线性判别分析
第8章-线性判别分析--机器学习与应用第二版
第8章线性判别分析主成分分析的目标是向量在低维空间中的投影能很好的近似代替原始向量,但这种投影对分类不一定合适。
由于是无监督的学习,没有利用样本标签信息,不同类型样本的特征向量在这个空间中的投影可能很相近。
本章要介绍的线性判别分析也是一种子空间投影技术,但是它的目的是用来做分类,让投影后的向量对于分类任务有很好的区分度。
8.1用投影进行分类线性判别分析(Linear discriminant analysis,简称LDA)[1][2]的基本思想是通过线性投影来最小化同类样本间的差异,最大化不同类样本间的差异。
具体做法是寻找一个向低维空间的投影矩阵W,样本的特征向量x经过投影之后得到新向量:y Wx=同一类样本投影后的结果向量差异尽可能小,不同类的样本差异尽可能大。
直观来看,就是经过这个投影之后同一类的样本尽量聚集在一起,不同类的样本尽可能离得远。
下图8.1是这种投影的示意图:图8.1最佳投影方向上图中特征向量是二维的,我们向一维空间即直线投影,投影后这些点位于直线上。
在上图中有两类样本,通过向右上方的直线投影,两类样本被有效的分开了。
绿色的样本投影之后位于直线的下半部分,红色的样本投影之后位于直线的上半部分。
由于是向一维空间投影,这相当于用一个向量w和特征向量x做内积,得到一个标量:Ty=w x8.2寻找投影矩阵8.2.1一维的情况问题的关键是如何找到最佳投影矩阵。
下面先考虑最简单的情况,把向量映射到一维空间。
假设有n 个样本,它们的特征向量为i x ,属于两个不同的类。
属于类1C 的样本集为1D ,有1n 个样本;属于类2C 的样本集为2D ,有2n 个样本。
有一个向量w ,所有向量对该向量做投影可以得到一个标量:T y =w x投影运算产生了n 个标量,分属于与1C 和2C 相对应的两个集合1Y 和2Y 。
我们希望投影后两个类内部的各个样本差异最小化,类之间的差异最大化。
类间差异可以用投影之后两类样本均值的差来衡量。
linear discriminate analysis
linear discriminate analysis【实用版】目录1.线性判别分析的定义和基本概念2.线性判别分析的应用场景和问题解决能力3.线性判别分析的具体方法和步骤4.线性判别分析的优缺点和局限性5.线性判别分析的实际应用案例正文线性判别分析(Linear Discriminant Analysis,简称 LDA)是一种常用的监督学习方法,主要用于解决分类问题。
它是一种线性分类方法,通过找到一个最佳的线性分类器,将数据分为不同的类别。
LDA 基于数据分布的假设,即不同类别的数据具有不同的分布,通过最大化类内差异和最小化类间差异来实现分类。
LDA 的应用场景非常广泛,可以用于文本分类、图像分类、生物信息学、社会科学等领域。
在这些领域中,LDA 能够有效地解决分类问题,提高分类准确率。
例如,在文本分类中,LDA 可以通过分析词汇分布,将文本分为不同的主题或类别。
线性判别分析的具体方法和步骤如下:1.收集数据并计算数据矩阵。
2.计算数据矩阵的协方差矩阵和矩阵的特征值和特征向量。
3.根据特征值和特征向量构建线性分类器。
4.使用分类器对数据进行分类。
尽管 LDA 在分类问题上表现良好,但它也存在一些优缺点和局限性。
首先,LDA 要求数据矩阵的列向量是线性无关的,这可能会限制其在某些数据集上的表现。
其次,LDA 对数据中的噪声非常敏感,噪声的存在可能会对分类结果产生不良影响。
此外,LDA 是一种基于线性分类的方法,对于非线性分类问题可能无法有效解决。
尽管如此,LDA 在实际应用中仍然具有很高的价值。
例如,在文本分类中,LDA 可以有效地识别不同主题的文本,并为用户提供个性化的推荐。
在生物信息学中,LDA 可以用于基因表达数据的分类,以识别不同类型的细胞或疾病。
在社会科学中,LDA 可以用于对调查数据进行分类,以便更好地理解受访者的需求和偏好。
总之,线性判别分析是一种强大的分类方法,可以应用于各种领域。
线性判别分析
线性判别分析
线性判别分析(linear discriminant analysis,LDA)是对费舍尔的线性鉴别方法的归纳,这种方法使用统计学,模式识别和机器学习方法,试图找到两类物体或事件的特征的一个线性组合,以能够特征化或区分它们。
所得的组合可用来作为一个线性分类器,或者,更常见的是,为后续的分类做降维处理。
之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。
回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。
我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。
比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度。
但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方面的。
那么这两个特征对y几乎没什么影响,完全可以去除。
Fisher提出LDA距今已近七十年,仍然是降维和模式分类领域应用中最为广泛采用而且极为有效的方法之一,其典型应用包括人脸检测、人脸识别、基于视觉飞行的地平线检测、目标跟踪和检测、信用卡欺诈检测和图像检索、语音识别等。
线性判别分析(LinearDiscriminantAnalysis,LDA)
线性判别分析(LinearDiscriminantAnalysis,LDA)⼀、LDA的基本思想线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引⼊模式识别和⼈⼯智能领域的。
