4 5 …握手示意图握手次数 1 2+1=3 3+2+1=6 4+3+2+1=10…请你依据上面图表归纳出参加人数与握手次数之间关系的一般结论.分析:此题研究的是握手次数问题,但可以将此问题转化成研究平面上的点构成线段的条数问题.这里把每个人看作一个点,依据图表中的信息,通过探究推理可得到问题的答案.解:假设有6人参加,则共握手15次.结论:假设有n(n≥2,且n为整数)人参加,则共握手(n-1)+(n-2)+(n-3)+…+4+3+2+1=(1)2n n-(次).点拨解决此类问题的关键是将实际问题抽象转化为平面图形的具体计数问题。
几何图形初步的知识点与练习题
几何图形初步一.几何图形有棱柱、圆柱、棱锥、圆锥、球、直线、三角形、圆、……等等.这是一个长方体的纸盒,它有两个面是正方形,其余各面是长方形.从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?长方体、圆柱、圆锥、球、圆、线段、点、三角形、四边形等,都是从形形色色的物体外形中得出的.我们把这些图形称为几何图形.立体图形:长方体、正方体、球、圆柱、圆锥等它们的各部分不都在同一平面内,它们是立体图形.平面图形:线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形.立体图形与平面图形的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形.如长方体的侧面是长方形.1.从不同方向看立体图形对于一些立体图形,我们常常把它们转化为平面图形来研究.从正面看到的平面图形叫主视图,从左面看到的平面图形叫左视图,从上面看到的平面图形叫俯视图.2.立体图形的展开有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.3.点、线、面、体像长方体、正方体、圆柱体、圆锥体、球体、棱锥体等都是几何体,简称体;包围着体的是面,面有平面和曲面两种;面与面相交的地方形成线,线有直线和曲线两种;线与线相交的地方是点.从静态的一面看:体是由面围成的,面与面相交成线,线与线相交成点.从动态的一面看:点动成线,线动成面,面动成体.二.直线、射线、线段1、直线经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示.平面上一个点与一条直线的位置有什么关系?①点在直线上;②点在直线外.一个点在一条直线上,也可以说这条直线经过这个点,一个点在直线外,也可以说这条直线不经过这个点.当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点.2、射线和线段直尺给我们线段的形象,手电筒发出的光给我们射线的形象,射线和线段都是直线的一部分.图①中的线段记作线段AB或线段a;图②中的射线记作射线OA或射线m.注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面.直线、射线和线段有什么联系和区别联系:线段、射线都是直线的一部分,将线段向一端延长得到射线,向两端延长得到直线,将射线向另一方向延长得到直线,它们都有“直”的特征,它们都可以用一个小写字母或两个大写字母来表示.区别:直线没有端点,射线有一个端点,线段有两个端点;直线可以向两个方向延伸,射线可以向一个方向延伸,线段不能再延伸;表示直线和线段的两个大写字母可以交换位置,而表示射线的两个大写字母不能交换位置.例已知线段a、b,求作线段AB=a+b解:(1)作射线AM;(2)在AM上顺次截取AC=a,CB= b. 则AB= a+b为所求。
专题十五 图形的初步认识-知识点与题型全解析(解析版)
15 图形的初步认识考点总结【思维导图】【知识要点】知识点一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
立方体图形平面展开图1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.2.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.【答案】B【解析】试题解析:A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,可得B选项正确;C.正方体的展开图中,不存在“田”字形,故C选项错误;D.圆锥的展开图中,有一个圆,故D选项错误.故选B.3.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【答案】B【解析】根据三棱柱的展开图的特点进行解答即可:A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误。
故选B。
