中考数学总复习第三章函数及其图象第五节二次函数的综合应用二次函数的几何应用课件

合集下载

安徽中考数学复习课件 第三章函数及其图象 第13讲 二次函数的应用

安徽中考数学复习课件 第三章函数及其图象 第13讲  二次函数的应用
售价x(元/千克) 销售量y(千克) 50 100 60 80 70 60
(1)求y与x之间的函数表达式; (2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润 =收入-成本); (3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价 为多少元时获得最大利润,最大利润是多少?
考点2
用二次函数解决实际问题
1.在现实的生活生产中存在着很多有关二次函数的实际问题,我 们要善于通过分析实际问题中的数量关系,尤其是两个变量之间的 函数关系,建立二次函数的模型,从而用二次函数解决有关的实际 问题. 2.建立起实际问题中的二次函数关系后,要注意根据实际问题确 定其自变量的取值范围.
归纳►二次函数的应用关键在于建立二次函数的数学模型,这就需要认真审题,理解 题意,利用二次函数解决实际问题.应用最多的是根据二次函数的最值确定最大利 润、最节省方案等问题.
命题趋势►二次函数的应用注重多个知识点的综合考查以及对学生应用二次函数解决 实际问题能力的考察.近六年安徽中考中,本知识点命题难度较大, 预测►二次函数的实际应用仍将作为重难点考查,题型以解答题为主.
∴AE=2BE. 设BE=FC=a,则AE=HG=DF=2a.
∵DF+FC+HG+AE+EB+EF+BC=80,即8a+
2x=80, 1 ∴a=- x+10. 4 3 ∴y=3ax=- x2+30x. 4
1 ∵a=- x+10>0, 4 3 ∴x<40,则y=- x2+30x(0<x<40); 4 3 2 3 (2)∵y=- x +30x=- (x-20)2+300(0<x<40),且二次项系 4 3 4 数为- <0, 4 ∴当x=20时,y有最大值,最大值为300平方米.
命题点1
二次函数在营销问题方面的应用