线性鉴别分析的基本思想是将⾼维的模式样本投影到最佳鉴别⽮量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的⼦空间有最⼤的类间距离和最⼩的类内距离,即模式在该空间中有最佳的可分离性。
如下图所⽰,根据肤⾊和⿐⼦⾼低将⼈分为⽩⼈和⿊⼈,样本中⽩⼈的⿐⼦⾼低和⽪肤颜⾊主要集中A组区域,⿊⼈的⿐⼦⾼低和⽪肤颜⾊主要集中在B组区域,很显然A组合B组在空间上明显分离的,将A组和B组上的点都投影到直线L上,分别落在直线L的不同区域,这样就线性的将⿊⼈和⽩⼈分开了。
⼀旦有未知样本需要区分,只需将⽪肤颜⾊和⿐⼦⾼低代⼊直线L的⽅程,即可判断出未知样本的所属的分类。
因此,LDA的关键步骤是选择合适的投影⽅向,即建⽴合适的线性判别函数(⾮线性不是本⽂的重点)。
⼆、LDA的计算过程1、代数表⽰的计算过程设已知两个总体A和B,在A、B两总体分别提出m个特征,然后从A、B两总体中分别抽取出、个样本,得到A、B两总体的样本数据如下:和假设存在这样的线性函数(投影平⾯),可以将A、B两类样本投影到该平⾯上,使得A、B两样本在该直线上的投影满⾜以下两点:(1)两类样本的中⼼距离最远;(2)同⼀样本内的所有投影距离最近。
我们将该线性函数表达如下:将A总体的第个样本点投影到平⾯上得到投影点,即A总体的样本在平⾯投影的重⼼为其中同理可以得到B在平⾯上的投影点以及B总体样本在平⾯投影的重⼼为其中按照Fisher的思想,不同总体A、B的投影点应尽量分开,⽤数学表达式表⽰为,⽽同⼀总体的投影点的距离应尽可能的⼩,⽤数学表达式表⽰为,,合并得到求从⽽使得得到最⼤值,分别对进⾏求导即可,详细步骤不表。
线性判别分析(LDA)
线性判别分析(LDA)说明:本⽂为个⼈随笔记录,⽬的在于简单了解LDA的原理,为后⾯详细分析打下基础。
⼀、LDA的原理LDA的全称是Linear Discriminant Analysis(线性判别分析),是⼀种supervised learning。
LDA的原理:将带上标签的数据(点),通过投影的⽅法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,⼀簇⼀簇的情况,相同类别的点,将会在投影后的空间中更接近。
因为LDA是⼀种线性分类器。
对于K-分类的⼀个分类问题,会有K个线性函数:当满⾜条件:对于所有的j,都有Yk > Yj,的时候,我们就说x属于类别k。
上式实际上就是⼀种投影,是将⼀个⾼维的点投影到⼀条⾼维的直线上,LDA最求的⽬标是,给出⼀个标注了类别的数据集,投影到了⼀条直线之后,能够使得点尽量的按类别区分开,当k=2即⼆分类问题的时候,如下图所⽰:上图提供了两种⽅式,哪⼀种投影⽅式更好呢?从图上可以直观的看出右边的⽐左边的投影后分类的效果好,因此右边的投影⽅式是⼀种更好地降维⽅式。
LDA分类的⼀个⽬标是使得不同类别之间的距离越远越好,同⼀类别之中的距离越近越好。
⼆、LDA算法流程输⼊:数据集 D = {(x1, y1), (x1, y1), ... ,(x m, y m)},任意样本x i为n维向量,y i∈{C1, C2, ... , Ck},共k个类别。
现在要将其降维到d维;输出:降维后的数据集D'。
(1)计算类内散度矩阵 S B;(2)计算类间散度矩阵 S W;(3)将 S B和 S W代⼊上⾯公式计算得到特征值λ和特征向量 w,取前⾯⼏个最⼤的特征值向量λ'与特征向量相乘得到降维转换矩阵λ'w;(4)将原来的数据与转换矩阵相乘得到降维后的数据 (λ'w)T x ;三、LDA优缺点分析LDA算法既可以⽤来降维,⼜可以⽤来分类,但是⽬前来说,主要还是⽤于降维。
数据挖掘中的线性判别分析方法原理解析
数据挖掘中的线性判别分析方法原理解析数据挖掘是一门利用计算机技术从大量数据中挖掘出有用信息的学科。
在这个信息爆炸的时代,人们面临着海量的数据,如何从中提取出有价值的信息成为了一项重要的任务。
线性判别分析(Linear Discriminant Analysis,简称LDA)是数据挖掘中一种常用的分类方法,它能够在高维数据中找到最佳的投影方向,从而实现数据的降维和分类。
LDA方法的基本思想是在保持不同类别之间的区分能力最大化的同时,最大化同一类别内部的相似性。
具体而言,LDA通过计算类别之间的散度和类别内部的散度来确定最佳的投影方向。
散度可以理解为数据的离散程度,散度越大表示数据之间的差异越大,散度越小表示数据之间的差异越小。
在进行LDA之前,首先需要对数据进行预处理。
通常情况下,我们会对数据进行标准化处理,使得数据的均值为0,方差为1。
这样可以避免某些特征对于分类结果的影响过大。
接下来,我们需要计算类别之间的散度和类别内部的散度。
类别之间的散度可以通过计算不同类别之间的均值差异来得到。
而类别内部的散度可以通过计算每个类别内部的协方差矩阵来得到。
协方差矩阵描述了数据之间的相关性,可以用来衡量数据的离散程度。
在计算完散度之后,我们需要求解一个优化问题,即最大化类别之间的散度和最小化类别内部的散度。
这个优化问题可以通过求解广义瑞利商的最大特征值和对应的特征向量来实现。
最大特征值对应的特征向量就是最佳的投影方向,它能够将数据从高维空间映射到一维空间。
通过LDA方法,我们可以将高维数据映射到低维空间,并且保持了数据的分类信息。
这样不仅可以减少数据的维度,降低计算复杂度,还可以提高分类的准确性。
除了在数据挖掘中的应用,LDA方法还被广泛应用于模式识别、人脸识别、图像处理等领域。
在人脸识别中,LDA可以提取出最具有判别性的特征,从而提高识别的准确性。
在图像处理中,LDA可以将图像从高维空间映射到低维空间,从而实现图像的降噪和压缩。
线性判别分析
