数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

合集下载

最新初三数学竞赛辅导教程【精】

最新初三数学竞赛辅导教程【精】

1.1 因式分解一、常用公式或变形方法(此处只列出教科书以外的常用于竞赛中的内容)1.2.3.4.二、例题讲解例1.已知a、b、c是△ABC ABC 的形状.例2.若三个素数的乘积恰好等于它们和的23倍,求这三个素数.(2015大同杯第四题)例3.已知实数a、b、c.(2003年宇振杯第3题)例4.三、练习题1.已知整数a、b.2..3.已知a、b、c(1(24.2014大同杯第1题)5.设非零实数a,b,c.(2013年全国初中数学联赛第一试第1题)6.已知正数a、b、c值.7.已知:,,,求.(2016全国初中数学联赛第二试B组第2题)1.2 对称式与轮换对称式一、定义1.对称式。

2. 如果一个多项式的各项的次数均等于同一个常数,那么称这个多项式为齐次多项式。

3.4.换式,但轮换式不一定是对称式。

例如对称式也是轮换式;二、例题讲解例1. 已知,a,b,c是△ABC的面积.例2.2014大同杯第4题)例3.设x、y、z xyz的值. 例4.x1、x2、y1、y2满足x12+x22=2,x2y1﹣x1y2=1,x1y1+x2y2=3.求y12+y22的值.三、练习题1. .2. 若数组(x,y,z求xyz的值.3. 已知b≥0,且a+b=c+1,b+c=d+2,c+d=a+3,求a+b+c+d的最大值.4.2015大同杯第7题)5.已知bc﹣a2=5,ca﹣b2=﹣1,ab﹣c2=﹣7,求6a+7b+8c6. 已知实数a、b、c x1、x2、y1、y2满足x12+ax22=b,x2y1﹣x1y2=a,x1y1+ax2y2=c.求y12+ay22的值.(2007新知杯第5题)1.3高斯函数一、定义实数x,用[x]表示不超过x的最大值整数,则y=[x]称为高斯函数.二、例题讲解例1. .(2006新知杯第6题)例2. 对于正整数n2017全国数学联赛第一试第6题)例3. 给定正实数a ,对任意一个正整数n数x 的最大整数。

初中数学竞赛第三讲充满活力的韦达定理(含答案)

初中数学竞赛第三讲充满活力的韦达定理(含答案)

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<m D .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

【精华篇】初中数学九年级培优教程整理(全)

【精华篇】初中数学九年级培优教程整理(全)

