平面向量高考题及答案
专题06 平面向量 (解析版)
专题06 平面向量【真题感悟】1.(2018年浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是()A.B.C.2 D.【答案】A【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.2.(2017年浙江卷)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记,,,则A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【答案】C【解析】因为,,,所以,故选C.3.(2019年浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】(1)0 (2)【解析】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min 0AB BC CD DA AC BD λ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正. 比如1234561,1,,1,1,11λλλ=-λλ=-=λ===则123456max AB BC CD DA AC BD λ+λ+λ+λ+λ+λ==4.(2017年浙江卷)已知向量a,b 满足1,2a b ==,则a b a b ++-的最小值是___________,最大值是______.【答案】 4【解析】设向量,a b 的夹角为θ,由余弦定理有: 212a b -=+=212212cos 4cos a b θ+=+-⨯⨯⨯=,则:54cos a b a b ++-=+令y =[]21016,20y =+,据此可得:()()maxmin2025,164a b a b a b a b++-==++-==,即a b a b ++-的最小值是4,最大值是25.5.(2016年浙江文)已知平面向量a ,b ,|a|=1,|b|=2,a·b=1.若e 为平面单位向量,则|a·e|+|b·e|的最大值是______.【解析】由已知得,60<>=︒a b ,不妨取(1,0)=a ,=b ,设(cos ,sin )αα=e ,则cos cos ααα⋅+⋅=++a e b e 2cos αα,取等号时cos α与sin α同号.所以2cos 2cos αααα=αα=)αθ=+(其中sinθθ==θ为锐角).)αθ+≤ 易知当2αθπ+=时,sin()αθ+取最大值1,此时α为锐角,sin ,cos αα同为正,因此上述不等式中等.6.(2016年浙江理)已知向量a ,b ,|a | =1,|b |=2,若对任意单位向量e ,均有 |a·e |+|b·e |≤,则a·b 的最大值是 .【答案】12【解析】()221||||262a b e a e b e a b a b a b a b +⋅≤⋅+⋅≤+≤⇒++⋅≤⇒⋅≤,即最大值为12. 7.(2015年浙江文)已知1e , 2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .【解析】由题可知,不妨()11,0e =,212e ⎛=⎝⎭,设(),b x y =,则11b e x ⋅==,2112b e x y ⋅=+=,所以31,3b ⎛⎫= ⎪ ⎝⎭,所以113b =+=.8.(2015年浙江理)已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .【答案】1,2,22.【解析】问题等价于12()b xe ye -+当且仅当0x x =,0y y =时取到最小值1,两边平方即xy y x y x |+--++5422在0x x =,0y y =时,取到最小值1,2245|b |x y x y xy ++--+ 22(4)5||x y x y b =+--+22243()(2)7||24y x y b -=++--+,∴⎪⎩⎪⎨⎧===⇒⎪⎪⎩⎪⎪⎨⎧=+-=-=-+22||211||702024002000y x y y x . 【考纲要求】1.理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念. 2.掌握向量加法、减法、数乘的概念,并理解其几何意义.3.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题. 4.掌握平面向量的正交分解及其坐标表示. 5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数量积的概念及其意义,了解平面向量的数量积与向量投影的关系. 7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.【考向分析】1.平面向量的线性运算2.平面向量的坐标运算3.平面向量的数量积、模、夹角.【高考预测】平面向量的数量积、模、夹角是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何、不等式等知识相结合,以工具的形式出现.近几年浙江卷主要考查平面向量的坐标运算、模的最值等问题,与三角函数、解析几何密切相连,难度为中等或中等偏难.【迎考策略】1.向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.2. 准确理解共线向量定理(1)a∥b等价于存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立.对于向量a(a≠0),b,若存在实数λ,使得b=λa,则向量a,b共线;若向量a=(x1,y1),b=(x2,y2),则x1y2-x2y1=0⇔a∥b;(2)共线向量定理是解决三点共线问题的有利工具:解题过程中常用到结论:“P,A,B三点共线”等价于“对直线AB 外任意一点O ,总存在非零实数λ,使()1OP O OB A λλu u u r u u u u r u r=+-成立”.3. 基底的“唯一”与“不唯一”“不唯一”:只要同一平面内两个向量不共线,就可以作为表示平面内所有向量的一组基底,对基底的选取不唯一;“唯一”:平面内任意向量a 都可被这个平面内的一组基底e1,e2线性表示,且在基底确定后,这样的表示是唯一的.4.平面向量数量积的计算方法①定义法求平面向量的数量积:已知向量a ,b 的模及夹角θ,利用公式a·b =|a ||b|cos θ求解; ②坐标法求平面向量的数量积: (a)已知或可求两个向量的坐标;(b)已知条件中有(或隐含)正交基底,优先考虑建立平面直角坐标系,使用坐标法求数量积.③基底法求平面向量的数量积:选取合适的一组基底,利用平面向量基本定理将待求数量积的两个向量分别表示出来,进而根据数量积的运算律和定义求解.(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算. 5.向量数量积的性质(1)如果e 是单位向量,则a ·e =e ·a . (2)a ⊥b ⇔a ·b =0.(3)a ·a =|a |2,|a (4)cos θ=||||⋅a ba b .(θ为a 与b 的夹角)(5)|a ·b |≤|a ||b |.6.利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决.同时应注意: (1)两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.(2)两向量夹角的范围为[0,π],特别当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π. (3)在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围. 7.巧建坐标系系,妙解向量题:坐标是向量代数化的媒介,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系. (2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限. (3)三角形中有唯一一个特殊角(30°、45°、60°等)时,有以下两种建系方法(4)圆(或半圆、扇形)与其他图形的综合图形通常以圆心为坐标原点建系.(5)所给向量中任意两向量之间的夹角为特殊角,将所给向量平移为共起点,以该起点为坐标原点建系.【强化演练】1.(2019年高考北京卷理)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .2.(2019届北京市通州区三模)设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“||+=a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D【解析】因为a ,b 均为单位向量, 若a 与b 夹角为2π3,则||1+=a b , 因此,由“a 与b 夹角为2π3”不能推出“||+=a b ”;若||+=a b||+=a b 解得1cos ,2=a b ,即a 与b 夹角为π3, 所以,由“||+=a b 不能推出“a 与b 夹角为2π3” 因此,“a 与b 夹角为2π3”是“||+=a b ”的既不充分也不必要条件. 故选D3.(浙江省温州市2019届高三2月高考适应)在平面上,,是方向相反的单位向量,||=2 ,(-) •(-) =0 ,则|-|的最大值为( ) A .1 B .2C .2D .3【答案】D【解析】由题意(-) •(-) =0,即-(=0,又,是方向相反的单位向量,所以有,即||=1,记,则A,B两点的轨迹分别是以原点为圆心,以2和1为半径的圆上,当反向共线时,如图:|-|的最大值为1+2=3,故选D.4.(浙江省金华十校2019届高三上期末)已知向量,满足:,,,且,则的最小值为A.B.4 C.D.【答案】A【解析】由题意可知,把看作,,,则可表示为,点B在直线上,设,,,,,,,则的最小值可转化为在直线取一点B,使得最小,作点C关于的对称点,则最小值即可求出,设,由,解得,,则,故的最小值为.故选:A.5.(浙江省嘉兴市2019届高三上期末)已知向量,满足,,则的取值范围是( )A.B.C.[D.[【答案】D【解析】设点M为平面中任意一点,点是关于原点对称的两个点,设,根据题意,根据椭圆的定义得到点M的轨迹是以为焦点的椭圆,方程为.,即.故答案为:D.6.(浙北四校2019届高三12月模拟)已知向量,满足,,则的最小值是( ) A.1 B.2 C.3 D.4【答案】A【解析】因为,,由绝对值向量三角不等式得:===1,故选A.7.(浙江省2019届高考模拟卷(一))如图,在中,,,为上一点,且满足,若的面积为,则的最小值为( )A.B.C.3 D.【答案】D【解析】,得到,所以,结合的面积为,得到,得到,所以,故选D.8.(浙江省温州九校2019届高三第一次联考)已知是不共线的两个向量,的最小值为,若对任意m,n,的最小值为1, 的最小值为2,则的最小值为()A.2 B.4 C.D.【答案】B【解析】设的夹角为,则,则由的最小值为,的最小值为,可得,两式相乘可得(*)而,结合(*)可得,解得则故选B.9.(浙江省“七彩阳光”联盟2019届高三期初联考)均为单位向量,且它们的夹角为,设满足,则的最小值为()A.B.C.D.【答案】C【解析】设,以所在直线为轴,垂直于所在直线为轴,建立平面直角坐标系则,,则满足,故,如图其轨迹图象则其最小值为故选.10.(天津市和平区2019届高三下学期第三次质量调查)已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=,则λ的值为( ) A .3 B .2C .23D .52【答案】B【解析】由题意可得:()()113AE AF AB BE AD DF AB BC BC AB λ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭, 且:224,22cos1202AB BC AB BC ==⋅=⨯⨯=-, 故()44112133λλ⎛⎫+++⨯-= ⎪⎝⎭,解得:2λ=.故选:B.11.(湖北省黄冈中学2019届高三三模)已知m ,n 是两个非零向量,且||2m =,|2|4m n +=,则||||m n n ++的最大值为______.【答案】【解析】设m 的起点为坐标原点,因为||2m =,所以设m 的终点坐标为(2,0),即(2,0)m =,设(,)n x y =,因为|2|4m n +=,所以2222(22)(2)16(1)4x y x y ++=⇒++=,21x -≤≤,||||(m n n x ++=+,而2222(1)423x y x x y ++=⇒++=,所以有||||72m n n ++=+≤==1x =-时,取等号,即||||m n n ++的最大值为12.(浙江省七彩联盟2019届高三11月期中】已知向量,满足,,若对任意实数x 都有,则的最小值为______【答案】【解析】如图,由,知在上的投影为2,即,,对任意实数x 都有,.由摄影定理可得,.设,取,可得P在直线BC上,线段OP的最小值为O到直线BC的距离,当时,.故答案为:.13.(浙江省浙南名校联盟2019届高三上期末)若向量满足,且,则的最小值是_ _.【答案】【解析】设,,,由可知,所以点C在以AB为直径的圆上;设,,则,而表示点O到以AB为直径的圆上任一点的距离,所以最大值即是点O到圆心E的距离加半径,即,所以,即最小值为2.故答案为2.14.(浙江省台州市2019届高三上期末)设圆,圆半径都为1,且相外切,其切点为.点,分别在圆,圆上,则的最大值为__ __.【答案】【解析】以为原点,两圆圆心所在的直线为轴建立如图所示的直角坐标系.则,,令,,所以所以,令,则,所以当时,有最大值,填.15.(2019年高考天津卷理数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________. 【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B ,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒,所以直线BEy x =-, 直线AE的斜率为3-,其方程为3y x =-.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)12BD AE =-=-.16. (2019年高考江苏卷)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE交于点O .若6ABAC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故ABAC=。
全国卷历年高考平面向量真题归类分析
全国卷历年高考平面向量真题归类分析(2015年-2019年共14套)一、代数运算(3题)1.(2015全国2卷13)设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 解:因为向量λa+b 与a+2b 平行,所以λa+b=k(a+2b),则所以.答案:2.(2017全国1卷13)已知向量,的夹角为,, ,则.解解,所以3.(2018全国2卷4)已知向量,满足,,则A. 4B. 3C. 2D. 0 解:因为所以选B.4.(2019全国1卷7)已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3 C. 2π3 D. 5π6解:因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【归类分析】这类题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.解决问题的关键是熟悉公式及运算法则,求夹角公式为:121222221122cos x x y y a b a bx y x y θ+⋅==++,注意向量夹角范围为[0,]π.求模长则利用公式22a a a a ⋅==转化为向量数量积运算,注意运算结果开平方才是模长.这类题基本解题思路如下: 12,k k λ=⎧⎨=⎩,12λ=12a b 602=a 1=b 2+=a b ()22222(2)22cos602+=+=+⋅⋅⋅+a b a b a a b b 221222222=+⨯⨯⨯+=444++=122+=a b 所有相关向量统一用同一个基底表示22a a a a ⋅==求模,模长记得开平方二、几何运算(3题) 1.(2018全国1卷6)在解中,为边上的中线,为的中点,则A.B.C.D.解:根据向量的运算法则,可得,所以,故选A.2.(2015全国1卷7)设D 为解ABC 所在平面内一点,BC →=3CD →,则 ( )A. B. C. D. 解:选A.由题知3.(2017全国2卷12)已知是边长为2的等边三角形,为平面内一点,则的最小值是( ).A. B. C. D. 解:方法一:如图所示,取的中点,联结,取的中点,由, 则()()()22PA PB PC PD PA PE ED PE EA ⋅+=⋅=+⋅+=,当且仅当,即点与点重合时,取得最小值为,故选B.(方法二见模块三第8题)AC AB AD 3431+-=AC AB AD 3431-=AC AB AD 3134+=AC AB AD 3134-=11()33AD AC CD AC BC AC AC AB =+=+=+-=1433AB AC -+ABC △P ABC ()PA PB PC ⋅+2-32-43-1-BC D AD AD E 2PB PC PD +=()222PE ED-=2221132422PE AD AD ⎛⎫--=- ⎪⎝⎭20PE =P E 32-【归类分析】这类题主要考查利用平面向量的线性运算,解题时尽量画出符合要求的图形.平面向量基本定理是解决向量问题的出发点,通过线性运算可将平面内相关向量用同一基底表示.题目如果没有选定基底,则如何选取基底是关键,一般是选已知模长及夹角的两个不共线向量为基底,且其它向量便于用该基底表示.三、坐标运算(7题)1.(2016全国2卷3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m= ( ) A.-8 B.-6 C.6 D.8 解:a+b=(4,m-2),因为(a+b)⊥b,所以(a+b)·b=12-2(m-2)=0,解得m=8.选D.2.