用线性判别分析(Linear Discriminant Analysis )对Wine 数据集进行分类 1. 线性判别分析(LDA )原理LDA 是统计学上一种经典的分析方法,在医学中的患者疾病分级、经济学的市场定位、产品管理、市场研究、人脸识别和机器学习等领域有广泛的应用。
LDA 可以用于对数据进行分类,首先,我们要用事先分好类的数据对LDA 进行训练,建立判别模型,所以LDA 属于监督学习的算法。
LDA 的基本思想是投影,将n 维数据投影到低维空间,使得投影后组与组之间尽可能分开,即在该空间中有最佳的可分离性,而衡量标准是新的子空间有最大的类间距离和最小的类内距离。
LDA 的目标是求出使新的子空间有最大的类间距离和最小的类内距离的向量a ,构造出判别模型。
形象地理解,如图1,红色点和蓝色点分别代表两个类别的数据,他们是二维的,取二维空间中的任一个向量,作各点到该向量的投影,可以看到,右图比左图投影后的分类效果好。
再如图2,是三维空间的各点作投影到二维空间,可以看到左图比右图分类效果好。
有时需要根据实际选择投影到几维才能实现最好的分类效果。
构造判别模型的过程: (1) 作投影设n 维数据样本集X={x i |i=1,2,3…j},这j 个样本可以分为k 个类别X 1,X 2,…,X k . 令w 为n 维空间中任一向量,则样本x i 在w 上的投影为w T x i ,得到的是一维数据. (2) 计算投影后的类内距离与类间距离其中利用了方差分析的思想:类内距离:E 0= ∑∑(w T x −w T X t ̅̅̅)2x∈X t k t=1X t ̅̅̅表示 X t 中的样本未投影前的平均.整理得 E 0=w T E w 其中矩阵E=∑∑(x −X t ̅̅̅)(x −X t ̅̅̅)T x∈X tk t=1类间距离:B 0= ∑n t (w T X t ̅̅̅−w T X ̅)2k t=1X̅表示所有样本未投影前的平均,n t 表示X t 中样本数 整理得 B 0=w T Bw 其中矩阵B= ∑n t (X t ̅̅̅−X ̅)(X t ̅̅̅−X ̅)T k t=1(3) 构造目标函数为了得到最佳的w ,我们希望E 0尽量小,B 0尽量大,因此构造J(w)= B0E 0问题转化为求w 使J(w)达到极大值,但使J(w)达到最大值的w 不唯一,于是我们加上一个约束条件E 0=1即求w ,使J(w)在约束条件E 0=1下达到极大值(4) 拉格朗日乘数法求w利用拉格朗日乘数法我们可以得到以下等式(E −1B)w =λw λ为拉格朗日乘子即λ为E −1B 的特征值,w 为对应的特征矩阵 由特征方程|E −1B −λI |= 0 可解除 特征值λ 和特征向量 w(5) 导出线性判别函数把特征值由大到小排列,取最大的特征值,所求w 就是对应的特征向量w 导出线性判别函数为u(x)=wx若用一个线性判别函数不能很好区别各个总体,可用第二大特征根,第三大特征根……对应的特征向量构造线性判别函数进行判别(即上面所说根据实际选择降维到几维空间),线性判别函数个数不超过k-1个。
线性判别分析
线性判别分析(Linear DiscriminantAnalysis,LDA)是模式识别中较常用的一种算法,主要思想是最小化类内距离的同时最大化类间距离,得到最优的投影方向以产生最好的分类结果。
线性判别分析算法由于其简单有效性在多个领域都得到了广泛地应用,但是算法本身仍然存在一些局限性需要进行研究改进。
小样本问题由于样本库中的样本数量远小于样本的特征维数,样本与样本之间的距离变大使得距离度量失效,使LDA算法中的类内、类间离散度矩阵奇异,不能得到最优的投影方向,在人脸识别领域中表现得尤为突出。
目前影响线性判别分析算法在人脸识别领域中的识别结果的主要问题是光照、表情等外部条件变化引起的面部大变化带来的识别问题。
光照、表情等变化问题会使图像像素值发生大变化,引起人脸图像呈非凸复杂分布。
使用线性特征的基于外观的识别算法(如LDA)在光照、表情等变化下的识别性能下降,这是人脸识别中目前普遍存在的难题。
线性判别分析模型在多分类问题中的应用
线性判别分析模型在多分类问题中的应用线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的统计学习方法,被广泛应用于多分类问题的解决中。
在这篇文章中,我们将探讨LDA在多分类问题中的应用,并对其原理进行解析。
一、LDA的原理LDA是一种监督学习方法,主要用于降低数据维度并提取特征,其基本思想是通过对数据进行线性变换,将原始特征空间投影到一个新的低维空间,使得不同类别的数据尽可能地分开,同一类别的数据尽可能地接近。
LDA通过以下步骤实现特征提取:1. 计算各类别的均值向量;2. 计算类内离散度矩阵,即各类别内部的数据离散程度;3. 计算类间离散度矩阵,即各类别之间的数据离散程度;4. 计算广义瑞利商,并求解特征值和特征向量;5. 选择最大的k个特征值对应的特征向量,构成变换矩阵;6. 对原始数据进行线性变换,得到新的特征空间。
在LDA中,我们希望最大程度地保留类间距离和最小化类内距离。
通过求解最大化目标函数,可以得到最佳的投影方向,进而有效地进行特征提取,以便对新的样本进行分类。
二、LDA在多分类问题中的应用LDA广泛应用于多分类问题的解决中,其主要侧重于提取数据的重要特征,并通过线性变换将数据投影到低维空间,以便进行分类。
下面以一个实际例子说明LDA在多分类问题中的应用。
假设我们要解决一个手写数字识别的问题,数据集包含0-9共10个类别的数字图像。
我们希望通过LDA来提取图像的重要特征,并构建一个分类模型。
首先,我们将数字图像进行预处理,提取出重要的特征。
通过LDA方法,我们得到了一组最佳的投影方向,这些方向可以最大程度地区分不同的数字类别。
