2018届高中物理复习--连接体问题(含答案)

合集下载

高中物理连接体问题

高中物理连接体问题

高中物理连接体问题(总10页) -本页仅作为预览文档封面,使用时请删除本页-牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则系统各物体运动状态不同 隔离法问题涉及物体间的内力 三、连接体题型:1【例1】A 、B kg m B 6=,今用水平力N F A 6=推A ,用水平力F B =A 、B 间的作用力有多大【练1】如图所示,质量为M μ斜面间无摩擦。

在水平向左的推力F 滑动。

已知斜面的倾角为θ,物体B ( )A. ()(,sin μθ++==g m M F g aB. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g aD. g m M F g a )(,cot +==μθ【练2】如图所示,质量为2m 直细绳通过光滑定滑轮连接质量为m ( )A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gmC. 底板对物体2的支持力为m m (12-D. 物体2所受底板的摩擦力为2g m 2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)【例2】如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套有一个环,箱和杆的总质量为M ,环的质量为m 。

已知环沿着杆向下加速运动,当加速度大小为a 时(a <g ),则箱对地面的压力为( )A. Mg + mgB. Mg —maC. Mg + maD. Mg + mg – ma【练3】如图所示,一只质量为m 的小猴抓住用绳吊在天花板上的一根质量为M 的竖直杆。

当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。

则杆下降的加速度为( )A. gB. g M mC. g M m M +D. gM m M -【练4一个重4 N 增加的读数是( )N3 NN【练5】如图所示,A 、B 的质量分别为m A =,m B =,盘C 的质量m C =,现悬挂于天花板O 处,处于静止状态。

高中物理专题:连接体

高中物理专题:连接体

专题:连接体问题题型一、加速度相同的连接体题型二、加速度不同的连接体题型三:临界(极值)类问题题型一、加速度相同的连接体1.如图所示,a 、b 两物体的质量分别为m 1和m 2,由轻质弹簧相连。

当用恒力F 竖直向上拉着a ,使a 、b 一起向上做匀加速直线运动时,弹簧伸长量为x 1,加速度大小为a 1;当用大小仍为F 的恒力沿水平方向拉着a ,使a 、b 一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x 2,加速度大小为a 2。

则有( )A .a 1=a 2,x 1=x 2B .a 1<a 2,x 1=x 2C .a 1=a 2,x 1>x 2D .a 1<a 2,x 1>x 2答案 B解析 对a 、b 物体及弹簧整体分析,有:a 1=F -m 1+m 2g m 1+m 2=F m 1+m 2-g ,a 2=F m 1+m 2, 可知a 1<a 2,再隔离b 分析,有:F 1-m 2g =m 2a 1,解得:F 1=m 2F m 1+m 2, F 2=m 2a 2=m 2F m 1+m 2, 可知F 1=F 2,再由胡克定律知,x 1=x 2。

所以B 选项正确。

2.(多选)如图所示,光滑的水平地面上有三块木块a 、b 、c ,质量均为m ,a 、c 之间用轻质细绳连接。

现用一水平恒力F 作用在b 上,三者开始一起做匀加速运动,运动过程中把一块橡皮泥粘在某一木块上面。

系统仍加速运动,且始终没有相对滑动。

则在粘上橡皮泥并达到稳定后,下列说法正确的是 ( )A .无论粘在哪块木块上面,系统的加速度一定减小B .若粘在a 木块上面,绳的张力减小,a 、b 间摩擦力不变C .若粘在b 木块上面,绳的张力和a 、b 间摩擦力一定都减小D .若粘在c 木块上面,绳的张力和a 、b 间摩擦力一定都增大答案 ACD解析 无论粘在哪块木块上面,系统质量增大,水平恒力F 不变,对整体由牛顿第二定律得系统的加速度一定减小,选项A 正确;若粘在a 木块上面,对c 有F T c =ma ,a 减小,故绳的张力减小,对b 有F -F f =ma ,故a 、b 间摩擦力增大,选项B 错误;若粘在b 木块上面,对c 有F T c =ma ,对a 、c 整体有F f =2ma ,故绳的张力和a 、b 间摩擦力一定都减小,选项C 正确;若粘在c 木块上面,对b 有F -F f =ma ,则F f =F -ma ,a 减小,F f 增大,对a 有F f -F T c =ma ,则F T c =F f -ma ,F f 增大,a 减小,F T c 增大,选项D 正确。

高考物理计算题复习《用牛顿运动定律分析连接体问题》(解析版)

高考物理计算题复习《用牛顿运动定律分析连接体问题》(解析版)

《用牛顿运动定律分析连接体问题》一、计算题1.如图所示,轻绳长,能承受最大拉力为10N。

静止在水平面上的A、B两个物体通过该轻绳相连,A的质量,B的质量。

A、B与水平面间的动摩擦因数都为,。

现用一逐渐增大的水平力F作用在B上,使A、B 向右运动,当F增大到某一值时,轻绳刚好被拉断取求绳刚被拉断时F的大小;若绳刚被拉断时,A、B的速度为,保持此时F大小不变,当A的速度恰好减为0时,A、B间距离为多少?2.如图所示,质量分别为2m和m的两物体A、B叠放在一起,放在光滑的水平地面上,已知A、B间的最大摩擦力为A物体重力的倍,若用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力与之比为多少?3.如图所示,水平地面有三个质量均为的小物块A、B、C,A、B间用一根轻绳水平相连。

一水平恒力F作用于A,使三物块以相同加速度运动一段时间后撤去F。

已知B与C之间的动摩擦因数,A和C与地面间的动摩擦因数,若最大静摩擦力等于滑动摩擦力,g取。

求:力F的最大值;从撤去F到三物块停止运行的过程中,B受到的摩擦力。

4.如图所示,A、B两个物体间用最大张力为200N的轻绳相连,,,在拉力F的作用下向上加速运动,为使轻绳不被拉断,F 的最大值是多少?取5.如图所示,木板B静止在水平桌面上,大小可以忽略的小物块A静止在B的右端。

已知A和B的质量均为,A与B及B与桌面间的动摩擦因数均为,取。

现给木板B施加一水平向右的恒定拉力F。

要使A、B以相同的加速度向右运动,求拉力的大小需要满足什么条件;若已知B的长度为,厚度不计,要使B相对于A运动,且A在整个过程中相对于地面的总距离超过4cm,求拉力需要满足什么条件。

6.如图所示,水平面上有一固定着轻质定滑轮O的木块A,它的上表面与水平面平行,它的右侧是一个倾角的斜面.放置在A上的物体B和物体C通过一轻质细绳相连,细绳的一部分与水平面平行,另一部分与斜面平行.现对A施加一水平向右的恒力F,使A、B、C恰好保持相对静止.已知A、B、C的质量均为m,重力加速度为g,不计一切摩擦,求恒力F的大小.7.如图所示,A,B两物块的质量分别为,,静止叠放在水平地面上,B间的动摩擦因数为,B与地面间的动摩擦因数为最大静摩擦力等于滑动摩擦力,重力加速度取。

小专题4.2 动力学中连接体问题(解析版)

小专题4.2 动力学中连接体问题(解析版)

第四章力和运动的关系小专题2动力学中的连接体问题【知识清单】在分析和求解物理连接体问题时关键之一,就是研究对象的选取:隔离法与整体法.(1)在力与加速度的连接体问题中,只要,就可选用整体法,而物体间的加速度是否相同不是选用整体法的原则.(2)隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)为原则.(3)在物体系的运动加速度方向不同时,利用整体法时常需,如通过滑轮用绳连接的两物体,常可取沿绳方向即将绳等效拉直时的方向为坐标轴.【答案】(1)不涉及物体间的相互作用(2)尽可能避免或减少非待求量的出现(3)取曲线坐标系【考点题组】【题组一】绳与杆连接1.如图所示,一车内用轻绳悬挂着A、B两球,车向右做匀加速直线运动时,两段轻绳与竖直方向的夹角分别为a、θ,且a=θ,则()A.A球的质量一定等于B球的质量B.A球的质量一定大于B球的质量C.A球的质量一定小于B球的质量D.A球的质量可能大于、可能小于也可能等于B球的质量【答案】D【解析】对AB整体研究,根据牛顿第二定律得:m A+m B)gtanα=(m A+m B)a,解得:gtanα=a。

对B研究,根据牛顿第二定律得:m B gtanθ=m B a,解得:a=gtanα,因此不论A的质量是大于、小于还是等于B球的质量,均有α=θ,故D正确.2.如图所示,光滑水平桌面放置着物块A,它通过轻绳和轻质滑轮悬挂着物块B,已知A的质量为m,B的质量为3m,重力加速度大小为g,静止释放物块A、B后A. 相同时间内,A 、B 运动的路程之比为2:1B. 物块A 、B 的加速度之比为1:1C. 细绳的拉力为D. 当B 下落高度h 时,速度为知两物体的加速度之比也为2:1,B错误。