4.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】解:观察图形可知,这个几何体是三棱柱.故选:A.5.下列几何体中,是圆柱的为()A.B.C.D.【答案】A【解析】A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选A.题型一判断被截几何体截面的形状例1.在下列几何体中,截面不是等腰梯形的是()A.圆台B.圆柱C.正方体D.三棱柱【答案】B【解析】A、根据圆台的定义,即以直角梯形垂直于底边的腰所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.那么它的截面一定是等腰梯形,故本选项不符合;B、根据圆柱的定义,即以矩形的一边所在的直线为旋转轴旋转而成,则它的截面一定是矩形,故本选项符合;C、正方体的截面可能是三角形、四边形、五边形、六边形,四边形中可能是等腰梯形,故本选项不符合;D、三棱柱的截面可能是等腰梯形,故本选项不符合,故选B.跟踪训练一1.用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱C.圆柱D.圆锥【答案】D【解析】用平面去截圆锥,截面的形状是不可能长方形,故选D.2.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.【答案】D【解析】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯放倒可得到C选项的形状,不能得到三角形的形状,故选.3.一个四棱柱被一刀切去一部分,剩下的部分可能是()A.四棱柱B.三棱柱C.五棱柱D.以上都有可能【答案】D【解析】三棱柱、四棱柱、五棱柱都有可能.故选D4.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④【答案】B【解析】①正方体的截面是三角形时,为锐角三角形,正确;②正四面体的截面不可能是直角三角形,不正确;③正方体的截面与一组平行的对面相交,截面是等腰梯形,不正确;④若正四面体的截面是梯形,则一定是等腰梯形,正确.故选:B.三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。
几何图形初步(知识点总结、例题解析)
第四章几何图形初步4.1 几何图形一、知识考点知识点1【平面图形、立体图形】1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各部分都在同一平面内的图形,如线段、三角形等。
(2)立体图形:图形所表示的各部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形①球体(图1)②柱体:圆柱(图2)、棱柱(图3、图4)③椎体:圆锥(图5)、棱锥(图6、图7)、④多面体:由四个或四个以上多边形所围成的立体(图8)图8知识回顾:圆柱:是由两个大小相等、相互平行的圆形(底面)以及连接两个底面的一个曲面(侧面)围成的几何体。
棱柱:指上下底面平行且全等,侧棱平行且相等的封闭几何体棱锥:由多边形各个顶点向它所在的平面外一点依次连直线段而构成3、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
(4)线段、角、直线4、从不同方向观察立体图形从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、左视图),这样就可以把立体图形转化为平面图形。
【例题 1】观察如图所示图形并填空.如图中,圆柱是________,棱柱是________,圆锥是________,棱锥是________,圆台是________,棱台是________,球体是________.【解析】考察常见的立体图形。
【答案】圆柱是④,棱柱是③⑤⑥,圆锥是①⑦,棱锥是②,圆台是⑨,棱台是⑩,球体⑧。
【例题 2】讲台上放着一个圆锥和一个正方体(如图)请说明下面的三幅图分别是从哪个方向看到的。
(1)从______面看到的平面图形;(2)从______面看到的平面图形;(3)从______面看到的平面图形。
【解析】考察大家从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、左视图),这样就可以把立体图形转化为平面图形。
图形的初步认识
图形的初步认识知识点考点一、直线、射线和线段1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念:直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念:直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
专题04 几何图形的初步认识(1)解析版
专题04 几何图形的初步认识(1)考点1:认识立体图形1.下列几何体中,是棱锥的为()A.B.C.D.【答案】D【解析】选项中的四个几何体的名称分别为:圆柱,圆锥,四棱柱,四棱锥,故选:D.2.下列几何体都是由平面围成的是()A.圆柱B.圆锥C.四棱柱D.球【答案】C【解析】圆柱的侧面是曲面,圆锥的侧面也是曲面,球是有曲面围成的,只有四棱柱是由6个平面围成的,故选:C.3.小华用一罐黑漆和一罐白漆来漆一些立方体积木,他打算把这些立方体的每一面漆成单一的黑色或白色,如图1和图2是两种不同的漆法,但图2可以经过翻折得到图3,所以图2和图3是相同的漆法,那么他能漆成互不相同的立方体的种数是()A.10种B.8种C.9种D.6种【答案】A【解析】由题意可得:他能漆成互不相同的立方体的种数是10.故选:A.4.把一支新的圆柱形铅笔削出笔尖,笔尖(圆锥部分)的体积是削去部分的()A.B.C.D.2倍【答案】C【解析】根据题干分析可得:圆柱与圆锥的体积之比是3:1,则笔尖(圆锥部分)的体积是削去部分的.