然后,我们对新的数字图像进行特征提取和投影,将其映射到低维空间。
最后,我们使用一种分类算法(如k近邻算法)对这些映射后的图像进行分类。
在实际应用中,我们需要使用训练集对模型进行训练,并使用测试集对其进行验证。
通过评估模型在测试集上的性能,我们可以了解到LDA在多分类问题中的效果。
线性判别分析在模式识别中的应用
线性判别分析在模式识别中的应用线性判别分析(Linear Discriminant Analysis,简称LDA)是一种常用的模式识别算法,在许多领域中都有广泛的应用。
本文将探讨LDA在模式识别中的应用,并对其原理进行详细解析。
一、线性判别分析简介线性判别分析是一种监督学习的分类算法,其基本思想是将原始空间中的样本投影到低维子空间,从而使得不同类别的样本在投影后的子空间中能够更好地分离。
其目标是使得同类样本的投影点尽可能接近,不同类样本的投影点尽可能远离。
通过计算投影矩阵,将数据从高维空间映射到低维空间,从而实现维度的降低和分类的目的。
二、线性判别分析的原理1. 类内离散度和类间离散度的定义为了对数据进行降维和分类,我们需要定义类内离散度和类间离散度两个指标。
类内离散度(within-class scatter matrix)用于衡量同类样本在投影子空间中的分散程度,可以通过计算各类样本的协方差矩阵之和得到。
类间离散度(between-class scatter matrix)用于衡量不同类样本在投影子空间中的分散程度,可以通过计算各类样本均值的差异得到。
2. 目标函数的定义线性判别分析的目标是最大化类间离散度,同时最小化类内离散度。
为了实现这一目标,我们可以定义一个目标函数,即广义瑞利商(generalized Rayleigh quotient)。
广义瑞利商的定义如下:J(w) = (w^T * S_B * w) / (w^T * S_W * w)其中,w为投影向量,S_B为类间离散度的协方差矩阵,S_W为类内离散度的协方差矩阵。
3. 目标函数的求解通过求解广义瑞利商的极值问题,我们可以得到最优的投影方向。
对目标函数进行求导,并令导数为0,我们可以得到广义特征值问题。
S_W^(-1) * S_B * w = λ * w其中,λ为广义特征值,w为对应的广义特征向量。
通过求解该特征值问题,我们可以得到最优的投影方向,从而实现数据的降维和分类。
线性判别分析LDA
线性判别分析LDA点x 0到决策⾯g (x )=w T x +w 0的距离:r =g (x )‖⼴义线性判别函数因任何⾮线性函数都可以通过级数展开转化为多项式函数(逼近),所以任何⾮线性判别函数都可以转化为⼴义线性判别函数。
Fisher LDA(线性判别分析)Fisher准则的基本原理找到⼀个最合适的投影轴,使两类样本在该轴上投影之间的距离尽可能远,⽽每⼀类样本的投影尽可能紧凑,从⽽使两类分类效果为最佳。
分类:将 d 维分类问题转化为⼀维分类问题后,只需要确定⼀个阈值点,将投影点与阈值点⽐较,就可以做出决策。
未知样本x的投影点 y= w ^{* T} x .1. 计算各类样本均值向量:m_i={1\over N_i}\sum_{X\in w_i}X,\quad i=1,22. 计算样本类内离散度矩阵S_i 和总类内离散度矩阵S_w .(w ithin scatter matrix)S_i=\sum_{X\in w_i}(X-m_i)(X-m_i)^T,\quad i=1,2 \\ S_w=S_1+S_23. 计算样本类间离散度矩阵S_b=(m_1-m_2)(m_1-m_2)^T .(b etween scatter matrix)4. 求向量w^*.定义Fisher准则函数:J_F(w)={w^TS_bw\over w^TS_ww}J_F 取最⼤值时w^*=S_w^{-1}(m_1-m_2)Fisher准则函数推导:投影之后点y= w ^{T} x ,y对应的离散度矩阵为\tilde S_w,\tilde S_b ,则⽤以评价投影⽅向w的函数为J_F(w)={\tilde S_b\over \tilde S_w}={w^TS_b\ w\over w^TS_w\ w}5. 将训练集内所有样本进⾏投影:y=(w^*)^TX6. 计算在投影空间上的分割阈值,较常⽤的⼀种⽅式为:y_0={N_1\widetilde {m_1}+N_2\widetilde{m_2}\over N_1+N_2}7. 对于给定的测试X,计算它在w^*上的投影点y=(w^*)^TX 。
判别分析方法汇总
判别分析方法汇总判别分析(Discriminant Analysis)是一种常用的统计分析方法,用于解决分类问题。
它是一种监督学习的方法,通过构建一个或多个线性或非线性函数来将待分类样本划分到已知类别的情况下。
判别分析方法广泛应用于模式识别、图像处理、数据挖掘、医学诊断等领域。
判别分析方法可以分为线性判别分析(Linear Discriminant Analysis, LDA)和非线性判别分析(Nonlinear Discriminant Analysis, NDA)两大类。
下面我们将介绍一些常见的判别分析方法。
1. 线性判别分析(LDA):LDA是判别分析方法中最常见的一种。
LDA假设每个类别的样本来自于多元正态分布,通过计算两个类别之间的Fisher判别值,构建一个线性函数,将待分类样本进行分类。
LDA的优点是计算简单、可解释性强,但它的缺点是对于非线性问题无法处理。
2. 二次判别分析(Quadratic Discriminant Analysis, QDA):QDA是LDA的一种扩展,它通过假设每个类别的样本来自于多元正态分布,但允许不同类别之间的协方差矩阵是不一样的。