初中数学九年级培优目录第1讲二次根式的性质和运算(P2----7)第2讲二次根式的化简与求值(P7----12)第3讲一元二次方程的解法(P13----16)第4讲根的判别式及根与系数的关系(P16----22)第5讲一元二次方程的应用(P23----26)第6讲一元二次方程的整数根(P27----30)第7讲旋转和旋转变换(一)(P30----38)第8讲旋转和旋转变换(二)(P38----46)第9讲圆的基本性质(P47----51)第10讲圆心角和圆周角(P52----61)第11讲直线与圆的位置关系(P62----69)第12讲圆内等积证明及变换((P70----76)第13讲弧长和扇形面积(P76----78)第14讲概率初步(P78----85)第15讲二次函数的图像和性质(P85----91)第16讲二次函数的解析式和综合应用(P92----98)第17讲二次函数的应用(P99----108)第18讲相似三角形的性质(P109----117)第19讲相似三角形的判定(P118-----124)第20讲相似三角形的综合应用(P124-----130)每天进步一点点!坚持就是胜利!第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析; 2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【例1】 (荆州)下列根式中属最简二次根式的是( )【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B 中含分母,C 、D 含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是( )【例2】(黔东南)方程480x -=,当y >0时,m 的取值范围是( )A .0<m <1B .m ≥2C .m <2D .m ≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x -8=0,x -y -m =0.化为y =2-m ,则2-m >0,故选C.【变式题组】2.(宁波)若实数x 、y 2(0y -=,则xy 的值是__________.3.2()x y =+,则x -y 的值为( )A .- 1B .1C .2D .34.有意义的x 的取值范围是( ) A .x >3B .x ≥3C .x >4D .x ≥3且x ≠45.(怀化)22(4)0a c --=,则a -b -c =________.是同类二次根式的是( )AC D 【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样. A .=; B 不能化简;=D ==故本题应选D.【变式题组】6是同类二次根式,则a=________.7.在下列各组根式中,是同类二次根式的是()ACD8.已知最简二次根式ba=_______,b=______.【例4】下列计算正确的是()A=4=C= D.(11+=【解法指导】正确运用二次根式的性质①2(0)a a=≥;②(0)0(0)(0)a aa aa a⎧⎪===⎨⎪-⎩><;③0,0)a b=≥≥0,0)b a=≥>进行化简计算,并能运用乘法公式进行计算.A、B中的项不能合并.D. 2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是()A.==C3= D3=-10.计算:200720074)(4⋅-=_____________11.22-=_____________12.(济宁)已知a)A.a B.-a C.-1 D.013.已知a>b>0,a+b=的值为()AB.2 CD.12【例5】已知xy >0,化简二次根式 )A B C .D .【解法指导】先要判断出y <0,再根据xy >0知x <0. 故原式=选D. 【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --_______.15.===,算果中找出规律,并利用这一规律计算:1)2006+++⋅=_________.16.已知,则0<x <1=_________.【例6】(辽宁)⑴先化简吗,再求值:11()ba b b a a b ++++,其中a =,b =⑵已知x =,y =________. 【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当a =b =ab =1,a +b⑵由题意得:xy =1,x +y =10, 10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =--2b =.18.(黄石)已知a 是4那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________.【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =(y =x =,由以上两式可得x =y .∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0=的值.演练巩固·反馈提高01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <502.n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )04.(贺州)下列根式中,不是最简二次根式的是( )A. 05.下列二次根式中,是最简二次根式的是( )06.(常德)设a =20, b =(-3)2, c =11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c <a <d07.(十堰)下列运算正确的是( )A =B =C .21)31=-D 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A .BC .D .09.2x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >010.(怀化)函数y =________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b =32=-那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a-+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a ---,其中12a =. 培优升级01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国)设a =,则5432322a a a a a a a+---+=-________. 04.(全国)设x =a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆)已知2y =,则x 2+y 2=________.06.(全国)已知1a =,a =2a =,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b07.(武汉)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A 3B .3C 3 D08.(全国)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( ) A .-1B .0C .1D .209.(全国) )A .5-B .1C .5D .110.已知0(0,0)x y x y -=>>的值为( )A .13 B .12C .23 D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知99a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值. 3.会化简复合二次根式,会在根式范围内分解因式.经典·考题·赏析【例1】2=的值等于__________【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形. 解:两边平方得,124x x++=,12x x += ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式【变式题组】1.若14aa +=(0<a <1)=________2=- ) A .1a a-B .1a a-C .1a a+D .不能确定【例2】(全国)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.0=,∴0=0>0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B . 【变式题组】3.若a >0,b >0=的值.【例3】1)a=<<,求代数式22632x x x x x x +-+÷-.【解法指导】视x -2,x 2-4x 为整体,=移项用含a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a-+=++,222142x x a a -=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a aa a a a a++-+-=++--【变式题组】 4.(武汉)已知32x x +=+,求代数式35(2)242x x xx -÷----的值.5.(五羊杯)已知1m =+1n =且22(714)(367)8m m a n n -+--=,则a 的值等于()A .-5B .5C .-9D .9【例4】(全国)如图,点A 、C 都在函数0)y x =>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a ,BF=b ,则,CFb ,所以,点A 、C 的坐标为(aa )、(2a +b b ),所以2(2)a b =+=,解得a b ⎧=⎪⎨=⎪⎩因此,点D 的坐标为()【变式题组】6.(邵阳)阅读下列材料,然后回答问题. 在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+; (四)(1)请你用不同的方法化简352+;①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程)(22n ++++【例5】(五羊杯)设a 、b 、c 、d 为正实数,a <b ,c <d ,bc >ad,.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F ,使DF =b ,连结EF 、FB 、EB ,则BF=,EF=,BE BEF 就是题设的三角形,而S △BEF =S 长方形ABCD+S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad )【变式题组】7.(北京)已知a 、b 均为正数,且a+b =2,求U演练巩固·反馈提高01.已知x =,y =值为__________02.设1a =,则32312612a a a +--=( )A . 24B .25C .10D .1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京)若有理数x 、y 、z 1()2x y z =++,则2()x yz -=__________05.(北京)正数m 、n 满足430m n +-=,=__________06.(河南)若1x =,则32(2(15x x x -+++的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =b =,c =则a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b09.已知1x =培优升级01.(信利)已知1x =+,那么2111242x x x +-=+--__________025==__________03.(江苏)已知(2002x y =,则2234x xy y --6658x y --+=__________04.7x =,则x =__________05.已知x =,y =,那么22y x x y +=__________06.(武汉)如果a b +=a b -=3333b c b c +=-,那么333a b c -的值为( )A .B .2001C .1D .007.(绍兴)当12x +=时,代数式32003(420052001)x x --的值是( ) A .0 B .-1C .1D .20032-08.(全国)设a 、b 、c 为有理数,且等式a +=成立,则29991001a b c ++的值是( ) A .1999B .2000C .2001D .不能确定09.计算:(1(2(34947+(410.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b---,将结果表示成不含b 的形式.11.已知21(0)a x aa +=>12.已知自然数x 、y 、z 0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程; 3.会应用一元二次方程解实际应用题。