(2016全国3卷3)已知向量1BA 2=⎛ ⎝⎭,31BC ,2=⎛⎫ ⎪ ⎪⎝⎭,则∠ABC= ( )A.30°B.45°C.60°D.120°解:选A.因为BA BC ⋅=12×12=,BA =BC =1,所以cos ∠ABC=BA BC 3=2BA BC⋅,即∠ABC=30°3.(2019全国2卷3)已知AB =(2,3),AC =(3,t),||BC =1,则AB BC ⋅= A. -3B. -2C. 2D. 3解:由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .4.(2016全国1卷13)(2016·全国卷Ⅰ高考理科·T13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= .解:由已知得:a+b=(m+1,3),所以|a+b|2=|a|2+|b|2⇔(m+1)2+32=m 2+12+12+22,解得m=-2.答案:-25.(2018全国3卷13)已知向量,,.若,则________. 解:由题可得 ,即,故答案为6.(2019全国3卷13)已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 解:因为25c a b =-,0a b ⋅=,所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅.7.(2017全国3卷12)在矩形中,,,动点在以点为圆心且与相切的圆上.若,则的最大值为( ). A .3B .C.D .2解:由题意,作出图像,如图所示.设与切于点,联结.以点为坐标原点,为轴正半轴,为轴正半轴建立直角坐标系,则点坐标为 .因为,.所以.因为切于点. 所以⊥.所以是斜边上的高., 即的半径为.因为点在上.所以点的轨迹方程为.设点的坐标为,可以设出点坐标满足的参数方程,而,,. 因为, 所以,. 两式相加得2sin()3θϕ++≤ (其中), 当且仅当,时,取得最大值为3.故选A.8.(2017全国2卷12)已知是边长为2的等边三角形,为平面内一点,则的最小值是( ).A. B.C. D. 方法二:如图所示建立直角坐标系,则()3,0A ,()0,1-B ,()0,1C ,设()y x P ,, 则()y x PA --=3,,()y x PB ---=,1,()y x PC --=,1,ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+BD C E CE A AD x AB y C (2,1)||1CD =||2BC =BD =BD C E CE BD CE Rt BCD △BD 1222BCD BC CD S EC BD BD ⋅⋅⋅==△C P C P 224(2)(1)5x y -+-=P 00(,)x y P 0021x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0112x μθ==01y λθ==+(22255112sin 55λμθθθϕ⎛⎫⎛⎫+=++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭sin ϕcos ϕπ2π2k θϕ=+-k ∈Z λμ+ABC △P ABC ()PA PB PC ⋅+2-32-43-1-()()()23232232222,23,2222-⎪⎪⎭⎫ ⎝⎛-+=-+=----=+⋅y x y y x y x y x PC PB PA所以,当23,0==y x ,即⎪⎪⎭⎫ ⎝⎛23,0P 时,取得最小值为,故选B. 【归类分析】这类题主要考查利用平面向量的坐标运算,渗透了数学运算、直观想象素养.对于向量坐标运算,一定要弄清楚坐标运算的本质.由于选取了平面上两个互相垂直的单位向量作为基底(单位正交基底),这大大的降低了解题的难度.因此,遇到平面向量难题时要想到建立直角坐标系,用坐标法.32-相关点尽量在坐标轴上或成对称关系,向量坐标零越多越好 (1x AB =,写出所有相关向量的坐标。
高考数学 平面向量的概念及线性运算、平面向量基本定理及坐标表示 高考真题
专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。
平面向量高考试题精选(含详细答案)
平面向量高考试题精选(一)一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.213.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.64.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣26.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1] 9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.110.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.012.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.213.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.17.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.18.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.19.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是.21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.平面向量高考试题精选(一)参考答案与试题解析一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.解:由已知得到如图由===;故选:A.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.3.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C4.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B6.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值X围是.故选:D.9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.1解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选A10.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.0解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.12.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.2解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF与其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:317.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则= 18.【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1818.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.【解答】解:因为====1.故答案为:119.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是(0,].解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值X围是(0,]故答案:(0,]21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.【解答】解:,∵,∴,∵,∴cos∠DAC=sin∠BAC,,在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,,=|BC|sinB==,故答案为.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=﹣2.解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)•(,)=﹣2.故答案为:﹣2.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,其‘相伴向量’=(4,3),g(x)∈S.(2)h(x)=cos(x+α)+2cosx=(cosxcosα﹣sinxsinα)+2cosx=﹣sinαsinx+(cosα+2)cosx∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).则||==.(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan(2kπ+﹣φ)=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].令m=,则tan2x0=,m∈[﹣,0)∪(0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0)∪(0,].24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.】解:(Ⅰ)易知a=2,b=1,.∴,.设P(x,y)(x>0,y>0).则,又,联立,解得,.(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立∴,由△=(16k)2﹣4•(1+4k2)•12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①又∠AOB为锐角,∴又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4===∴.②综①②可知,∴k的取值X围是.。
专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)
2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。
专题09 平面向量(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)
专题09平面向量考点三年考情(2022-2024)命题趋势考点1:平面向量线性运算2022年新高考全国I 卷数学真题平面向量数量积的运算、化简、证明及数量积的应用问题,如证明垂直、距离等是每年必考的内容,单独命题时,一般以选择、填空形式出现.交汇命题时,向量一般与解析几何、三角函数、平面几何等相结合考查,而此时向量作为工具出现.向量的应用是跨学科知识的一个交汇点,务必引起重视.预测命题时考查平面向量数量积的几何意义及坐标运算,同时与三角函数及解析几何相结合的解答题也是热点.考点2:数量积运算2022年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题2022年高考全国乙卷数学(理)真题2024年北京高考数学真题考点3:求模问题2023年新课标全国Ⅱ卷数学真题2024年新课标全国Ⅱ卷数学真题2023年北京高考数学真题2022年高考全国乙卷数学(文)真题考点4:求夹角问题2023年高考全国甲卷数学(文)真题2023年高考全国甲卷数学(理)真题2022年新高考全国II 卷数学真题考点5:平行垂直问题2024年上海夏季高考数学真题2024年新课标全国Ⅰ卷数学真题2022年高考全国甲卷数学(文)真题2023年新课标全国Ⅰ卷数学真题2024年高考全国甲卷数学(理)真题考点6:平面向量取值与范围问题2024年天津高考数学真题2023年高考全国乙卷数学(理)真题2022年新高考北京数学高考真题2022年新高考天津数学高考真题2022年新高考浙江数学高考真题2023年天津高考数学真题考点1:平面向量线性运算1.(2022年新高考全国I 卷数学真题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n- B .23m n-+C .32m n+ D .23m n+ 【答案】B【解析】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .考点2:数量积运算2.(2022年高考全国甲卷数学(理)真题)设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= .【答案】11【解析】设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= .故答案为:11.3.(2023年高考全国乙卷数学(文)真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A 5B .3C .25D .5【答案】B【解析】方法一:以{},AB AD为基底向量,可知2,0AB AD AB AD ==⋅=uu u r uuu r uu u r uuu r ,则11,22EC EB BC AB AD ED EA AD AB AD =+=+=+=-+uu u r uu r uu u r uu u r uuu r uu u r uu r uuu r uuu r uuu r ,所以22111143224EC ED AB AD AD AB AD ⎛⎫⎛⎫⋅=+⋅-+=-+=-+= ⎪ ⎪⎝⎭⎝⎭uu u r uu u r uu u r uuu r uu u r uuu r uu ur uuu r ;方法二:如图,以A 为坐标原点建立平面直角坐标系,则()()()1,0,2,2,0,2E C D ,可得()()1,2,1,2EC ED ==-uu u r uu u r,所以143EC ED ⋅=-+=uu u r uu u r;方法三:由题意可得:5,2ED EC CD ===,在CDE 中,由余弦定理可得2223cos 25255DE CE DC DEC DE CE +-∠==⋅⨯⨯,所以3cos 5535EC ED EC ED DEC ⋅=∠==uu u r uu u r uu u r uu u r .故选:B.4.(2022年高考全国乙卷数学(理)真题)已知向量,a b 满足||1,||3,|2|3a b a b ==-= ,则a b ⋅=()A .2-B .1-C .1D .2【答案】C【解析】∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,∴1a b ⋅= 故选:C.5.(2024年北京高考数学真题)设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = ,若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.考点3:求模问题6.(2023年新课标全国Ⅱ卷数学真题)已知向量a ,b满足3a b -= ,2a b a b +=- ,则b = .3【解析】法一:因为2a b a b +=- ,即()()222a ba b +=-,则2222244a a b b a a b b +⋅+=-⋅+r r r r r r r r ,整理得220a a b -⋅= ,又因为3a b -= ()23a b -= ,则22223a a b b b -⋅+==r r r r r ,所以3b = 法二:设c a b =-r rr ,则3,2,22c a b c b a b c b =+=+-=+r r r r r r r r r ,由题意可得:()()2222c b c b +=+r r r r ,则22224444c c b b c c b b +⋅+=+⋅+r r r r r r r r ,整理得:22c b =r r ,即3b c ==r r 37.(2024年新课标全国Ⅱ卷数学真题)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B .22C .32D .1【答案】B【解析】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.8.(2023年北京高考数学真题)已知向量a b,满足(2,3),(2,1)a b a b +=-=- ,则22||||a b -= ()A .2-B .1-C .0D .1【答案】B【解析】向量,a b 满足(2,3),(2,1)a b a b +=-=-,所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B9.(2022年高考全国乙卷数学(文)真题)已知向量(2,1)(2,4)a b ==-,,则a b -r r ()A .2B .3C .4D .5【答案】D【解析】因为()()()2,12,44,3a b -=--=- ,所以()22435-=+-a b .故选:D考点4:求夹角问题10.(2023年高考全国甲卷数学(文)真题)已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A .117B .1717C 55D 255【答案】B【解析】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则225334,112a b a b +=+-=+= ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()17cos ,342a b a b a b a b a b a b+⋅-+-==⨯+-.故选:B.11.(2023年高考全国甲卷数学(理)真题)已知向量,,a b c 满足1,2a b c === 0a b c ++=,则cos ,a c b c 〈--〉=()A .45-B .25-C .25D .45【答案】D【解析】因为0a b c ++=,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=r r ,所以0a b ⋅= .