这样,QDA可以处理协方差矩阵不同的情况,相比于LDA更加灵活,但计算复杂度较高。
3. 朴素贝叶斯分类器(Naive Bayes Classifier):朴素贝叶斯分类器是一种基于贝叶斯定理的分类方法。
它假设每个类别的样本属性之间是相互独立的,通过计算后验概率,选择具有最大概率的类别作为待分类样本的类别。
朴素贝叶斯分类器计算简单、速度快,但它对于属性之间有依赖关系的问题效果较差。
4. 支持向量机(Support Vector Machine, SVM):SVM是一种常用的判别分析方法,通过构建一个超平面,将不同类别的样本进行分类。
SVM的优点是能够处理非线性问题,且能够得到全局最优解。
但SVM计算复杂度较高,对于数据量较大的情况会有一定的挑战。
判别分析四种方法
判别分析四种方法判别分析(Discriminant Analysis)是一种用于分类问题的统计方法, 它通过分析已知分类的样本数据,构造出一个判别函数,然后将未知类别的样本数据带入判别函数进行分类。
判别分析可以用于研究变量之间的关系以及确定分类模型等方面。
在判别分析中,有四种主要的方法,包括线性判别分析(Linear Discriminant Analysis, LDA)、二次判别分析(Quadratic Discriminant Analysis, QDA)、多重判别分析(Multiple Discriminant Analysis, MDA)和正则化判别分析(Regularized Discriminant Analysis, RDA)。
1.线性判别分析(LDA):线性判别分析是最常用的判别分析方法之一、它假设每个类别的样本数据都服从多元正态分布,并且各个类别具有相同的协方差矩阵。
基于这些假设,LDA通过计算类别间离散度矩阵(Sb)和类别内离散度矩阵(Sw),然后求解广义瑞利商的最大化问题,得到最佳的线性判别函数。
线性判别分析适用于样本类别数量较少或样本维度较高的情况。
2.二次判别分析(QDA):二次判别分析是基于类别的样本数据服从多元正态分布的假设构建的。
与LDA不同的是,QDA没有假设各个类别具有相同的协方差矩阵。
相反,QDA为每个类别计算一个特定的协方差矩阵,并将其带入到判别函数中进行分类。
由于QDA考虑了类内协方差矩阵的差异,因此在一些情况下可以提供比LDA更好的分类效果。
3.多重判别分析(MDA):4.正则化判别分析(RDA):正则化判别分析是近年来提出的一种改进的判别分析方法。
与LDA和QDA不同的是,RDA通过添加正则化项来解决维度灾难问题,以及对输入数据中的噪声进行抑制,从而提高分类的准确性。
正则化项的引入使得RDA可以在高维数据集上进行有效的特征选择,并获得更鲁棒的判别结果。
线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则
线性判别分析(LDA)准则:FIsher准则、感知机准则、最⼩⼆乘(最⼩均⽅误差)准则准则采⽤⼀种分类形式后,就要采⽤准则来衡量分类的效果,最好的结果⼀般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量。
分类器设计准则:FIsher准则、感知机准则、最⼩⼆乘(最⼩均⽅误差)准则Fisher准则Fisher线性判别分析LDA(Linearity Distinction Analysis)基本思想:对于两个类别线性分类的问题,选择合适的阈值,使得Fisher准则函数达到极值的向量作为最佳投影⽅向,与投影⽅向垂直的超平⾯就是两类的分类⾯,使得样本在该⽅向上投影后,达到最⼤的类间离散度和最⼩的类内离散度。
Fisher线性判别并不对样本的分布进⾏任何假设,但在很多情况下,当样本维数⽐较⾼且样本数也⽐较多时,投影到⼀维空间后样本接近正态分布,这时可以在⼀维空间中⽤样本拟合正态分布,⽤得到的参数来确定分类阈值。
类间离差平⽅和最⼤,类内离差平⽅和最⼩的投影⽅向。
准则函数:组间离差平⽅和/组内离差平⽅和;准则:超过阈值?感知机准则基本思想:对于线性判别函数,当模式的维数已知时,判别函数的形式实际上就已经确定下来,线性判别的过程即是确定权向量 。
感知机是⼀种神经⽹络模型,其特点是随意确定判别函数初始值,在对样本分类训练过程中,针对分类错误的样本不断进⾏权值修正,逐步迭代直⾄最终分类符合预定标准,从⽽确定权向量值。
可以证明感知机是⼀种收敛算法,只要模式类别是线性可分的,就可以在有限的迭代步数⾥求出权向量的解。
优点:简单、便于实现。
缺点:结果不唯⼀,在线性不可分情况下不收敛。
给定初始权值向量,通过样本的训练分类过程逐渐修正权值直到最终确定。
准则函数:错分样本数,准则:错分样本数为0上述两个准则的区别和联系Fisher线性判别是把线性分类器的设计分为两步,⼀是确定最优⽅向,⼆是在这个⽅向上确定分类阈值;感知机则是通过不断迭代直接得到完整的线性判别函数。
数据分析知识:数据分析中的线性判别分析
数据分析知识:数据分析中的线性判别分析数据分析中,线性判别分析是一种常见的分类方法。
它的主要目的是通过在不同类别间寻找最大化变量方差的线性组合来提取有意义的特征,并对数据进行分类。
线性判别分析在实际应用中非常有用,例如在医学诊断、金融风险评估和生物计量学等领域。
一、简要介绍线性判别分析线性判别分析是一种有监督的数据挖掘技术,在分类问题中常用。
整个过程包括两个主要的部分:特征提取和分类器。
特征提取的任务是从原始数据中提取有意义的特征,用以区分不同类别的样本。
而分类器则是将已知类别的样本分成预先定义的类别。
在实际应用中,线性判别分析通常用于二分类问题。
其基本思想是,在不同类别(即两个不同样本)之间寻找一个最优的超平面,使得在该平面上不同类别的样本能够被清晰地分开。
也就是说,在分类平面上,同类样本尽可能地被压缩到一起,而不同类别的样本尽可能地被分开。
