塑料结晶取向应力分析

合集下载

注塑制品后处理的主要方法分析

注塑制品后处理的主要方法分析

注塑制品后处理的主要方法分析摘要:存在内应力是注塑制品的缺陷,故注塑制品在使用一段时间后,就会出现变形和开裂的问题。

本文首先阐述注塑制品中内应力的存在形式,然后结合相关实例,对注塑制品后处理的主要方法进行分析,希望为相关行业提供借鉴。

关键词:注塑制品;内应力;退火处理引言:注塑制品在成型过程中,会在温度和压力等因素的影响下发生变形和流动。

由于冷却速度存在差异,不均匀结晶、收缩应力和取向应力会随之生成,因此注塑制品的性能和质量难以得到保证。

想要对这些问题进行解决和规避,需要采取调湿处理和退火处理等后处理方法。

注塑制品的内应力存在形式内应力产生注塑制品在加工生成阶段,会在多种因素的影响下出现内应力,影响因素包括冷却收缩、大分子链取向等等。

大分子链在加工阶段所形成的不平衡构象,就是内应力的本质,并且这种构象在注塑制品成型后,会显得与环境格格不入,通常不会在产品表面显现,只会以位能形式在其内部储存,在特定条件下,位能形式就会转变为动能在内部释放能量,如果能量超过大分子链的承受极限,并破坏注塑制品的内应力平衡,开裂、变形等问题就会接踵而至[1]。

内应力的种类通过上述分析可知,不平衡构象是导注塑制品产生内应力的重要原因之一。

除此之外,还包括外力。

将成因作为依据,可以将注塑制品中的内应力分为四种,分别为取向应力、体积温度应力、制件体积不平衡导致的应力以及制件顶出变形导致的应力。

注塑制品后处理的主要方法分析退火处理和调湿处理,是目前应用最普遍的处理方法。

退火处理方法及应用实例1.退火处理方法概述在冷却速度和塑化不均匀等因素的影响下,注塑制品内部会生成内应力,尤其是壁厚较大或带有金属镶嵌件的注塑制品,这种情况尤为常见。

存在内应力的注塑制品,与正常制品相比,在使用阶段,其力学性能会不断下降,故对其进行退火处理是确保其使用性能的关键。

将制品内部应力消除,是退火处理的主要作用。

具体表现在以下方面:退火处理方法的应用,能够调整注塑制品结晶的大小;;退火处理方法,可以使结晶生成速度增加;退火处理方法可以解除制件取向,使其硬度降低,有利于提升制件的柔韧度。

塑胶件 内应力

塑胶件 内应力

1 内应力产生在注塑制品中,各处局部应力状态是不同的,制品变形程度将决定于应力分布。

如果制品在冷却时。

存在温度梯度,则这类应力会发展,所以这类应力又称为“成型应力”。

注塑制品的内应力包两种:一种是注塑制品成型应力,另一种是温度应力。

当熔体进入温度较低的模具时,靠近模腔壁的熔体讯速地冷却而固化,于是分子链段被“冻结”。

由于凝固的聚合物层,导热性很差,在制品厚度方向上产生较大的温度梯度。

制品心部凝固相当缓慢,以致于当浇口封闭时,制品中心的熔体单元还未凝固,这时注塑机又无法对冷却收缩进行补料。

这样制品内部收缩作用与硬皮层作用方向是相反的;心部处于静态拉伸而表层则处于静态压缩。

在熔体充模流动时,除了有体积收缩效应引起的应力外。

还有因流道,浇口出口的膨胀效应而引起的应力;前一种效应引起的应力与熔体流动方向有关,后者由于出口膨胀效应将引起在垂直于流动方向应力作用。

2 影响愉应力的工艺因素(1)向应力的影响在速冷条件下,取向会导致聚合物内应力的形成。

由于聚合物熔体的粘度高,内应力不能很快松驰,影响制品的物理性能和尺寸稳定性。

各参数对取向应力的影响a熔体温度,熔体温度高,粘度低,剪切应力降低取向度减小;另一方面由于熔体温度高会使应力松驰加快,促使解取向能力加强。

可是在不改变注塑机压力的情况下,模腔压力会增大,强剪切作用又导致取向应力的提高。

b在喷嘴封闭以前,延长保压时间,会导致取向应力增加。

c提高注射压力或保压压力,会增大取向应力,d模具温度高可保证制品缓慢冷却,起到解取向作用。

e增加制品厚度使取向应力降低,因为厚壁制品冷却时慢,粘度提高慢,应力松驰过程的时间长,所以取向应力小。

(2)对温度应力的影响如上所述由于在充模时熔体和型壁之间温度梯度很大,先凝固的外层熔体要助止后凝固的内层熔体的收缩,结果在外层产生压应力(收缩应力),内层产生拉应力(取向应力)。