如图,设,,OA a OB b OC c ===,由题知,1,2,OA OB OC OAB === 是等腰直角三角形,AB 边上的高2222OD AD =所以22222CD CO OD =+=,1tan ,cos 310AD ACD ACD CD ∠==∠=,2cos ,cos cos 22cos 1a c b c ACB ACD ACD 〈--〉=∠=∠=∠-2421510=⨯-=.故选:D.12.(2022年新高考全国II 卷数学真题)已知向量(3,4),(1,0),t ===+ a b c a b ,若,,<>=<>a cbc ,则t =()A .6-B .5-C .5D .6【答案】C【解析】()3,4c t =+ ,cos ,cos ,a c b c =,即931635t t c c+++= ,解得5t =,故选:C考点5:平行垂直问题13.(2024年上海夏季高考数学真题))已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为.【答案】15【解析】//a b,256k ∴=⨯,解得15k =.故答案为:15.14.(2024年新课标全国Ⅰ卷数学真题)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A .2-B .1-C .1D .2【答案】D【解析】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.15.(2022年高考全国甲卷数学(文)真题)已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =.【答案】34-/0.75-【解析】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.16.(2023年新课标全国Ⅰ卷数学真题)已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【答案】D【解析】因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= ,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .17.(2024年高考全国甲卷数学(理)真题)设向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“13x =-”是“//a b ”的充分条件【答案】C【解析】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得13x =,即必要性不成立,故B 错误;对D ,当13x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.考点6:平面向量取值与范围问题18.(2024年天津高考数学真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=;F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为.【答案】43518-【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.19.(2023年高考全国乙卷数学(理)真题)已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若2PO =,则PA PD ⋅的最大值为()A .122+B .1222+C .12+D .22+【答案】A【解析】如图所示,1,2OA OP ==,则由题意可知:π4APO ∠=,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时或PB 为直径时,设=,04OPC παα∠≤<,则:PA PD⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭222sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-122224πα⎛⎫=-- ⎪⎝⎭04πα≤<,则2444πππα-≤-<∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设,04OPC παα∠<<,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭ 12cos 4παα⎛⎫=- ⎪⎝⎭22222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+122224πα⎛⎫=++ ⎪⎝⎭,04πα≤<,则32444πππα≤+<∴当242ππα+=时,PA PD ⋅有最大值122.综上可得,PA PD ⋅的最大值为122.故选:A.20.(2022年新高考北京数学高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-【答案】D【解析】依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动,设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=-- ,()cos ,4sin PB θθ=-- ,所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯- 22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈- ;故选:D21.(2022年新高考天津数学高考真题)在ABC 中,,CA a CB b == ,D 是AC 中点,2CB BE = ,试用,a b表示DE 为,若AB DE ⊥ ,则ACB ∠的最大值为【答案】3122b a - 6π【解析】方法一:31=22DE CE CD b a -=- ,,(3)()0AB CB CA b a AB DE b a b a =-=-⊥⇒-⋅-= ,2234b a a b +=⋅ 222333cos 244a b a b b a ACB a b a b a b⋅+⇒∠==≥= 3a b = 时取等号,而0πACB <∠<,所以(0,]6ACB π∠∈.故答案为:3122b a - ;6π.方法二:如图所示,建立坐标系:(0,0),(1,0),(3,0),(,)E B C A x y ,3(,),(1,)22x y DE AB x y +=--=-- ,23()(1)022x y DE AB x +⊥⇒-+ 22(1)4x y ⇒++=,所以点A 的轨迹是以(1,0)M -为圆心,以2r =为半径的圆,当且仅当CA 与M 相切时,C ∠最大,此时21sin ,426r C C CM π===∠=.故答案为:3122b a - ;6π.22.(2022年新高考浙江数学高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是.【答案】[122,16]+【解析】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y轴建立平面直角坐标系,如图所示:则1345726222222(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A ⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,82222A ⎛⎫ ⎪ ⎪⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++ ,因为cos 22.5||1OP ≤≤ ,所以221cos 4512x y +≤+≤ ,故222128PA PA PA +++ 的取值范围是[1222,16]+.故答案为:[1222,16]+.23.(2023年天津高考数学真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b == ,用,a b 表示AE = ;若13BF BC = ,则AE AF ⋅ 的最大值为.【答案】1142a b + 1324【解析】空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED AD AE EC AC⎧+=⎪⎨+=⎪⎩ ,两式相加,可得到2AE AD AC =+ ,即122AE a b =+ ,则1142AE a b =+ ;空2:因为13BF BC = ,则20FB FC += ,可得AF FC AC AF FB AB ⎧+=⎪⎨+=⎪⎩,得到()22AF FC AF FB AC AB +++=+ ,即32AF a b =+ ,即2133AF a b =+ .于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭ .记,AB x AC y ==,则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF ⎛⎫+⋅+=++=++ ⎪⋅⎝⎭= ,在ABC 中,根据余弦定理:222222cos601BC x y xy x y xy =+-=+-= ,于是1519222122122AE xy x xy AF y ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭=⎝⎭⋅ ,由221+-=x y xy 和基本不等式,2212x y xy xy xy xy +-=≥-=,故1xy ≤,当且仅当1x y ==取得等号,则1x y ==时,AE AF ⋅ 有最大值1324.故答案为:1142a b + ;1324.。
平面向量测试题-高考经典试题-附详细答案
平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。
2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2m b m α=+其中,,m λα2,a b =则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km mk m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确. 6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。
2024全国高考真题数学汇编:平面向量及其应用章节综合
2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。
历年高三数学高考考点之平面向量的线性问题必会题型及答案
历年高三数学高考考点之<平面向量的线性问题>必会题型及答案体验高考1.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.2.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m 等于( ) A.-8 B.-6 C.6 D.8 答案 D解析 由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8,故选D.3.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A.4B.-4C.94D.-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +|n |2=0, ∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4,故选B.4.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________. 答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.高考必会题型题型一 平面向量的线性运算及应用例1 (1)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 (2)已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →, CD →=13CA →+λCB →,则λ=_____.答案 (1)D (2)23解析 (1)设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. ∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝ ⎛⎭⎪⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝ ⎛⎭⎪⎫-13,0. (2)因为AD →=2DB →,CD →=13CA →+λCB →,所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23.点评 平面向量的线性运算应注意三点 (1)三角形法则和平行四边形法则的运用条件.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.答案 (1)A (2)6解析 (1)根据向量的基本定理可得, AD →=AC →+CD →=AC →+(ED →-EC →) =AC →+(2AC →-22BC →)=AC →+2AC →-22(AC →-AB →)=⎝ ⎛⎭⎪⎫1+22·AC →+22AB →, 所以λ=22,k =1+22, 所以λ+k =1+ 2.故选A.(2)由GA →+GB →+GC →=0,知点G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG →=13CD →=16(CA→+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6.题型二 平面向量的坐标运算例2 (1)已知点A (-3,0),B (0,3),点O 为坐标原点,点C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.答案 1解析 由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°,知∠xOC =150°,∴tan 150°=3-3λ,即-33=-33λ,∴λ=1.(2)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),求实数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解 ①由题意得(3,2)=m (-1,2)+n (4,1),∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.②a +k c =(3+4k ,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0,∴k =-1613.③设d =(x ,y ),则d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧4x -4-2y -1=0,x -42+y -12=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或d =(5,3).点评 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(3)向量的坐标运算主要是利用加法、减法、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 变式训练2 (1)如图所示,在△ABC 中,D 为AB 的中点,F 在线段CD 上,设AB →=a ,AC →=b ,AF →=x a +y b ,则1x +2y的最小值为( )A.8+2 2B.8C.6D.6+2 2(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 答案 (1)B (2)m ≠12解析 (1)因为点D 为AB 的中点,所以AB →=2AD →,因为AF →=x a +y b ,所以AF →=2xAD →+yAC →.因为点F 在线段CD 上,所以2x +y =1,又x ,y >0,所以1x +2y=(2x +y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4xy=8, 当且仅当y =2x =12时取等号,所以1x +2y的最小值为8.(2)因为OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),所以AB →=(3,1),BC →=(-m -1,-m ).由于点A 、B 、C 能构成三角形,所以AB →与BC →不共线,而当AB →与BC →共线时,有3-m -1=1-m ,解得m =12,故当点A 、B 、C 能构成三角形时,实数m 满足的条件是m ≠12.高考题型精练1.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a | D.|-λa |≥|λ|a答案 B解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.2.设点M 是△ABC 所在平面上的一点,且MB →+32MA →+32MC →=0,点D 是AC 的中点,则|MD →||BM →|的值为( )A.13B.12 C.1 D.2 答案 A解析 ∵D 是AC 的中点,延长MD 至E ,使得DE =MD , ∴四边形MAEC 为平行四边形,∴MD →=12ME →=12(MA →+MC →).∵MB →+32MA →+32MC →=0,∴MB →=-32(MA →+MC →)=-3MD →,∴|MD →||BM →|=|MD →||-3MD →|=13,故选A. 3.已知点A (-3,0),B (0,2),点O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →= λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.23答案 D解析 过点C 作CE ⊥x 轴于点E (图略). 