青海2018届中考数学复习第1编第3章函数及其图象第5节二次函数的图象及性质精讲习题

青海2018届中考数学复习第1编第3章函数及其图象第5节二次函数的图象及性质精讲习题

第五节二次函数的图象及性质,青海五年中考命题规律),青海五年中考真题) 二次函数的图象及性质1.(2012西宁中考)如图,二次函数y=ax2+bx+c的图象过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是( B)A.当x=0时,y的值大于1B.当x=3时,y的值小于0C.当x=1时,y的值大于1D.y的最大值小于0二次函数图象和性质的综合应用2.(2017青海中考)如图,抛物线y =12x 2-32x -2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x轴对称.(1)求点A ,B ,C 的坐标; (2)求直线BD 的解析式;(3)在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)由12x 2-32x -2=0,得x 2-3x -4=0,∴x 1=-1,x 2=4,∴A(-1,0),B(4,0),当x =0时,y =-2,∴C(0,-2);(2)∵D 点与C 点关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧4k +b =0,b =2,∴⎩⎪⎨⎪⎧k =-12,b =2,∴直线BD 的解析式为y =-12x +2; (3)存在这样的点P.设P 点坐标为⎝ ⎛⎭⎪⎫m ,12m 2-32m -2,过点P 作PE⊥x 轴,与x 轴交于点F ,与BD 交于点E ,如答图.则E 点坐标为⎝ ⎛⎭⎪⎫m ,-12m +2,∴|PE|=⎝ ⎛⎭⎪⎫-12m +2-⎝ ⎛⎭⎪⎫12m 2-32m -2=-12m +2-12m 2+32m +2=-12m 2+m +4,∴S △PBD =S △PDE +S △PEB=12|PE|·|OF|+12|PE|·|BF|=12|PE|·(|OF|+|BF|)=12|PE|·|OB|=12×⎝ ⎛⎭⎪⎫-12m 2+m +4×4=-m 2+2m +8=-(m -1)2+9.∴当m =1时,△PBD 的面积取得最大值9.此时,12m 2-32m -2=12×12-32×1-2=-3,∴P 点坐标为(1,-3).3.(2016青海中考)如图所示(注:与图②完全相同),二次函数y =43x 2+bx +c 的图象与x 轴交于A(3,0),B(-1,0)两点,与y 轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D ,求△ACD 的面积;(请在图①中探索)(3)若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动.当P ,Q 运动到t s 时,△APQ 沿PQ 所在的直线翻折,点A 恰好落在抛物线上E 点处,请直接判定此时四边形APEQ 的形状,并求出E 点坐标.(请在图②中探索)图①图②解:(1)∵二次函数y =43x 2+bx +c 的图象与x 轴交于A(3,0),B(-1,0),∴⎩⎪⎨⎪⎧43×9+3b +c =0,43×1-b +c =0,解得⎩⎪⎨⎪⎧b =-83,c =-4, ∴y =43x 2-83x -4;(2)如答图①,过点D 作DM⊥y 轴于点M. ∵y =43x 2-83x -4=43(x -1)2-163,∴点D ⎝⎛⎭⎪⎫1,-163,点C(0,-4),则S △ACD =S 梯形AOMD -S △CDM -S △AOC =12×(1+3)×163-12×⎝ ⎛⎭⎪⎫163-4×1-12×3×4=4;(3)四边形APEQ 为菱形.如答图②,E 点关于PQ 与A 点对称,过点Q 作QF⊥AP 于F ,∴FQ ∥OC ,∴AF AO =FQOC =AQ AC ,∴AF 3=FQ 4=t 5,∴AF =35t ,FQ =45t ,∴Q ⎝ ⎛⎭⎪⎫3-35t ,-45t .∵EQ =AP =t ,∴E ⎝ ⎛⎭⎪⎫3-85t ,-45t .∵E 在二次函数y =43x 2-83x -4上,∴-45t =43⎝ ⎛⎭⎪⎫3-85t 2-83⎝ ⎛⎭⎪⎫3-85t -4,∴t =14564或t =0(与A 重合,舍去),∴E ⎝ ⎛⎭⎪⎫-58,-2916.4.(2015青海中考)如图,二次函数y =ax 2+bx -3的图象与x 轴交于A(-1,0),B(3,0)两点,与y 轴交于点C.该抛物线的顶点为M.(1)求抛物线的解析式;(2)判断△BCM 的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以点P ,A ,C 为顶点的三角形与△BCM 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)∵二次函数y =ax 2+bx -3的图象与x 轴交于A(-1,0),B(3,0)两点,∴⎩⎪⎨⎪⎧a -b -3=0,9a +3b -3=0,解得⎩⎪⎨⎪⎧a =1,b =-2,则抛物线解析式为y =x 2-2x -3; (2)△BCM 为直角三角形.理由如下:对于抛物线解析式y =x 2-2x -3=(x -1)2-4,即顶点M 坐标为(1,-4),令x =0,得到y =-3,即C(0,-3),根据勾股定理得BC =32,BM =25,CM =2.∵BM 2=BC 2+CM 2,∴△BCM 为直角三角形;(3)存在.点P 的坐标为(0,0)或(9,0)或⎝ ⎛⎭⎪⎫0,13.5.(2014青海中考)如图所示,抛物线y =ax 2+bx +c 的顶点为M(-2,-4),与x 轴交于A ,B 两点,且A(-6,0),与y 轴交于点C.(1)求抛物线的函数解析式; (2)求△ABC 的面积;(3)能否在抛物线第三象限的图象上找一点P ,使△APC 的面积最大?若能,请求出点P 的坐标;若不能,请说明理由.解:(1)设此函数的解析式为y =a(x -h)2+k.∵函数图象顶点为M(-2,-4),∴y =a(x +2)2-4,又∵函数图象经过点A(-6,0),∴0=a(-6+2)2-4,解得a =14,∴此函数的解析式为y =14(x +2)2-4,即y =14x 2+x -3;(2)∵点C 是函数y =14x 2+x -3的图象与y 轴的交点,∴点C 的坐标是(0,-3).在y =14x 2+x -3中,令y=0,则14x 2+x -3=0,解得x 1=-6,x 2=2,∴点B 的坐标是(2,0),∴S △ABC =12|AB|·|OC|=12×8×3=12;(3)假设存在这样的点P ,过点P 作PE⊥x 轴于点E ,交AC 于点F.设E(x ,0),则P ⎝ ⎛⎭⎪⎫x ,14x 2+x -3.设直线AC 的解析式为y =kx +b.∵直线AC 过点A(-6,0),C(0,-3),∴⎩⎪⎨⎪⎧-6k +b =0,-3=b.解得⎩⎪⎨⎪⎧k =-12,b =-3,∴直线AC 的解析式为y =-12x -3.∴可设点F 的坐标为⎝ ⎛⎭⎪⎫x ,-12x -3,则|PF|=-12x -3-⎝ ⎛⎭⎪⎫14x 2+x -3=-14x 2-32x ,∴S △APC =S △APF+S △CPF =12|PF |·|AE|+12|PF|·|OE|=12|PF|·|OA|=12×⎝ ⎛⎭⎪⎫-14x 2-32x ×6=-34x 2-92x =-34(x +3)2+274,∴当x=-3时,S △APC 有最大值274,此时P 点坐标是⎝⎛⎭⎪⎫-3,-154.6.(2013青海中考)如图,已知抛物线经过点A(2,0),B(3,3)及原点O ,顶点为C. (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且以A ,O ,D ,E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上第二象限内的动点,过点P 作PM⊥x 轴,垂足为M ,是否存在点P 使得以点P ,M ,A 为顶点的三角形与△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y =ax 2+bx +c(a≠0),且过A(-2,0),B(-3,3),O(0,0)可得⎩⎪⎨⎪⎧4a -2b +c =0,9a -3b +c =3,c =0,解得⎩⎪⎨⎪⎧a =1,b =2,c =0,∴抛物线的解析式为y =x 2+2x ;(2)①当AO 为边时,∵A ,O ,D ,E 为顶点的四边形是平行四边形,∴DE =AO =2.∵点E 在抛物线对称轴上,对称轴为直线x =1,∴点E 的横坐标为1,∴点D 的横坐标为3或-1,代入y =x 2-2x ,得y =3.∴D(3,3)或(-1,3);②当AO 为对角线时,则DE 与AO 互相平分,∵点E 在对称轴上,对称轴为直线x =1,由对称性知,符合条件的点D 只有一个,与点C 重合,即D(1,-1).综上所述,点D 的坐标为(3,3)或(-1,3)或(1,-1);(3)∵点B(3,3),C(1,-1),∴△BOC 为直角三角形,∠COB =90°,且OC∶OB =1∶3,①若△PMA∽△COB,设PM =t ,则AM =3t ,∴点P(2-3t ,t),代入y =x 2-2x 得(2-3t)2-2(2-3t)=t ,解得t 1=0(舍),t 2=79,∴P ⎝ ⎛⎭⎪⎫-13,79;②若△PMA∽△BOC,设PM =3t ,则AM =t ,点P(2-t ,3t),代入y =x 2-2x 得(2-t)2-2(2-t)=3t ,解得t 1=0(舍),t 2=5,∴P(-3,15).综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫-13,79或(-3,15).,中考考点清单)二次函数的概念及解析式1.