如果充模后又在保压压力的作用下持续较长时间,聚合物熔体又补入模腔中,使模腔压力提高,此压力会改变由于温度不均而产生的内应力。

复合应力场对PE-HD/PP/SGF取向结晶的影响

复合应力场对PE-HD/PP/SGF取向结晶的影响
袁毅 , : 等 复合应力场对 P — EHD/ P/ GF取 向结晶的影响 P S
3 7
复合应 力场对 P . E HD/ P S P / GF取 向结 晶的影响 古
袁 毅 黄 朗 徐绍虎
406 ) 0 0 7 ( 重庆工商大学机械工程学院, 重庆工商大学废油资源化技术与装备教育部工程研究 中心 , 重庆
P . : 10 , 京 燕 山石 油 化 工 股 份 有 限 EHD 60M 北
模量等性能 J 。研究 _ 表明 , 7 纤维及聚合物大分子 公 司 ; P / G S F质量分数为 3%, P S F: G 0 粒料 , 晨光化
工 研究 院 ;
原 料 配 比为 : E HD/( PS F) 9 P. P /G = /1 O
1 1 仪 器 、 备 . 设
图 1 剪切拉伸双向复合应力场挤管原理图
塑料挤出机 :J4B型 , S- 5 上海挤出机械厂 ;
挤出时剪切应力场段温度在 10 2 0C 7 ~ 1  ̄可调 , 口模温度为 l0 7 ℃。螺杆转速为 2 / i, 0r m n 周向剪
・国家 自然科 学基金项 目( 0 9 3 1 重 庆市科 技攻关 计划项 15 0 5 );
38
工 程 塑 料应 用
21 年 , 3 0 1 第 9卷 , 1 期 第 1
切 套筒 转 速在 0 2 / n变化 。周 向剪 切套 筒转 ~ 5r mi
型的结 晶度并对 比分析 , 结果如表 l 所示。


速为 0 时成型的合 应 力场对 分子取 向的影 响 .
1 3 工 艺及 原 理 .
特定类型塑料制品时存在着不足 , 如增强塑料管材 时对管材的周向强度改善不 明显 , 以满足塑料管 难

塑料翘曲变形分析及解决方案

塑料翘曲变形分析及解决方案

影响注塑制品翘曲变形的因素很多,根据现代塑料制品翘曲理论,分为四大类,包括塑料材料、制品形状、模具结构和成型工艺条件。

首先是塑料材料及添加剂。

塑料取向能力和结晶性能显著影响翘曲变形,取向材料比未取向材料更容易翘曲,结晶型聚合物翘曲变形倾向比无定型聚合物的要大,如果聚合物中有添加剂(如色料),则会加大注塑制品翘曲变形程度。

其次,塑料制品形状尺寸也能影响翘曲变形。

产品形状、壁厚、加强筋、表面装饰性浮雕等,能影响充模性能、冷却效果,导致制品取向、内应力、收缩等分布不均匀,翘曲变形也就无法避免。

另外,模具结构对翘曲变形很有影响。

浇注系统及冷却系统设置、排气性能好坏、模具顶出机构设计等都能影响制品取向与收缩,从而显著影响制品出模后的翘曲变形。

最后一个能显著影响翘曲的因素是工艺条件。

注塑熔体塑化质量、熔体温度、注塑压力、保压压力、保压时间、模具温度等许多工艺参数都影响制品翘曲变形。

对于这些影响因素,设计人员很难予以全面考虑,因此,有必要对翘曲变形进行数值模拟,预测制件变形大小,以指导实际生产过程。

自20世纪中叶以来,塑料流变学、材料学、数值计算方法和计算机技术的突飞猛进为塑料模CAE技术发展创造了有力条件。

塑料模CAE研究经历了从初级到高级、从简单到复杂、从理论研究到实际应用的发展历程。

流动过程的研究早在五十年代开始,至八十年代已经发展到实用化程度保压过程和冷却过程研究比流动过程研究要晚十年,直到九十年代才开始研制实用化软件,而纤维定向至今仍然集中于理论研究残余应力研究从七十年代开始,现正向实用化方向努力。

相比之下,翘曲变形的研究工作远不及流动、保压、冷却、应力等模拟研究那么早,而且进展较慢。

导致这种现象的原因有很多方面:(1)翘曲变形模拟与注塑流动、保压、冷却等阶段的研究发展状况有关。

只有在完成了流动、保压、冷却及应力分析的基础上,才可能进行翘曲变形的数值模拟研究。

(2)与注塑其他阶段不同,导致制品翘曲变形的因素太多,包括塑料材料、制品和模具结构、注塑成型工艺参数等,到目前为止,注塑成型翘曲变形机制仍然存有争议,有待进一步的深入研究。