二、分类器在线性判别分析中的应用在进行线性判别分析时,一般都会用到一个分类器。
分类器可以对已知类别的样本进行分类,并对新的未知样本进行预测。
常用的分类器有:最近邻分类器、支持向量机、朴素贝叶斯分类器和决策树等。
其中,最近邻分类器是一种较为简单的分类器,其原理是对未知样本进行分类时,找到离该样本最近的一个或几个已知样本,并将该样本划归到该已知样本所属的类别。
而支持向量机则是一种复杂且有效的分类器。
它采用最大间隔的思想,在将不同类别分开的同时,尽可能地避免分类器过拟合的情况。
朴素贝叶斯分类器则是一种基于贝叶斯定理的分类器,它假设不同变量之间相互独立,并通过给定类别的样本来估算样本中各个特征的概率分布。
最后,决策树则是一种可视化的分类器,它通过一系列的条件分支,将样本划分为不同的类别。
三、特征提取在线性判别分析中的应用特征提取是在原始数据基础上提取可识别和易于分类的特征过程。
在线性判别分析中,常用到的特征提取方法有:主成分分析、线性判别分析和奇异值分解等。
其中,主成分分析(Principal Component Analysis, PCA)是一种常见的数据降维方法。
线性判别分析LDA
LDA
我们分类的目标是找到一个最优化的W,使得类别内的点距离 越近越好(集中),类别间的点越远越好。
分母表示每一个类别内的方差之和,方差越大表示一个类别内 的点越分散,分子为两个类别各自的中心点的距离的平方,我 们最大化J(w)就可以求出最优的w
LDA
定义:
(1)样本类内离散度矩阵Si和总类内离散度矩阵 S
70.4
8.25
69.1
9.03
71.9
8.48
70.5
9.42
73.5
8.85
72.2
经典Fisher线性判别分析方法
LDA
LDA
LDA
Sw奇异问题的解决方法: ● R-LDA ● PCA+LDA ● N-LDA ● D-LDA
R-LDA
由于Sw总是半正定的,为了使之正定,可以将另外一个正 定的对角矩阵与之相加,以两者之和代替Sw,即是:
线性判别分析(LDA)
基本思想
线性判别分析的基本思想是将高维的模式样本投影到最佳鉴 别矢量空间,即把高维空间中的数据点投影到一条直线上去,将 多维降为一维。并且要求投影后各样本的类间散布距离最大,同 时类内散布距离最小。
LDA 二分类问题公式推导
假设A和B为分类明确的两类症状。在总体A中观察了P例, 在总体B中观察了q例,每一例记录了n个指标,分别记为 x1,x2,…,xn。令y是n个指标的一个线性函数,即
D-LDA
D-LDA的基本思想从某种意义上来说和上述N-LDA思想相同,DLDA将SB的零空间null(SB )剔除,从剩余的非零空间range(SB )内寻找 使得此空间内数据集类内散布矩阵Sw′达到最小值得投影方向,选择此 投影方向为D-LDA所要寻求的最优投影方向。
判别分析--线性判别分析(LDA)
判别分析--线性判别分析(LDA)应⽤案例1 线性判别分析执⾏线性判别分析可使⽤lda()函数,且该函数有三种执⾏形式,依次尝试使⽤。
(1)公式formula格式我们使⽤nmkat变量作为待判别变量,其他剩余的变量作为特征变量,根据公式nmkat~使⽤训练集数据来运⾏lda()函数:library(MASS)library("MASS")fitlda1<-lda(nmkat~.,datatrain) #以公式格式执⾏判别分析names(fitlda1) #查看lda输出项名称结果分析:我们看到,可以根据lda()函数得到10项输出结果,分别为执⾏过程中所使⽤的先验概率prior、数据集中各类别的样本量counts、各变量在每⼀类别中的均值 means等。
fitlda1$prior #查看本次执⾏过程中所使⽤的先验概率fitlda1$counts #查看数据集datatrain中各类别的样本量结果分析:由于我们在之前的抽样过程中采⽤的是nmkat各等级的等概率分层抽样⽅式,因此如上各类别的先验概率和样本量在5个等级中都是相等的。
具体的,5类的先验概率都为0.2,之和为1,且训练集中每⼀类都抽出了144个样本。
fitlda1$means结果分析:在如上的均值输出结果中,我们可以看到⼀些很能反映现实情况的数据特征。
⽐如,对于占地⾯积wfl变量,它明显随着租⾦nmkat的升⾼⽽逐步提⾼,我们看到在租⾦为等级1(少于500马克)时,占地⾯积的均值仅为55.53平⽅⽶,⽽对于租⾦等级5(租⾦不低于1150 马克),平均占地⾯积则达到了92.24平⽅⽶。
⾯积越⼤的房屋租⾦越贵,这是⼗分符合常识的。
执⾏fitlda1可直接将判别结果输出。
(2)数据框data.frame及矩阵matrix格式由于这两种函数格式的主体参数都为x与grouping,我们放在⼀起实现,程序代码如下:fitlda2<-lda(datatrain[,-12],datatrain[,12])#设置属性变量(除第12个变量nmkat外)与待判别变量(第12个变量nmkat)的取值fitlda22.判别规则可视化我们⾸先使⽤plot()直接以判别规则fit_ldal为对象输出图形,如下图所⽰:plot(fitlda1)结果分析:从图可以看到,在所有4个线性判别式(Linear Discriminants,即 LD)下1⾄5这5个类别的分布情况,不同类别样本已⽤相应数字标出。
线性判别分析(LinearDiscriminantAnalysis,LDA)
线性判别分析(LinearDiscriminantAnalysis,LDA)⼀、线性判别器的问题分析线性判别分析(Linear Discriminant Analysis, LDA)是⼀种经典的线性学习⽅法,在⼆分类问题上亦称为 "Fisher" 判别分析。