连接体问题专题详细讲解

连接体问题专题详细讲解

连接体问题专题详细讲解连接体问题连接体是由两个或两个以上物体相连接组成的物体系统,而隔离体则是其中某个物体隔离出来的物体。

在研究物体系时,受到系统外作用力的力被称为外力,而系统内各物体间的相互作用力则为内力。

在应用牛顿第二定律列方程时,不考虑内力,但如果将物体隔离出来作为研究对象,内力将转换为隔离体的外力。

针对连接体问题的分析方法,有整体法和隔离法。

整体法是将连接体作为一个整体来分析,适用于连接体中各物体加速度相同的情况。

而隔离法则是将其中一个物体隔离出来,对该物体应用牛顿第二定律求解,适用于要求连接体间相互作用力的情况。

整体法和隔离法是相对统一、相辅相成的,可以交叉使用。

对于简单连接体问题,可以采用以下分析方法。

连接体是由有相互作用的物体组成的具有相同大小加速度的整体。

整体法是将整个系统作为一个研究对象来分析,适用于系统中各部分物体的加速度大小方向相同的情况。

隔离法则是将系统中各个部分或某一部分隔离作为一个单独的研究对象来分析,适用于系统中各部分物体的加速度大小、方向相同或不相同的情况。

在选择整体法和隔离法时,应根据题目要求选择合适的方法进行分析,并在需要求物体间作用力时使用隔离法。

在针对训练时,需要根据题目给出的条件进行分析。

例如,当物体AB沿斜面下滑时,通过分析斜面是否光滑、粗糙等条件,可以判断杆受到的力是拉力还是压力。

在题目中给出的物体运动状态或过程有多个时,应对不同状态或过程使用整体法或隔离法进行受力分析,并列方程求解。

解析:物体m所受的力有重力mg和斜面对它的摩擦力f,因为物体m与车箱相对静止,所以它的加速度为0.根据牛顿第二定律,物体所受合力为0,即mg和f的合力为0.因为斜面的倾角为30°,所以斜面对m的重力分解为mgcos30°和mgsin30°,其中mgcos30°垂直于斜面,不参与m的运动,所以只考虑mgsin30°沿斜面方向的分量,即mg*sin30°=mg/2.因此,斜面对m的摩擦力f也等于mg/2,方向沿斜面向下。

高中物理 必修一 专题 连接体问题

高中物理 必修一 专题 连接体问题

3.整体法与隔离法的选择 (1)整体法的研究对象少、受力少、方程少,所以连接体问题优先采用整体法。 (2)涉及物体间相互作用的内力时,必须采用隔离法。 (3)若连接体内各物体具有相同的加速度且需要求解物体间的相互作用力,就 可以先用整体法求出加速度,再用隔离法分析其中一个物体的受力,即“先 整体求加速度,后隔离求内力”。 (4)若已知某个物体的受力情况,可先隔离该物体求出加速度,再以整体为研 究对象求解外力。
第四章 牛顿运动定律
专题 连接体问题
[学习目标] 1.会用整体法与隔离法分析连接体问题。 2.掌握动力学临界问题的分析方法,掌握几种典型临界问题的临界条件。
提升1 连接体问题
1.连接体:两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连 接体。例如,几个物体叠放在一起,或并排挤放在一起,或用绳子、弹簧、 细杆等连在一起。如:
F-(mA+mB)gsin θ-μ(mA+mB)gcos θ
=(mA+mB)a3
以B为研究对象 T3-mBgsin θ-μmBgcos θ=mBa3
答案 (1) mB F (2) mB F
联立解得 (3) mB
T3=mAm+BmBF。 F
mA+mB
mA+mB
mA+mB
【训练1】 (多选)如图所示,用水平力F推放在光滑水平面上的物体Ⅰ、Ⅱ、 Ⅲ,使其一起做匀加速直线运动,若Ⅰ对Ⅱ的弹力为6 N,Ⅱ对Ⅲ的弹力为
4 N,Ⅱ的质量是1 kg,则( AC)
A.Ⅲ物体的质量为2 kg B.Ⅲ物体的质量为4 kg C.Ⅲ物体的加速度为2 m/s2 D.Ⅲ物体的加速度为1 m/s2 解析 对Ⅱ受力分析,由牛顿第二定律可得F12-F32=m2a,代入数据解得a =2 m/s2,即整体的加速度为2 m/s2,选项C正确,D错误;对Ⅲ受力分析, 由牛顿第二定律可得F23=m3a,代入数据解得m3=2 kg,故A正确,B错误。

高2021届高2018级高三物理一轮复习课件3-3-2-专题突破:二 动力学中的连接体问题

高2021届高2018级高三物理一轮复习课件3-3-2-专题突破:二 动力学中的连接体问题
A.1 m/s2 B.2.5 m/s2 C.3 m/s2 D.4 m/s2
解析 A、B放在轻质长木板上,长木板质量为0,所受合力始终为0,即A、B所受摩擦力大小 相等。由于A、B受到长木板的最大静摩擦力的大小关系为fAmax<fBmax,所以B始终相对长木 板静止,当拉力增加到一定程度时,A相对长木板滑动,B受到的最大合力等于A的最大静摩
A.系统做匀速直线运动 B.F=40 N C.斜面体对楔形物体的作用力大小为 5 2 N D.增大力 F,楔形物体将相对斜面体沿斜面向上运动
转到解析
9
@《创新设计》
目录
多维训练
2.如图甲所示,质量为m0的小车放在光滑水平面上,小车上用细线悬吊一质量为m的小 球,m0>m,用一力F水平向右拉小球,使小球和车一起以加速度a向右运动时,细线与竖直 方向成α角,细线的拉力为FT。若用一力F′水平向左拉小车,使小球和车一起以加速度a′向 左运动时,细线与竖直方向也成α角,如图乙所示,细线的拉力为FT′。则( )
A.两物块间的动摩擦因数为0.2 B.当0<F<4 N时,A、B保持静止
图像中的转折点 说明什么?
转到解析
C.当4 N<F<12 N时,A、B发生相对运动
D.当F>12 N时,A的加速度随F的增大而增大
6
@《创新设计》
目录
课堂互动
解析 根据题图乙可知,发生相对滑动时,A、B 间滑动摩擦力为 6 N,所以 A、B 之 间的动摩擦因数 μ=Fmf1gm=0.2,选项 A 正确;当 0<F<4 N 时,根据题图乙可知,Ff2 还未 达到 B 与地面间的最大静摩擦力,此时 A、B 保持静止,选项 B 正确;当 4 N<F<12 N 时,根据题图乙可知,此时 A、B 间的摩擦力还未达到最大静摩擦力,所以没有发生相对 滑动,选项 C 错误;当 F>12 N 时,根据题图乙可知,此时 A、B 发生相对滑动,对 A 物 体有 a=Fmf1m=2 m/s2,加速度不变,选项 D 错误。

高考经典物理模型:连接体问题

高考经典物理模型:连接体问题

连接体问题的求解思路【例题精选】【例1】在光滑的水平面上放置着紧靠在一起的两个物体A和B(如图),它们的质量分别为m A、m B。

当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大?分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动。

对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的。

因此,这一道连接体的问题可以有解。

解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧。

因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力。

A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T。

对两个物体分别列牛顿第二定律的方程:对m A满足F-T= m A a ⑴对m B满足T = m B a ⑵⑴+⑵得 F =(m A+m B)a ⑶经解得: a = F/(m A+m B)⑷将⑷式代入⑵式可得T= Fm B/(m A+m B)小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组。

如果本题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的内力和加速度无关,那么我们就可以物体组为研究对象直接列出⑶式动力学方程求解。

若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。

②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规范的解法,也是最保险的方法,同学们必须掌握。

【例2】如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木块之间的弹力。

分析:仔细分析会发现这一道题与例1几乎是一样的。

把第1、第2木块看作A 物体,把第3、4、5木块看作B 物体,就和例1完全一样了。

因5个木块一起向右运动时运动状态完全相同,可以用整体法求出系统的加速度(也是各个木块共同加速度)。

连接体问题专项训练答案

连接体问题专项训练答案

连接体问题专项训练答案1.【答案】C【解析】根据题意可知第2节车厢对第3节车厢的牵引力为F ,因为每节车厢质量相等,阻力相同,故第2节对第3节车厢根据牛顿第二定律有3838F f ma ,设倒数第3节车厢对倒数第2节车厢的牵引力为F 1,则根据牛顿第二定律有122F f ma ,联立解得119F F 。

故选C 。

2.【答案】B 【解析】刚撤去外力F 时,由牛顿第二定律,对A 、B 组成的整体有F =2ma 1,对物体A 有F N -mg =ma 1,联立解得F N =F 2+mg ,选项A 错误;弹簧弹力等于F 时,对A 、B 组成的整体有F -2mg =2ma 2,对物体A 有F N -mg =ma 2,联立解得F N =F 2,选项B 正确;当A 、B 恰好分离时,A 、B 间相互作用力为0,对A 有mg =ma ,a =g ,B 的加速度也为g ,根据牛顿第二定律分析可知弹簧恰好恢复到原长,选项C 、D 错误。