定义:一般地,如果两个变量x 和y 之间的函数关系,可以表示成y =ax 2+bx +c(a ,b ,c 是常数,且a≠0),那么称y 是x 的二次函数,其中,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项.2.三种表示方法(1)一般式:y =ax 2+bx +c(a≠0);(2)顶点式:y =a(x -h)2+k(a≠0),其中二次函数的顶点坐标是(h ,k);(3)两点式:y =a(x -x 1)(x -x 2)(a≠0),其中x 1,x 2为抛物线与x 轴交点的横坐标. 3.三种解析式之间的关系顶点式――→确定一般式――→分解因式两点式 4.二次函数解析式的确定(1)求解二次函数解析式的方法一般用待定系数法,根据所给条件的不同,要灵活选用函数解析式; ①当已知抛物线上任意三点时,通常设为一般式y =ax 2+bx +c 形式; ②当已知抛物线的顶点或对称轴时,通常设为顶点式y =a(x -h)2+k 形式;③当已知抛物线与x 轴的交点或交点横坐标时,通常设为两点式y =a(x -x 1)(x -x 2). (2)步骤:①设二次函数的解析式;②根据已知条件,得到关于待定系数的方程组;③解方程组,求出待定系数的值,从而写出函数的解析式.二次函数的图象及其性质5.图象性质函数二次函数y =ax 2+bx +c(a ,b ,c为常数,a ≠0)图象对称轴 直线x =①__-b2a __直线x =-b2a顶点 坐标⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a ⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a 续表函数二次函数y =ax 2+bx +c(a ,b ,c为常数,a ≠0)增减性在对称轴的左侧,即x <-b2a时,y 随x 的增大而减小;在对称轴的右侧,即当x >-b2a时,y 随x 的增大而增大,简记为左减右增 在对称轴的左侧,即当x <-b2a时,y 随x 的增大而增大;在对称轴的右侧,即当x >-b2a时,y 随x 的增大而减小,简记为左增右减最值抛物线有最低点,当②__x =-b2a__时,y 有最小值,y 最小值=抛物线有最高点,当x =-b2a时,y 有最大值,y 最大值=③__4ac -b24a4ac-b2__4a6.系数a,b,c与二次函数的图象关系项目字母字母的符号图象的特征aa>0 开口向上a<0 ④__开口向下__bb=0 对称轴为y轴ab>0(b与a同号) 对称轴在y轴左侧ab<0(b与a异号) 对称轴在y轴右侧cc=0 ⑤__经过原点__c>0 与y轴正半轴相交c<0 与y轴负半轴相交b2-4acb2-4ac=0 与x轴有唯一交点(顶点)b2-4ac>0 与x轴有两个不同交点b2-4ac<0 与x轴没有交点特殊关系当x=1时,y=a+b+c当x=-1时,y=a-b+c若a+b+c>0,即x=1时,y>0若a-b+c>0,即x=-1时,y>0二次函数图象的平移7.平移步骤(1)将抛物线解析式转化为顶点式y=a(x-h)2+k,确定其顶点坐标;(2)保持抛物线的形状不变,平移顶点坐标(h,k)即可.8.平移规律移动平移前的解析式平移后的解析式规律方向二次函数与一元二次方程的关系9.当抛物线与x轴有两个交点时,两交点的横坐标就是对应的一元二次方程的两个不相等的实数根.10.当抛物线与x轴只有一个交点时,该交点的横坐标就是对应的一元二次方程的两个相等的实数根.11.当抛物线与x轴没有交点时,对应的一元二次方程无实数根.12.二次函数与一元二次方程及b2-4ac的关系,中考重难点突破) 二次函数的图象与性质【例1】(2017宜宾中考)如图,抛物线y 1=12(x +1)2+1与y 2=a(x -4)2-3交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于B ,C 两点,且D ,E 分别为顶点,则下列结论:①a =23;②AC=AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【解析】∵抛物线y 1=12(x +1)2+1与y 2=a(x -4)2-3交于点A(1,3),∴3=a(1-4)2-3,解得a =23,故①正确;∵E 是抛物线的顶点,∴AE =EC ,∴无法得出AC =AE ,故②错误;当y =3时,3=12(x +1)2+1,解得:x 1=1,x 2=-3,故B(-3,3),D(-1,1),则AB =4,AD =BD =22,∴AD 2+BD 2=AB 2,∴③△ABD 是等腰直角三角形,正确;∵12(x +1)2+1=23(x -4)2-3时,解得:x 1=1,x 2=37,∴当37>x >1时,y 1>y 2,故④错误,故选B .【答案】B1.(2017襄阳中考)将抛物线y =2(x -4)2-1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( A )A .y =2x 2+1B .y =2x 2-3C .y =2(x -8)2+1D .y =2(x -8)2-32.(2017泰安中考)已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:下列结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4,其中正确的结论有( B )A .1个B .2个C .3个D .4个3.(2017青岛中考)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是__m >9__.二次函数的图象和性质的综合应用【例2】(2017菏泽中考)如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B(4,0),与过A 点的直线相交于另一点D ⎝ ⎛⎭⎪⎫3,52,过点D 作DC⊥x 轴,垂足为C.(1)求抛物线的解析式;(2)点P 在线段OC 上(不与点O ,C 重合),过P 作PN⊥x 轴,交直线AD 于M ,交抛物线于点N ,连接CM ,求△PCM 面积的最大值;(3)若P 是x 轴正半轴上的一动点,设OP 的长为t ,是否存在t ,使以点M ,C ,D ,N 为顶点的四边形是平行四边形?若存在,求出t 的值;若不存在,请说明理由.【解析】(1)把B(4,0),点D ⎝ ⎛⎭⎪⎫3,52代入y =ax 2+bx +1即可得出抛物线的解析式;(2)先用含t 的代数式表示P ,M 坐标,再根据三角形的面积公式求出△PCM 的面积与t 的函数关系式,然后运用配方法可求出△PCM 面积的最大值;(3)若四边形BCMN 为平行四边形,则有MN =DC ,故可得出关于t 的二元一次方程,解方程即可得到结论.【答案】解:(1)把点B(4,0),点D ⎝ ⎛⎭⎪⎫3,52,代入y =ax 2+bx +1中,得⎩⎪⎨⎪⎧16a +4b +1=0,9a +3b +1=52,解得⎩⎪⎨⎪⎧a =-34,b =114,∴抛物线的解析式为y =-34x 2+114x +1;(2)设直线AD 的解析式为y =kx +b.∵A(0,1),D ⎝ ⎛⎭⎪⎫3,52,∴⎩⎪⎨⎪⎧b =1,3k +b =52,∴⎩⎪⎨⎪⎧k =12,b =1,∴直线AD 的解析式为y =12x +1.设P(m ,0),∴M ⎝ ⎛⎭⎪⎫m ,12m +1.∴PM=12m +1.∵CD ⊥x 轴,∴PC =3-m ,∴S △PCM =12PC·PM=12×(3-m)×⎝ ⎛⎭⎪⎫12m +1,∴S △PCM =-14m 2+14m +32=-14⎝ ⎛⎭⎪⎫m -122+2516,∴△PCM 面积的最大值是2516;(3)∵OP=t ,∴点M ,N 的横坐标为t ,设M ⎝ ⎛⎭⎪⎫t ,12t +1, N ⎝ ⎛⎭⎪⎫t ,-34t 2+114t +1,∴MN =-34t 2+114t +1-12t -1=-34t 2+94t ,CD =52.如果以点M ,C ,D ,N 为顶点的四边形是平行四边形,∴MN =CD ,即-34t 2+94t =52.∵Δ=-39,∴方程-34t 2+94t =52无实数根,∴不存在t ,使以点M ,C ,D ,N 为顶点的四边形是平行四边形.4.(2017泸州中考)已知抛物线y =14x 2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y =14x 2+1上一动点,则△PMF 周长的最小值是( C )A .3B .4C .5D .65.(河北中考)如图,抛物线L :y =-12(x -t)(x -t +4)(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP⊥x 轴,交双曲线y =kx(k >0,x >0)于点P ,且OA·MP=12.(1)求k 值;(2)当t =1时,求AB 的长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标.解:(1)设P(x ,y),则OM =x ,MP =y ,由OA 的中点为M 可知OA =2x ,代入OA·MP=12, ∴2x ·y =12,即xy =6, ∴k =xy =6;(2)当t =1时,令y =0,得0=-12(x -1)(x +3),∴x 1=1,x 2=-3,∴B(-3,0),A(1,0),∴AB =4,∴L 的对称轴为直线x =-1,点M 为⎝ ⎛⎭⎪⎫12,0,∴直线MP 与L 对称轴的距离为32; (3)∵A(t,0),B(t -4,0),∴L 的对称轴为x =t -2.又∵直线MP 的解析式为x =t 2,∴当t -2≤t2,即t≤4时,顶点(t -2,2)就是G 的最高点的坐标;当t -2>t 2,即t >4时,L 与直线MP 的交点⎝ ⎛⎭⎪⎫t2,-18t 2+t 就是G 的最高点的坐标.。