与感知机不同,线性判别分析的原理是降维,即:给定⼀组训练样本,设法将样本投影到某⼀条直线上,使相同分类的点尽可能地接近⽽不同分类的点尽可能地远,因此可以利⽤样本点在该投影直线上的投影位置来确定样本类型。
⼆、线性判别器的模型还是假定在p维空间有m组训练样本对,构成训练集T=(x1,y1),(x2,y2),...,(x n,y n),其中x i∈R1×p,y i∈{−1,+1},以⼆维空间为例,在线性可分的情况下,所有样本在空间可以描述为:我们的⽬的就是找到⼀个超平⾯Φ:b+w1x1+w2x2+..+w n x n=0,使得所有的样本点满⾜ “类内尽可能接近,类外尽可能遥远"。
那么我们⽤类内的投影⽅差来衡量类内的接近程度,⽤类间的投影均值来表⽰类间的距离。
这⾥,我们另w代表投影⽅向,如下图所⽰,在这⾥,x,w均为p×1 的列向量,那么根据投影定理,x在w上的投影p既有⽅向⼜有距离,那么:p与w同⽅向,表⽰为:w||w||;p的长度为:||x||cosθ=||x||x⋅w||w||||x||=x⋅w||w||由于w的长度不影响投影结果,因此我们为了简化计算,设置 ||w||=1,只保留待求w的⽅向:||p||=x⋅w=w T x 2.1 类间投影均值我们假设⽤u0,u1分别表⽰第1,2类的均值,那么:u0=1mm∑i=1x i,u1=1nn∑i=1x i所以,第⼀,⼆类均值在w⽅向上的投影长度分别表⽰为:w T u0,w T u1 2.2 类内投影⽅差根据⽅差的计算公式,第⼀类的类内投影⽅差可以表⽰为:z0=1nn∑i=1(w T x i−w T u0)2=1nn∑i=1(w T x i−w T u0)(w T x i−w T u0)T即:z0=1nn∑i=1w T(x i−u0)(x i−u0)T w=w T[1nn∑i=1(x i−u0)(x i−u0)T]w如下图所⽰:当x i,u0都是⼀维时,式⼦1n∑ni=1(x i−u0)(x i−u0)T就表⽰所有输⼊x i的⽅差;当x i,u0都是⼆维时,式⼦1n∑ni=1(x i−u0)(x i−u0)T就表⽰:1nn∑i=1x11−u01x12−u02x11−u01x12−u02=1nn∑i=1(x11−u01)2(x11−u01)(x12−u02)(x12−u02)(x11−u01)(x12−u02)2其中:u01表⽰第⼀类集合中在第⼀个维度上的均值,u01表⽰第⼀类集合中在第⼆个维度上的均值,x11表⽰第⼀类集合中第⼀个维度的坐标值,x12表⽰第⼀类集合中第⼆个维度的坐标值[][][]综上:当x i,u0都是p维时,式⼦1n∑ni=1(x i−u0)(x i−u0)T表⽰p个维度之间的协⽅差矩阵,我们⽤符号M0表⽰。
机器学习技术中的线性判别分析方法
机器学习技术中的线性判别分析方法机器学习是一种通过计算机算法自动识别模式并从数据中学习的方法。
随着数据规模的快速增长和计算能力的提高,机器学习在各个领域都有着广泛的应用。
线性判别分析(Linear Discriminant Analysis,简称LDA)是一种常用的机器学习技术,用于将数据分为不同的类别。
LDA是一种监督学习方法,利用已知类别的样本数据进行训练,然后通过学习到的模型对新的样本进行分类。
与其他的机器学习技术相比,LDA在数据特征提取和分类之间建立了有机的联系,因此在维数较高的数据集中表现出色。
LDA的基本思想是将高维的数据投影到低维空间中,使得在低维空间中不同类别的样本能够被更好地分开。
这个过程涉及两个步骤:特征提取和分类。
特征提取是指将原始的高维数据转换为低维表示,以便更好地区分不同的类别。
LDA通过计算数据之间的类别差异和内部类别相似性来找到最佳的投影方向。
具体来说,它首先计算各个类别的均值向量,然后计算类别内部散布矩阵和类别间散布矩阵。
类别内部散布矩阵表示每个类别内部样本点的离散程度,而类别间散布矩阵则表示不同类别之间的差异程度。
通过最大化类别间散布矩阵和最小化类别内部散布矩阵的比值来选择最佳的投影方向,从而使得样本在投影后更加分散。
分类是指根据学习到的投影方向将新的样本点分配到不同的类别中。
在分类过程中,我们需要计算待分类样本在投影方向上的投影值,并通过设定一个合适的分类阈值来决定其所属类别。
一般而言,对于新的样本点,我们可以计算它到每个类别均值向量的距离来进行分类决策,距离较小的类别即为其所属类别。
LDA方法在模式识别、面部识别、文本分类等诸多领域都有广泛的应用。
与其他的机器学习方法相比,LDA具有以下几个优势:1. 数据降维:LDA通过将高维数据投影到低维空间中,能够在保持较高分类精度的同时降低计算复杂度。
2. 特征提取:LDA通过计算类别内部散布矩阵和类别间散布矩阵,能够找到最佳的投影方向,从而提取出最能区分不同类别的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
介绍
线性判别分析(Linear Discriminant Analysis, LDA),也 叫做Fisher线性判别(Fisher Linear Discriminant ,FLD), 是模式识别的经典算法,1936年由Ronald Fisher首次提出, 并在1996年由Belhumeur引入模式识别和人工智能领域。
LDA
对于N(N>2)分类的问题,就可以直接写出以下的结论:
这同样是一个求特征值的问题,求出的第i大的特征向量,即为 对应的Wi。
LDA在人脸识别中的应用
要应用方法
K-L变换 奇异值分解 基于主成分分析 Fisher线性判别方法
主要应用方法
K-L变换
为了得到彩色人脸图像的主分量特征灰度图像,可以采用Ohta[3]等人提 出的最优基来模拟K-L变换方法,从而得到新的包含了彩色图像的绝大多 数特征信息的主分量特征图像.