故选:C.5.一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了________cm3.【答案】(10a2+80a).【解析】长方体原体积为:4×4×10=160cm3.底面边长增加acm后,边长为(4+a)cm,体积为:10(4+a)2=(10a2+80a+160)cm3.体积增加为:10a2+80a+160﹣160=10a2+80a.6.观察如图所示的长方体,用符号(“∥”或“⊥”)表示下列两棱的位置关系:AD________BC,AB________AA1,AB________C1D1.【答案】∥,⊥,∥.【解析】在平面A﹣B﹣C﹣D中,直线AD、BC无公共点,因此AD∥BC,在平面A﹣B﹣A1﹣B1中,直线AB、AA⊥相交成直角,因此AB⊥AA1,AB和C1D1是异面直线,根据异面直线的位置关系可得AB∥C1D1,7.如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为________.(结果保留π)【答案】200π.【解析】设球的半径为r,根据题意得:三个球的体积之和=3×πr3=4πr3,圆柱体盒子容积=πr2•6r=6πr3,=,300π×=200π.答:三个球的体积之和是200π.8.在一个圆柱形水桶里,垂直放入一段半径是3cm的圆柱形钢材.如果把钢材全部侵入水中,桶里的水面上升10cm;如果再把钢材垂直露出水面6cm,桶里的水面下降4cm.(π取3.14)(1)整段钢材的体积是多少?(2)若把整段钢材全部用来锻造底面直径为2cm,高为3cm的圆锥形零件,一共可以锻造多少个这样的圆锥形零件?(假定锻造过程中无任何损耗)【答案】见解析【解析】(1)整段钢材的高为:10×(6÷4)=15(cm),整段钢材的体积为:3.14×32×15=423.9(cm3),答:整段钢材的体积是423.9立方厘米;(2)每个圆锥形零件的体积为,锻造锥形零件的个数为:423.9÷3.14=135(个).答:一共可以锻造135个这样的圆锥形零件.考点2:几何体的表面积1.一个正方体体积为125立方厘米,则这个正方体的表面积为()平方厘米.A.45B.125C.150D.175【答案】C【解析】设正方体的棱长是xcm,则x3=125,即x=5,正方体的表面积是6×52=150(cm2).故选:C.2.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变【答案】B【解析】根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和底面半径为边长的长方形的面积,所以表面积变大了.故选:B.3.由7个相同的棱长为1的小立方块搭成的几何体如图所示,它的表面积为()A.23B.24C.26D.28【答案】D【解析】它的表面积=5+5+5+5+3+3+2=28.故选:D.4.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm2【答案】C【解析】六棱柱的侧面积为:4×5×6=120(cm2).故选:C.5.如果一个大正方体的体积是小正方体体积的27倍,那么这个大正方体的表面积是小正方体表面积的________倍.【答案】9.【解析】设小正方体的棱长为a,∵大正方体的体积是小正方体体积的27倍,∴大正方体的棱长是小正方体棱长的3倍,为3a,∴小正方体的表面积是6a2,大正方体的表面积是(3a)2×6=54a2,∵54a2÷6a2=9然后进行比较即可.∴这个大正方体的表面积是小正方体表面积的9倍,6.制作一节圆柱形铁皮通风管长24米,底面直径是0.2米,需铁皮________平方米.【答案】.【解析】∵圆柱的侧面积=24×π×0.2=(平方米),∴需铁皮平方米,7.六个棱长为2的正方体叠在一起,成为一个长方体,则这个长方体的表面积是________.【答案】88或104.【解析】①6×1×1拼法:2×6=12(厘米),12×2×4+2×2×2=104;②3×2×1拼法:长是3×2=6,宽是2×2=4,(6×4+6×2+4×2)×2=44×2=88.8.冰融化成水后,体积减少,现有一块冰,融化成水后体积为180cm3.(1)这块冰的体积是多少?(2)有一种饮料瓶,瓶身是圆柱形(不包括瓶颈),如果把融化后的180cm3的水倒人瓶子,瓶颈向上正放时(如图①)水面高度是20cm,瓶颈向下倒放时(如图②)空余部分的高度是4cm,求饮料瓶的容积是多少毫升?(3)如果把融化后的180cm3的水倒入大圆柱形空杯中,大空杯底面积36.28cm2.现把一个圆柱形小杯放入大杯内,小杯底面半径2cm,高6cm.通过计算判断杯内的水是否会流入小杯内,如果流入小杯,求小杯内水面高度;如果没流入小杯,求此时大杯内水面高度.(说明:大杯的高足够高;小杯放入大杯后,假设底面重合)【答案】见解析【解析】(1)180÷(1﹣)=200(cm3),答:这块冰的体积是200cm3;(2)180÷20=9(cm2),9×4=36(cm3),180+36=216(cm3)=216(毫升),答:饮料瓶的容积是216毫升;(3)水会流入小杯内,此时小杯内水面高度为3cm,理由如下:小杯底面积:2×2×π=12.56(cm2),则12.56×6=24π(cm3),36.28×6=217.68(cm3),∴217.68﹣75.36=142.32(cm3),∵180>142.32,∴水会流入小杯内,∴小杯内水面高度==3(cm),答:小杯内水面高度为3cm.