3.【答案】A【解析】隔离小球,可知小球的加速度方向沿斜面向下,大小为g sin θ,小球稳定后,支架系统的加速度与小球的加速度相同,对支架系统进行分析,只有斜面光滑,支架系统的加速度才是g sin θ,所以A 正确,B 错误.隔离斜面体,斜面体受到的力有自身重力、地面的支持力、支架系统对它垂直斜面向下的压力,因斜面体始终保持静止,则斜面体还应受到地面对它水平向左的摩擦力,C 、D 错误.4.【答案】C.【解析】:将a 、b 看做一个整体,加速度a =F a +F b m a +m b,单独对a 进行分析,设a 、b 间的作用力为F ab ,则a =F a +F ab m a =F a +F b m a +m b ,即F ab =F b m a -F a m b m a +m b,由于不知道m a 与m b 的大小关系,故F ab 可能为正,可能为负,也可能等于0.5.【答案】A【解析】:.A 、B 相对静止,即两物体的加速度相同,以A 、B 整体为研究对象分析受力可知,系统的加速度为g sin θ,故A 正确;再以B 为研究对象进行受力分析,如图,根据平行四边形法则可知,绳子的方向与斜面垂直,拉力大小等于G cos θ,故B 、C 、D 错误.6.【答案】C.【解析】:根据v -t 图线的斜率表示加速度,可知滑块被释放后,先做加速度逐渐减小的加速直线运动,弹簧弹力与摩擦力相等时速度最大,此时加速度为零,随后加速度反向增加,从弹簧恢复原长时到滑块停止运动,加速度不变,A 、B 错误;由题中图象知,滑块脱离弹簧后的加速度大小a 1=Δv Δt =1.50.3m/s 2=5 m/s 2,由牛顿第二定律得摩擦力大小为F f =μmg =ma 1=2×5 N =10 N ,刚释放时滑块的加速度为a 2=Δv ′Δt ′=30.1m/s 2=30 m/s 2,此时滑块的加速度最大,D 错误;由牛顿第二定律得kx -F f =ma 2,代入数据解得k =175 N/m ,C 正确.7.【答案】B【解析】:三个物块靠在一起,将以相同加速度向右运动,根据牛顿第二定律有F -μ(m +2m+3m )g =(m +2m +3m )a ,解得加速度a =F -6μmg 6m.隔离R 进行受力分析,根据牛顿第二定律有F 1-3μmg =3ma ,解得R 和Q 之间相互作用力大小F 1=3ma +3μmg =12F ;隔离P 进行受力分析,根据牛顿第二定律有F -F 2-μmg =ma ,可得Q 与P 之间相互作用力大小F 2=F-μmg -ma =56F .所以k =F 1F 2=12F 56F =35,由于k 值与μ是否为0无关,故B 正确、D 错误. 8.【答案】B【解析】由于整体匀速下滑,假设上面一个为大人,以大人为研究对象有Mg sin θ=f 1+T ,杆的弹力为T ,以小孩为研究对象有mg sin θ+T =f 2。