由∠AOC =π4,知|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →, 即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23.4.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ) A.矩形 B.平行四边形 C.梯形 D.以上都不对 答案 C解析 由已知,得AD →=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →,故AD →∥BC →.又因为AB →与CD →不平行,所以四边形ABCD 是梯形.5.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 答案 C解析 若a =(4,2),则|a |=25,且a ∥b 都成立; ∵a ∥b ,设a =λb =(2λ,λ),由|a |=25,知4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.6.在四边形ABCD 中,AB ∥CD ,AB =3DC ,点E 为BC 的中点,则AE →等于( )A.23AB →+12AD →B.12AB →+23AD →C.56AB →+13AD →D.13AB →+56AD → 答案 A解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝ ⎛⎭⎪⎫AD →-23AB →=23AB →+12AD →.7.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A.②③ B.①② C.③④ D.④⑤ 答案 A解析 ①方向不一定相同;④方向可能相反;⑤若b =0,则不对.8.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)答案 12(5e 1+3e 2)解析 在矩形ABCD 中,因为点O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2).9.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.答案 45解析 依题意得,AM →=AB →+BC →+CM →=AB →+BC →-14AB →=34AB →+BC →,AN →=AB →+BN →=AB →+12BC →.又AB →=λAM →+μAN →,于是有AB →=λ⎝ ⎛⎭⎪⎫34AB →+BC →+μ⎝⎛⎭⎪⎫AB →+12BC →=⎝ ⎛⎭⎪⎫34λ+μAB →+⎝⎛⎭⎪⎫λ+μ2BC →.又AB →与BC →不共线,因此有⎩⎪⎨⎪⎧34λ+μ=1,λ+μ2=0,由此解得λ=-45,μ=-2λ,所以λ+μ=-λ=45.10.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,点O 是坐标原点,则|OA →|的最大值为________.答案 2解析 因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.11.设e 1,e 2是两个不共线的向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.(1)证明 由已知得BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB →=2e 1-8e 2,∴AB →=2BD →. 又∵AB →与BD →有公共点B , ∴A ,B ,D 三点共线.(2)解 由(1)可知BD →=e 1-4e 2, ∵BF →=3e 1-k e 2,且B ,D ,F 三点共线, ∴BF →=λBD →(λ∈R ), 即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线; (3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时,a 的值. (1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0. (2)证明 当t 1=1时, 由(1)知OM →=(4t 2,4t 2+2). ∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, 又∵AM →与AB →有公共点A ,∴不论t 2为何实数,A ,B ,M 三点共线.(3)解 当t 1=a 2时, OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →, ∴4t 2×4+(4t 2+2a 2)×4=0, ∴t 2=-14a 2,故OM →=(-a 2,a 2). |AB →|=42,点M 到直线AB :x -y +2=0的距离d =|-a 2-a 2+2|2=2|a 2-1|.∵S △ABM =12,∴12|AB |·d =12×42×2|a 2-1|=12, 解得a =±2, 故所求a 的值为±2.。
2022届全国高考数学真题分类(平面向量)汇编(附答案)
2022届全国高考数学真题分类(平面向量)汇编一、选择题 1.(2022∙全国乙(文)T3) 已知向量(2,1)(2,4)a b ==- ,,则a b -r r ( )A. 2B. 3C. 4D. 52.(2022∙全国乙(理)T3) 已知向量,a b 满足||1,||2|3a b a b ==-= ,则a b ⋅= ( ) A. 2- B. 1- C. 1 D. 2 3.(2022∙新高考Ⅰ卷T3) 在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB =( )A. 32m n -B. 23m n -+C. 32m n +D. 23m n +4.(2022∙新高考Ⅱ卷T4) 已知(3,4),(1,0),t ===+ a b c a b ,若,,<>=<> a c b c ,则t =( )A. 6-B. 5-C. 5D. 6二、填空题 1.(2022∙全国甲(文)T13) 已知向量(,3),(1,1)a m b m ==+ .若a b ⊥ ,则m =______________.2.(2022∙全国甲(理)T13) 设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= _________.参考答案一、选择题1.【答案】D【答案解析】【名师分析】先求得a b - ,然后求得a b -r r .【答案详解】因为()()()2,12,44,3a b -=--=- ,所以5-== a b .故选:D2.【答案】C【答案解析】【名师分析】根据给定模长,利用向量的数量积运算求解即可. 【答案详解】解:∵222|2|||44-=-⋅+ a b a a b b ,又∵||1,||2|3,==-= a b a b ∴91443134=-⋅+⨯=-⋅ a b a b , ∴1a b ⋅= 故选:C.3. 【答案】B【答案解析】【名师分析】根据几何条件以及平面向量的线性运算即可解出.【答案详解】因为点D 在边AB 上,2BD DA =,所以2BD DA = ,即()2CD CB CA CD -=- , 所以CB =3232CD CA n m -=- 23m n =-+.故选:B .4.【答案】C【答案解析】【名师分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【答案详解】解:()3,4c t =+ ,cos ,cos ,a c b c = ,即931635t t c c+++= ,解得5t =, 故选:C二、填空题1. 【答案】34-或0.75- 【答案解析】 【名师分析】直接由向量垂直的坐标表示求解即可.【答案详解】由题意知:3(1)0a b m m ⋅=++= ,解得34m =-. 故答案为:34-. 2. 【答案】11【答案解析】【名师分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅ ,最后根据数量积的运算律计算可得.【答案详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=, 又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= , 所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= . 故答案为:11.。
高考数学专题:平面向量练习试题、答案
高考数学专题:平面向量练习试题 1.已知(3,4)a =,(8,6)b =-,则向量a 与b ( )A .互相平行B .互相垂直C .夹角为30°D .夹角为60° 2.已知向量(5,3)a =-,(2,)b x =,且//a b ,则x 的值是( ) A .65 B .103 C .-65 D .-103 3.已知向量(2,3)a =,(1,2)b =,且()()a b a b λ+⊥-,则λ等于( ) A .35 B .35- C .3- D .3 4.如果a 、b 都是单位向量,则a b -的取值范围是( )A .(1,2)B .(0,2)C .[1,2]D .[0,2] 5.已知在ABC ∆中,0OA OB OC ++=,则O 为ABC ∆的( )A .垂心B .重心C .外心D .内心 6.已知(7,1)A ,(1,4)B ,直线ax y 21=与线段AB 交于点C ,且2AC CB =,则a 等于( ) A .2 B .35 C .1 D .54 7.已知直线2y x =上一点P 的横坐标为a ,有两个点(1,1)A -,(3,3)B ,那么使向量PA 与PB 夹角为钝角的一个充分但不必要的条件是( )A .12a -<<B .01a <<C .22a -<< D .02a <<8.已知向量(4,2)a =,(1,1)b =-,则b 在a 方向上的射影长为_________. 9.已知点(2,3)A ,(0,1)C ,且2AB BC =-,则点B 的坐标为_____________.10.已知||2a =,||2b =,a 与b 的夹角为45︒,则()b a a -⋅=________. 11.已知向量(3,1)OA =--,(2,3)OB =,OC OA OB =+,则向量OC 的坐标为____________,将向量OC 按逆时针方向旋转90︒得到向量OD ,则向量OD 的坐标为______________12.已知向量a 、b 的夹角为45︒,且满足||4a =,1()(23)122a b a b +⋅-=,则||b =_________;b 在a 方向上的投影等于_____________. 13.平面上有三个点(2,)A y -,(0,)2y B ,(,,)C x y ,若AB BC ⊥,则动点的轨迹方程为______________.14.将函数2y x =的图象F 按向量(3,2)a =-平移到'F ,则'F 对应的函数解析式为_________________.15.把点(2,2)A 按向量(2,2)a =-平移到点B ,此时点B 分OC (O 为坐标原点)的比为2-,则点C 的坐标为____________.16.在ABC ∆中,60BAC ∠=︒,||1AC =,||4AB =,则ABC ∆的面积为____,||BC =_____________.答案1.B2.C3.B4.D5.B6.A7.B8.59.(2,1)-- 10.2- 11.(1,2)-,(2,1)--12 1 13.28y x =14.2(3)2y x =-- 15.(0,2)16。
平面向量高考经典试题_附详细答案
平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1B .2C .2D .43、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a aab ⋅+⋅=______;4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值范围是A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ= (A)32 (B)31 (C) -31 (D) -328、(全国2文6)在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-9(全国2文9)把函数e xy =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+B .e 2x-C .2ex -D .2ex +10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =13、(湖南理4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b14、(湖南文2)若O 、E 、F 是不共线的任意三点,则以下各式中成立的是 A .EF OF OE =+ B . EF OF OE =- C. EF OF OE =-+ D . EF OF OE =--15、(湖北理2)将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭ B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭ D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭16、(湖北文9)设a =(4,3),a 在b 上的投影为225,b 在x 轴上的投影为2,且|b|<1,则b 为 A.(2,14)B.(2,-72) C.(-2, 72) D.(2,8)19、(海、宁理2文4)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12)-,DCBA 20、(重庆理10)如图,在四边形ABCD 中,||||||4,A B B D D C A B B DB D D C→→→→→→→++=⋅=⋅= →→→→=⋅+⋅4||||||||DC BD BD AB ,则→→→⋅+AC DC AB )(的值为( )A.2B. 22C.4D.2421、(重庆文9)已知向量(4,6),(3,5),OA OB ==且,//,OC OA AC OB ⊥则向量OC 等于(A )⎪⎭⎫⎝⎛-72,73(B )⎪⎭⎫⎝⎛-214,72(C )⎪⎭⎫ ⎝⎛-72,73(D )⎪⎭⎫ ⎝⎛-214,7222、(辽宁理3文4)若向量a 与b 不共线,0≠a b ,且⎛⎫⎪⎝⎭a a c =a -b a b ,则向量a 与c 的夹角为( )A .0B .π6C .π3D .π223、(辽宁理6)若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( )A .(12)--,B .(12)-,C .(12)-,D .(12), 24、(辽宁文7)若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =( )A .(12)-, B .(12),C .(12)-, D .(12)-, 26、(全国2理9)把函数y =e x 的图象按向量a =(2,3)平移,得到y =f (x )的图象,则f (x )=(A) e x -3+2(B) e x +3-2(C) e x -2+3(D) e x +2-3解.把函数y =e x 的图象按向量a =(2,3)平移,即向右平移2个单位,向上平移3个单位,平移后得到y =f (x )的图象,f (x )= 23x e-+,选C 。
平面向量高考题选及答案
10.2017全国高考江苏卷理数·12T如图,在同一个平面内,向量 , , ,的模分别为1,1, , 与 的夹角为 ,且tan =7, 与 的夹角为45°;若 =m +n m,n R,则m+n=
11.2017全国高考浙江卷理数·13T在平面直角坐标系xOy中,A-12,0,B0,6,点P在圆O:x2+y2=50上,若 · 20,则点P的横坐标的取值范围是
30.2015高考湖北,理11已知向量 , ,则 .
31.2015高考天津,理14在等腰梯形 中,
已知 ,动点 和 分别在线段 和 上,且, 则 的最小值为.
32.2015高考浙江,理15已知 是空间单位向量, ,若空间向量 满足 ,
且对于任意 , ,则 , , .
33.2015高考新课标2,理13设向量 , 不平行,向量 与 平行,则实数 _________.
24.2015高考陕西,理7对任意向量 ,下列关系式中不恒成立的是
A. B.
C. D.
25.2015高考四川,理7设四边形ABCD为平行四边形, , .若点M,N满足 , ,则 A20B15C9D6
26.2015高考重庆,理6若非零向量a,b满足|a|= |b|,且a-b 3a+2b,则a与b的夹角为A、 B、 C、 D、
A B C D
17、2016年全国II高考已知向量 ,且 ,则m=
A-8B-6C6D8
18、2016年全国III高考已知向量 , 则 ABC=
A300B 450C 600D1200
19、2016年上海高考在平面直角坐标系中,已知A1,0,B0,-1,P是曲线 上一个动点,则 的取值范围是.
专题11_平面向量(解析版)
= 3t 2
【漪漪点睛】本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用
基底表示,同时利用向量共线转化为函数求最值.
8.【2018 年高考北京卷理数】设 a,b 均为单位向量,则“ a 3b 3a b ”是“a⊥b”的
A.充分而不必要条件
B.必要而不充分条件
件或结论是否定式的命题,一般运用等价法.
3.集合法:若 A ⊆ B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;若 A = B ,则 A 是 B 的充要条件.
9.【2017 年高考全国 III 卷理数】在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切
的圆上.若 AP AB AD ,则 的最大值为
A.3
B.2 2
C. 5
D.2
【答案】A
【解析】如图所示,建立平面直角坐标系.