中考数学 精讲篇 考点系统复习 第三章 函数 第五节 二次函数的实际应用

中考数学 精讲篇 考点系统复习 第三章 函数 第五节 二次函数的实际应用
(2)W=(x-10)·(-x+40)=-x2+50x-400=-(x-25)2+225. ∵当 10≤x≤16 时,W 随 x 的增大而增大, ∴当 x=16 时,W 最大,
最大利润为-(16-25)2+225=144(元). 答:W=-x2+50x-400(10≤x≤16),当销售价为 16 元时,利润最大, 最大利润为 144 元.
1.求利润问题的函数解析式: (1)若题目给出销售量与单价之间的函数解析式,以及销售单价与进价之 间的关系时,则可直接根据:销售利润=销售总额-成本=销售量×销 售价-销售量×进价=销售量×(销售价-进价)来解决; (2)若题目中未给出销售量与单价之间的函数解析式,则要先求出的销售 量与单价之间的函数解析式,一般是一次函数关系,再根据:销售利润 =销售量×(销售价-进价)来解决;
∴w 值与 t 值无关, ∴10-6-b=0,解得 b=4, ∴w=(10-6-4)t+3 000=3 000, 答:捐款后所得的利润始终不变,此时 b 为 4 元,利润为 3 000 元.
重难点:二次函数的实际应用 (2021·达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成
本为 30 元/千克,根据市场调查发现,批发价定为 48 元/千克时,每天 ,批发价每千克降低 1 元,每天销量可增加 50 千克.
解:(1)由题意,得 W=(48-30-x)(500+50x)=-50x2+400x+9 000, x=2 时,W=(48-30-2)(500+50×2)=9 600(元). 答:工厂每天的利润 W 元与降价 x 元之间的函数关系为: W=-50x2+400x+9 000,当降价 2 元时,工厂每天的利润为 9 600 元. (2)由(1)得:W=-50x2+400x+9 000=-50(x-4)2+9 800, ∵-50<0,∴当 x=4 时,W 最大为 9 800, 答:当降价 4 元时,工厂每天的利润最大,最大为 9 800 元.