考点3:认识平面图形1.一个圆的周长是10π,它的面积是()A.25πB.5πC.100πD.10π【答案】A【解析】设圆的半径为r,∵圆的周长为10π,∴2πr=10π,即r=5,则圆的面积S=πr2=25π.故选:A.2.用圆规画圆的过程中,把圆规的两脚分开,定好两脚间的距离是3cm,则该圆的直径是()cm.A.1.5B.3C.4.5D.6【答案】D【解析】∵把圆规的两脚分开,定好两脚间的距离是3cm,∴该圆的直径是6cm,故选:D.3.在一个长4cm,宽2cm的长方形内画一个最大的圆,这个圆的面积是()cm2.A.9.42B.50.24C.3.14D.12.56【答案】C【解析】∵在一个长4cm,宽2cm的长方形内画一个最大的圆,∴圆的直径为2cm,∴这个圆的面积是:π×12=π=3.14,故选:C.4.在一个长8厘米,宽7厘米的长方形里面画一个最大的圆,圆规两脚之间的距离是()厘米.A.7B.4C.3.5D.3【答案】C【解析】∵在一个长8厘米,宽7厘米的长方形里面画一个最大的圆,∴这个最大的圆的直径=长方形的宽7厘米,∴圆规两脚之间的距离是=3.5(厘米),故选:C.5.如图:已知小正方形的面积是16平方厘米,则圆的面积是________平方厘米.【答案】50.24【解析】因为小正方形的面积是16平方厘米,所以小正方形的边长是4厘米,即圆的半径是4厘米,所以S=πr2=16π(平方厘米)≈50.24(平方厘米).6.若圆规的两脚分开后,两脚间的距离为3厘米,则圆规所画的圆的面积为________.【答案】9π平方厘米.【解析】由题意得,圆的半径r=3cm,∴S=πr2=π×32=9π(cm2)7.如图所示,阴影部分的面积是大长方形面积的,是小长方形面积的,则大长方形空白的面积是小长方形空白的面积的________.【答案】.【解析】设阴影部分的面积是a,则大长方形面积是a=6a,小长方形面积是a=4a,∴大长方形空白的面积是小长方形空白的面积的=,8.如图、把一个圆分成四个扇形,求出四个扇形的圆心角(按照从大到小排序).【答案】见解析【解析】因为一个圆周角为360°,所以分成的四个扇形的圆心角分别是:360°×40%=144°360°×25%=90°360°×20%=72°360°×15%=54°考点4:直线的性质:两点确定一条直线1.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线【答案】D【解析】A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.2.平面上有A、B、C三点,经过任意两点画一条直线,可以画出直线的数量为()A.1条B.3条C.1条或3条D.无数条【答案】C【解析】①如果三点共线,过其中两点画直线,共可以画1条;②如果任意三点不共线,过其中两点画直线,共可以画3条.故选:C.3.已知A、B、C三点,过其中任意两点画直线,一共可以画多少条直线()A.1B.3C.3或1D.无数条【答案】C【解析】如图最多可以画3条直线,最少可以画1条直线;.故选:C.4.经过A、B两点可以确定几条直线()A.1条B.2条C.3条D.无数条【答案】A【解析】经过A、B两点可以确定1条直线.故选:A.5.数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为________.【答案】两点确定一条直线.【解析】两端两个树坑的位置,可看做两个点,根据两点确定一条直线,即可确定一行树所在的位置.6.当我们排课桌时,经常在最前面和最后面的课桌旁拉一条直线,才能使课桌排成一行,这种做法的数学依据是________.【答案】两点确定一条直线.【解析】当我们排课桌时,经常在最前面和最后面的课桌旁拉一条直线,才能使课桌排成一行,这种做法的数学依据是两点确定一条直线.7.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是________.【答案】两点确定一条直线.【解析】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.8.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定6条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C 筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?【答案】见解析【解析】(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.考点5:直线、射线、线段1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外【答案】A【解析】如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上【答案】A【解析】将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD上(C、D之间),故选:A.3.