五年级奥数第02讲-等差数列(学)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义
知识梳理
一、数列的概念
按一定顺序排成的一列数叫做数列。数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。数列中共有的项的个数叫做项数。
如:2、5、8、11、14、17、20、L从第二项起,每一项比前一项大3 ,递增数列
100、95、90、85、80、L从第二项起,每一项比前一项小5 ,递减数列
二、等差数列与公差
一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
三、常用公式
等差数列的总和=(首项+末项)⨯项数÷2
项数=(末项-首项)÷公差+1
末项=首项+公差⨯(项数-1)
首项=末项-公差⨯(项数-1)
公差=(末项-首项)÷(项数-1)
等差数列(奇数个数)的总和=中间项⨯项数
中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.
典例分析
考点一:等差数列的基本认识
例1、下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
①6,10,14,18,22, (98)
②1,2,1,2,3,4,5,6;
③1,2,4,8,16,32,64;
④9,8,7,6,5,4,3,2;
⑤3,3,3,3,3,3,3,3;
⑥1,0,1,0,l,0,1,0;
例2、把比100大的奇数从小到大排成一列,其中第21个是多少?
例3、已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?
例4、2、4、6、8、10、12、L是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.例5、5、8、11、14、17、20、L,这个数列有多少项?它的第201项是多少?65是其中的第几项?
例2、在11~45这35个数中,所有不被3整除的数的和是多少?
例3、如图2,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N=5时,按这种方式摆下去,当N=5时,共需要火柴棍根。
例4、将一些半径相同的小圆按如下所示的规律摆放:第1个图形中有6个小圈,第2个图形中有10个小圈,第3个图形中有16个小圈,第4个图形中有24个小圈,…,依此规律,第6个图形有___________个小圈。
P(Practice-Oriented)——实战演练
实战演练
➢课堂狙击
1、在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?
8、观察下列四个算式:201 =20,202 =10,104 =52 , 52 8 =5
16 。从中找出规律,写出第五个算式: 。
9、若干个硬币排成左下图,每个硬币所在行的硬币数与所在列的硬币数相减得出一个差(大数减小数),如
对于a ,差为7-5=2,所有差的总和为 。
1、(2005年,第3届,希望杯,4年级,1试)从1开始的奇数:1,3,5,7,……其中第100个奇数是_____。
2、(2006年,第4届,希望杯,4年级,1试)观察下列算式: 2+4=6=2×3, 2+4+6=12=3×4 2+4+6+8=20=4×5 ……
然后计算:2+4+6+……+100= 。
3、(2005年,第3届,走美杯,5年级,决赛)从正整数1~N 中去掉一个数,剩下的(N 一1)个数的平均值是15.9,去掉的数是_____。
直击赛场
一、等差数列的定义
⑴定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.
⑵ 首项:一个数列的第一项,通常用1a 表示
末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。 项数:一个数列全部项的个数,通常用n 来表示;
公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 . 二、等差数列的相关公式
(1)三个重要的公式
① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+
-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =-
-⨯() ② 项数公式:项数=(末项-首项)÷公差+1 ③ 求和公式:和=(首项+末项)⨯项数÷2
(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首
项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.
学霸经验
名师点拨
重点回顾
➢本节课我学到了
➢我需要努力的地方是