连接体问题专题详细讲解

连接体问题专题详细讲解

连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为连接体;如果把其中某个物体隔离出来,该物体即为隔离体;二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力;应用牛顿第二定律列方程不考虑内力;如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力;三、连接体问题的分析方法1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体;运用牛顿第二定律列方程求解;2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法;3.整体法与隔离法是相对统一,相辅相成的;本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便;如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力;简单连接体问题的分析方法1.连接体:两个或两个以上有相互作用的物体组成的具有相同大小加速度的整体;2.“整体法”:把整个系统作为一个研究对象来分析即当做一个质点来考虑;注意:此方法适用于系统中各部分物体的加速度大小方向相同情况;3.“隔离法”:把系统中各个部分或某一部分隔离作为一个单独的研究对象来分析;注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用;4.“整体法”和“隔离法”的选择求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”;5.若题中给出的物体运动状态或过程有多个,应对不同状态或过程用“整体法”或“隔离法”进行受力分析,再列方程求解;针对训练1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力;1斜面光滑;2斜面粗糙;〖解析〗解决这个问题的最好方法是假设法;即假定A、B间的杆不存在,此时同时释放A、B,若斜面光滑,A、B运动的加速度均为a=g sinθ,则以后的运动中A、B间的距离始终不变,此时若将杆再搭上,显然杆既不受拉力,也不受压力;若斜面粗糙,A、B单独运动时的加速度都可表示为:a=g sinθ-μg cosθ,显然,若a、b两物体与斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍然不受力,若μA>μB,则a A<a B,A、B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力;〖答案〗1斜面光滑杆既不受拉力,也不受压力2斜面粗糙μA>μB杆不受拉力,受压力斜面粗糙μA<μB杆受拉力,不受压力类型二、“假设法”分析物体受力例题2在一正方形的小盒内装一圆球,盒与球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化提示:令T不为零,用整体法和隔离法分析A .N 变小,T 变大;B .N 变小,T 为零;C .N 变小,T 变小;D .N 不变,T 变大;〖点拨〗物体间有没有相互作用,可以假设不存在,看其加速度的大小;〖解析〗假设球与盒子分开各自下滑,则各自的加速度均为a =g sin θ,即“一样快” ∴T =0对球在垂直于斜面方向上:N =mg cos θ ∴N 随θ增大而减小; 〖答案〗B针对训练1.如图所示,火车箱中有一倾角为30°的斜面,当火车以10m/s 2的加速度沿水平方向向左运动时,斜面上的物体m 还是与车箱相对静止,分析物体m 所受的摩擦力的方向;〖解析〗1方法一:m 受三个力作用:重力mg ,弹力N ,静摩擦力的方向难以确定,我们可假定这个力不存在,那么如图,mg 与N 在水平方向只能产生大小F =mg tg θ的合力,此合力只能产生g tg30°=3g /3的加速度,小于题目给定的加速度,合力不足,故斜面对物体的静摩擦力沿斜面向下;2方法二:如图,假定所受的静摩擦力沿斜面向上,用正交分解法有: N cos30°+f sin30°=mg ① N sin30°-f cos30°=ma ②①②联立得f =51-3m N ,为负值,说明f 的方向与假定的方向相反,应是沿斜面向下; 〖答案〗静摩擦力 沿斜面向下类型一、“整体法”与“隔离法”例题1如图所示,A 、B 两个滑块用短细线长度可以忽略相连放在斜面上,从静止开始共同下滑,经过,细线自行断掉,求再经过1s,两个滑块之间的距离;已知:滑块A 的质量为3kg,与斜面间的动摩擦因数是;滑块B 的质量为2kg,与斜面间的动摩擦因数是;sin37°=,cos37°=;斜面倾角θ=37°,斜面足够长,计算过程中取g =10m/s 2;〖点拨〗此题考查“整体法”与“隔离法”;〖解析〗设A 、B 的质量分别为m 1、m 2,与斜面间动摩擦因数分别为μ1、μ2;细线未断之前,以A 、B 整体为研究对象,设其加速度为a ,根据牛顿第二定律有m 1+m 2g sin θ-μ1m 1g cos θ-μ2m 2g cos θ=m 1+m 2aa =g sin θ-112212()cos m m g m m μμθ++=s 2;经 s 细线自行断掉时的速度为v =at 1=s;细线断掉后,以A 为研究对象,设其加速度为a 1,根据牛顿第二定律有:a 1=1111sin cos m g m g m θμθ-=g sin θ-μ1cos θ=4m/s 2;滑块A 在t 2=1 s 时间内的位移为x 1=vt 2+2122a t ,又以B 为研究对象,通过计算有m 2g sin θ=μ2m 2g cos θ,则a 2=0,即B 做匀速运动,它在t 2=1 s 时间内的位移为x 2=vt 2,则两滑块之间的距离为 Δx =x 1-x 2=vt 2+2122a t -vt 2=2122a t =2m〖答案〗2m类型三、“整体法”和“隔离法”综合应用例题3如图所示,一内表面光滑的凹形球面小车,半径R =,车内有一小球,当小车以恒定加速度向右运动时,小球沿凹形球面上升的最大高度为,若小球的质量m =,小车质量M =,应用多大水平力推车水平面光滑〖点拨〗整体法和隔离法的综合应用;〖解析〗小球上升到最大高度后,小球与小车有相同的水平加速度a ,以小球和车整体为研究对象,该整体在水平面上只受推力F 的作用,则根据牛顿第二定律,有:F =M +ma ①以小球为研究对象,受力情况如图所示,则: F 合=mg cot θ=ma ②而cot θ=22()R R h R h--- ③由②③式得:a =10m/s 2将a 代入①得:F =50N; 〖答案〗50N针对训练1.如图所示,一根轻质弹簧上端固定,下端挂一质量为m 0的平盘,盘中有物体质量为m ,当盘静止时,弹簧伸长了l ,今向下拉盘使弹簧再伸长Δl 后停止,然后松手放开,设弹簧总处在弹性限度内,则刚刚松开手时盘对物体的支持力等于A .1+ll ∆m +m 0gB .1+l l∆mg C .l l∆mg D .ll∆m +m 0g 〖解析〗题目描述主要有两个状态:1未用手拉时盘处于静止状态;2刚松手时盘处于向上加速状态;对这两个状态分析即可:1过程一:当弹簧伸长l 静止时,对整体有:kl =m +m 0g ① 2过程二:弹簧再伸长Δl 后静止因向下拉力未知,故先不列式;3过程三:刚松手瞬间,由于盘和物体的惯性,在此瞬间可认为弹簧力不改变;对整体有:kl +Δl -m +m 0g =m +m 0a ②对m 有:N -mg =ma ③ 由①②③解得:N =1+Δl /lmg ; 〖答案〗B2.如图所示,两个质量相同的物体1和2紧靠在一起,放在光滑的水平桌面上,如果它们分别受到水平推力F 1和F 2作用,而且F 1>F 2,则1施于2的作用力大小为A .F 1B .F 2C .12F 1+F 2 D .12F 1-F ; 〖解析〗因两个物体同一方向以相同加速度运动,因此可把两个物体当作一个整体,这个整体受力如图所示,设每个物体质量为m ,则整体质量为2m ;对整体:F 1-F 2=2ma , ∴a =F 1-F 2/2m ;把1和2隔离,对2受力分析如图也可以对1受力分析,列式对2:N 2-F 2=ma ,∴N 2=ma +F 2=mF 1-F 2/2m +F 2=F 1+F 2/2;〖答案〗C类型四、临界问题的处理方法例题4如图所示,小车质量M 为,与水平地面阻力忽略不计,物体质量m =,物体与小车间的动摩擦因数为,则:1小车在外力作用下以s 2的加速度向右运动时,物体受摩擦力是多大2欲使小车产生s 2的加速度,给小车需要提供多大的水平推力3若小车长L =1m,静止小车在水平推力作用下,物体由车的右端 向左滑动,滑离小车需多长时间〖点拨〗本题考查连接体中的临界问题〖解析〗m 与M 间的最大静摩擦力F f =mg =,当m 与M 恰好相对滑动时的加速度为:F f =ma a ==mF3m/s 2 (1) 当a =s 2时,m 未相对滑动,则F f =ma =(2) 当a =s 2时,m 与M 相对滑动,则F f =ma =,隔离M 有F-F f =Ma F=F f +Ma =(3) 当F =时,a 车=s 2,a 物=3m/s 2,a 相对= a 车- a 物= m/s 2,由L =21a 相对t 2,得t =2s; 〖答案〗1 2 32s 针对训练1.如图所示,在倾角为θ的光滑斜面上端系一劲度系数为k 的轻弹簧,弹簧下端连有一质量为m 的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变;若手持挡板A以加速度aa <g sinθ沿斜面匀加速下滑,求,1从挡板开始运动到球与挡板分离所经历的时间;2从挡板开始运动到球速达到最大,球所经过的最小路程;〖解析〗1当球与挡板分离时,挡板对球的作用力为零,对球由牛顿第二定律得sinmg kx maθ-=,则球做匀加速运动的位移为x=(sin) m g akθ-;当x=12at2得,从挡板开始运动到球与挡板分离所经历的时间为t=2xa=2(sin)m g akaθ-;2球速最大时,其加速度为零,则有kx′=mg sinθ,球从开始运动到球速最大,它所经历的最小路程为x′=sin mgkθ;〖答案〗12(sin)m g akaθ-2mg sinθ/k2.如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的按论述题要求解答〖解析〗先用“极限法”简单分析;在弹簧的最上端:∵小球合力向下mg>kx,∴小球必加速向下;在弹簧最下端:∵末速为零,∴必定有减速过程,亦即有合力向上与v反向的过程;∴此题并非一个过程,要用“程序法”分析;具体分析如下:小球接触弹簧时受两个力作用:向下的重力和向上的弹力其中重力为恒力;向下压缩过程可分为:两个过程和一个临界点;1过程一:在接触的头一阶段,重力大于弹力,小球合力向下,且不断变小∵F合=mg-kx,而x增大,因而加速度减少∵a=F合/m,由于a与v同向,因此速度继续变大;2临界点:当弹力增大到大小等于重力时,合外力为零,加速度为零,速度达到最大;3过程二:之后小球由于惯性仍向下运动,但弹力大于重力,合力向上且逐渐变大∵F合= kx-mg因而加速度向上且变大,因此速度减小至零;注意:小球不会静止在最低点,将被弹簧上推向上运动,请同学们自己分析以后的运动情况;〖答案〗综上分析得:小球向下压弹簧过程,F 合方向先向下后向上,大小先变小后变大;a方向先向下后向上,大小先变小后变大;v方向向下,大小先变大后变小;向上推的过程也是先加速后减速;类型五、不同加速度时的“隔离法”例题5如图,底坐A上装有一根直立长杆,其总质量为M,杆上套有质量为m的环B,它与杆有摩擦,当环从底座以初速v向上飞起时底座保持静止,环的加速度为a,求环在升起和下落的过程中,底座对水平面的压力分别是多大〖点拨〗不同加速度时的“隔离法”;〖解析〗此题有两个物体又有两个过程,故用“程序法”和“隔离法”分析如下:1环上升时这两个物体的受力如图所示;对环:f+mg=ma ①对底座:f′+N1-Mg=0②而f′=f③∴N1=Mg—ma-g;2环下落时,环和底座的受力如图所示;对环:环受到的动摩擦力大小不变;对底座:Mg+f′—N2=0 ④联立①③④解得:N2=Mg+ma-g〖答案〗上升 N1=Mg-ma-g下降 N2=Mg+ma-g针对训练1.如图所示,在倾角为θ的光滑斜面上,有两个用轻质弹簧相连接的物块A和B,它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一固定挡板;系统处于静止状态;现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开时物块C时物块A的加速度a,以及从开始到此时物块A的位移d,重力加速度为g;〖解析〗此题有三个物体A、B和轻弹簧和三个过程或状态;下面用“程序法”和“隔离法”分析:1过程一状态一:弹簧被A压缩x1,A和B均静止归纳:通过例题的解答过程,可总结出解题以下方法和步骤:1.确定研究对象;2.明确物理过程;3.画好受力分析图;4.用合成法或正交分解法求合力,列方程;对A 受力分析如图所示,对A 由平衡条件得:kx 1=m A g sin θ ①2过程二:A 开始向上运动到弹簧恢复原长;此过程A 向上位移为x 1;3过程三:A 从弹簧原长处向上运动x 2,到B 刚离开C 时;B 刚离开C 时A 、B 受力分析如图所示, 此时对B :可看作静止,由平衡条件得:kx 2=m B g sin θ ②此时对A :加速度向上,由牛顿第二定律得:F -m A g sin θ-kx 2=m A a ③由②③得:a =A B A()sin F m m g m θ-+由①②式并代入d =x 1+x 2解得:d =A B ()sin m m g kθ+〖答案a =A B A()sin F m m g m θ-+d =A B ()sin m m g kθ+2.