如图,图中共有()条线段.A.1B.2C.3D.4【答案】C【解析】图中共有3条线段:线段AC、CB、AB.故选:C.4.下列叙述正确的是()A.线段AB可表示为线段BA B.射线AB可表示为射线BAC.直线可以比较长短D.射线可以比较长短【答案】A【解析】A、线段AB可表示为线段BA,此选项正确;B、射线AB的端点是A,射线BA的端点是B,故不是同一射线,此选项错误;C、直线不可以比较长短,此选项错误;D、射线不可以比较长短,此选项错误;故选:A.5.海南环岛高铁是世界首创,其中某趟列车在东段的三亚站、陵水站、万宁站、琼海站、文昌站和海口东站6个站之间运行,那么该趟列车需要安排不同的车票________种,票价________种.【答案】30、15.【解析】令6个站分别为A、B、C、D、E、F,则可得所组成的线段有15条,即需要安排15×2=30种不同的车票.6.图中共有线段________条.【答案】10.【解析】由图得,图中的线段有:AB,BC,CD,DE,AC,BD,CE,BE,AD,AE一共10条.7.如图,点A、B、C、D是直线l上的四个点,图中共有线段的条数是________.【答案】6.【解析】图中的线段有:AB、AC、AD、BC、BD、CD共6条,8.如图,已知点A、B、C.D,根据下列语句画图.(不写作图过程)作射线AB、直线AC,连接AD并延长线段AD.【答案】见解析【解析】作射线AB、直线AC,连接AD并延长线段AD,如图所示:考点6:点、线、面、体1.下面图形中,以直线为轴旋转一周,可以得到圆柱体的是()A.B.C.D.【答案】C【解析】A、以直线为轴旋转一周可以得到圆锥,故此选项不合题意;B、以直线为轴旋转一周可以得到两个圆锥,故此选项不合题意;C、以直线为轴旋转一周可以得到圆柱,故此选项符合题意;D、以直线为轴旋转一周可以得到球,故此选项不合题意;故选:C.2.将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是()A.圆柱B.圆锥C.圆台D.球【答案】B【解析】根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,所得到的立体图形是圆锥体.故选:B.3.如图:CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是()A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转【答案】B【解析】将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是,故选:B.4.如图,下面的平面图形绕轴旋转一周,可以得到圆柱体的是()A.B.C.D.【答案】D【解析】矩形绕边旋转是圆柱.故选:D.5.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是________立方厘米.(结果保留π)【答案】12π或16π.【解析】绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm所在的直线旋转所形成几何体的的体积是:π×32×4=12π,②当绕它的直角边为4cm所在的直线旋转所形成几何体的的体积是:π×42×3=16π,6.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说________.【答案】线动成面.【解析】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.7.一直角三角形的直角边分别为3和5,以直角边所在的直线为轴旋转一周得到的图形的体积是________.【答案】15π或25π.【解析】高为3,半径为5,圆锥的体积是π×52×3=25π;高为5,半径为3,圆锥的体积是π×32×5=15π;8.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到________种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)【答案】见解析【解析】(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)以AB为轴:×3×82×4=×3×64×4=256(立方厘米);以BC为轴:×3×42×8=×3×16×8=128(立方厘米).答:以AB为轴得到的圆锥的体积是256立方厘米,以BC为轴得到的圆锥的体积是128立方厘米.故答案为:3.。
图形的初步认识讲义及练习
图形的初步认识一、 几何图形柱体(圆柱、棱柱) 立体图形(体) 锥体(圆锥、棱锥)球体点几何图形(点、线、面、体)直线(射线、线段)线平面图形 曲线平面(角、三角形、平行四边形、圆等) 面曲面 点动成线,线动成面,面动成体。
二、线段、射线和直线1、概念及记法的区别线段:(1)有两个端点(2)可以度量(3)A a B记作:线段AB 或线段BA 或线段a射线:(1)有一个端点(2)向一方无限延伸(3)A B记作:射线AB直线:(1)无端点(2)向两方无限延伸(3) A Bl 记作:直线AB 或直线BA 或直线l 2、相关概念两点间的距离:连接两点的线段的长度线段的中点:分一条线段为两条相等的线段的点。