4
墨漪专属资料
设 A 0,1 , B 0,0 , C 2,0 , D 2,1 , P x, y ,
易得圆的半径 r
2
4
2
,即圆 C 的方程是 x 2 y 2 ,
5
5
AP x, y 1 , AB 0, 1 , AD 2,0 ,若满足 AP AB AD ,
x 2
x
x
, , 1 y ,所以 y 1 ,
模
夹角
a x12 y12
|a|= a a
cos
a b
ab
cos
x1 x2 y1 y2
x12 y12 x2 2 y2 2
高考数学平面向量多选题复习训练题(含答案解析)
高考数学平面向量多选题复习训练题(含答案解析)1.(2022·河北廊坊·模拟预测)已知实数m 、n 和向量a 、b ,下列结论中正确的是( ) A .()m a b ma mb −=− B .()m n a ma na −=−C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =【答案】ABD 【解析】 【分析】利用平面向量的线性运算可判断ABCD 选项. 【详解】对于A 选项,()m a b ma mb −=−,A 对; 对于B 选项,()m n a ma na −=−,B 对;对于C 选项,若ma mb =,则()0m a b −=,所以,0m =或a b =,C 错;对于D 选项,若()0ma na a =≠,则()0m n a −=,所以,0−=m n ,即m n =,D 对. 故选:ABD.2.(2021·全国·模拟预测)如图,在ABC 中,6BC =,D ,E 是BC 的三等分点,且4AD AE ⋅=,则( )A .2133AE AB AC =+ B .1122AD AB AE =+ C .4⋅=−AB AC D .2228AB AC +=【答案】BCD 【解析】 【分析】由向量的线性运算即可判断A ,B,取DE 的中点G ,由6BC =,D ,E 是BC 的三等分点得G 是BC 的中点,计算可得2214AD AE AG DE ⋅=−,进而得出25AG =,计算可判断选项C,由C 可知2AB AC AG +=,两边平方,化简计算可判断选项D .【详解】对于A ,()11123333AE AC CE AC CB AC AB AC AB AC =+=+=+−=+,故选项A 不正确;对于B ,由题意得D 为BE 的中点,所以1122AD AB AE =+,故选项B 正确; 对于C ,取DE 的中点G ,由6BC =,D ,E 是BC 的三等分点得G 是BC 的中点,且2DE =,所以221114224AD AE AG DE AG DE AG DE ⎛⎫⎛⎫⋅=−⋅+=−= ⎪ ⎪⎝⎭⎝⎭,所以25AG =,22111594224AB AC AG BC AG BC AG BC ⎛⎫⎛⎫⋅=−⋅+=−=−=− ⎪ ⎪⎝⎭⎝⎭,故选项C 正确;对于D ,由G 是BC 的中点得2AB AC AG +=,两边平方得22224AB AB AC AC AG +⋅+=,所以2220828AB AC +=+=,故选项D 正确.故选:BCD.3.(2021·山东·二模)若,,a b c 均为单位向量,且0,()()0a b a c b c ⋅=−⋅−≤,则||a b c +−的值可能为( )A 1B .1CD .2【答案】AB 【解析】 【分析】由0,()()0a b a c b c ⋅=−⋅−≤,得到()1c a b +≥r r r ,再由a b c +−=r r r.【详解】因为,,a b c 均为单位向量,且0,()()0a b a c b c ⋅=−⋅−≤,所以2()0a b c a b c ⋅−++≤r r r r r r ,即()1c a b +≥r r r,所以a b c +−r r r1,故选:AB4.(2021·黑龙江·密山市第一中学模拟预测)在ABC 中,有如下四个命题正确的有( ) A .若0AC AB ⋅>,则ABC 为锐角三角形B .若BA BC AC +=,则ABC 的形状为直角三角形C .ABC 内一点G 满足0GA GB GC ++=,则G 是ABC 的重心D .若PA PB PB PC PC PA ⋅=⋅=⋅,则点P 必为ABC 的外心 【答案】BC 【解析】 【分析】对于A ,由0AC AB ⋅>可得角A 为锐角,从而可判断,对于B ,对BA BC AC +=两边平方化简,再结合余弦定理可得结论,对于C ,由向量加法和共线及三角形重心概念判断,对于D ,由向量运算性质和三角形垂心概念可判断 【详解】解:对于A ,由0AC AB ⋅>,得s 0co AC AB A >,所以cos 0A >,所以角A 为锐角,但不能判断三角形为锐角三角形,所以A 错误,对于B ,因为BA BC AC +=,所以2222BA BA BC BC AC +⋅+=,即2222cos BA BA BC B BC AC +⋅+=,所以222cos cos 2BA BC ACB B BA BC+−−==,得cos 0B =,因为(0,)B π∈,所以2B π=,所以三角形为直角三角形,所以B 正确,对于C ,因为0GA GB GC ++=,所以GA GB GC +=−,所以2GD GC =−(D 为BA 的中点),所以,,G C D 三点共线,所以点G 在BA 边的中线CD 上,同理,可得点G 在其它两边的中线上,所以G 是ABC 的重心,所以C 正确,对于D ,因为PA PB PB PC ⋅=⋅,所以0PA PB PB PC ⋅−⋅=,()0PB PA PC PB CA ⋅−=⋅=,所以PB CA ⊥,所以点P 在边CA 的高上,同理可得点 P 也在其它两边的高上,所以点P 为ABC 的垂心,所以D 错误, 故选:BC5.(2021·全国·模拟预测)下列说法正确的是( ) A .若,,a b c 为平面向量,//,//a b b c ,则//a c B .若,,a b c 为平面向量,,a b b c ⊥⊥,则//a cC .若1,2a b ==r r ,()a b a +⊥r r r ,则a 在b 方向上的投影为12−D .在ABC 中,M 是AB 的中点,AC =3AN ,BN 与CM 交于点P ,AP =AB λ+AC μ,则λ=2μ 【答案】CD 【解析】 【分析】利用向量共线的概念判断A 、B ,;利用向量数量积的定义可判断C ;利用向量共线的推论即可判断D. 【详解】A ,若0b =,则0与任意向量共线,所以a 与c 不一定平行,故A 错误;B ,若,a b b c ⊥⊥,则0a b ⋅=,0b c ⋅=,当,,a b c 共面时,//a c , 若,,a b c 不共面时,a 与c 不平行,故B 错误;C ,若()a b a +⊥r r r ,则()0a b a +⋅=r r r ,所以21a b a ⋅=−=−,a 在b 方向上的投影为12a b b⋅=−r r r ,故C 正确; D ,AP AN NP =+,设NP aNB =, 则()1133AP AC aNB AC a NC CB =+=++ ()112333AC aNC aCB AC aAC a CA AB =++=+++ 1233AC aAC aCA aAB =+++1133a AC aAB ⎛⎫=−+ ⎪⎝⎭, 设a λ=,则1133μλ=−,即31μλ=−,①12AP AM MP AB MP =+=+,设MP bMC =, 1111122222AP AB bMC AB b AB BA AC b AB bAC ⎛⎫⎛⎫=+=+++=−+ ⎪ ⎪⎝⎭⎝⎭, 1122λμ=−,即21λμ=−,②由①②可得25λ=,15μ=,即2λμ=,故D 正确. 故选:CD6.(2021·江苏南京·一模)设()0,0O ,()1,0A ,()0,1B ,点Р是线段AB 上的一个动点,AP AB λ=uu u r uu u r,若OP AB PA PB ⋅⋅≥,则实数λ的值可以为( ) A .1 B .12C .13D .14【答案】ABC 【解析】 【分析】设出P 点的坐标,结合OP AB PA PB ⋅⋅≥求得λ的取值范围. 【详解】设(),P x y ,由()01AP AB λλ=≤≤得()()()1,1,1,x y λλλ−=−=−, 所以()11,x P y λλλλ−=−⎧⇒−⎨=⎩, 由OP AB PA PB ⋅⋅≥得()()()()1,1,1,1,1λλλλλλ−⋅−≥−⋅−−,()()111λλλλλλ−+≥−−−,222122,241011λλλλλλ−≥−−+≤⇒≤≤由于01λ≤≤,所以11λ≤≤.111,,123⎡⎤∈⎢⎥⎣⎦,所以ABC 正确,D 错误.故选:ABC7.(2022·江苏·海安高级中学二模)关于平面向量a b c ,,,下列说去不正确的是( ) A .若··a c b c =,则a b = B .·(··)a b c a c b c =++ C .若22a b =,则··a c b c = D .()()····a b c b c a = 【答案】ACD 【解析】 【分析】令0=c 时可判断A ;利用()a b c a c b c +⋅=⋅+⋅,可判断B ;由22=a b 可知a 与b 的模长相等,但()−⋅a b c 不一定为0可判断C ;()⋅⋅a b c 与c 共线的向量,()·b c a ⋅与a 共线,可判断D . 【详解】0=c 时,0⋅=⋅=a c b c ,a 与b 可任取,故A 错;()a b c a c b c +⋅=⋅+⋅,故B 对;22=a b 可知a 与b 的模长相等,()−⋅a b c 不一定为0,∴⋅≠⋅a c b c ,故C 错;()⋅⋅a b c 与c 共线的向量,()·b c a ⋅与a 共线的向量. ∴()()⋅⋅≠⋅⋅a b b c a c ,D 错. 故选:ACD.8.(2022·山东潍坊·一模)已知向量()1,2OP =,将OP 绕原点O 旋转﹣30°,30°,60°到123,,OP OP OP的位置,则( ). A .130OP OP ⋅= B .12PP PP =C .312OP OP OP OP ⋅=⋅D .点1P 坐标为⎝⎭【答案】ABC 【解析】 【分析】根据向量的夹角判断A ,再由全等三角形可判断B ,根据向量的数量积的定义判断C ,根据向量的模相等判断D. 【详解】因为OP 绕原点O 旋转﹣30°,30°,60°到123,,OP OP OP , 所以1OP →与3OP →的夹角为90︒,故130OP OP ⋅=,A 选项正确; 由题意知,12△△OPP OPP ≅,所以12PP PP =,即12PP PP =,故B 正确; 因为312,60,,60OP OP OP OP →→→→<>=︒<>=︒,312||||||||OP OP OP OP →→→→===, 所以由数量积的定义知312OP OP OP OP ⋅=⋅,故C 正确;若点1P 坐标为⎝⎭,则1||||OP OP →→=≠D 不正确. 故选:ABC9.(2022·辽宁·育明高中一模)“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆O 的半径为2,点P 是圆O 内的定点,且OP =AC 、BD 均过点P ,则下列说法正确的是( )A .PA PC ⋅为定值B .OA OC ⋅的取值范围是[]2,0−C .当AC BD ⊥时,AB CD ⋅为定值 D .AC BD ⋅的最大值为12【答案】AC 【解析】 【分析】根据题设中的圆幂定理可判断AC 的正误,取AC 的中点为M ,连接OM ,利用向量的线性运算可判断B 的正误,根据直径的大小可判断D 的正误. 【详解】如图,设直线PO 与圆O 于E ,F .则()()222PA PC PA PC EP PF OE PO OE PO PO EO ⋅=−=−=−−+=−=−,故A 正确.取AC 的中点为M ,连接OM ,则()()22OA OC OM MA OM MC OM MC ⋅=+⋅+=−()222424OM OMOM =−−=−,而2202OM OP ≤≤=,故OA OC ⋅的取值范围是[]4,0−,故B 错误.当AC BD ⊥时,()()AB CD AP PB CP PD AP CP PB PD ⋅=+⋅+=⋅+⋅ 24AP CP PB PD EP PF =−−=−=−,故C 正确.因为4,4AC BD ≤≤,故16AC BD ⋅≤,故D 错误. 故选:AC10.(2022·江苏苏州·模拟预测)在ABC 中,AB c =,BC a =,CA b =,下列命题为真命题的有( )A .若a b >,则sin sin AB >B .若0a b ⋅>,则ABC 为锐角三角形C .若0a b ⋅=,则ABC 为直角三角形D .若()()0b c a b a c +−⋅+−=r r r r r r,则ABC 为直角三角形 【答案】ACD 【解析】 【分析】利用正弦定理判断选项A ,利用数量积的性质判断选项B 和C ,利用数量积的性质和余弦定理判断选项D . 【详解】解:A :若a b >,由正弦定理得2sin 2sin R A R B >, sin sin A B ∴>,则 A 正确;B :若0a b ⋅>,则cos()0ACB π−∠>, cos 0ACB ∴∠<,即ACB ∠为钝角, ABC ∴为钝角三角形,故 B 错误;C :若0a b ⋅=,则AC BC ⊥,ABC ∴为直角三角形,故 C 正确;D :若()()0b c a b a c +−⋅+−=r r r r r r ,则22()0b a c −−=r r r,2222a c b a c ∴+−=⋅r r r r r ,222cos 2a c b Ba c +−=−r r r r r , 由余弦定理知222cos 2a c bB a c +−=r r r r r, cos cos B B ∴=−,则cos 0B =,(0,)B π∈,2B π∴=,ABC 为直角三角形,故 D 正确.故选:ACD .11.(2022·全国·模拟预测)如图,直角三角形ABC 中,D ,E 是边AC 上的两个三等分点,G 是BE 的中点,直线AG 分别与BD , BC 交于点F ,H 设AB a =,AC b =,则( )A .1123AG a b =+B .1136AF a b =+C .1123EG a b =− D .3255AH a b =+【答案】ACD 【解析】 【分析】以A 为坐标原点,分别以AC ,AB 的方向为x 轴,y 轴的正方向建立平面直角坐标系,分别写出各点坐标,特别联立方程组解得H ,再根据选项一一判断即可. 【详解】以A 为坐标原点,分别以AC ,AB 的方向为x 轴,y 轴的正方向建立平面直角坐标系,设AB a =,AC b =,则()0,0A ,,03b D ⎛⎫ ⎪⎝⎭,2,03b E ⎛⎫ ⎪⎝⎭,(),0C b ,()0,B a ,,32b a G ⎛⎫⎪⎝⎭.又F 为ABE △的重心,则2,93b a F ⎛⎫⎪⎝⎭,直线AG 的方程为32a y x b =,直线BC 的方程为1x y b a +=,联立解得23,55H b a ⎛⎫ ⎪⎝⎭,则,32b a AG ⎛⎫= ⎪⎝⎭,2,93b a AF ⎛⎫= ⎪⎝⎭,,32b a EG ⎛⎫=− ⎪⎝⎭,23,55AH b a ⎛⎫= ⎪⎝⎭因为()0,a AB a ==,(),0b AC b ==,所以1123AG a b =+,1239AF a b =+,1123EG a b =−,3255AH a b =+.故选:ACD .12.(2022·广东·二模)如图,已知扇形OAB 的半径为1,2AOB π∠=,点C 、D 分别为线段OA 、OB 上的动点,且1CD =,点E 为AB 上的任意一点,则下列结论正确的是( )A .OE AB ⋅的最小值为0 B .EA EB ⋅的最小值为1C .⋅EC ED 的最大值为1 D .⋅EC ED 的最小值为0【答案】BCD 【解析】 【分析】以O 为原点建立如图所示的直角坐标系,得()01,B ,()10,A ,设EOA θ∠=,则()cos sin 0,2,πθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭E ,求出2sin 4πθ⎛⎫⋅=− ⎪⎝⎭AB OE ,利用θ的范围可判断A ;求出EA 、EB 的坐标,由14πθ⎛⎫⋅=+ ⎪⎝⎭EA EB ,利用θ的范围可判断B ;设()[](),00,1∈C t t ,可得(D ,求出EC 、ED ,由⋅EC ED ()1sin θϕ=−+,利用 t 、ϕ、θ,的范围可判断CD. 