人教版九年级数学上册 韦达定理 讲义

人教版九年级数学上册 韦达定理 讲义

根与系数的关系——韦达定理对于一元二次方程ax 2+bx+c=0,它的求根公式为2ab x -±=我们把两个根记为x 1、x 2,那么就有12b x a -+=,22b x a--=则x 1+x 2=_________,x 1.x 2=_________这就是“韦达定理”,但注意,前提是“方程有实数根”,我们才能用这个定理变形1:2212______________+=x x 变形2:1211______________+=x x 变形3:2112______________+=x x x x变形4:212()______________-=x x变形5:12||______________-=x x例1、x 2-520x+1314=0的两根分别为x 1、x 2,则x 1+x 2=_____,x 1x 2=_____例2、一元二次方程x 2+3x-9=0有两个x 1、x 2,依题意填空:(1) 计算x 1+x 2 = (2)计算x 1x 2 = (3)计算x 12+x 22 = (4)计算1211=+x x(5)计算2112x x x x += (6)计算212()=-x x (7)计算12||=-x x1、关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( ) A .x 2+3x-2=0 B .x 2-3x+2=0 C .x 2-2x+3=0 D .x 2+3x+2=02、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) A 、-31 B 、 31C 、3D 、 -3 3、下列方程中,两个实数根之和为2的一元二次方程是( )A 、0322=-+x xB 、 0322=+-x xC 、0322=--x xD 、0322=++x x 4、已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( ) A 、21-B 、2C 、21D 、-25、不解方程,01322=-+x x 的两个根的符号为( )A 、同号B 、异号C 、两根都为正D 、不能确定6、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( )A 、-7B 、 3C 、 7D 、-37、若的值为则的解为方程10522++=-+a a ,x x a ( ) A 、12 B 、6 C 、9 D 、168、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( ) A .-10 B .10 C .-16 D .169、若两个不相等的实数m 、n 满足m 2-6m =4,n 2-4=6n ,则mn 的值为( ) A .6 B .-6 C .4 D .-410、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.11、如果21x x 、是方程06322=--x x 的两个根,那么21x x += ,21x x ⋅= 12、若方程032=+-m x x 有两个相等的实数根,则m = ,两个根都为 13、若方程0892=+-x kx 的一个根为1,则k = ,另一个根为14、已知2是关于x 的一元二次方程x 2+4x -p =0的一个根,则该方程的另一个根是________15、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x +=(2)2111x x += (3)=-221)(x x (4))1)(1(21++x x =17、若正数a 是一元二次方程x 2-5x +m =0的一个根,-a 是一元二次方程x 2+5x -m =0的一个根,则a 的值是_____18、已知x 1,x 2是方程x 2-2x -1=0的两个根,则1x 1+1x 2=__________19、已知x 1,x 2是方程x 2+6x+3=0的两实数根,则2112x x x x +的值_________ 20、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是21、若方程x 2-6x+k=0的一根为1。

初中数学韦达定理

初中数学韦达定理

初中数学韦达定理韦达定理的介绍:中文名:韦达定理外文名:Vieta theorem提出者:弗朗索瓦·韦达提出时间:16世纪应用学科:数学代数适用范围:方程论初等数学解析几何三角韦达定理说明了一元二次方程中根和系数之间的关系。

法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。

由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

韦达定理的公式:设一元二次方程中,两根x₁、x₂有如下关系:韦达定理的证明方法:由一元二次方程求根公式知:则有:韦达定理的应用方法:韦达定理是反映一元二次方程根与系数关系的重要定理,中考(竞赛)试题涉及此定理的题目屡见不鲜,且条件隐蔽,在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长,下面举例谈谈韦达定理在解题中的应用。

一、直接应用韦达定理若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.例1在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB 边上一点,且BC=DC,设AD=d.求证:(1)c+d=2bcosA;(2)c·d=b2-a2.分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.证明:如图,在△ABC和△ADC中,由余弦定理,有a2=b2+c2-2bccosA;a2=b2+d2-2bdcosA(CD=BC=a).∴c2-2bccosA+b2-a2=0,d2-2bdcosA+b2-a2=0.于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根.由韦达定理,有c+d=2bcosA,c·d=b2-a2.例2已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b 可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解.解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b.由韦达定理,得a+b=-1,a·b=-1.故ab+a+b=-2.二、先恒等变形,再应用韦达定理若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b形式的式子,则可考虑应用韦达定理.例3若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y.证明:将已知二式变形为x+y=6,xy=z2+9.由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根.∵x、y是实数,∴△=36-4z2-36≥0.则z2≤0,又∵z为实数,∴z2=0,即△=0.于是,方程u2-6u+(z2+9)=0有等根,故x=y.由已知二式,易知x、y是t2+3t-8=0的两个根,由韦达定理三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理例5已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p与q之值,解此方程.解:设x2+px+q=0的两根为a、2a,则由韦达定理,有a+2a=-P,①a·2a=q,②P2-4q=1.③把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.∴方程为x2-3x+2=0或x2+3x+2=0.解得x1=1,x2=2,或x1=-1,x2=-2.例6设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.由题意知α-β=α'-β',故有α2-2αβ+β2=α'2-2α'β'+β'2.从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p-q)=0,即(p-q)(p+q+4)=0.故p-q=0或p+q+4=0,即p=q或p+q=-4.四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理例7m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.解:设公共根为α,易知,原方程x2 mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.由韦达定理,得α(m+α)=3,①α(4-α)=-(m-1).②由②得m=1-4α+α2,③把③代入①得α3-3α2+α-3=0,即(α-3)(α2+1)=0.∵α2+1>0,∴α-3=0即α=3.把α=3代入③,得m=-2.故当m=-2时,两个已知方程有一个公共根,这个公共根为3.韦达定理的补充资料:韦达定理的发展简史法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。

九年级数学尖子生培优竞赛专题辅导第三讲 韦达定理及其应用(含答案)

九年级数学尖子生培优竞赛专题辅导第三讲 韦达定理及其应用(含答案)

第三讲 韦达定理及其应用趣题引路】韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣;常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。

人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解).消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。

韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理,你能利用韦达定理解决下面的问题吗?已知:①a 2+2a -1=0,②b 4-2b 2-1=0日1-ab 2≠0.求2220041()ab b a++的值。