如A C BC 为线段AB 上一点,且AC =BC ,则C 为线段AB 的中点,记作AB =2AC =2BC 或AC =BC 或AC =BC =21AB 3、线段大小的比较线段长短的比较有两种方法:(1)度量法(用刻度尺量出两线段的长度再比较)(2)叠合法(用圆规)4、相关性质公理直线公理:过两点有且只有一条直线 线段公理:两点之间,线段最短三、角的认识1、 角的概念 静止角度:由公共端点的两条射线组成的图形(公共端点叫做角的顶点,两条射线叫做角的边) 运动角度:由一条射线绕着它的端点旋转而成的图形(起始位置的射线称为角的始边,终止位置称为角的终边) 2、 角的表示方法(1)可以用三个大写字母来表示,如AOB ∠(2)在不引起混淆的情况下,可以只用顶点大写字母来表示,如O ∠ (3)可以用一个数学或小写希腊字母来表示,如2,1∠∠或βα∠∠,3、角的大小角的大小不是看角的两边的长与短,而是由两条射线的位置(X 口大小)来决定。
(1)计量单位:度,分,秒(时钟的分针,经过一分转︒6,时针经过一小时转︒30))"601('1,'601==︒)'601("1,"60'1== (2)角的大小比较两种方法:①度量法(用量角器)②叠合法(保持顶点和其中一条边重合) (3)两个角的和或差两个角的和是把两个角中的两条边重合后另两条边形成的一个角;两个角的差是在一个较大角中去掉一个较小角后的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 图形的初步认识4.1生活中的立体图形球体点:点动成线 线:线动成面 面:面动成体直线:两点确定一条直 平面图形 线段:两点之间线段最 射线:线段向一方无限 2. 立体图形的面是平的面,像这样的立体图形,又称为多面体。
欧拉公式:顶点 +面数-棱数 =2(V+F-E )4.2 画立体图形 三视图:从正面、上面、侧面(左面或右面)三个不同的方向看一个物体,然后描绘所看 到的图即 视图 这样就把一个物体转化为平面图形。
从正面看到的图形称为正视图 从上面看到的图形称为俯视图 从侧面看到的图形称为侧视图4.3 立体图形的表面展开图多面体是由平面图形围成的立体图形,设想沿着多面体的一些棱将他剪开,可以把多面体 的表面展开成一个平面图形。
圆柱的侧面展开 ----- 长方形 圆锥的侧面展开 ----- 扇形4.4 平面图形 在多边形中,三角形是最基本的图形。
每一个多边形都可以分割成 N-2 个三角形( N 是 多边形的边数)4.5 最基本的图形 --- 点和线一1 过两点有且只有一条直线 2 两点之间线段最短1. 基本几何图形立方体的展开图柱体棱柱 圆柱 立体图形 锥体圆锥 棱锥线短延伸就得到一条射3. 把线段向一方无限延伸所形成的图形叫做射线4. 把线段向两方无限延伸所形成的图形叫做直线5. 把一条线段分成两条相等线段的点,叫做这条线段的中点。
4.6 角1. 角是由两条有公共端点的射线组成的图形。
角平分线:从一个角顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线2 定义:角也可以看成是由一条射线绕着它的端点旋转而成的图形。
射线的端点叫做角的顶点。
起始位置的射线叫做角的始边,终止位置的射线叫做角的终边。
一周角=二平角=四直角一周角=360° —平角=180°1° =60' 1' =60〃3 同角或等角的补角相等4 同角或等角的余角相等5 定理三角形两边的和大于第三边6 推论三角形两边的差小于第三边7 三角形内角和定理三角形三个内角的和等于180°8 推论1 直角三角形的两个锐角互余9 推论2 三角形的一个外角等于和它不相邻的两个内角的和10 推论3 三角形的一个外角大于任何一个和它不相邻的内角11.角的大小比较:度量法和叠合法二.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,有这种关系的两个角,互为邻补角1. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角对顶角的性质:对顶角相等4.7 相交线1. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互垂直.它们的交点叫做垂足垂线的性质:⑴过一点有且只有一条直线与已知直线垂直•⑵连接直线外一点与直线上各点的所在线段中,垂线段最短.2. 直线外一点到这条直线的垂线段的长度,叫做—点至U直线的距离线段AB叫做点A到直线BC的垂线段它的长度就是点A到直线BC的距离3. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做同位角:⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做内错角:⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_同旁内角4.8 平行线1. 在同一平面内,不相交的两条直线互相平行.同一平面内的两条直线的位置关系只有相交与平行两种.2. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都与第三条直线平行,那么这两直线互相平行平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等两直线平行;⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等两直线平行;⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补两直线平行.3. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_ 平行.4. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:两直线平行同位角相等•⑵两条平行直线被第三条直线所截,内错角相等•简单说成:两直线平行•内错角相等⑶两条平行直线被第三条直线所截,同旁内角互补•简单说成:两直线平行. 同旁内角互补5. 判断一件事情的语句,叫做命题.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论.如果题设成立,那么结论一定成立.像这样的命题叫做真命题如果题设成立时,不能保证结论一定成立,像这样的命题叫做假命题.定理都是真命题.6. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称平移.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全相同.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点•连接各组对应点的线段平行且相等熟悉以下各题:如图,BC AC,CB 8cm, AC 6cm, AB 10cm,那么点A到BC的距离是_13.6cm,点B到AC的距离是8cm,点A、B两点的距离是10cm,点C到AB的距离是4.8cm..设a、b、c为平面上三条不同直线,a)若a//b,b//c,则a与c的位置关系是_平行;b)若a b,b c,则a与c的位置关系是平行;c)若a//b,b c,则a与c的位置关系是_垂直.如图,已知AB、CD、EF相交于点O , AB 丄CD , OG 平分/ AOE,/ FOD = 28 °,求/ COE、/ AOE、/ AOG 的度数.OD、OE分别是如图, AOC与BOC是邻补角,OD与OE的位置关系,并说明理由. ODLOE如图,AB// DE,试问/ B、/ E、/ BCE有什么关系.解:/ B+/ E =/ BCE过点C作CF // AB,贝U B __1__ (两直线平行,内错角相等又••• AB / DE , AB // CF,••• DE// CF (平行于同一直线的两条直线平行•••/ E =/ 2 (两直线平行,内错角相等))B+/E=/1+/2即/ B +/ E = / BCE .⑴如图,已知/ 1 = / 2 求证:a / b.⑵直线a//b,求证: 1 2 .⑴•.•/ 1 = / 2 ,又•.•/ 2 = / 3 (对顶角相等),•/ 1 = / 3「. a/ b (同位角相等两直又•••/ 2 = Z 3 (对顶角相等) 1 = Z 2.阅读理解并在括号内填注理由:如图,已知 AB // CD ,/ 1 = Z 2,试说明 EP // FQ . 证明:••• AB // CD ,•••/MEB =Z MFD (两直线平行,同位角相等又•••/ 1 = Z 2,•/ MEB -Z 1 = Z MFD -Z 2,/ MEP = Z MFQ. EP // FQ (同位角相等两直线平行 ) 已知 DB // FG // EC , A 是 FG 上一点,Z ABD = 60°, ⑴Z BAC 的大小;⑵Z PAG 的大小.第五章 相交线与平行线线平行) ⑵t a // b •••/ 1 = Z 3(两直线平行,同位角相等) Q AD BC, FE BCEF //AD 2 3 1 2.如图,已知 ABC , ADEFB ADB 90oQ DG // BA, 3 1BC 于D , E 为AB 上一点,EF BC 于F , DG // BA 交CA 于G.求证 12.Q AD BC, FE BCEFB ADB 90oEF // AD1 2.Q DG // BA, 3已知:如图Z 1 = Z 2,Z C=Z D ,问Z A 与Z F 相等吗?试说明理 由.Z A =Z F. tZ 1 = Z DGF (对顶角相等)又Z 1 = Z 2 DGF=Z 2「.DB/ EC (同位角相等,两直线平行) •••/ DBA=Z C(两直线平行,同位角相等)又tZ C =Z D •••/ DBA=Z D•DF// AC (内错角相等,两直线平行).「Z A =Z F (两直线平行,,求:D E FAE C1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为 ______________ .2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为 _______________ . 对顶角的性质:______3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互___________垂线的性质:⑴过一点 _____________ 一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中, _________________ .4. 