九年级数学中考专题复习15第三章二次函数的综合应用(2)PPT课件(人教版)

九年级数学中考专题复习15第三章二次函数的综合应用(2)PPT课件(人教版)

③当QB=QC时,m2+4=m2-4m+5,
解得m5=
1 4

∴点Q5的坐标为(-1,
1 4
).
综上所述,抛物线的对称轴上存在动点Q,使得△BCQ为等腰三角形,点Q
的坐标为(-1,-1),(-1,1),(-1,0),(-1,1 ). 4
如图,在平面直角坐标系中,二次函数y=- x2- x+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
特殊三角形存在性问题
如图,在平面直角坐标系中,二次函数y=- 2 x2- 4 x+2的图象与
3
3
x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)如图,在平面直角坐标系中,是否存在点Q,使
△BCQ是以BC为腰的等腰直角三角形?若存在,求
出点Q的坐标;若不存在,请说明理由.
解:(1)存在.
∴△Q1CD≌△CBO, ∴Q1D=OC=2,CD=OB=1, ∴OD=OC+CD=3,
∴Q1(2,3). 同理求得Q2(3,1),Q3(-1,-1),Q4(-2,1), ∴ 存 在 点 Q , 使 △ BCQ 是 以 BC 为 腰 的 等 腰 直 角 三 角 形 , Q 点 坐 标 为 Q1(2 , 3),Q2(3,1),Q3(-1,-1),Q4(-2,1).
则(-1-0)2+(y-2)2+(-1+3)2+(y-0)2=13,
解得y1= 3 +1,y2=1- 3 , ∴点Q3(-1, 3 +1),Q4(-1,1- 3 ). 综上所述,所求点Q的坐标为(-1,-3),(-1,7
2
(-1,1- 3 ).
),(-1, 3
+1),
【方法点拨】探究特殊三角形存在性问题的方法 首先假设存在满足条件的点,然后设出点坐标. 1.代数法: (1)利用点坐标分别表示出三条线段长的平方; (2)若为等腰三角形且底边不确定,分别令两两相等列方程求解即可;若 为直角三角形且直角顶点不确定,分别令三条边为斜边,利用勾股定理列 方程求解即可;

高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第五节 指数与指数函数

高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第五节 指数与指数函数
∴e2a-ea+b+eb+c-ea+b=ea(ea-eb)+eb(ec-ea)=0,其中ea>1,eb>1,ec>1,对于A,若
a=b=c,则ea-eb=ec-ea=0,满足题意;对于B,若a>b>c,则ea-eb>0,ec-ea<0,满足
题意;对于C,若b>c>a,则ea-eb<0,ec-ea>0,满足题意;对于D,若b>a>c,则

(3)0的正分数指数幂等于0,0的负分数指数幂没有意义.
微点拨在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不
能同时含有根号和分数指数幂,也不能既有分母又有负指数.
3.有理指数幂的运算性质
(1)aras= ar+s (a>0,r,s∈Q);
(2)(ar)s= ars
(a>0,r,s∈Q);
3.f(x)=ax与g(x)=a-x=
1

x(a>0,且a≠1)的图象关于y轴对称.
4.指数函数的图象以x轴为渐近线.
5.函数y=
-1
+ 1
(a>0,且a≠1),y=ax-a-x(a>0,且a≠1)均为奇函数,函数
y=ax+a-x(a>0,且a≠1)为偶函数.
6.若函数g(x)=af(x)(a>0,且a≠1)的值域为(0,+∞),则f(x)的值域必为R.
根式的概念
n=a
x
如果
,那么x叫做a的n次方根
符号表示