解析 由①知211120a a +-= .即211()210a a +-=,③由②知(b 2)2-2b 2-1=0,④ 由韦达定理,得22112,1b b a a+=⋅=- , ∴()200422220042004211()21ab b b b a aa ⎡⎤++⎛⎫=++=-⎢⎥ ⎪⎝⎭⎣⎦62为一元二次方程²-2x -1=0的两根。

点评 本题的关键是构造一元二次方程x 2-2x -1=0,利用韦达定理求解,难点是将①变形成③,易错点是忽视条件1-ab ²≠0,而把a ,-b 2看作方程x 2+2x -1=0的两根来求解.知识延伸】例1 已知关于x 的二次方程2x 2+ax -2a +1=0的两个实根的平方和为174 ,求a 的值.解析 设方程的两实根为x 1,x 2,根据韦达定理,有 12122212a x x a x x ⎧+=-⎪⎪⎨-+⎪⋅=⎪⎩ 于是,x 12+x 22=(x 1+x 2)2-2x 1x 2 =221222a a -+⎛⎫--⋅ ⎪⎝⎭=14(a 2+8a -4) 依题设,得14 (a 2+8a -4)=174,解得a =-11或3.注意到x 1,x 2,为方程的两个实数根,则△≥0,但a =-11时,△=(-11)2+16×(-11)-8=-63<0;a =3时,△=32-4×2×(-6+1)=49>0,故a =3.点评 韦达定理应用的前提是方程有解,即判别式△=0,本题容易忽视的就是求出a 的值后,没有考虑a 的值满足△≥0这一前提条件。

初三中考数学专题4:韦达定理应用探讨

初三中考数学专题4:韦达定理应用探讨

【中考攻略】专题4:韦达定理应用探讨韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。

韦达第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。

韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。

人们为了纪念他在代数学上的功绩,称他为“代数学之父”。

韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则1212bc x +x =x x =a a-⋅,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。

其逆命题:如果12x x ,满足1212b c x +x =x x =a a-⋅,,那么12x x ,是一元二次方程()2ax +bx+c=0a 0≠的两个根也成立。

韦达定理的应用有一个重要前提,就是一元二次方程必须有解,即根的判别式2=b 4ac 0∆-≥。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。

锦元数学工作室将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用。

下面通过近年全国各地中考的实例探讨其应用。

一、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。

典型例题:例1:(2012湖北武汉3分)若x 1、x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是【 】A .-2B .2C .3D .1 【答案】C 。

【考点】一元二次方程根与系数的关系。

【分析】根据一元二次方程根与系数的关系,得x 1+x 2=3。

故选C 。

例2:(2001湖北武汉3分)若x 1、x 2是一元二次方程x 2+4x +3=0的两个根,则x 1·x 2的值是【 】A.4.B.3.C.-4.D.-3. 【答案】B 。

【精华篇】初中数学九年级培优教程整理(全)

【精华篇】初中数学九年级培优教程整理(全)