【详解】以O 为原点建立如图所示的直角坐标系,所以()01,B ,()10,A , 设EOA θ∠=,则()cos sin 0,2,πθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭E ,()cos sin ,θθ=OE , ()11,=−AB ,所以sin cos 4πθθθ⎛⎫⋅=−=− ⎪⎝⎭AB OE ,因为0,2πθ⎡⎤∈⎢⎥⎣⎦,所以,444πππθ⎡⎤−∈−⎢⎥⎣⎦,所以sin 4πθ⎡⎛⎫−∈⎢ ⎪⎝⎭⎣⎦,所以[]1,1⋅∈−AB OE ,OE AB ⋅的最小值为1−,故A 错误; ()1cos ,sin θθ=−−EA ,()cos ,1sin θθ=−−EB ,所以22cos cos sin sin 14πθθθθθ⎛⎫⋅=−+−+=+ ⎪⎝⎭EA EB ,因为0,2πθ⎡⎤∈⎢⎥⎣⎦,所以3,444πππθ⎡⎤+∈⎢⎥⎣⎦,所以sin 4πθ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,所以114πθ⎛⎫⎡⎤+∈ ⎪⎣⎦⎝⎭,1⎡⎤⋅∈⎣⎦EA EB ,EA EB ⋅的最小值为1B 正确;设()[](),00,1∈C t t ,又1=CD ,所以OD (D ,()cos ,sin θθ=−−EC t ,()cos sin θθ=−ED ,所以()22cos cos sin 1cos θθθθθθ⋅=++=−EC ED t t()1sin θϕ=−+,其中cos ϕϕ==t ,又[]0,1t ∈,所以[]cos ,sin 0,1ϕϕ∈,所以0,2πϕ⎡⎤∈⎢⎥⎣⎦,[]0,ϕθπ+∈,()[]sin 0,1ϕθ+∈,()[]sin 1,0ϕθ−+∈−,所以[]0,1⋅∈EC ED , ⋅EC ED 的最小值为0,故CD 正确.故选:BCD.13.(2022·辽宁·东北育才学校二模)对于非零向量m ,n ,定义运算“⊗”,||||sin ,m n m n m n ⊗=〈〉.已知两两不共线的三个向量a ,b ,c ,则下列结论正确的是( ) A .若a b ⊥,则⊗=a b a b B .()()a b c a b c ⊗=⊗ C .()a b a b ⊗=−⊗ D .()()()a b c a c b c +=+⊗⊗⊗【答案】AC 【解析】 【分析】A. 由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断;B.举例()()()1,0,0,1,0,1===−a b c 求解判断;C.设,a b 的夹角为θ,则,−a b 的夹角为πθ−,由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断;D.举例()()()1,0,0,1,1,1===a b c ,由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断; 【详解】A. 因为a b ⊥,所以,90=a b ,则sin ,⊗==a b a b b a b a ,故正确;B. 若()()()1,0,0,1,0,1===−a b c ,则()()0,1,()0⊗=−⊗=a b c a b c ,所以()()⊗≠⊗a b c a b c ,故错误;C.设,a b 的夹角为θ,则,−a b 的夹角为πθ−,所以()sin ,()sin sin θπθθ⊗=−⊗=−−=a b a b a b a b a b ,则()a b a b ⊗=−⊗,故正确; D. 若()()()1,0,0,1,1,1===a b c ,则()0()()2,+=+=⊗⊗⊗a b c a c b c ,所以()()()+≠+⊗⊗⊗a b c a c b c ,故错误;故选:AC14.(2022·山东·模拟预测)已知在△ABC 中,AB =,2AB AM =uu u r uuu r,2CM CN =,若0AN BC ⋅=,则( )A .23AB AC AN += B .()2AB ACCM −C .AB AC ⊥D .45ACM ∠=︒【答案】BC 【解析】根据条件先推出,M N 是中点,利用中线向量的表达式可判断AB 选项,利用0AN BC ⋅=可以判断C 选项,根据C 选项和题目条件可判断D 选项.【详解】因为2AB AM =uu u r uuu r,2CM CN =,所以,M N 分别为,AB CM 的中点, 所以()1122AN AM AC =+=111242AB AC AB AC ⎛⎫+=+ ⎪⎝⎭,所以24AB AC AN +=,故选项A 错误;由222AB AC AM AC −=−=2CM ,得()2AB AC CM −,故选项B 正确;因为AB =,()()12AN BC AC AM AC AB ⋅=+⋅− ()221111*********AC AB AC AB AC AB AB AC AB AC ⎛⎫⎛⎫=+⋅−=−−⋅=−⋅= ⎪ ⎪⎝⎭⎝⎭,所以AB AC ⊥,故选项C 正确;由AB AC ⊥,得tan 2AM AB ACM AC AC ∠== 则45ACM ∠≠︒,故选项D 错误. 故选:BC.15.(2022·全国·模拟预测)如图,在等腰梯形ABCD 中,222AB AD CD BC ===,E 是BC 的中点,连接AE ,BD 相交于点F ,连接CF ,则下列说法正确的是( )A .3142AE AB AD →→→=+B .3255AF AB AD →→→=+C .1255BF AB AD →→→=−+ D .13105CF AB AD →→→=− 【答案】ABD 【解析】 【分析】根据平面向量的线性运算并结合平面向量共线定理即可判断答案.对于A 选项,1122AE AB BE AB BC AB AB AD DC →→→→→→→→→⎛⎫=+=+=+−++ ⎪⎝⎭11312242AB AB AD AB AB AD →→→→→→⎛⎫=+−++=+ ⎪⎝⎭,故A 选项正确;对于B 选项,因为B ,F ,D 三点共线,设()1AF x AB x AD →→→=+−,由AF AE →→∥,所以存在唯一实数λ,使得AF AE λ→→=,结合A 可知,()3131114242x AB x AD AB AD x AB x AD λλλ→→→→→→⎛⎫⎛⎫⎛⎫+−=+⇒−=−+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为,AB AD →→不共线,所以303415102x x x λλ⎧−=⎪⎪⇒=⎨⎪−+=⎪⎩,所以3255AF AB AD →→→=+,故B 选项正确; 对于C 选项,结合B ,2255BF AF AB AB AD →→→→→=−=−+,故C 选项错误;对于D 选项,结合B ,132********CF CD DA AF AB AD AB AD AB AD →→→→→→→→→→=++=−−++=−,故D 选项正确. 故选:ABD.16.(2021·全国·模拟预测)已知ABC 的重心为G ,点E 是边BC 上的动点,则下列说法正确的是( ) A .AG BG CG +=− B .若2133AE AB AC =+,则EAC 的面积是ABC 面积的13C .若2AB AC ==,3BC =,则76AB AG ⋅=D .若2AB AC ==,3BC =,则当EA EB ⋅取得最小值时,37||2EA =【答案】AC 【解析】 【分析】利用平面向量的基底表示,结合重心的性质,判断选项AB ,利用余弦定理计算角,根据平面向量的基底表示计算向量的数量积,从而判断选项CD.设AB 的中点为D ,则2GA GB GD +=,则2AG BG GD CG +=−=−,即2CG GD =,由重心性质可知成立,故A 正确;32AE AB AC =+,则22AE AC AB AE −=−,即2CE EB =,所以E 为边BC 上靠近点B 的三等分点,则EAC 的面积是ABC 面积的23,故B 错误;在ABC 中,由余弦定理得1cos 8A =−,则()211()33AB AG AB AB AC AB AB AC ⋅=⋅+=+⋅=117422386⎡⎤⎛⎫+⨯⨯−= ⎪⎢⎥⎝⎭⎣⎦,故C 正确; 由余弦定理得3cos 4ABC ∠=,所以2()EA EB EB EB BA EB EB BA ⋅=⋅+=+⋅=2||||EB EB BA +⋅22339cos()||||2416ABC EB EB EB π⎛⎫−∠=−=−− ⎪⎝⎭,则当3||4EB =时,EA EB ⋅取得最小值916−,此时()229337||422cos 16416=−=+−⨯⨯⨯∠=EA EB AB ABC ,37||4=EA ,故D 错误. 故选:AC【点睛】一般计算平面向量的数量积时,如果不能采用定义或者坐标公式运算时,可利用向量的基底表示,根据向量的线性运算法则将所求向量表示为已知向量的和或差进行计算.17.(2022·广东茂名·一模)已知点A 是圆C :()2211x y ++=上的动点,O 为坐标原点,OA AB ⊥,且||||OA AB =,O ,A ,B 三点顺时针排列,下列选项正确的是( )A .点B 的轨迹方程为()()22112x y −+−= B .||CB的最大距离为1C .CA CB ⋅1 D .CA CB ⋅的最大值为2 【答案】BD 【解析】 【分析】如图,过O 点作//,OD AB OD AB =且,设点(),B x y ,利用相关点代入法,可求得轨迹方程为()()22112x y ++−=,可判断A ;根据点到圆上距离的最值求解,可判断B ;设[0,90]CAO ,∠=θθ∈,将向量的数量积表示成关于θ的函数,可判断C ,D ;【详解】如图,过O 点作//,OD AB OD AB =且则点()1,0C −,设点()00,A x y ,设xOA α∠=,则2xOD πα∠=−,设||OA a =,所以,0cos x a α=,0sin y a α=,所以,0cos sin 2D x a a y παα⎛⎫=−== ⎪⎝⎭,0sin cos 2D y a a x παα⎛⎫=−=−=− ⎪⎝⎭,即点()00,D y x −,因为()0000,OB OA OD x y y x =+=+−,设点(),B x y ,可得0000x x y y y x =+⎧⎨=−⎩,解得0022x y x x y y −⎧=⎪⎪⎨+⎪=⎪⎩, 因为点A 在圆()2211x y ++=上,所以()220011x y ++=,将0022x y x x y y −⎧=⎪⎪⎨+⎪=⎪⎩代入方程()220011x y ++=可得221122x y x y −+⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭, 整理可得()()22112x y ++−=,所以A 是错的, 所以CB的最大距离为1B 是对的, 设,090CAO θθ︒∠=≤≤,2o ()1||||cos(90)CA CB CA CA AB CA CA AB CA AB ⋅=⋅+=+⋅=+⋅−θ 1|OA |sin 12cos sin 1sin 22=+=+=+≤θθθθ所以CA CB ⋅的最大值为2,D 是对的. 故选:BD18.(2021·全国·模拟预测)在ABC 中,D ,E 分别是线段BC 上的两个三等分点(D ,E 两点分别靠近B ,C 点),则下列说法正确的是( ) A .AB AC AD AE +=+ B .若F 为AE 的中点,则1344BF AC AB =− C .若0AB AC ⋅=,1AB =,2AC =,则109AD AE ⋅=D .若3AB AC AB AC +=−,且AB AC =,则60CAB ∠=︒ 【答案】ACD 【解析】 【分析】取BC 的中点M ,则M 也是DE 的中点,根据向量的加法运算即可判断A ;根据平面向量基本定理及线性运算即可判断B ;根据平面向量数量积的运算律即可判断C ;根据平面向量基本定理及线性运算结合等腰三角形的性质即可判断D. 【详解】解:对于A ,取BC 的中点M ,则M 也是DE 的中点, 则有()()1122AM AB AC AD AE =+=+,所以AB AC AD AE +=+,故A 正确; 对于B ,若F 为AE 的中点,则111251223363BF BA AF AB AE AB AB AC AB AC ⎛⎫=+=−+=−++=−+ ⎪⎝⎭,故B 错误;对于C ,因为D ,E 分别为线段BC 上的两个三等分点,所以()()()111333AD AE AB BD AC CE AB BC AC BC AB AC AB ⎛⎫⎛⎫⎡⎤⋅=+⋅+=+−=+− ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,()221212122533333999AC AC AB AB AC AC AB AB AC AB ⎡⎤⎛⎫⎛⎫−−=+⋅+=++ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,()21014099AC =⨯++=,故C 正确;对于D ,由A 选项得,2AB AC AM +=, 由AB AC CB −=,因为3AB AC AB AC +=−,所以32AM CB =,即AM CM = 因为AB AC =,所以AM BC ⊥,AM 平分BAC ∠,在Rt AMC 中,tan AM ACB CM∠=60ACB ∠=︒,所以ABC 为等边三角形,所以60CAB ∠=︒,故选:D. 故选:ACD.19.(2021·全国·模拟预测)如图,已知点G 为ABC 的重心,点D ,E 分别为AB ,AC 上的点,且D ,G ,E 三点共线,AD mAB =,AE nAC =,0m >,0n >,记ADE ,ABC ,四边形BDEC 的面积分别为1S ,2S ,3S ,则( )A .113m n+= B .12S mn S = C .1345S S ≥ D .1345S S ≤ 【答案】ABC 【解析】 【分析】连接AG 并延长交BC 于点M ,由三角形重心结合向量运算探求m ,n 的关系, 再借助三角形面积公式及均值不等式即可逐项判断作答. 【详解】连接AG 并延长交BC 于点M ,如图,因G 为ABC 的重心,则M 是BC 边的中点,且23AG AM =uuu r uuu r,又D ,G ,E 三点共线,即(01)DG tDE t =<<,则有(1)AG t AD t AE =−+,而AD mAB =,AE nAC =,又()12AM AB AC =+uuu r uu u r uuu r ,于是得11(1)33t mAB tnAC AB AC −+=+,而AB 与AC 不共线,因此,11(1),33t m tn −==,113(1)33t t m n+=−+=,A 正确;ADE 边AD 上的高为sin AE BAC ∠,ABC 边AB 上的高为sin AC BAC ∠,则121sin 2·1sin 2AD AE BAC S AD AEmn S AB ACAB AC BAC ⋅∠===⋅∠,B 正确;由A可知,11133m n =+≥23m n ==时取“=”,则有49mn ≥,即1249S S ≥,而121S S <,于是得11213212121141145119S S S S S S S S S S ==−=−≥=−−−−,C 正确,D 错误. 故选:ABC20.(2021·全国·模拟预测)已知向量()3,2a =−,()2,1b =r,(),1c λ=−,R λ∈,则( )A .若()2a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=− C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(),1−∞− 【答案】ABC 【解析】 【分析】对于A ,根据两向量垂直时其数量积为0可求得λ的值;对于B ,根据向量相等建立方程组可求得λ、t 的值,即可得t λ+的值;对于C ,由模的计算公式求出a b μ+,然后利用二次函数的性质求解即可;对于D ,由两向量的夹角为锐角时其数量积大于0且两向量不共线即可求出λ的范围. 【详解】对于A ,因为()21,4a b +=,(),1c λ=−,()2a b c +⊥, 所以()()21410a b c λ+⋅=⨯+⨯−=,解得4λ=,所以A 正确; 对于B ,由a tb c =+,得()()()()3,22,1,12,1t t t λλ−=+−=+−, 则3221t t λ−=+⎧⎨=−⎩,解得93t λ=−⎧⎨=⎩,故6t λ+=−,所以B 正确;对于C ,因为()()()3,22,123,2a b μμμμ+=−+=−+, 所以(2a b μμ+=− 则当45μ=时,a b μ+取得最小值为C 正确;对于D ,因为()1,3a b +=−,()24,1b c λ+=+,因为向量a b +与向量2b c +的夹角为锐角, 所以()()()214310a b b c λ+⋅+=−⨯++⨯>,解得1λ<−;由题意知向量a b +与向量2b c +不共线,()11340λ−⨯−⨯+≠,解得133λ≠−. 所以λ的取值范围是1313,,133⎛⎫⎛⎫−∞−⋃−− ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.综上可知,选ABC . 故选:ABC.21.(2021·全国·模拟预测)已知ABC 是半径为2的圆O 的内接三角形,则( ) A .若π3C =,则6AB AO ⋅=uu u r uuu r B .