当n是奇数时,正数的n次方根是一个
正数 ,负数的n次方根是一个 负数
当n是偶数时,正数的n次方根有两个,这

中考命题研究贵阳2022中考数学 第三章 函数及其图像 第5节 二次函数的图象及性质

中考命题研究贵阳2022中考数学 第三章 函数及其图像 第5节 二次函数的图象及性质

第五节二次函数的图象及性质年份题型题号考查点考查内容分值总分2022解答24 二次函数的图象及性质给出抛物线经过x轴上两点坐标:(1)判断字母符号;(2)确定解析式;(3)探索点的坐标12 122022解答25 二次函数的图象及图象的平移给出抛物线经过两点坐标:(1)求解析式;(2)求平移后字母的范围;(3)分类讨论以某边为底的等腰三角形12 122022填空15 二次函数的性质根据性质求字母范围4解答23 二次函数的图象根据图象求:(1)顶点坐标;(2)直线解析式;(3)直线与抛物线交点坐标10 142022选择10 二次函数的图象及性质根据图象确定最大值、最小值3解答25 二次函数的图象及性质根据图象上的点的坐标求:(1)二次函数解析式;(2)四边形的面积;12 15(3)探索存在性2011填空14 开放性问题写出满足条件的二次函数的表达式4解答21 二次函数的图象根据图象及点的坐标求:(1)字母的值;(2)点的坐标;(3)满足某一条件的点的坐标10 14命题规律纵观贵阳市5年中考,二次函数图象及性质在中考中一般设置1~2道题,分值为12~15分,在解答、选择、填空均有涉及,但在解答题当中必然出现且分值10~12分.命题预测预计2022年贵阳中考,二次函数图象及性质是必考内容,涉及内容为已知抛物线上的点的坐标,求解析式及探索其他问题,学生务必加大训练力度.,贵阳五年中考真题及模拟) 二次函数的图象及性质(8次)1.(2011贵阳14题4分)写出一个开口向下的二次函数的表达式________.2.(2022贵阳15题4分)已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m 的取值范围是________.3.(2022贵阳10题3分)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是( )A.有最小值-5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值64.(2011贵阳21题10分)如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0)使S△ABD=S△ABC,求点D的坐标.5.(2022贵阳23题10分)已知:直线y =ax +b 过抛物线y =-x 2-2x +3的顶点P ,如图所示: (1)顶点P 的坐标是________;(2)若直线y =ax +b 经过另一点A(0,11),求出该直线的表达式;(3)在(2)的条件下,若有一条直线y =mx +n 与直线y =ax +b 关于x 轴成轴对称,求直线y =mx +n 与抛物线y =-x 2-2x +3的交点坐标.6.(2022贵阳25题12分)如图,二次函数y =12x 2-x +c 的图象与x 轴分别交于A 、B 两点,顶点M 关于x 轴的对称点是M′.(1)若A(-4,0),求二次函数的关系式; (2)在(1)的条件下,求四边形AMBM′的面积;(3)是否存在抛物线y =12x 2-x +c ,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.7.(2022贵阳25题12分)如图,经过点A(0,-6)的抛物线y =12x 2+bx +c 与x 轴相交于B(-2,0),C 两点.(1)求此抛物线的函数关系式和顶点D 的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m >0)个单位长度得到新抛物线y 1,若新抛物线y 1的顶点P 在△ABC 内,求m 的取值范围.(3)在(2)的结论下,新抛物线y 1上是否存在点Q ,使得△QAB 是以AB 为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m 的取值范围.8.(2022贵阳24题12分)如图,经过点C(0,-4)的抛物线y =ax 2+bx +c(a≠0)与x 轴相交于A(-2,0),B 两点.(1)a________0,b 2-4ac________0(选填“>”或“<”); (2)若该抛物线关于直线x =2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F.是否存在这样的点E ,使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.,中考考点清单)二次函数的概念及表达式1.定义:一般地,如果两个变量x 和y 之间的函数关系,可以表示成y =ax 2+bx +c(a ,b ,c 是常数,且a ≠0),那么称y 是x 的二次函数,其中,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项.2.三种表示方法:(1)一般式:y =ax 2+bx +c(a≠0);(2)顶点式:y =a(x -h)2+k(a≠0),其中二次函数的顶点坐标是(h ,k);(3)交点式:y =a(x -x 1)(x -x 2)(a≠0),其中x 1,x 2为抛物线与x 轴交点的横坐标. 3.三种表达式之间的关系 顶点式――→确定一般式――→因式分解两点式 4.二次函数表达式的确定(1)求解二次函数表达式的方法一般用待定系数法,根据所给条件的不同,要灵活选用函数表达式:A .当已知抛物线上任意三点时,通常设为一般式y =ax 2+bx +c 形式;B .当已知抛物线的顶点或对称轴时,通常设为顶点式y =a(x -h)2+k 形式;C .当已知抛物线与x 轴的交点或交点横坐标时,通常设为两点式y =a(x -x 1)(x -x 2).(2)步骤:①设二次函数的表达式;②根据已知条件,得到关于待定系数的方程组;③解方程组,求出待定系数的值,从而写出函数的表达式.二次函数的图象及性质(高频考点)5.图象性质函数二次函数y =ax 2+bx +c(a ,b ,c 为常数,a ≠0)图象对称轴 直线x =①________ 直线x =-b2a顶点 坐标(-b 2a ,4ac -b24a) (-b 2a ,4ac -b 24a) 增减性在对称轴的左侧,即x <-b2a时,y 随x 的增大而减小;在对称轴的右侧,即当x >-b 2a 时,y 随x 的增大而增大,在对称轴的左侧,即当x <-b2a时,y 随x 的增大而增大;在对称轴的右侧,即当x >-b 2a时,y 随x 的增大而减小,简记为左减右增简记为左增右减最值抛物线有最低点,当②________时,y有最小值,y最小值=4ac-b24a抛物线有最高点,当x=-b2a时,y有最大值,y最大值=③________6.系数a,b,c与二次函数的图象关系项目字母字母的符号图象的特征aa>0 开口向上a<0 ④________bb=0 对称轴为y轴ab>0(b与a同号) 对称轴在y轴左侧ab<0(b与a异号) 对称轴在y轴右侧cc=0 ⑤________c>0 与y轴正半轴相交c<0 与y轴负半轴相交b2-4acb2-4ac=0 与x轴有唯一交点(顶点)b2-4ac>0 与x轴有两个不同交点b2-4ac<0 与x轴没有交点特殊关系当x=1时,y=a+b+c当x=-1时,y=a-b+c若a+b+c>0,即x=1时,y>0若a-b+c>0,即x=-1时,y>0二次函数与一元二次方程的关系7.当抛物线与x 轴有两个交点时,两交点的横坐标就是对应的一元二次方程的两个不相等的实数根. 8.当抛物线与x 轴只有一个交点时,该交点的横坐标就是对应的一元二次方程的两个相等的实数根.9.当抛物线与x 轴没有交点时,对应的一元二次方程无实数根.,中考重难点突破)二次函数的图象及性质【例1】(2022广东中考)二次函数y =ax 2+bx +c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x =12C .当x <12,y 随x 的增大而减小 D .当-1<x <2时,y >0【解析】A .由抛物线的开口向上,可知a >0,函数有最小值,正确,故A 选项不符合题意;B .由图象可知,对称轴为x =12,正确,故B 选项不符合题意;C .因为a >0,∴当x <12时,y 随x 的增大而减小,正确,故C 选项不符合题意;D .由图象可知,当-1<x <2时,y <0,错误,故D 选项符合题意.【学生解答】1.(2022原创)如图,函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点(A 点在B 点左侧),与y 轴交于点C ,若A 点坐标为(-1,0),B 点坐标为(3,0),则下列说法正确的是( )A .b >0B .该抛物线的对称轴是直线x =-1C .当x =-3与x =5时,y 值相等D .若y >0,则-1<x <3抛物线y =ax 2+bx +c(a≠0)的图象与a ,b ,c 的关系【例2】(2022天津中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是( ) A.0 B.1 C.2 D.3【解析】本题考查二次函数图象的性质以及与系数a、b、c的关系.由图可知三个结论都正确,下面对三个结论一一证明:序号正误逐项分析①√∵二次函数y=ax2+bx+c的图象与x轴有两个不同的交点,∴b2-4ac>0②√∵抛物线的开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴-b2a>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0③√如果抛物线的图象向下平移2个单位,那么抛物线与x轴只有一个交点,∴当抛物线向下平移d个单位,当d>2时,抛物线与x轴没有交点.∵一元二次方程ax2+bx+c-m=0没有实数根.∴二次函数y=ax2+bx+c-m中,m>2【学生解答】2.(2022烟台中考)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x =2.下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个B.2个C.3个D.4个二次函数表达式的确定【例3】(2022宁波中考)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【解析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.【学生解答】3.(2022贵阳模拟)如图,抛物线y=x2+bx+c经过A(-1,0),B(4,5)两点,请解答下列问题:(1)求抛物线的解析式;(2)若抛物线的顶点为D,对称轴交x轴于点E,连接AD,点F是AD的中点,求出线段EF的长;(3)若点P是抛物线上异于A、D的另外一点,且S△AEP=S△AED,求点P的坐标.。