初中数学九年级培优目录第1讲二次根式的性质和运算(P2----7)第2讲二次根式的化简与求值(P7----12)第3讲一元二次方程的解法(P13----16)第4讲根的判别式及根与系数的关系(P16----22)第5讲一元二次方程的应用(P23----26)第6讲一元二次方程的整数根(P27----30)第7讲旋转和旋转变换(一)(P30----38)第8讲旋转和旋转变换(二)(P38----46)第9讲圆的基本性质(P47----51)第10讲圆心角和圆周角(P52----61)第11讲直线与圆的位置关系(P62----69)第12讲圆内等积证明及变换((P70----76)第13讲弧长和扇形面积(P76----78)第14讲概率初步(P78----85)第15讲二次函数的图像和性质(P85----91)第16讲二次函数的解析式和综合应用(P92----98) 第17讲二次函数的应用(P99----108)第18讲相似三角形的性质(P109----117)第19讲相似三角形的判定(P118-----124)第20讲相似三角形的综合应用(P124-----130)每天进步一点点!坚持就是胜利!第1讲 二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析; 2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【例1】 (荆州)下列根式中属最简二次根式的是( )A.B 【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C 、D 含开方数4、9,故选A .【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是( )A.BA.①,②ﻩB.③,④ﻩC.①,③D.①,④【例2】(黔东南)方程480x -=,当y >0时,m 的取值范围是( )A.0<m<1 B .m ≥2ﻩ C .m <2 ﻩD.m ≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x -8=0,x -y-m =0.化为y =2-m,则2-m >0,故选C.【变式题组】2.(宁波)若实数x、y 2(0y -=,则xy 的值是__________.3.(荆门)2()x y =+,则x -y 的值为( )A .- 1ﻩB .1ﻩC .2 ﻩD .34.(鄂州)使代数式4x -有意义的x 的取值范围是( ) A .x >3 B.x≥3ﻩﻩC.x>4 ﻩD.x≥3且x ≠45.(怀化)22(4)0a c --=,则a-b -c =________.【例3是同类二次根式的是( )B C ﻩ【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样. A=; B不能化简;=D=,=故本题应选D.【变式题组】6.,则a=________. 7.在下列各组根式中,是同类二次根式的是( )CD8.已知最简二次根式ba =_______,b =______. 【例4】下列计算正确的是( )=4=ﻩC= D.(11+=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥;0,0)b a =≥> 进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D. 2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( )A.= B=C3=ﻩ3=-10.计算:200720074)(4⋅=_____________ 11.22-=_____________12.(济宁)已知a 为实数,( ) A.a B.-a ﻩ C.-1 D .0 13.已知a >b >0,a +b =的值为( )A.2B.2ﻩCﻩD .12【例5】已知xy >0,化简二次根式的正确结果为( )A Bﻩ C .ﻩ D .【解法指导】先要判断出y <0,再根据xy >0知x<0. 故原式= D. 【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --_______.15.===,算果中找出规律,并利用这一规律计算:1)2006++⋅=_________.16.已知,则0<x<1,=_________.【例6】(辽宁)⑴先化简吗,再求值:11()ba b b a a b ++++,其中12a =,12b =.⑵已知x =,y =值为________. 【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当12a =,12b =时,ab =1,a+b⑵由题意得:xy =1,x +y =10, 原式10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a+b )-3a 2,其中2a =--2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________.【例7】已知实数x 、y满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A.-2008ﻩﻩB.2008C.-1ﻩﻩD.1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =(y =x =,由以上两式可得x =y .∴(2008x =, 解得x2=2008,所以3x2-2y 2+3x-3y-2007=3x 2-2x 2+3x -3x -2007=x2-2007=1,故选D .【变式题组】19.若a >0,b>0=的值.演练巩固·反馈提高01.若4m =,则估计m的值所在的范围是( )A .1<m <2B .2<m <3ﻩC .3<m <4 ﻩD .4<m <502.(绵阳)n的最大值为( )A .12 ﻩB.11C.8 ﻩD .303.(黄石)下列根式中,不是..最简二次根式的是( )A.04.(贺州)下列根式中,不是最简二次根式的是( )A.C 05.下列二次根式中,是最简二次根式的是( )A.C06.(常德)设a=20, b=(-3)2, c =11()2d -=, 则a 、b、c、d 、按由小到大的顺序排列正确的是( )A.c<a<d <b ﻩ B.b <d<a<c ﻩﻩC.a <c<d<bD .b <c <a <d07.(十堰)下列运算正确的是( )A+=ﻩ B =C.21)31=-ﻩﻩ 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A .C.ﻩD .09.(徐州)2x -化简的结果为2x -3,则x的取值范围是( )A.x ≤1 ﻩB .x ≥2ﻩ C .1≤x ≤2ﻩ D.x>010.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a,b ,定义一种运算a※b =那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a --,其中12a =. 培优升级01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a、b 是正整数,且满足是整数,则这样的有序数对(a ,b)共有________对.03.(全国)设12a =,则5432322a a a a a a a+---+=-________. 04.(全国)设x =a 是x的小数部分,b 是x 的小数部,则a 3+b 3+3a b=________.05.(重庆)已知2y =,则x 2+y 2=________.06.(全国)已知1a =,a =2a =,那么a、b 、c 的大小关系是( )A.a <b <c ﻩﻩB.b <a<c ﻩﻩC.c<b <a ﻩ D .c <a <b07.(武汉)已知y =(x,y均为实数),则y的最大值与最小值的差为( )A 3ﻩB .3ﻩ3ﻩ D08.(全国)已知非零实数a 、b满足24242a b a -+++=,则a+b 等于( ) A .-1ﻩ B.0ﻩﻩC .1D.209.(全国) )A.5-ﻩB .1ﻩﻩC.5ﻩﻩD .110.已知0(0,0)x y x y -=>>的值为( )A.13ﻩﻩB .12 ﻩC. 23ﻩ D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知9+9a 和b ,求ab -3a+4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值. 3.会化简复合二次根式,会在根式范围内分解因式.经典·考题·赏析【例1】(河北)2=的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形. 解:两边平方得,124x x ++=,12x x+= ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式511-1.若14a a +=(0<a<1),=________ 2=-( ) A .1a a -ﻩ B .1a a -ﻩﻩC .1a a+ﻩﻩD .不能确定 【例2】(全国)满足等式=2003的正整数对(x ,y )的个数是( )A .1ﻩ ﻩB.2ﻩﻩ C.3 D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.0=,∴0=0>,0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B. 【变式题组】3.若a >0,b >0=的值.【例3】(四川)1)a =<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x为整体,=移项用含a 的代数式表示x -2,x2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a -+=++, 222142x x a a-=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a++-+-=++--4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值.5.(五羊杯)已知1m =+1n =-且22(714)(367)8m m a n n -+--=,则a的值等于( ) A .-5ﻩB .5ﻩ ﻩC .-9ﻩD .9【例4】(全国)如图,点A、C都在函数0)y x =>的图像上,点B、D都在x 轴上,且使得△OAB 、△BC D都是等边三角形,则点D的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a,BF=b ,则,CFb ,所以,点A、C 的坐标为(aa )、(2a+b),所以2(2)a b =+=解得a b ⎧=⎪⎨=⎪⎩因此,点D的坐标为(,0) 【变式题组】6.(邵阳)阅读下列材料,然后回答问题. 在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简: 335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+; (四)(1)请你用不同的方法化简352+;①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程)(2)2n +++【例5】(五羊杯)设a 、b 、c 、d 为正实数,a <b,c <d ,bc >ad ,,,求此三角形的面积.【解法指导】虽然不能用面积公式求三角形面积(为什么a、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形AB CD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长D C至F ,使D F=b,连结EF 、FB 、EB ,则BFEF=,BE =,从而知△BEF 就是题设的三角形,而S△BEF=S 长方形ABCD +S △BCF+S △ABE -S △DEF =(b -a )c +12(d -c )(b -a)-12bd =12(bc -a d)【变式题组】7.(北京)已知a、b 均为正数,且a+b=2,求U演练巩固·反馈提高01.已知x =,y =值为__________ 02.设1a =-,则32312612a a a +--=( )A.ﻩ24ﻩB .25ﻩﻩC.10ﻩﻩD.1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京)若有理数x 、y 、z 1()2x y z =++,则2()x yz -=__________05.(北京)正数m、n 满足430m n +-=,=__________06.(河南)若1x =,则32(2(15x x x -++的值是( )A .2 ﻩB .4ﻩﻩC .6ﻩﻩﻩD .807.已知实数a 满足2000a a -=,那么22000a -的值是( ) A .1999ﻩB.2000 C .2001 ﻩ D .200208.设a =b =c =则a 、b 、c 之间的大小关系是( ) A .a <b <c ﻩﻩB .c <b <a ﻩC.c<a <bﻩD.a<c <b09.已知1x =培优升级01.(信利)已知1x =+那么2111242x x x +-=+--__________02.5=,=__________03.(江苏)已知(2002x y =,则2234x xy y --6658x y --+=__________04.(7x =,则x=__________05.已知x =,y =,那么22y x x y +=__________06.(武汉)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A .ﻩB.2001ﻩﻩﻩC .1 ﻩﻩD .007.(绍兴)当12x +=时,代数式32003(420052001)x x --的值是( ) A.0ﻩ ﻩ B .-1 ﻩC.1ﻩﻩ D .20032-08.(全国)设a、b 、c 为有理数,且等式a +=,则29991001a b c ++的值是( )A.1999ﻩ B .2000 ﻩ C .2001ﻩﻩ D .不能确定09.计算:((24947++(10.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b---,将结果表示成不含b 的形式.11.已知21(0)a x aa +=>,化简12.已知自然数x 、y 、z 0=,求x+y +z 的值.第3讲一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