LDA
LDA与PCA(主成分分析)都是常用的降维技术。PCA主要是从 特征的协方差角度,去找到比较好的投影方式。LDA更多的是 考虑了标注,即希望投影后不同类别之间数据点的距离更大, 同一类别的数据点更紧凑。
下面给出一个例子,说明LDA的目标:
可以看到两个类别,一个绿色类别,一个红色类别。左图是两个 类别的原始数据,现在要求将数据从二维降维到一维。直接投影 到x1轴或者x2轴,不同类别之间 会有重复,导致分类效果下降。 右图映射到的直线就是用LDA方法计算得到的,可以看到,红色 类别和绿色类别在映射之后之间的距离是最大的,而且每个类别 内 部点的离散程度是最小的(或者说聚集程度是最大的)。
LDA
假设用来区分二分类的直线(投影函数)为: LDA分类的一个目标是使得不同类别之间的距离越远越好,同 一类别之中的距离越近越好,所以我们需要定义几个关键的值:
LDA
类别i的原始中心点(均值)为:(Di表示属于类别i的点):
类别i投影后的中心点为:
衡量类别i投影后,类别点之间的分散程度(方差)为:
基于主成分分析(principal component analysis,简称PCA) 该方法将人脸图像按行(列)展开所形成的一个高维向量看作是一种随机 向量,因此可以采用K-L变换获得其正交K-L基底.对应于其中较大特征值 的基底具有与人脸相似的形状,故称其为特征脸.利用相对较小的 Eigenface集描述人脸,这样每幅人脸图像就对应于一个维数较低的权向 量,因此,人脸识别可以在降维后的空间上进行.然而,该方法的缺点是,得 到的特征在一般情况下是最佳描述特征(the most expressive features,简称MEFs),而不是最佳分类特征(the most discriminating features,简称MDFs).
主要应用方法
Fisher线性判别方法(Fisher linear discriminant analysis,简称 FLD)
使投影后的模式样本的类间散布矩阵最大而类内散布矩阵最小,也就是说 ,投影后保证模式样本在新的空间中有最大的类间距离和最小的类内距离 ,即模式在该空间中有最佳的可分离性.Fisher线性判别分析提取的特征 向量集强调的是不同人脸的差异而不是照明条件、人脸表情和方向的变 化.因而,采用FLD方法对光照条件、人脸姿态等的变化不太敏感,从而有 助于提高识别效果。然而,由于在正常情况下人脸识别问题总是一个小样 本问题,故其类内散布矩阵总为奇异阵而使此方法的求解变得很困难.
主要应用方法
奇异值分解(singular value decomposition,简称SVD) 是一种有效的代数特征提取方法.由于奇异值特征在描述图像时是稳定的 ,且具有转置不变性、旋转不变性、位移不变性、镜像变换不变性等重要 性质,因此奇异值特征可以作为图像的一种有效的代数特征描述。
主要应用方法
LDA
我们定义一个投影前的各类别分散程度的矩阵,这个矩阵看起 来有一点麻烦,其实意思是,如果某一个分类的输入点集Di里 面的点距离这个分类的中心店mi越近,则Si里面元素的值就越 小,如果分类的点都紧紧地围绕着mi,则Si里面的元素值越更 接近0.
带入Si,将J(w)分母化为:
LDA
同样的将J(w)分子化为: 这样目标优化函数可以化成下面的形式: 推导过程忽略了,最后推导结果如下:
基本思想
线性判别分析的基本思想是将高维的模式样本投影到最佳 鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效 果。投影后保证模式样本在新的子空间有最大的类间距离和最 小的类内距离,即模式在该空间中有最佳的可分离性。
因此,它是一种有效的特征抽取方法。使用这种方法能够使投 影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最 小。
LDA
上式实际上就是一种投影,是将一个高维的点投影到一条高维 的直线上,LDA最求的目标是,给出一个标注了类别的数据集, 投影到了一条直线之后,能够使得点尽量的按类别区分开,当 k=2即二分类问题的时候,如下图所示:
红色的方形的点为0类的原始点、蓝色的方形点为1类的原始点,经过 原点的那条线就是投影的直线,从图上可以清楚的看到,红色的点和 蓝色的点被原点明显的分开了,这个数据只是随便画的,如果在高维 的情况下,看起来会更好一点。下面我来推导一下二分类LDA问题的 公式:
最终我们可以得到一个下面的公式,表示LDA投影到w后的目 标优化函数:
LDA
我们分类的目标是,使得类别内的点距离越近越好(集中), 类别间的点越远越好。
LDA
分母表示每一个类别内的方差之和,方差越大表示一个类别内 的点越分散,分子为两个类别各自的中心点的距离的平方,我 们最大化J(w)就可以求出最优的w
LDA
要说明白LDA,首先得弄明白线性分类器(Linear Classifier)
:因为LDA是一种线性分类器。对于K-分类的一个分类问题,
会有K个线性函数:
权向量(weight vector) 法向量(normal vector)
阈值(threshold) 偏置(bias)
当满足条件:对于所有的j,都有Yk > Yj,的时候,我们就说x 属于类别k。对于每一个分类,都有一个公式去算一个分值, 在所有的公式得到的分值中,找一个最大的,就是所属的分类 。