中考数学总复习第三章函数及其图象第五节二次函数的综合应用二次函数的实际应用

中考数学总复习第三章函数及其图象第五节二次函数的综合应用二次函数的实际应用
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
1
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
2
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
3
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
4
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
5
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
11
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
12
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
13
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
14
缘分让我在这里遇见你,遇上你是我的 缘
6
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
7
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
8
2019年6月8日
缘分让我在这里遇见你,遇上你是我的 缘
9
2019年6月8日
缘分让我在日

人教版数学中考复习《二次函数的图象及性质》精品教学课件ppt优秀课件

人教版数学中考复习《二次函数的图象及性质》精品教学课件ppt优秀课件

A(x,y)
B(-x,y)
x
... -2 -1.5 -1 -0.5 0 0.5
1 1.5
2
...
y=x2
...
4 2.25
1 0.25 0
0.25
1
2.25
4
...
y= - x2 ... -4 -2.25 -1 -0.25 0
-0.25
-1
-2.25 -4
...
函数图象画法
注意:列表时自变量 取值要y均 匀 2和对称。
y x2
当当当当xx==xx--==2112时 时时 时,,,,yyyy====--41--14
当a>0时,在对称轴的 左侧,y随着x的增大而
减小。
当a>0时,在对称轴的 右侧,y随着x的增大而
增大。
当当当当xx==xx--==2112时时时时,,,,yyyy====4114
当a<0时,在对称轴的 左侧,y随着x的增大而
3
3
( 3,6)
( 3,6)
谢谢观看
Thank You!
这对对这对条称对这对称条称抛,称条称轴抛,物y轴抛,。轴物y线。轴物y就线轴关就线是关就于是关它于是y它于的轴y它的轴y的轴 对称轴。
对称轴与抛物线的交点
叫做抛物线的顶点。
1、观察右图, 并完成填空。
2、练习2 3、想一想
4、练习4
二次函数y=ax2的性质 1、顶点坐标与对称轴 2、位置与开口方向 3、增减性与极值
4. 点的位置及其坐标特征: ①.各象限内的点: ②.各坐标轴上的点: ③.各象限角平分线上的点: ④.对称于坐标轴的两点: ⑤.对称于原点的两点:
y
Q(b,-b)

最新中考数学教材全册知识点梳理复习 13.二次函数的图形、性质及应用 课件PPT

最新中考数学教材全册知识点梳理复习 13.二次函数的图形、性质及应用 课件PPT
过点A(1,1).若y1+y2与y1为“同簇二次函数”,求函数y2的解析式,并求当0≤x≤3
时,y2的最大值.
解:(2)∵函数y1的图象经过点A(1,1),
∴2-4m+2m2+1=1,解得m=1,
∴y1=2x2-4x+3=2(x-1)2+1.
解法一:∵y1+y2与y1为“同簇二次函数”,
∴y1+y2=k(x-1)2+1(k>0),




∴S△OBD+S△ACE= BD·xB+ CE·(xA-xC)
得ቊ
= − ,
+ + = ,
解得ቊ
= .
+ + = ,
(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线
与y轴交点纵坐标的最大值.
解:(3)由(2)知,抛物线为y=-x2+2x+1.
设平移后的抛物线为y=-x2+px+q,其顶点坐标为


, +


∵顶点仍在直线y=x+1上,
.



∴ +q= +1,∴q=- + +1.




∵抛物线y=-x2+px+q与y轴交点的纵坐标为q,



2
∴q=- + +1=- (p-1) + ,






∴当p=1时,平移后所得抛物线与y轴交点的纵坐标的最大值为 .
4.在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx ≠ 0 经过点A 3,3 ,
∴x1=1- ,x2=1+ .
∴线段AB的长为x2-x1=(1+ )-(1- )=2 .