韦达定理

韦达定理

韦达定理(Vieta's Theorem)的内容一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中设两个根为X1和X2则X1+X2= -b/aX1*X2=c/a不能用于线段用韦达定理判断方程的根若b^2-4ac>0 则方程有两个不相等的实数根若b^2-4ac=0 则方程有两个相等的实数根若b^2-4ac<0 则方程没有实数解[编辑本段]韦达定理的推广韦达定理在更高次方程中也是可以使用的。

一般的,对一个一元n次方程∑Ai X^i=0它的根记作X1,X2 (X)我们有∑Xi=(-1)^1*A(n-1)/A(n)∑XiXj=(-1)^2*A(n-2)/A(n)…∏Xi=(-1)^n*A(0)/A(n)其中∑是求和,∏是求积。

如果一元二次方程在复数集中的根是,那么法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

同素异形体是相同元素构成,不同形态的物体同素异形体由于结构不同,彼此间物理性质有差异;但由于是同种元素形成的,所以化学性质相似。

例如氧气是没有颜色、没有气味的气体,而臭氧是淡蓝色、有鱼腥味的气体;氧气的沸点-183℃,而臭氧的沸点-111.5℃;氧气比臭氧稳定,没有臭氧的氧化性强等。

一定要是单质.比如氧气和臭氧,一个是O2一个是O3金刚石和石墨,都是碳在一定条件下,同素异形体之间可以相互转化,这种转化需要化学反应才能完成。

同素异形体的形成方式有三种:1.组成分子的原子数目不同,例如:氧气O2和臭氧O32.晶格中原子的排列方式不同,例如:金刚石和石墨3.晶格中分子排列的方式不同,例如:正交硫和单斜硫碳的同素异形体所谓的极性键与非极性键是针对共价化合物而言的,即组成化合物的元素都是非金属元素(铵盐除外,它属于离子化合物).化合物中若存在2种相同的非金属元素相连,则它们的连接形式称为非极性共价键,如Cl2中2个CL原子的连接形式或Na2O2(Na-O-O-Na)中2个氧原子的连接形式.若存在2种不相同的非金属元素相连,则它们的连接形式称为极性共价键,如HCl中H与Cl的连接形式.而离子键是针对离子化合物而言的.离子化合物指组成中含金属离子或铵根离子的化合物,金属离子或铵根离子与酸根离子或非金属离子的连接形式称为离子键,比如你自己说的氯化钠中就只存在离子键而没有共价键.而象Na2O2之类的化合物既有共价键又有离子键.[思路分析](1)非极性键:同种原子形成共价键,两个原子吸引电子的能力相同,共同电子对不偏向任何一个原子,电荷在两个原子核附近对称地分布,因此成键的原子都不显电性。