若()2BC BA AC AC +⋅=,则AB 为圆O 的一条直径C .若OA OB OA OB −=⋅uu r uu u r uu r uu u r ,则OA ,OB 的夹角π3θ=D .若20OA AB AC ++=,则22BC =【答案】AC 【解析】 【分析】对于A ,结合正弦定理求出AB ,过点O 作⊥OD AB 于D ,得0DO AB ⋅=,然后将AB AO ⋅转化为()AB AD DO ⋅+uu u r uuu r uuu r 即可求解;对于B ,根据平面向量运算法则可由()20BC BA AC AC +⋅−=uu u r uu r uu u r uu u r 得到20BA AC ⋅=uu r uu u r,由此可作出判断;对于C ,将OA OB OA OB −=⋅uu r uu u r uu r uu u r 两边平方,利用向量的数量积运算求出cos θ的值,从而结合0OA OB ⋅>求得角θ;对于D ,由题设条件并结合平面向量的线性运算得到0OB OC +=,由此可作出判断. 【详解】对于A ,由正弦定理,得π2sin 22sin3AB R C ==⨯=过点O 作⊥OD AB 于D ,则0DO AB ⋅=,所以()AB AO AB AD DO AB AD AB DO ⋅=⋅+=⋅+⋅uu u r uuu r uu u r uuu r uuu r uu u r uuu r uu u r uuu r(22110622AB =+=⨯=uu u r ,故A 正确;对于B ,()()()220BC BA AC AC BC BA AC AC BC BA CA AC BA AC +⋅−=+−⋅=++⋅=⋅=uu u r uu r uu u r uu u r uu u r uu r uu u r uu u r uu u r uu r uu r uu u r uu r uu u r ,所以AB AC ⊥,所以BC 为圆O 的一条直径,故B 不正确; 对于C ,由OA OB OA OB −=⋅uu r uu u r uu r uu u r ,两边平方,得288cos 16cos θθ−=,解得1cos 2θ=或cos 1θ=−,易知,0OA OB ⋅>,则π0,2θ⎛⎫∈ ⎪⎝⎭,所以π3θ=,故C 正确;对于D ,由20OA AB AC ++=,得0OA AB OA AC OB OC +++=+=,所以点O 是线段BC 的中点,所以4BC =,故D 不正确.综上可知,选AC. 故选:AC22.(2021·全国·模拟预测)已知向量a ,b 满足2=a ,()2,2b =,且26a b +=,则下列结论正确的是( ) A .a b ⊥ B .23a b +=C .(2,a =或(2,a =−D .a 与2a b +的夹角为45°【答案】ABC 【解析】 【分析】对于A ,由26a b +=,两边平方求解判断;对于B ,由a b +平方求解;对于C ,设(),a x y =,由26a b +=求解判断;对于D ,利用夹角公式求解判断. 【详解】对于A ,由()2,2b =,得22b =,因为26a b +=,所以224436a b b a ⋅+=+,又2=a ,所以0a b ⋅=,a b ⊥,故A 正确;对于B ,因为22224812a b b a b a +⋅=+++==,所以23a b +=,故B 正确;对于C ,设(),a x y =,则2(4,4)a b x y +=++,22(4)(4)36x y +++=,解得0x y +=,从而(2,a =或(2,a =−,故C 正确;对于D ,()241cos ,22632a a ba ab a a b⋅++===⨯⋅+,故D 错误. 故选:ABC23.(2021·山东泰安·模拟预测)如图,在直角三角形ABC 中,90,A AB AC ===点P 在以A 为圆心且与边BC 相切的圆上,则( )A .点P 所在圆的半径为2B .点P 所在圆的半径为1C .PB PC ⋅的最大值为14D .PB PC ⋅的最大值为16【答案】AC 【解析】 【分析】Rt ABC 斜边BC 上的高即为圆的半径;把求PB PC ⋅的最大值通过向量加法的三角形法则转化为求42PA PM +⋅的最大值,从而判断出P ,M ,A 三点共线,且P ,M 在点A 的两侧时取最大值. 【详解】设AB 的中点为M ,过A 作AH 垂直BC 于点H ,因为90,A AB AC ===所以5BC =,52AM =,所以由1122AB AC BC AH =,得2AB AC AH BC ==,所以圆的半径为2,即点P 所在圆的半径为2,所以选项A 正确,B 错误;因为PB PA AB =+,PC PA AC =+,0AC AB ⋅=, 所以()()2·PB PC PA AB PA AC PA PA AC AB PA ⋅=++=+⋅+⋅ ()242AC A PA PA PA B PM =+⋅+=+⋅ ,所以当P ,M ,A 三点共线,且P ,M 在点A 的两侧时,2P PA M ⋅取最大值,且最大值为()max52222102PA P PM A PM ⋅=⋅=⨯⨯=, 所以PB PC ⋅的最大值为41014+=,所以选项C 正确,D 错误.故选:AC.24.(2022·重庆·模拟预测)重庆荣昌折扇是中国四大名扇之一,始于1551年明代嘉靖年间,明末已成为贡品人朝,产品以其精湛的工业制作而闻名于海内外.经历代艺人刻苦钻研、精工创制,荣昌折扇逐步发展成为具有独特风格的中国传统工艺品,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长,偏称游人携袖里,不劳侍女执花傍;宫罗旧赐休相妒,还汝团圆共夜凉”图1为荣昌折扇,其平面图为图2的扇形COD ,其中2,333COD OC OA π∠===,动点P 在CD 上(含端点),连接OP 交扇形OAB 的弧AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是( )图1 图2 A .若y x =,则23x y += B .若2y x =,则0OA OP ⋅= C .2AB PQ ⋅≥− D .112PA PB ⋅≥【答案】ABD 【解析】 【分析】建立平面直角系,表示出相关点的坐标,设2(cos ,sin ),[0,]3Q πθθθ∈ ,可得(3cos ,3sin )P θθ,由OQ xOC yOD =+,结合题中条件可判断A,B;表示出相关向量的坐标,利用数量积的运算律,结合三角函数的性质,可判断C ,D. 【详解】如图,作OE OC ⊥ ,分别以,OC OE 为x ,y 轴建立平面直角坐标系,则13(1,0),(3,0),((22A C B D −− ,设2(cos ,sin ),[0,]3Q πθθθ∈ ,则(3cos ,3sin )P θθ,由OQ xOC yOD =+可得3cos 3,sin 2x y y θθ=−= ,且0,0x y >> ,若y x =,则22223cos sin (3))12x x θθ+=−+=,解得13x y == ,(负值舍去),故23x y +=,A 正确;若2y x =,则3cos 302x y θ=−=,(1,0)(0,1)0OA OP ⋅=⋅=,故B 正确;3((2cos ,2sin )3cos )23AB PQ πθθθθθ⋅=−⋅=−=− ,由于[0,]3θ2π∈,故[,]333πππθ−∈−,故)33πθ−≥−,故C 错误;由于1(3cos 1,3sin ),(3cos ,3sin 2PA PB θθθθ=−=+,故1(3cos 1,3sin )(3cos ,3sin 2PA PB θθθθ⋅=−⋅+173sin()26πθ=−+ ,而5[,]666πππθ+∈, 故173sin(17)2611322PA PB πθ⋅=−+≥−=,故D 正确, 故选:ABD25.(2022··一模)平面向量,,a b c →→→,满足1a →=,2b →=且a a b →→→⎛⎫⊥− ⎪⎝⎭,20→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭c a c b ,则下列说法正确的是( )A .2→→+=a b B .a →在b →方向上的投影是1C .c →1 D .若向量m →满足2→→⋅=m a ,则→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值是54【答案】ACD 【解析】 【分析】结合题意,直接根据两向量垂直和向量的数量积运算,即可判断A 选项;根据a →在b →方向上的投影是cos a b a bθ→→→→⋅=进行计算,即可判断B 选项;设,,OA a OB b OC c →→→→→→===,根据题意可知OA BA ⊥,并取2→→=OD OA ,从而得出动点C 在以BD 为直径的圆上,设BD 的中点为E ,从而得出max 1=+OC OE ,即可判断C 选项;设→→=OM m ,由2→→⋅=m a 可知故M 在垂线l 上,根据向量的加减法运算得出22→→→→→⎛⎫⋅−=− ⎪⎝⎭m m b MF OF ,过F 作l 的垂线,垂足为1M ,可知2221924+⎛⎫≥== ⎪⎝⎭OD AD MF M F ,即可求出→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值,从而可判断D 选项. 【详解】解:因为1a →=,2b →=且a a b →→→⎛⎫⊥− ⎪⎝⎭,则20a a b →→→−⋅=,所以1a b →→⋅=,又221,4→→==a b ,则22224412→→→→→→+=+⋅+=a b a a b b ,则2→→+=a b A 正确;由于a →在b →方向上的投影是1cos 2θ→→→→⋅==a ba b,故B 错误;设,,OA a OB b OC c →→→→→→===,由于a a b →→→⎛⎫⊥− ⎪⎝⎭,即→→→⎛⎫⊥− ⎪⎝⎭OA OA OB ,故OA BA ⊥,因为20→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭c a c b ,取2→→=OD OA ,则0→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭OC OD OC OB ,所以0→→⋅=DC BC ,所以动点C 在以BD 为直径的圆上,如图, 1,2==OA OB ,则2OD =,2BD =,设BD 的中点为E ,OB 的中点为F ,过D 作OD 的垂线l ,则max 1=+OC OE ,因为OE =c →1,故C 正确; 设→→=OM m ,因为2→→⋅=m a ,即2→→⋅=OM OA ,则cos 2→→⋅∠=OM OA AOM , 所以cos 2→∠==OM AOM OD ,故M 在垂线l 上,而→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅−=⋅=+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭m m b OM BM MF FO MF FB ,又F 是OB 的中点,所以→→=−FB FO ,则22→→→→→⎛⎫⋅−=− ⎪⎝⎭m m b MF OF ,过F 作l 的垂线,垂足为1M ,则2221924+⎛⎫≥== ⎪⎝⎭OD AD MF M F ,又1OF =,所以2295144→→→→→⎛⎫⋅−=−≥−= ⎪⎝⎭m m b MF OF ,所以→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值是54,故D 正确.故选:ACD.。
平面向量-三年(2017-2019)高考真题数学(文)专题
平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π62.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .503.【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +4.【2018年高考全国II 卷文数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A 1 BC .2D .26.【2018年高考天津卷文数】在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .07.【2017年高考全国II 卷文数】设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥b B .=a b C .a ∥bD .>a b8.【2017年高考北京卷文数】设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.10.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.11.【2019年高考天津卷文数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.12.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.13.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.14.【2018年高考全国III 卷文数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 15.【2018年高考北京卷文数】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________. 16.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________. 18.【2017年高考全国III 卷文数】已知向量(2,3),(3,)m =-=a b ,且⊥a b ,则m =________. 19.【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=___________.21.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.22.【2017年高考天津卷文数】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,AE AC λ=- ()AB λ∈R ,且4AD AE ⋅=-,则λ的值为________.23.【2017年高考山东卷文数】已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ=________.平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.2.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b , 故选A.【名师点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.3.【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+,所以3144EB AB AC =-,故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算. 4.【2018年高考全国II 卷文数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a 所以选B.【名师点睛】本题主要考查平面向量的数量积,考查考生的运算求解能力,考查的数学核心素养是数学运算.5.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b满足b 2−4e ·b +3=0,则|a −b |的最小值是A 1B C.2 D .2【答案】A【解析】设 ,则由 得,由b 2−4e ·b +3=0得 因此|a −b |的最小值为圆心 到直线的距离21,为 选A. 【名师点睛】本题主要考查平面向量的夹角、数量积、模及最值问题,考查数形结合思想,考查考生的选算求解能力以及分析问题和解决问题的能力,考查的数学核心素养是直观想象、数学运算.6.【2018年高考天津卷文数】在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .0【答案】C【解析】如图所示,连结MN ,由 可知点 分别为线段 上靠近点 的三等分点,则, 由题意可知:, , 结合数量积的运算法则可得: . 本题选择C 选项.【名师点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 7.