由3(x-1)2=m,得(x-1)2= ,

初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)

初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)
二次函数的应用
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图像性质 用函数观点看方程与不等式
应用
一1.从、二二次次函函数数角与度方看程二次、方不程等、式不等式
(形)
(数)
解法一:观察图像, 解法二:解方程,
(形)
(数)
解法一:观察图像,
一、二次函数与方程、不等式
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50 元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种 水产品的销售情况,销售单价定为多少元时,获得的利润最多?
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
解决最值类的主要步骤:
第三步:确定自变量取值范围。(与自变量相关的量) 第四步:利用二次函数性质解决最值等问题。(顶点、图像) 第五步:回归实际题。
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
分析:
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
➢ 构造函数解方程,利用两个函数图象交点确定解。 ➢ 可对方程进行同解变形,再构造函数。

中考数学复习第三章函数讲义

中考数学复习第三章函数讲义

第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。

2. 建立了平面直角坐标系的平面称为坐标平面。

3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。

4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。

2. 常量:某一变化的过程中保持相同数值的量叫做常量。

3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。

4. 函数的表示方法有:、、。

在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。

5. 画函数图象的一般步骤:列表、、。

【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。

4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。

第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。

当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。

【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。

中考数学 精讲篇 考点系统复习 第三章 函数 第五节 新函数的图象与性质

中考数学 精讲篇 考点系统复习 第三章 函数 第五节 新函数的图象与性质

(2)①该函数图象是轴对称图形,对称轴是 y 轴; ②该函数在自变量的取值范围内,有最大值,当 x=0 时,函数取得最大 值 4; ③当 x<0 时,y 随 x 的增大而增大; 当 x>0 时,y 随 x 的增大而减小. (以上三条性质写出一条即可) (3)x<-0.3,1<x<2. 注:当不等式解集端点值误差在±0.2 范围内,均给相应分值.
重难点:探究函数的图象与性质 探究函数性质时,我们经历了列表、描点、连线画出函数图象,观
察分析图象特征,概括函数性质的过程.结合已有的学习经验,请根据 已学知识对函数 y=16x3-2x 的图象和性质进行探究.
(1)根据表格填空,并在图中补全该函数图象. 则 m 的值为________.
(2)观察函数图象,则下列关于函数性质的结论正确的是________; ①该函数图象是轴对称图形,它的对称轴为 y 轴.
第五节 新函数的Βιβλιοθήκη 象与 性质1.画出一次函数 y=-2x+1 的图象,根据图象回答下列问题. (1) 图象与 x 轴的交点坐标是________,与 y 轴的交点坐标是________; (2)当 x________时,y>0;
1 (3)当 x≥2时,y 的值随 x 的值增大而________; (4)当 1≤x≤2 时,y 的最大值是________,最小 值是________; (5)把直线 y=-2x+1 向下平移 2 个单位,得到 的直线解析式是________.
16 (3)已知函数 y= x 的图象如图所示,结合 你所画的函数图象,直接写出不等式 x+| -2x+6|+m>1x6的解集.
解:(1)m=-2,a=3,b=4; (2)函数图象如图所示,函数的性质如下: (写出其中一条即可) ①当 x<3 时,y 随 x 的增加而减少; 当 x>3 时,y 随 x 的增加而增加; ②当 x=3 时,函数 y 取得最小值 1;

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

二次函数的综合应用

二次函数的综合应用

设自变量 ; 建立函数表达式 ; 决这类问题的一般步骤是: 第一步: _________ 第二步: ________________ 确定自变量取值范围 配方法 求出 顶点坐标公式 或________ 第三步: __________________;第四步:根据_____________
最值(在自变量的取值范围内).
解:(1)从上往下依次填:1000-10x;-10x2+1300x-30000. (2)由题意,得-10x2+1300x-30000=10000, 解得 x1=50,x2=80. 答:玩具销售单价为 50 元或 80 元时,可获得 10000 元销售利润. 1000-10x≥540, (3)根据题意,得 解得 44≤x≤46. x≥44, ∵利润 w=-10x2+1300x-30000=-10(x-65)2+12250, ∴a=-10<0,对称轴为直线 x=65, ∴当 44≤x≤46 时,y 随着 x 增大而增大. ∴当 x=46 时,w 最大,w 最大值=8640 元. 答:商场销售该品牌玩具获得的最大利润为 8640 元.
解:(1)w=xq-p=-2x2+140x-500. (2)当 x=25 时,w=1750(元). (3)w=-2(x-35)2+1950,∴当 x=35 时,利润最大,为 1950 元.
7.某农场拟建两间矩形饲养室,一面靠墙(墙足够长),中间用一道墙隔 开,并在如图所示的三处各留 1 m 宽的门.已知计划中的材料可建墙体(不包 括门)总长为 27 m,则能建成的饲养室总占地面积最大为多少?
易错警示 易错易混点:确定实际问题中的最值与自变量的取值范围 【例题】 某商品的进价为 40 元, 售价为每件 50 元, 每个月可卖出 210 件;如果每件商品的售价涨 1 元,那么每个月少卖 10 件(每件售价不能高于 65 元).设每件商品的售价上涨 x 元(x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 之间的函数表达式,并直接写出自变量的取值范围. (2)每件商品的售价定为多少元时,每个月获得利润最大?最大的月利润 是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为 2200 元?根据以 上结论请你直接写出售价在什么范围时,每个月的利润不低于 2200 元?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档