用法韦达定理

用法韦达定理

用法韦达定理
法韦达定理是三角形内角平分线定理的一个推论,也被称为角平分线定理。

它是指:在任意三角形ABC中,如果AD是∠BAC的内角平分线(即∠BAD=∠CAD),那么BD/DC=AB/AC。

这个公式非常有用,可以用来求解三角形内部的各种参数。

我们可以用法韦达定理来求解三角形的各种角度和边长。

例如,如果我们已知三角形的两条边和它们之间的夹角,我们想要求出第三条边的长度,就可以利用法韦达定理。

假设已知三角形ABC中,AB=3,AC=4,∠BAC=90度,那么我们可以用BD/DC=AB/AC来求出BD 和DC的长度。

代入已知值,得到BD=36/7,DC=48/7。

接着,我们可以用勾股定理来求出BC的长度,得到BC=5。

除了用法韦达定理来求解三角形的边长,我们还可以用它来证明一些几何定理。

例如,我们可以用法韦达定理来证明三角形内角平分线定理,即∠BA C的内角平分线AD将角BAC平分成两个相等的角。

证明过程如下:假设BD/DC=AB/AC,则BD/AB=DC/AC,根据相似三角形的定义,我们可以得出三角形ABD和三角形ACD是相似的。

因此,∠BAD=∠CAD,即AD是∠BAC的内角平分线。

通过利用法韦达定理来证明三角形内角平分线定理,我们可以看到这两个定理之间的紧密联系。

同时,这也展示了数学知识的内在逻辑和一致性,因为不同的定理和公式之间往往会有关联,这样才能形成一个严密的数学体系。

总体而言,法韦达定理是一个非常有用的公式,它可以用来解决各种三角形问题,同时也可以用来证明其他几何定理。

在学习数学时,我们应该掌握这个公式的应用和证明方法,以便更好地理解和应用相关知识。

韦达定理复习课件

韦达定理复习课件

选择题
A. -4 B. -2
C. 0
选择题
D. 2
答案4:D. 2
解答题
总结词
考察韦达定理的综合应用
题目5
已知一元二次方程 x^2 - (k + 1)x + k = 0 的两个根为 x1 和 x2, 且 x1 + x2 = 3,求 k 的值。
答案5
解得 k = 2 或 k = -4。
THANKS
02
韦达定理的内容
韦达定理的公式
韦达定理公式
对于一元二次方程 ax^2 + bx + c = 0 (a ≠ 0),其解的公式为 x = [-b ± sqrt(b^2 - 4ac)] / (2a)。
解释
该公式用于求解一元二次方程的 根,其中 a、b、c 是方程的系数 ,b^2 - 4ac 是判别式。

解释
通过一系列代数变换, 将方程的解表示为根号 下的形式,从而得出解
的公式。
韦达定理的特例
01
02
03
04
特例1
当 b = 0,c = 0 时,方程变 为 ax^2 = 0,其解为 x = 0

特例2
当 a = 0 时,方程退化为线 性方程,不适用韦达定理。
特例3
当 b = 0,且 a 与 c 不相等 时,方程有两个相等的实根,
分式方程的实例
总结词
分式方程的解与系数的关系
详细描述
对于分式方程 $frac{x^2}{a} + frac{y^2}{b} = 1$,其解为 $(x_1, y_1), (x_2, y_2)$,则有 $x_1 cdot x_2 = pm frac{a}{sqrt{a^2 - b}}$ 和 $y_1 cdot y_2 = pm frac{b}{sqrt{a^2 - b}}$。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

2019-2020年九年级数学上册 韦达定理之根的分布知识详解 人教新课标版

2019-2020年九年级数学上册 韦达定理之根的分布知识详解 人教新课标版

2019-2020年九年级数学上册 韦达定理之根的分布知识详解 人教新课标版一元二次方程实根的分布是二次方程中的重要内容,在各类竞赛和中考中经常出现。

这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于一元二次方程根的判别式和根与系数关系(韦达定理)的运用。

本文将在前面方法的基础上,结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的情况及其运用。

一.一元二次方程实根的基本分布——零分布一元二次方程实根的零分布,指的是方程的根相对于零的关系。

比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。

对于这类问题,用一元二次方程根的判别式和根与系数关系(韦达定理)即可判别。

一元二次方程02=++c bx ax (0≠a )的两个实数根为1x 、2x ,则 1x 、2x 均为正⇔△≥0,1x +2x >0,1x 2x >0; 1x 、2x 均为负⇔△≥0,1x +2x <0,1x 2x >0;1x 、2x 一正一负⇔1x 2x <0。

例1.关于x 的一元二次方程28(1)70x m x m +++-=有两个负数根,求实数m 取值范围。

解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆⎧⎪+< ⎨⎪> ⎩≥ ①②③由①得:2(1)32(7)0m m +--≥,2(15)0m -≥,恒成立。

由②得:18m +-<0,解之,m >1-。

由③得:78m ->0,解之,m >7。

综上,m 的取值范围是m >7。

例2.若n >0,关于x 的方程21(2)04x m n x mn --+=有两个相等的正实数根,求m n的值。

解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆= ⎧⎪+⎨⎪> ⎩①> ②③若m n =,则1x +2x 22m n n n n =-=-=-<0,不符合②,舍去。