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M =4kg,长为L =;木板右端放着一小滑块,小滑块质量为m =1kg;其尺寸远小于L ;小滑块与木板之间的动摩擦因数为μ=;g =10m/s 2①现用恒力F 作用在木板M 上,为了使得m 能从M 上面滑落下来,求:F 大小的范围;设最大静摩擦力等于滑动摩擦力②其他条件不变,若恒力F =,且始终作用在M 上,使m 最终能从M 上面滑落下来;求:m 在M 上面滑动的时间;〖解析〗①只有一个过程,用“隔离法”分析如下:对小滑块:水平方向受力如图所示,a 1=f mg m mμ==μg =4m/s 2对木板:水平方向受力如图所示,a 2=F f F mg M Mμ'--=要使m 能从M 上面滑落下来的条件是:v 2>v 1,即a 2>a 1,∴F mgMμ->4 解得:F >20N ②只有一个过程 对小滑块受力与①同: x 1=12a 1t 2=2t 2 对木板受力方向与①同:a 2=F f M-=s 2x 2=12a 2t 2=4.72t 2 由图所示得:x 2- x 1=L 即4.72·t 2-2t 2= 解得: t =2s;〖答案①F >20N ②t =2s1. 如图光滑水平面上物块A 和B 以轻弹簧相连接;在水平拉力F 作用下以加速度a 作直线运动,设A 和B 的质量分别为m A 和m B ,当突然撤去外力F 时,A 和B 的加速度分别为 A .0、0 B .a 、0C .B A A m m am +、BA A m m a m +- D .a 、a m mBA -2. 如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动;撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为F 1,B 、C 间作用力为F 2,则F 1和F 2的大小为A .F 1=F 2=0B .F 1=0,F 2=FC .F 1=3F ,F 2=F 32 D .F 1=F ,F 2=0 3. 如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时,B 受到摩擦力 A .等于零B .方向平行于斜面向上基 础 巩 固A BF FCA Bv BA θC .大小为μ1mg cosθD .大小为μ2mg cosθ4. 如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球;小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为A .gB .g mm M -C .0D .g mmM + 5. 如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力T a 和T b 的变化情况是 A .T a 增大B .T b 增大C .T a 变小D .T b 不变6. 如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时,竿对“底人”的压力大小为 A .M+mg B .M+mg -ma C .M+mg +maD .M -mg7. 如图,在竖直立在水平面的轻弹簧上面固定一块质量不计的薄板,将薄板上放一重物,并用手将重物往下压,然后突然将手撤去,重物即被弹射出去,则在弹射过程中,即重物与弹簧脱离之前,重物的运动情况是 A .一直加速 B .先减速,后加速C .先加速、后减速D .匀加速8. 如图所示,木块A 和B 用一轻弹簧相连,竖直放在木块C 上,三者静置于地面,它们的质量之比是1:2:3,设所有接触面都光滑,当沿水平方向抽出木块C 的瞬时,A 和B 的加速度分别是a A = ,a B = ;9. 如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=,要使物体不致下滑,车厢至少应以多大的加速度前进g =10m/s 210.如图所示,箱子的质量M =,与水平地面的动摩擦因数μ=;在箱子顶板处系一细线,悬挂一个质量m =的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直方向θ=30°角,则F 应为多少g =10m/s 21. 两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于A .F m m m 211+B .F m m m 212+ C .FD .F m m 212. 如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面平行的力F推m 1,使两物加速上滑,不管斜面是否光滑,两物体之间的作用力总为 ;3. 恒力F 作用在甲物体上,可使甲从静止开始运动54m 用3s 时间,当该恒力作用在乙物体上,能使乙在3s 内速度由8m/s 变到-4m/s ;现把甲、乙绑在一起,在恒力F 作用下它们的加速度的大小是;从静止开始运动3s 内的位移是;4. 如图所示,三个质量相同的木块顺次连接,放在水平桌面上,物体与平面间μ=02.,用力F 拉三个物体,它们运动的加速度为1m/s 2,若去掉最后一个物体,前两物体的加速度为 m /s 2;5. 如图所示,在水平力F =12N 的作用下,放在光滑水平面上的m 1,运动的位移x 与时间t 满足关系式:234x t t =+,该物体运动的初速度v 0= ,物体的质量m 1= ;若改用下图装置拉动m 1,使m 1的运动状态与前面相同,则m 2的质量应为 ;不计摩擦6. 如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球;当滑块至少以加速度a = 向左运动时,小球对滑块的压力等于零;当滑块以a =2g 的加速度向左运动时,线的拉力大小F = ;7. 如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑,木板上站着一个质量为m 的人,问1为了保持木板与斜面相对静止,计算人运动的加速度2为了保持人与斜面相对静止,木板运动的加速度是多少8. 如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力分别作用在A 或B 上,使A 、B 保持相对静止做加速运动,则作用于A 、B 上的最大拉力F A 与F B 之比为多少9. 如图所示,质量为80kg 的物体放在安装在小车上的水平磅称上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600N,则斜面的倾角θ为多少物体对磅秤的静摩擦力为多少10.如图所示,一根轻弹簧上端固定,下端挂一质量为m o 的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比自然长度伸长了L ;今向下拉盘使弹簧再伸长△L 后停止,然后松手放开,设弹簧总处在弹性限度以内,刚刚松开手时盘对物体的支持力等于多少1. 如图所示,一根轻质弹簧上端固定,下端挂一个质量为m 0的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比其自然长度伸长了l ,今向下拉盘,使弹簧再伸长∆l 后停止,然后松手,设弹簧总处在弹性限度内,则刚松手时盘对物体的支持力等于A .()1+∆l l mgB .()()10++∆l l m m gC .∆lmg lD .∆l m m g l ()+02. 质量为m 的三角形木楔A 置于倾角为θ的固定斜面上,如图所示,它与斜面间的动摩擦因数为μ,一水平力F 作用在木楔A 的竖直面上;在力F 的推动下,木楔A 沿斜面以恒定的加速度a 向上滑动,则F 的大小为 A .[]θθμθcos )cos (sin ++g a mB .θμθθsin cos sin +-mg maC .[]θμθθμθsin cos )cos (sin -++g a mD .[]θμθθμθsin cos )(sin +++soc g a m3. 在无风的天气里,雨滴在空中竖直下落,由于受到空气的阻力,最后以某一恒定速度下落,这个恒定的速度通常叫做收尾速度;设空气阻力与雨滴的速度成正比,下列对雨滴运动的加速度和速度的定性分析正确的是 ①雨滴质量越大,收尾速度越大②雨滴收尾前做加速度减小速度增加的运动 ③雨滴收尾速度大小与雨滴质量无关 ④雨滴收尾前做加速度增加速度也增加的运动综 合 应用 用aP A45A B FθMA .①②B .②④C .①④D .②③4. 如图所示,将一个质量为m的物体,放在台秤盘上一个倾角为α的光滑斜面上,则物体下滑过程中,台秤的示数与未放m 时比较将 A .增加mg B .减少mg C .增加mg cos2α D .减少mg 21+sin 2α5. 质量为m 和M 的两个物体用轻绳连接,用一大小不变的拉力F 拉M ,使两物体在图中所示的AB 、BC 、CD 三段轨道上都做匀加速直线运动,物体在三段轨道上运动时力F 都平行于轨道,且动摩擦因数均相同,设在AB 、BC 、CD 上运动时m 和M 之间的绳上的拉力分别为T 1、T 2、T 3,则它们的大小 A .T 1=T 2=T 3 B .T 1>T 2>T 3C .T 1<T 2<T 3D .T 1<T 2=T 36. 如图所示,在光滑水平面上,放着两块长度相同,质量分别为M 1和M 2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F 1、F 2,当物块和木块分离时,两木块的速度分别为v 1、v 2,物体和木板间的动摩擦因数相同,下列说法:①若F 1=F 2,M 1>M 2,则v 1>v 2; ②若F 1=F 2,M 1<M 2,则v 1>v 2; ③F 1>F 2,M 1=M 2,则v 1>v 2; ④若F 1<F 2,M 1=M 2,则v 1>v 2, 其中正确的是 A .①③ B .②④ C .①②D .②③7. 如图所示,小车上固定着光滑的斜面,斜面的倾角为θ,小车以恒定的加速度向左运动,有一物体放于斜面上,相对斜面静止,此时这个物体相对地面的加速度是;8. 如图所示,光滑水平面上有两物体m m 12与用细线连接,设细线能承受的最大拉力为T ,m m 12>,现用水平拉力F 拉系统,要使系统得到最大加速度F 应向哪个方向拉9. 如图所示,木块A 质量为1kg,木块B 质量为2kg,叠放在水平地面上,AB 之间最大静摩擦力为5N,B 与地面之间摩擦系数为,今用水平力F 作用于A ,保持AB 相对静止的条件是F 不超过 N 210m /s g =;10. 如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F 推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木块之间的弹力1.D 2.C 3.BC 4.D 5.A 6.B 7.C 8.0、32g 9.212.5m /s解:设物体的质量为m ,在竖直方向上有:mg =F ,F 为摩擦力在临界情况下,F =μF N ,F N 为物体所受水平弹力;又由牛顿第二定律得:F N =ma 由以上各式得:加速度2210m /s 12.5m /s 0.8μ====N F mg a m m 10.48N解:对小球由牛顿第二定律得:mg tg θ=ma ① 对整体,由牛顿第二定律得: F -μM+mg =M+ma ② 由①②代入数据得:F=48N基 础 巩 固a D C A B m M F1. B 2.212=+N m F F m m提示:先取整体研究,利用牛顿第二定律,求出共同的加速度121212()cos ()sin μαα-+-+=+F m m g m m g a m m =12cos sin μαα--+Fg g m m 再取m 2研究,由牛顿第二定律得 F N -m 2g sinα-μm 2g cosα=m 2a 整理得212=+N m F F m m3.3 m/s 2, 4. 5.4m/s,2kg,3kg 6.g7.1M+mg sinθ/m ,2M+mg sinθ/M ; 解析:1为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F 应沿斜面向上,故人应加速下跑;现分别对人和木板应用牛顿第二定律得: 对木板:Mg sin θ=F ;对人:mg sin θ+F =ma 人a 人为人对斜面的加速度;解得:a 人=sin θ+M mg m, 方向沿斜面向下;2为了使人与斜面保持静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人对斜面静止不动;现分别对人和木板应用牛顿第二定律,设木板对斜面的加速度为a 木,则: 对人:mg sin θ=F ;对木板:Mg sin θ+F =Ma 木;解得:a 木=sin θ+M mg m,方向沿斜面向下;即人相对木板向上加速跑动,而木板沿斜面向下滑动,所以人相对斜面静止不动; 8.1:2解析:当力F 作用于A 上,且A 、B 刚好不发生相对滑动时,对B 由牛顿第二定律得:μmg =2ma①对整体同理得:F A =m +2ma ②由①②得32μ=AmgF 当力F 作用于B 上,且A 、B 刚好不发生相对滑动时,对A 由牛顿第二定律得: μmg =ma ′ ③ 对整体同理得F B =m +2ma ′ ④ 由③④得F B =3μmg 所以:F A :F B =1:2 9.346N解析:取小车、物体、磅秤这个整体为研究对象,受总重力Mg 、斜面的支持力N ,由牛顿第二定律得,Mg sin θ=Ma ,∴a =g sinθ取物体为研究对象,受力情况如图所示; 将加速度a 沿水平和竖直方向分解,则有 f 静=ma cos θ=mg sin θcos θ ①mg -N =ma sin θ=mg sin 2θ ②由式②得:N =mg -mg sin 2θ=mg cos 2θ,则cos θ,θ=30° 由式①得,f 静=mgsin θcos θ代入数据得 f 静=346N;根据牛顿第三定律,物体对磅秤的静摩擦力为346N; 10.mg 1+∆L L解析:盘对物体的支持力,取决于物体状态,由于静止后向下拉盘,再松手加速上升状态,则物体所受合外力向上,有竖直向上的加速度,因此,求出它们的加速度,作用力就很容易求了; 将盘与物体看作一个系统,静止时: kL =m +m 0g ① 再伸长△L 后,刚松手时,有 kL +△L -m +m 0g=m +m 0a ② 由①②式得刚松手时对物体F N -mg =ma 则盘对物体的支持力F N =mg +ma =mg 1+∆L L1.A 2.C 3.A4.C 5.A 6.B7.tan θg 8.向左拉m 19.6N解析:当F 作用于A 上时,A 与B 的受力分析如图所示;要使A 、B 保持相对静止,A 与B 的加速度必须相等;B的加速度最大值为:其中'f 1为5N, 2() 2(21)100.1N 3NA B f m m g μ=+=+⨯⨯=·代入上式2253m /s 1m /s 2-==a 这也是A 的加速度最大值; 又因 F f m a A-=1 111N 5N 6N6N A F m a f F =+=⨯+=∴最大不超过。