直线外一点到这条直线的垂线段的长度,叫做______________________________ .5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做:⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做 ______________ :⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做 ____________________ .6. 在同一平面内,不相交的两条直线互相_______________ .同一平面内的两条直线的位置关系只有_______ 与 ________ 两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线____________ .推论:如果两条直线都与第三条直线平行,那么 ___________________________ .8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:________________________________________ . ⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:____________________________ .⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行•简单说成:9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线 ______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等•简单说成: _________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:•⑶两条平行直线被第三条直线所截,同旁内角互补•简单说成:11. _______________________________ 判断一件事情的语句,叫做 ___ •命题由 和 两部分组成•题设是已知事项,结论是 ________________________ •命题常可以写成 “如果……那么……” 的 形式,这时“如果”后接的部分是 _________ ,“那么”后接的部分是 _________ •如果题设成立,那么结论一定成立 •像这样的命题叫做 ______________ •如果题设成立时,不能 保证结论一定成立,像这样的命题叫做 _______________ •定理都是真命题• 12・把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称 ______ •图形平移的方向不一定是水平的•平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 _____ ,⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 •连接各组对应点的线段 ___________________ • 熟悉以下各题:求/ COE 、/ AOE 、/ AOG 的度数.如图, AOC 与 BOC 是邻补角,OD 、OE 分别是 AOC 与 BOC 的平分线,试判断OD 与OE 的位置关系,并说明理由.13. 如图,BC AC, CB 8cm, AC 6cm, AB 10cm,那么点A 到BC 的距离是 ,点B 到AC 的距离是 14. 15. B 两点的距离是,点C 至U AB 的距离是设a 、b 、c 为平面上三条不同直线,a) b) c)若a//b,b//c ,则a 与c 的位置关系是 若a b,b c ,则a 与c 的位置关系是 若a//b , b c ,贝U a 与c 的位置关系是如图,已知 AB 、CD 、EF 相交于点 O , AB 丄CD , OG 平分/AOE ,/ FOD = 28°,16. A、BB17. 如图,AB // DE,试问/ B、/ E、/ BCE有什么关系.解:/ B+Z E =Z BCE过点C作CF // AB,则B _______ (又••• AB// DE,AB // CF,二____________ (「•Z E =Z ____ (•••Z B +Z E = Z 1 + Z 2 即Z B +Z E = Z BCE .18. ⑴如图,已知Z 1 = Z 2 求证:a // b.⑵直线a//b,求证:12 .19•阅读理解并在括号内填注理由:如图,已知AB// CD , Z 1 = Z 2,试说明EP // FQ. 证明:••• AB // CD ,•Z MEB =Z MFD ( )又T Z 1 = Z 2,•Z MEB -Z 1 = Z MFD -Z 2,即Z MEP =Z ________• EP// ____ .(MA------ Ba/20.已知DB // FG // EC, A 是FG 上一点, Z ABD = 60°, Z ACE = 36 ,AP 平分Z BAC ,求:⑴Z BAC的大小;⑵Z FAG的大小.交CA于G.求证1 2.22.已知:如图/ 仁/2,/ C=Z D,问/ A与/ F相等吗?试说明理由.21.如图,已知ABC, AD BC于D, E为AB上一点,EF BC 于F, DG // BA11。