韦达定理ppt课件

韦达定理ppt课件

3
x1x2 b
b2 4ac b *
2a
b2 4ac 2a

(b)2
(b2 4a2

4ac)
b2 b2 4ac

4a2

4ac 4a2
=
c a
4
推论
如果一元二次方程x2+bx+c=0两个根为x1 , x2,
那么
x1 x2 -b
x1x2 c
5
韦达定理常见题型总结:
已知关于x方程x0是否存在k使方程中的两个实数根的倒数等于12若存在求出满足条件的k若不存在请说明理由
韦达定理
1
一元二次方程的根与系数的关系: (韦达定理)
如果一元二次方程ax2+bx+c=0(a≠0)两个根为x1 ,
x2,那么
x1 x2
b, a
c
x1x2
. a
注:能用韦达定理的条件为△≥0即 b2 4ac 0
例3:已知关于x方程x2-(k+1) x+ k2_1 =0,是否存在k, 使方程中的两个实数根的倒数等于1/2,若存在,求出 满足条件的k,若不存在,请说明理由。
7
3.已知与原方程的两根关系,构造一个新方程
例4:求一元二次方程x2ห้องสมุดไป่ตู้3x - 2=0的两根之和 与两根之积 为根的一元二次方程。
例5:若一原方程x2 - 3x - 2=0的两根为x1 , x2 ; 则:(1)以-x1 , - x2 为两根的方程是?
2
韦达定理的证明:
一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
x= b b2 4ac
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.不大于 1
B.大于 1
C.小于 1
D.不小于 1
(2011 年《数学周报杯》全国初中数学竞赛题)
7.若 ab 1 ,且有 5a 2 2001a 9 0及9b2 2001b 5 0,则 a 的值为( ) b
9
A.
5
5
B.
9
C. 2001 5
D . 2001 9
(全国初中数学联赛题)
1
九年级数学培优竞赛辅导讲座
[充满活力的韦达定理] 学历训练
1.已知方程 x 2 px q 0 的两根均为正整数,且 p q 28 ,那么这个方程两根为

(“祖冲之杯”邀请赛)
2.已知整数 p,q 满足 p q 2010, 且关于 x 的一元二次方程 67x 2 px q 0 的两个根均为正整数,
值范围是( )
A. 0 m 1
B. m 3 4
(全国初中数学联赛题)
C. 3 m 1 D. 3 m 1
4
4
思路点拨 设方程的根分别为 1、 x1, x2 ,由三角形三边关系定理、韦达定理建立 m 的不等式组。
例 3.设 x1 、 x2 是方程 2x 2 4mx 2m 2 3m 2 0 的两个实数根,当 m 为何值时, x12 x2 2 有最小值?
九年级数学培优竞赛辅导讲座
第 3 讲 充满活力的韦达定理
知识纵横
一元二次方程的根与系数的关系,通常也称 为韦达定理,这是因为该定理是由 16 世纪法国最杰出 的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征 ; 利用韦达定理逆定理,构造一元二次方程辅助解题等. 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路. 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解 这类问题常用到对称分析、构造等数学思想方法.
(2011 四川省竞赛题)
11.已知关于 x 的一元二次方程 x 2 cx a 0 的两个整数根恰好比方程 x2 ax b 0 的两个根都大
1,求 a b c 的值。
(2011 年“《数学周报》”杯全国初中数学竞赛题)
3
九年级数学培优竞赛辅导讲座
4
8.设 a,b 为整数,并且一元二次方程 x2+(2a+b+3)x+(a2+ab+6)=0 有等根α,而一元二次方程 2ax2+
(4a-2b-2)x+(2a-2b-1)=0 有等根β;那么以α,β为根的整系数一元二次方程是( )
A.2x2+7x+6=0
B.2x2+x-6=0
C.x2+4x+4=0
D.x2+(a+b)x+ab=0

(a2
1 2)(b2
2)
(a3
1 2)(b3
2)
.....
(a2007
1 2)(b2007
2)
________ .
(全国初中数学联赛题)
5.设
x1 ,
x2是方程x 2
x
4
0
的两个实数根,则
x13
5
x
2 2
10
的值为(
A.-29
B.-19
C.-15
D.-9

(第 21 届江苏省竞赛题)
6.若方程 x 2 px q 0 的一个根大于 1,另一个根小于 1,则 p q 的值为 ( )
则 p=

(“新知杯”上海市竞赛题)
3.△ABC 的一边长为 5,另两边长恰为方程 2x 2 12x m 0 的两根,则 m 的取值范围


(四川省竞赛题)
4.对于一切不小于 2 的自然数 n,关于 x 的一元二次方程 x 2 (n 2)x 2n 2 0 的两根记为
an , bn (n
பைடு நூலகம்
2),
并求出这个最小值.
(第 16 届江苏省竞赛题)
思路点拨 利用根与系数关系把待求式用 m 的代数式表示,再从 配方法入手 ,应注意本例是在一定约束条件下(△≥0)
进行的.
注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式 △≥0 这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.
(2011 年江西省竞赛题)
2
九年级数学培优竞赛辅导讲座
9.设 x1x2 时关于 x 的一元二次方程 x 2 ax a 2 的两个实数根,求 (x1 2x2 )(x2 2x1 ) 的最大值。
(全国初中数学竞赛题)
10.已知 x1,x2 是关于 x 的一元二次方程 x2+(3a-1)x+2a2-1=0 的两个实数根,其满足(3x1-x2)(x1-3x2) =-80.求实数 a 的所有可能值.
例题求解
例 1.已知 、 是方程 x 2 x 1 0 的两个实数根,则代数式 2 ( 2 2) 的值为

(绍兴市竞赛题)
思路点拨 所求代数式为 、 的 非对称式,通过根的定义、一元二次方程的变形转化为基本对称式解。
例 2.如果方程 (x 1)(x 2 2x m) 0 的三根可以作为一个三角形的三边线之长,那么,实数 m 的取
相关文档
最新文档