【2017年高考全国II 卷文数】设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥bB .=a bC .a ∥bD .>a b【答案】A【解析】由向量加法与减法的几何意义可知,以非零向量a ,b 的模长为边长的平行四边形是矩形,从而可得a ⊥b .故选A.【名师点睛】本题主要考查向量的数量积与向量的垂直.8.【2017年高考北京卷文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.【名师点睛】本题考查平面向量的线性运算,及充分必要条件的判断,属于容易题.9.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.【答案】8【解析】向量(4,3),(6,)m =-=⊥,,a b a b 则046308m m ⋅=-⨯+==,,a b . 【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.10.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.【答案】10-【解析】2826cos ,||||10⨯-+⨯⋅===-⋅a b a b a b .【名师点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.11.【2019年高考天津卷文数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE,其方程为y x =-, 直线AE的斜率为y x =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)12BD AE =-=-.【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.12.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-, ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】0;【解析】以, AB AD 分别为x 轴、y 轴建立平面直角坐标系,如图.则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-, 令(123456y AB BC CD DA AC BD λλλλλλλ=+++++=0.又因为(1,2,3,4,5,6)i i λ=可取遍1±,所以当1345621,1λλλλλλ======-时,有最小值min 0y =. 因为()135λλλ-+和()245λλλ-+的取值不相关,61λ=或61λ=-, 所以当()135λλλ-+和()245λλλ-+分别取得最大值时,y 有最大值,所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.14.【2018年高考全国III 卷文数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.【答案】12【解析】由题可得()24,2+=a b ,()2∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12. 【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.15.【2018年高考北京卷文数】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________.【答案】【解析】 , ,由 得: , ,即 .【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.16.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-,;∴2AE BF ab ⋅=-+;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-; ∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b =a +2时,AE BF ⋅的最小值为﹣3.故答案为:﹣3.【名师点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________.【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫ ⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a = 【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.18.【2017年高考全国III 卷文数】已知向量(2,3),(3,)m =-=a b ,且⊥a b ,则m =________.【答案】2【解析】由题意可得02330,m ⋅=⇒-⨯+=a b 解得2m =.【名师点睛】(1)向量平行:1221∥x y x y ⇒=a b ,,,∥≠⇒∃∈=λλ0R a b b a b ,111BA AC OA OB OC λλλλ=⇔=+++. (2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b .(3)向量的运算:221212(,),||,||||cos ,x x y y ±=±±=⋅=⋅a b a a a b a b a b .19.【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.【答案】7【解析】由题得(1,3)m +=-a b ,因为()0+⋅=a b a ,所以(1)230m --+⨯=,解得7m =.【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA 与OC 的夹角为α,且t a n α=7,OB 与OC 的夹角为45°.若O C m O A n O B =+(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100210n m n m +=⎪-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==, 所以3m n +=. 【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.21.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【答案】4,【解析】设向量,a b 的夹角为θ,则-==a b+==a b则++-=a b a b令y =[]21016,20y =+, 据此可得:()()max min 4++-==++-==a b a b a b a b , 即++-a b a b 的最小值是4,最大值是【名师点睛】本题通过设向量,a b 的夹角为θ,结合模长公式,可得++-=a b a b能力有一定的要求.22.【2017年高考天津卷文数】在ABC △中,60A =︒∠,3AB =,2AC =.若2B D D C =,AE AC λ=- ()AB λ∈R ,且4AD AE ⋅=-,则λ的值为________. 【答案】311【解析】由题可得1232cos603,33AB AC AD AB AC ⋅=⨯⨯︒==+,则12()33AD AE AB AC ⋅=+2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=. 【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基底可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中,AB AC 已知模和夹角,作为基底易于计算数量积.23.【2017年高考山东卷文数】已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ=________.【答案】3-【解析】由∥a b 可得162 3.λλ-⨯=⇒=-【名师点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则∥a b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量
【知识点】
1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.
2、向量加法运算:
⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:
a b a b a b -≤+≤+.
⑷运算性质:①交换律:a b b a +=+;
②结合律:()()
a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设
()11,a x y =,()22,b x y =,则
()1212,a b x x y y +=++.
3、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设
()11,a x y =,()22,b x y =,则
()1212,a b x x y y -=--.
设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:
⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①
a a λλ=;
②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.
⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()
a b a b λλλ+=+.
b
a
C B
A
a b C C -=A -AB =B
⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.
5、向量共线定理:向量()
0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()
0b b ≠共线.
6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)
7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ
λ++⎛⎫
⎪++⎝⎭.(当时,就为中点公式。
)1=λ 8、平面向量的数量积:
1、()cos 0,0,0180
a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0. 2、运算律:①a b b a ⋅=⋅;②()(
)()
a b a b a b λλλ⋅=⋅=⋅;③()
a b c a c b c +⋅=⋅+⋅. 3、坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则2
2
2
a x y =+,或2a x y =
+. 设()11,a x y =,()22,b x y =,则
12120a b x x y y ⊥⇔+=.
设a 、b 都是非零向量,()11,a x y =,()22,b x y =,
θ是a 与b 的夹角,则
121
cos x x a b a b
x θ⋅=
=
+.
【考题】
1、 (全国Ⅰ新卷文2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( )
A .
865 B .865- C .1665 D .1665
- 2、 (重庆卷理2)已知向量a ,b 满足0,1,2,a b a b •===,则2a b -=( )
A . 0
B .
C . 4
D . 8
3、 (重庆卷文3)若向量a=(3,m ),b=(2,-1),a·b=0,则实数m 的值为( )
A .32-
B .3
2
C .2
D .6 4、 (安徽卷理3文3)设向量()1,0=a ,11,22⎛⎫
=
⎪⎝⎭
b ,则下列结论中正确的是( )
A .=a b
B .2
•=
a b C .-a b 与b 垂直 D .a ∥b
5、 (湖北卷理3)在ABC ∆中,a=15,b=10,A=60°,则cos B =( )
A B C D 6、 (北京卷文4)若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是( )
A .一次函数且是奇函数
B .一次函数但不是奇函数
C .二次函数且是偶函数
D .二次函数但不是偶函数
7、 (湖南卷理4)在Rt ABC ∆中,C ∠=90°AC=4,则AB AC ⋅等于( )
A .-16
B .-8
C .8
D .16
8、 (广东卷文5)若向量a
=(1,1),b
=(2,5),c =(3,x )满足条件 (8a
-b
)·c
=30,则x =( )
A .6
B .5
C .4
D .3
9、 (四川卷理5文6)设点M 是线段BC 的中点,点A 在直线BC 外,
2
16,BC AB AC AB AC =∣+∣=∣-∣,则AM ∣∣=( )
A .8
B .4
C . 2
D .1
10、(湖北卷理5文8)已知ABC ∆和点M 满足0MA MB MC --→
--→
--→
+=+.若存在实数m 使得
AB AC AM m --→--→--→
+=成立,则m=( )
A .2
B .3
C .4
D .5
11、(湖南卷文6)若非零向量a ,b 满足||||,(2)0a b a b b =+⋅=,则a 与b 的夹角为( )
A . 300
B . 600
C . 1200
D . 1500 12、(北京卷理6)a ,b 为非零向量。
“a b ⊥”是“函数()()()f x xa b xb a =+-为一次函数”的( )
A .充分而不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
13、(湖南卷理6文7)在△ABC 中,角A ,B ,C 所对的边长分别为a,b,c ,若∠C=120°,2c a =,
则( )
A .a>b
B .a<b
C .a=b
D .a 与b 的大小关系不能确定
14、(江西卷理7),E F 是等腰直角ABC ∆斜边AB 上的三等分点,则tan ECF ∠=( )
A .
16
27
B .
23
C .
33
D .
34
15、(辽宁卷理8文8)平面上O,A,B 三点不共线,设,OA=a OB b =,则△OAB 的面积等于( )
A .222|||()|a b a b -
B . 222|||()|a b a b +
C .
2221|||()2|a b a b - D . 2221|||()2
|a b a b + 16、(福建卷文8)若向量a =(x ,3)(x ∈R ),则“x = 4”是“| a |=5”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件 17、(天津卷文9)如图,在ΔABC 中,AD AB ⊥,
3BC =BD ,1AD =,则AC AD ⋅=( )
A .23
B .
3
2
C .
3
3
D .3
18、(全国Ⅱ卷理8文10))ABC 中,点D 在AB 上,CD 平分ACB ∠.若CB a =,CA b =,
1a =,2b =,则CD =( )
A .1
233a b +
B .2133a b +
C .3455a b +
D .4355
a b + .
19、(陕西卷理11文12)已知向量a=(2,-1),b=(-1,m ),c=(-1,2),若(a+b )∥c ,则m= 。
20、(江西卷理13)已知向量a ,b 满足||1a =,||2b =,a 与b 的夹角为60︒,则
||a b -= .
21、(浙江卷文13)已知平面向量,,1,2,(2),αβαβααβ==⊥-则2a β+的值
是 。
22、(天津卷理15)如图,在三角形ABC 中,AD AB ⊥,3BC BD =,
1AD =,则AC AD = .
23、(江苏卷15)在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1) 求以线段AB .AC 为邻边的平行四边形两条对角线的长 设实数t 满足(OC t AB -)·OC =0,求t 的值
24、(浙江卷理16)已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为
120°,则α的取值范围是__________________ .。