高考物理一轮复习 专题3.11 加速运动的连接体问题千题精练-人教版高三全册物理试题

高考物理一轮复习 专题3.11 加速运动的连接体问题千题精练-人教版高三全册物理试题

专题3.11 加速运动的连接体问题一.选择题1. . 〔2018江西南昌三模〕如下列图,光滑水平桌面放置着物块A,它通过轻绳和轻质滑轮悬挂着物块B。

A的质量为m,B的质量为3m,重力加速度大小为g。

静止释放物块A、B后A.一样时间内,A、B运动的路程之比为2:1B.物块A、B的加速度之比为1:1C.细绳的拉力为D.当B下落高度h时,速度为【参考答案】AC【命题意图】此题考查连接体、隔离法受力分析、匀变速直线运动规律、牛顿运动定律与其相关的知识点。

【方法归纳】对于细绳连接体,求解细绳中的拉力,一般采用隔离体法分析受力,利用牛顿运动定律列方程得出;定滑轮和动滑轮两侧细绳中拉力相等。

穿过动滑轮两侧的细绳假设沿竖直方向平行,假设细绳的一端固定,假设动滑轮悬挂的物块下落h高度,如此另一端运动2h。

2.如下列图,两个物体A和B通过轻绳相连,绳与滑轮间的摩擦可忽略不计。

开始系统处于静止状态,各段轻绳均在竖直方向上,物体B的质量为m,重力加速度为g。

现对物体B施加一竖直向下、大小为mg的恒力F。

如下说法中正确的答案是〔A 〕物体A 和动滑轮的总质量为2m 〔B 〕施加外力后,物体B 的加速度大小为21g 〔C 〕施加外力后,物体B 的加速度大小为32g 〔D 〕系统加速过程中,轻绳的张力大小为mg 34【参考答案】ACD3.〔山西省运城市康杰中学2018届高考模拟〔四〕〕如下列图,A 、B 两物体用两根轻质细线分别悬挂在天花板上,两细线与水平方向夹角分别为60°和45°,A 、B 间拴接的轻质弹簧恰好处于水平状态,如此如下判断正确的答案是( )A. A 、B 的质量之比为13B. A 、B 32C. 悬挂A 、B 的细线上拉力大小之比为12D. 快速撤去弹簧的瞬间,A 、B 的瞬时加速度大小之比为12【参考答案】 D【名师解析】对AB 两个物体受力分析,如下列图:AB 都处于静止状态,受力平衡,如此有: 对物体A:tan60A m gF=,对物体B,B F m g = 所以:3:1A B m m = ,故A 错误;同一根弹簧弹力相等,故B 错误; 对A 物体,细线拉力cos60A F T =,对B 物体,细线拉力cos45B FT =解得::2:1A B T T =故C 错误;点睛:分别对AB 两个物体受力分析,AB 都处于静止状态,受力平衡,根据平衡条件列式比拟即可,AB 两个物体的弹簧弹力一样.4. 如下列图,在沿东西方向直线运动的小车上,放一竖直木块,突然发现木块向西倒,此时小车上大木箱里用轻线悬挂的两下小球可能的情形是〔〕A. B.C. D.【参考答案】 C5〔2018云南省玉溪联考〕如下列图,光滑水平面上放置质量分别为m、2m和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为T。

全国通用2018年高考物理一轮温习第3章牛顿运动定律微专题14连接体问题

全国通用2018年高考物理一轮温习第3章牛顿运动定律微专题14连接体问题

连接体问题[方式点拨] 整体法、隔离法交替运用的原那么:假设连接体内各物体具有相同的加速度,且要求物体之间的作使劲,能够先用整体法求出加速度,然后再用隔离法选取适合的研究对象,应用牛顿第二定律求作使劲.即“先整体求加速度,后隔离求内力”.1.质量均为5 kg 的物块一、2放在滑腻水平面上并用轻质弹簧秤相连,如图1所示,今对物块一、2别离施以方向相反的水平力F 1、F 2,且F 1=20 N 、F 2=10 N ,那么弹簧秤的示数为( )图1A .30 NB .15 NC .20 ND .10 N2.(多项选择)如图2所示,物块A 、B 质量相等,在恒力F 作用下,在水平面上做匀加速直线运动,假设水平面滑腻,物块A 的加速度大小为a 1,物块A 、B 间的彼此作使劲大小为F N1;假设水平面粗糙,且物块A 、B 与水平面间的动摩擦因数相同,物块B 的加速度大小为a 2,物块A 、B 间的彼此作使劲大小为F N2,那么以下判定正确的选项是() 图2 A .a 1=a 2 B .a 1>a 2C .F N1=F N2D .F N1<F 3.如图3所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端连接一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零刹时,小球的加速度大小为( ) 图3A .g B.M -m m g C .0 D.M +m mg 4.一倾角为α的斜劈放在水平地面上,一物体沿斜劈匀速下滑.现给物体施加如图4所示的力F ,F 与竖直方向夹角为β,斜劈仍静止,那么现在地面对斜劈的摩擦力( )图4A .大小为零B .方向水平向右C .方向水平向左D .无法判定大小和方向5.如图5所示,A 、B 两物块放在粗糙水平面上,且它们与地面之间的动摩擦因数相同.它们之间用轻质细线相连,两次连接情形中细线倾斜方向不同但倾角相同,前后对B 施加水平力F 1和F 2,两次细线上的力别离为F T1、F T2,那么以下说法正确的选项是( )图5A .假设两种情形下,A 、B 一路向右运动,那么必有F 1=F 2B .两种情形下,只有A 、B 一路向右匀速运动,才可能F 1=F 2C .假设两种情形下,A 、B 一路向右运动,那么可能F T1=F T2D .假设两种情形下,A 、B 一路向右匀速运动,那么F T1>F T26.(多项选择)如图6所示为一根质量为m 、长度为L 、质量均匀散布的粗绳AB .在粗绳上与B 端距离为x 的某位置有一质量不计的力传感器,可读出该处粗绳中的张力.粗绳在水平外力F 的作用下,沿水平面做匀加速直线运动,由力传感器读数和已知条件( )图6A .能够判定粗绳运动是不是受到摩擦力作用B .可知水平外力F 的大小C .可知粗绳沿水平面做匀加速直线运动的加速度大小D .假设水平外力F 的大小恒定,那么传感器读数与x 成正比7.如图7所示,一劲度系数为k 的轻质弹簧,上端固定,下端连一质量为m的物块A ,A 放在质量也为m 的托盘B 上,以F N 表示B 对A 的作使劲,x 表示弹簧的伸长量.初始时,在竖直向上的力F 作用下系统静止,且弹簧处于自然状态(x =0).现改变力F 的大小,使B 以g2的加速度匀加速向下运动(g 为重力加速度,空气阻力不计),此进程中F N 、F 随x 转变的图象正确的选项是( ) 图78.如图8所示,质量均为m的小物块A、B,在水平恒力F的作用下沿倾角为37°固定的滑腻斜面加速向上运动.A、B之间用与斜面平行的形变可忽略不计的轻绳相连,现在轻绳张力为F T=0.8mg.已知sin 37°=0.6,以下说法错误的选项是( ) 图8A.小物块A的加速度大小为0.2gB.F的大小为2mgC.撤掉F的刹时,小物块A的加速度方向仍不变D.撤掉F的刹时,绳索上的拉力为0答案精析1.B [利用整体法,F 1-F 2=(m 1+m 2)a ,对物块1隔离,利用牛顿第二定律有F 1-F =m 1a ,联立解得F =15 N .]2.BCD [水平面滑腻时,对整体由牛顿第二定律有:F =(m A +m B )a 1,可得:a 1=F m A +m B =F 2m ;对B 受力分析,由牛顿第二定律可得:F N1=m B a 1=F 2.水平面粗糙时,对整体由牛顿第二定律有:F -F f =(m A +m B )a 2,可得a 2=F -F f m A +m B =F -F f 2m <a 1;对B 受力分析:F N2=m B a 2+F f 2=F 2.因此选项A 错误,选项B 、C 、D 正确.]3.D [以框架为研究对象进行受力分析可知,当框架对地面压力为零时,其重力与弹簧对其弹力平稳,即F =Mg ,故可知弹簧处于紧缩状态,再以小球为研究对象分析受力可知F +mg =ma ,联立可解得,小球的加速度大小为a =M +m mg ,应选项D 正确.] 4.A [没有施加力F 时,由物体匀速下滑可知mg sin α=μmg cos α得μ=tan α,物体受重力G 、斜面的弹力F N 、斜面的摩擦力F f ,且三力的合力为零,故F N 与F f 的合力竖直向上,F f F N=tan α=μ(如下图).当物体受到外力F 时,物体受斜面的弹力为F N ′、摩擦力为F f ′,F N ′与F f ′的合力与F N ′的夹角为θ,那么F f ′F N ′=μ=tan θ 故θ=α,即F N ′与F f ′的合力方向竖直向上,由牛顿第三定律知,物块对斜面体的作使劲竖直向下,故斜面体在水平方向上不受力,A 对.]5.C [两种情形下,对整体受力分析可知,整体均受到重力、拉力、支持力及摩擦力,因整体对地面的压力相同,故摩擦力相同;假设A 、B 一路向右运动,只有均做匀速运动,或均做加速度相同的匀变速直线运动时,这两种情形下水平拉力才相等,即F 1=F 2,A 、B 错误;两种情形下,假设A 、B 一路向右匀速运动,对A 受力分析可知,A 受重力、支持力、摩擦力及细线的拉力而处于平稳状态,对第一种情形有F T1sin θ=μ(mg -F T1cos θ),解得F T1=μmg sin θ+μcos θ,对第二种情形F T2sin θ=μ(mg +F T2cos θ),解得F T2=μmg sin θ-μcos θ,故F T1<F T2,D 错误;假设A 、B 一路向右做匀加速运动,且第一种情形的加速度较大,那么有可能F T1=F T2,故C 正确.]6.BD [设粗绳与水平面间的动摩擦因数为μ,力传感器读数为F T ,对整根绳索,由牛顿第二定律有F -μmg =ma ,对粗绳左侧长度为x 的部份,由牛顿第二定律有F T -μmx L g =mx L a ,解得F T =Fx L.由力传感器读数和已知条件,不能够判定粗绳运动是不是受到摩擦力作用,可知水平外力F 的大小,不能得出粗绳沿水平面做匀加速直线运动的加速度大小,A 、C 错误,B 正确.假设水平外力F 的大小恒定,那么传感器读数F T 与x 成正比,D 正确.]7.D [依照题述,B 以g 2的加速度匀加速向下运动进程中,选择A 、B 整体为研究对象,由牛顿第二定律,2mg -kx -F =2m ·g 2,解得F =mg -kx ,即F 从mg 开始线性减小,可排除图象C.选择B 作为研究对象,由牛顿第二定律,mg +F N -F =mg 2,解得F N =mg 2-kx .当弹簧的弹力增大到mg 2,即x =mg 2k 时,A 和B 间的压力为零,在此之前,二者之间的压力由开始运动时的mg 2线性减小到零,选项A 、B 错误.同时,力F 由开始时的mg 线性减小到mg 2,尔后B 与A 分离,力F 维持mg 2不变,应选项D 正确.] 8.C [以A 为研究对象,依照牛顿第二定律可得F T -mg sin 37°=ma ,解得a =0.2g ,小物块A 、B 的加速度均为0.2g ,选项A 正确;以A 、B 整体为研究对象:F cos 37°-2mg sin 37°=2ma ,解得F =2mg ,选项B 正确;撤掉F 的刹时,绳索上的拉力立刻消失,小物块A 的加速度方向变成向下,选项C 错误,D 正确.应选C.]。

高考物理总复习 第三单元 牛顿运动定律 第2讲 连接体问题(含解析)

高考物理总复习 第三单元 牛顿运动定律 第2讲 连接体问题(含解析)

第2讲连接体问题1 连接体的定义及分类(1)两个或两个以上的物体,以某种方式连接在一起运动,这样的物体系统就是连接体。

(2)根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。

①绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;②弹簧连接:两个物体通过弹簧的作用连接在一起;③接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。

(3)连接体的运动特点①轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等的。

②轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而杆上各点的线速度与转动半径成正比。

③轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。

【易错警示】(1)“轻”——质量和重力均不计。

(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。

1.1(2018衡水中学高三10月考试)如图所示,质量为m0、倾角为θ的斜面体静止在水平地面上,一质量为m 的小物块放在斜面上,轻推一下小物块后,它沿斜面向下匀速运动。

若给小物块持续施加沿斜面向下的恒力F,斜面体始终静止,重力加速度大小为g。

施加恒力F后,下列说法正确的是()。

A.小物块沿斜面向下运动的加速度为B.斜面体对地面的压力大小等于(m+m0)g+F sin θC.地面对斜面体的摩擦力方向水平向左D.斜面体对小物块的作用力的大小和方向都变化【答案】A1.2(2019福建福州三十四中检测)如图所示,材料相同的P、Q两物块通过轻绳相连,并在拉力F作用下沿斜面向上运动,轻绳与拉力F的方向均平行于斜面。

当拉力F一定时,Q受到绳的拉力()。

A.与斜面倾角θ有关B.与动摩擦因数有关C.与系统运动状态有关D.仅与两物块质量有关【答案】D2 连接体的平衡(1)关于研究对象的选取①单个物体:将物体受到的各个力的作用点全部画到物体的几何中心上。

连接体问题——高考物理热点模型(解析版)

连接体问题——高考物理热点模型(解析版)

连接体问题模型概述1.连接体:两个或两个以上相互作用的物体组成的具有相同运动状态的整体叫连接体.如几个物体叠放在一起,或并排放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.2.常见类型①物物叠放连接体:两物体通过弹力、摩擦力作用,具有相同的速度和加速度②轻绳连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.③轻杆连接体:轻杆平动时,连接体具有相同的平动速度和加速度.④弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度、加速度不一定相等;在弹簧形变最大时,两端连接体的速度、加速度相等.3.方法:整体法与隔离法,正确选取研究对象是解题的关键.①整体法:若连接体内各物体具有相同的加速度,且不需要求系统内各物体之间的作用力,则可以把它们看作一个整体,根据牛顿第二定律,已知合外力则可求出加速度,已知加速度则可求出合外力.②隔离法:若连接体内各物体的加速度不相同,则需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.③若连接体内各物体具有相同的加速度,且需要求物体之间的作用力,则可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力,即“先整体求加速度,后隔离求内力”.4.力的“分配”地面光滑两物块在力F 作用下一起运动,系统的加速度与每个物块的加速度相同,若外力F 作用于m 1上,则m 1和m 2的相互作用力F 弹=m 2m 1+m 2F ,若作用于m 2上,则F 弹=m 1m 1+m 2F 。

此“分配”与有无摩擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同),与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关,而且无论物体系统处于平面、斜面还是竖直方向,此“分配”都成立。

5.关联速度连接体轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。

下面三图中A 、B 两物体速度和加速度大小相等,方向不同。

关联速度连接体做加速运动时,由于加速度的方向不同,一般分别选取研究对象,对两物体分别列牛顿第二定律方程,用隔离法求解加速度及相互作用力。

高中物理连接体问题习题汇总

高中物理连接体问题习题汇总

高中物理连接体问题汇总一、选择题(共5题)1、质量分别是m 和 2 m 的两个物体用一根轻质弹簧连接后再用细绳悬挂,m在上,2m在下,细绳连接在m上,并悬挂于天花板。

稳定后将细绳剪断,则剪断的瞬间,下列说法正确的是(g 是重力加速度)()A .质量为m 的物体加速度是 0B .质量为2 m 的物体加速度是gC .质量为m 的物体加速度是 3 gD .质量为2 m 的物体加速度是 3 g2、质量为 3kg 的物体 A 静止于竖直的轻弹簧上,质量为2kg 的物体 B 用细线悬挂,A 、B 间相互接触但无压力,取重力加速度g=10N/kg。

某时刻将细线剪断,则细线剪断瞬间()A .弹簧的弹力大小为50NB . A 的加速度为零C . B 对 A 的压力大小为12ND . B 的加速度大小为5m/s23、A 、 B 两木块间连一轻弹簧,A在上B在下, A 、 B 质量相等,一起静止地放在一块光滑木板上,重力加速度为g 。

若将此木板突然抽去,在此瞬间, A 、 B 两木块的加速度分别是()A .aA =0, aB=2gB .aA =g, aB=gC .aA =0, aB=0D .aA =g,aB=2g4、如图所示,光滑水平面上有叠放在一起的长方形物体 A 和 B ,A在上,B在下,质量均为m ,它们之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g 。

现在物体 A 上施加一水平外力F ,下列说法不正确的是()A .B 受到的摩擦力可能等于F/2B . B 受到的摩擦力一定等于μmgC .当 F=5μmg/3时, A 、 B 还没相对滑动D .当F=7μmg/3时, A 、 B 一定相对滑动5、质量为1KG的木板静止在光滑水平面上,一个小木块(可视为质点)质量也为1KG,以初速度V=4m/s从木板的左端开始向右滑,木块与木板之间的动摩擦因数为 0.2 ,要使木块不会从木板右端滑落,则木板的长度至少为()A .5mB .4mC .3mD .2m二、填空题(共2题)1、如图所示,质量分别为 10kg 和5kg 的长方形物体A 和B 静止叠放在水平桌面上。

高中物理必修一 第四章 专题强化 动力学连接体问题

高中物理必修一 第四章 专题强化 动力学连接体问题

释放,求:
(1)物体的加速度大小;
答案
mg M+m
以m为研究对象:mg-T=ma

以M为研究对象:T=Ma

联立①②得:a=Mm+gm
T=MM+mgm.
(2)绳对M的拉力大小.
答案
Mmg M+m
以m为研究对象:mg-T=ma

以M为研究对象:T=Ma

联立①②得:a=Mm+gm
T=MM+mgm.
(2)若两木块与水平面间的动摩擦 因数均为μ,则A、B间绳的拉力 为多大? 答案 mAm+BmBF
若动摩擦因数均为μ,以A、B整体为研究对象,有F-μ(mA+mB)g= (mA+mB)a1,然后隔离出B为研究对象,有T2-μmBg=mBa1,联立解 得T2= mAm+BmBF .
(3)如图乙所示,若把两木块放在固定斜面上,两木块 与斜面间的动摩擦因数均为μ,在方向平行于斜面的拉 力F作用下沿斜面向上加速运动,A、B间绳的拉力为 多大? 答案 mAm+BmBF
针对训练2
如图所示,物体A重20 N,物体B重5 N,不计一切摩擦和
绳的重力,当两物体由静止释放后,物体A的加速度与绳
子上的张力分别为(重力加速度g=10 m/s2)
√A.6 m/s2,8 N
B.10 m/s2,8 N
C.8 m/s2,6 N
D.6 m/s2,9N
由静止释放后,物体A将加速下降,物体B将加速上 升,二者加速度大小相等,由牛顿第二定律,对A有 mAg-T=mAa,对B有T-mBg=mBa,代入数据解得a =6 m/s2,T=8 N,A正确.
C.底板对物体 2 的支持力为(m2-m1)g D.底板对物体 2 的摩擦力大小为tman2gθ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理复习-- 连接体运动问题一、教法建议【解题指导】“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。

在“连接体运动”的教学中,需要给学生讲述两种解题方法──“整体法”和“隔离法”。

如图1-15所示:把质量为M 的的物体放在光滑的水平高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大?⒈ “整体法”解题采用此法解题时,把物体M 和m 看作一个整体,它们的总质量为(M+m )。

把通过细绳连接着的M 与m 之间的相互作用力看作是内力,既然水平高台是光滑无阻力的,那么这个整体所受的外力就只有mg 了。

又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。

现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以,物体M 和物体m 所共有的加速度为:g mM m a +=⒉ “隔离法”解题采用此法解题时,要把物体M 和m 作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M 与m 之间的相互作用力T 必须标出,而且对M 和m 单独来看都是外力(如图1-16所示)。

根据牛顿第二定律对物体M 可列出下式:T=Ma ①根据牛顿第二定律对物体m 可列出下式:mg-T=ma ②将①式代入②式:mg-Ma=ma mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g mM m a +=最后我们还有一个建议:请教师给学生讲完上述的例题后,让学生自己独立推导如图1-17所示的另一个例题:用细绳连接绕过定滑轮的物体M 和m ,已知M>m ,可忽略阻力,求物体M 和m 的共同加速度a 。

如果学生能不在老师提示的情况下独立地导出:,就表明学生已经初步地掌握了“连接体运动的解题方法了。

(如果教师是采用小测验g mM m M a +-=的方式进行考察的,还可统计一下:采用“整体法”解题的学生有多少?采用“隔离法”解题的学生有多少?从而了解学生的思维习惯。

)”【思路整理】⒈ 既然采用“整体法”求连接体运动的加速度比较简便?为什么还要学习“隔离法”解题呢?这有两方面的原因:①采用“整体法”解题只能求加速度a ,而不能直接求出物体M 与m 之间的相互作用力T 。

采用“隔离法”解联立方程,可以同时解出a 与T 。

因此在解答比较复杂的连接体运动问题时,还是采用“隔离法”比较全面。

②通过“隔离法”的受力分析,可以复习巩固作用力和反作用力的性质,能够使学生加深对“牛顿第三定律”的理解。

⒉ 在“连接体运动”的问题中,比较常见的连接方式有哪几种?比较常见的连接方式有三种:①用细绳将两个物体连接,物体间的相互作用是通过细绳的“张力”体现的。

在“抛砖引玉”中所举的两个例题就属于这种连接方式。

②两个物体通过“摩擦力”连接在一起。

③两个物体通互相接触推压连接在一起,它们间的相互作用力是“弹力”。

⒊ “连接体运动”问题是否只限于两个物体的连接?不是。

可以是三个或更多物体的连接。

在生活中我所见的一个火车牵引着十几节车厢就是实际的例子。

但是在中学物理解题中,我们比较常见的例题、习题和试题大多是两个物体构成的连接体。

只要学会解答两个物体构成的连接体运动问题,那么解答多个物体的连接体运动问题也不会感到困难,只不过列出的联立方程多一些,解题的过程麻烦一些。

二、解题范例例题1: 如图1-18所示:在光滑的水平桌面上放一物体A ,在A 上再放一物体B ,物体A 和B 间有摩擦。

施加一水平力F 于物体B ,使它相对于桌面向右运动。

这时物体A 相对于桌面A. 向左运B. 向右运C. 不动D. 运动,但运动方向不能判断。

【思维基础】解答本题重要掌握“隔离法”,进行受力分析。

分析思路:物体A 、B 在竖直方向是受力平衡的,与本题所要判断的内容无直接关系,可不考虑。

物体B 在水平方向受两个力:向右的拉力F ,向左的A 施于B 的摩擦力f ,在此二力作用下物体B 相对于桌面向右运动。

物体A 在水平方向只受一个力:B 施于A 的向右的摩擦力f ,因此物体A 应当向右运动。

注1、水平桌面是光滑的,所以对物体A 没有作用力。

注2、物体A 与物体B 间的相互摩擦力是作用力和反作用力,应当大小相等、方向相反、同生同灭,分别作用于A 和B 两个物体上。

答案:(B )例题2:如图1-19所示:两个质量相同的物体1和2紧靠在一起,放在光滑水平桌面上,如果它们分别受到水平推力F 1和F 2,且F 1>F 2,则物体1施于物体2的作用力的大小为:A. F 1B. F 2C. (F 1+F 2)D. (F 1-F 2)2121【思维基础】:解答本题不应猜选答案(这是目前在一些中学生里的不良倾向),而应列出联立方程解出答案,才能作出正确选择。

因此掌握“隔离法”解题是十分重要的。

分析思路:已知物体1和2的质量相同,设它们的质量都为m ;设物体1和2之间相互作用着的弹力为N ;设物体1和2运动的共同加速度为a 。

则运用“隔离法”可以列出下列两个方程:F 1-N =ma①N -F 2=ma ②∵①、②两式右端相同 ∴F 1-N =N -F 2 2N =F 1+F 2 得出:N =(F 1+F 2) 答案:(C )21【模仿学习】为了提高学生的解题能力,我们还需要讲述综合性例题进行指导。

例题3:一条细绳(忽略质量)跨过定滑轮在绳子的两端各挂有物体A 和B (如图1-20所示),它们的质量分别是m A =0.50kg ,m B =0.10kg 。

开始运动时,物体A 距地面高度h A =0.75m ,物体B 距地面高度h B =0.25m ,求:物体A 落地后物体B 上升的最大高度距地面多少米?启发性问题:⒈ 在本题中细绳连接着物体A 和B 一块运动,这是一种什么类型的动力学问题?⒉ 在运动过程中物体A 和B 的加速度大小相同吗?求它们的加速度有几种方法?⒊ 当物体A 落到地面时物体B 开始作什么性质的运动?⒋ 有人说物体B 上升的最大高度H =h A +h B ,你认为是否正确?为什么?⒌ 在求解过程中本题需要运用哪些关系式?(请你先把所需的关系式写在纸上,然后通过解题和对照后面答案看看是否写完全了。

)分析与说明:⒈ 本题属于“连接体运动问题”。

⒉ 物体A 和B 的加速度大小是相同的。

求它们的加速度有两种方法──“整体法”和“隔离法”。

由于本题不需要求出细绳的张力,所以采用“整体法”求加速度比较简便。

⒊ 当物体A 落到地面时,因为物体B 有向上运动的速度,所以物体B 不会立即停止运动,而是开始作竖直上抛运动直至升到最大高度。

物体A 落地时的末速度V At 与物体B 作竖直上抛运动的初速度V B0是大小相等的(但方向相反)。

⒋ 认为物体B 上升的最大高度H =h A +h B 是不正确的。

这种错误是由于没有考虑到物体B 作竖直上抛运动继续上升的高度h 上。

所以物体B 距地面的最大高度H =h A +h B +h 上才是正确的。

⒌ 从下列“求解过程”中可以看到解答本题所需用的关系式。

求解过程:先用整体法求出物体A 和B 共同的加速度。

)/(5.68.910.050.010.050.0)(2S m g m m m m a am m g m g m B A B A B A B A =⨯+-=+-=+=-再求物体A 落到地面时的末速度: (可暂不求出数值)A At ah V 2=因为物体A 和B 是连接体运动,所以物体A 落地时的末速度与物体B 作竖直上抛运动的初速度大小相等。

AAt B ah V V 20==根据高一学过的匀变速运动规律V t 2-V 02=2aS ,当V t =0, V 0=V B0, a=g, S=h 上可导出下式:)(50.08.975.05.6222)2(2222020m g ah gah g ah g V h gh V O A A A B B =⨯======-上上综上所述可知物体B 距地面的最大高度是由下列三部分合成的:物体B 原来距地面的高度h B =0.25m 物体B 被物体A 通绳拉上的高度h A =0.75m物体作竖直上抛运动继续上升的高度h上=0.50m所以物体B距地面的最大高度为:H=h B+h A+h上=0.25m+0.75m+0.50m=1.5m解题后的思考:物体B所达到的最大高度是保持不住的,因为上抛至最高处时就会按自由落体的方式下落,因此物体B停止运动后,最终的距地面高度h=h A+h B=0.75m+0.25m=1m,但这不是物体B在运动过程中曾经达到的最大高度。

补充说明:“竖直上抛运动”是一种匀减速运动,它的初速度V0是竖直向上的;它的加速度是重力加速度g,方向是竖直向下的;当物体的运动速度减为零时也就达到了最大高度。

有关这类问题我们还将在下章中进行深入的讨论。

【举一反三】上面所讲的例题虽然具有典型性和综合性,但是灵活性还不够。

为了进一步提高分析问题的能力,我们讲授下列例题,加强学生的思维锻炼。

例题4:如图1-21之(a),(b)所示:将m1=4kg的木块放在m2=5kg的木块上,m2放在光滑的水平面上。

若用F1=12N的水平力拉m1时,正好使m1相对于m2开始发生滑动;则需用多少牛顿的水平力(F2)拉m2时,正好使m1相对于m2开始滑动?“准备运动”(解题所需的知识与技能):解答本题的关键在于──“受力分析”和“运动分析”。

根据题意可分析出物体m1和m2之间必有相互作用着的摩擦力f。

因此图1-22之(c),(d)所示的就是(a),(b)两种状态的受力分析图。

又因m2是置于光滑水平面上的,所以由m1和m2所构成的连接体在受到外力作用时一定会产生加速度。

由于(c),(d)图示的受力形式不同,所产生的加速度a 和a“ 也不同。

(还请读者注意题文中的“正好”二字,因此二物体相对滑动的瞬间仍可当作具有共同的加速度。

)解题的过程:根据前面的图(c)用隔离法可以列出下面两个方程:F 1-f =m 1a ' ① f=m 2a '②由①、②两式相加可得: F 1=(m 1+m 2)a '③根据前面图(d)用隔离法可以列出下面两个方程:F 2-f =m 2a“④ f =m 1a “⑤由④、⑤两式相加可得:F 2=(m 1+m 2)a“⑥ 由③、⑥两式相除可得:⑦"'21a a F F =由②、⑤两式相除可得: 即:⑧"'112a m a m ="'21a a m m =根据:⑦、⑧两式可以写出:⑨2121m m F F =将已知量m 1=4kg ,m 2=5kg ,F 1=12N 代入⑨式:解出答案:F 2=15N kg kg F N 54122=“整理运动”(解题后的思考):⒈ 你想到了物体m 1和m 2之间必存在着摩擦力吗?⒉ 你想到了在(a),(b)两种情况下物体m 1和m 2都作加速运动吗?为什么在(a),(b)两种情况下运动的加速度不相等?⒊ 在解题过程中你有什么体会?你还能想出其它的解法吗?三、解题步骤⒈ 若连结体内(即系统内)各物体具有相同的加速度时,首先应该把这个连接体当成一个整体(可看作一个质点),分析它受到的外力和运动情况,再根据牛顿第二定律求出加速度;若要求连接体内各物体相互作用的内力,这时可把某个物体隔离出来,对它单独进行受力和运动情况的分析,再根据牛顿第二定律列式求解。

相关文档
最新文档