BOPP薄膜生产过程中的取向与结晶

BOPP薄膜生产过程中的取向与结晶
[2] ; 在 的结晶和较大的结晶颗粒都有可能导致破膜
横拉后热处理定型阶段, 为了提高刚性和强度, 要求 产生并加速结晶。 (也 !! 的最大结晶速率的温度大约为 / & .*+可以根据 345 测定的结果确定) , 温度越高或越低 如在 +- 或 +, 附近, 越难结晶, 在拉伸过程中要防止 预热、 拉伸时结晶度急剧增加, 因此不要在 !! 最大 结晶速度的温度区域内选择拉伸温度, 最好在结晶 开始熔融、 分子链能够运动的温度下进行拉伸, 即最 大结晶速度的温度到熔点之间。实际生产时应根据 !! 的热力学特性来相应地调整生产工艺。 ( & " 结晶对 $%!! 性能的影响
[%] 以大大提高取向方向 $$ 的力学性能 ; 双向拉伸也
择、 成核剂的使用等。 在 $$ 高性能工程化和透明改性方面, 如何使 均质化也是重要改性途径之一。 $$ 结晶微细化、
[ 参 考 文 献 ]
[,] 朱新远 ! 我国 *+$$ 薄膜现状及专用料的开发 [ -] ! 广州 化工, (,) : .’’’, .) .) ! [.] 中国包装技术协会塑料包装委员会第六届委员会年会 暨塑料包装新技术研讨会论文集 [ /] 中国包协 ! 苏州: 塑料包装协会, .’’. ! ["] 尹燕平 ! 双向拉伸塑料薄膜 [ 0] 化学工业出版 ! 北京: 社, ,111 ! [2] 金日光, 华幼卿 ! 高分子物理 [ 0] 化学工业出版 ! 北京: 社, ,11, ! [&] 吴耀根, 郑少华, 王云等 ! 专利, /3,,#11,,4! [#] 汤明, 王亚辉, 秦学军 ! *+$$ 专用料结构表征及性能研 究 [ -] ,.) : ! 塑料加工应用, ,111( ,! [%] 申开智, 胡文江, 向子上等 ! 聚丙烯在单向拉伸力场中 形成双向自增强片材及其结构与性能的研究 [ -] ! 高分 子材料科学与工程, (,) : .’’., ,) ,2& ! [)] 李军, 王文广, 高雯 ! 塑料透明改性 [ -] ! 塑料科技, ,111, (,) : ,.1 ., !

塑胶产品的内应力分析及解决

塑胶产品的内应力分析及解决

塑胶产品的内应力分析及解决
塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。
塑料内应力的降低与分散:(1)原料配方设计.1)选取分子量大、分子量分布窄的树脂.聚合物分子量越大,大分子链间作用力和缠结程度增加,其制品抗应力开裂能力较强;聚合物分子量分布越宽,其中低分子量成分越大,容易首先形成微观撕裂,造成应力集中,便制品开裂。2)选取杂质含量低的树脂. 聚合物内的杂质即是应力的集中体,又会降低塑料的原有强度,应将杂质含量减少到最低程度。3)共混改性.易出现应力开裂的树脂与适宜的其它树脂共混,可降低内应力的存在程度。例如,在PC中混入适量PS,PS呈近似珠粒状分散于PC连续相中,可使内应力沿球面分散缓解并阻止裂纹扩展,从而达到降低内应力的目的。再如,在PC中混入适量PE , PE球粒外沿可形成封闭的空化区,也可适当降低内应力。4)增强改性.用增强纤维进行增强改性,可以降低制品的内应力,这是因为纤维缠结了很多大分子链,从而提高应力开裂能力。例如,30%GFPC的耐应力开裂能力比纯PC提高6倍之多。5)成核改性.在结晶性塑料中加入适宜的成核剂,可以在其制品中形成许多小的球晶,使内应力降低并得到分散。(2)成型加工条件的控制.在塑料制品的成型过程中,凡是能减小制品中聚合物分子取向的成型因素都能够降低取向应力;凡是能使制品中聚合物均匀冷却的工艺条件都能降低冷却内应力;凡有助于塑料制品脱模的加工方法都有利于降低脱模内应力。

塑料内应力分析

塑料内应力分析

内应力控制塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。

内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。

当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。

几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。

内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。

为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。

塑料内应力产生的原因产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。

依引起内应力的原因不同,可将内应力分成如下几类。

(1)取向内应力取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。

取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。

取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。

用热处理的方法,可降低或消除塑料制品内的取向应力。

塑料件应力开裂原因分析及检测方法简述

塑料件应力开裂原因分析及检测方法简述

塑料件应力开裂原因分析及检测方法简述文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-塑料件应力开裂原因分析及检测方法简述几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。

内应力的存在不仅使塑料制品在储存和使用过程中出现应力开裂和翘曲变形,也影响塑料制品的力学性能、光学性能、电学性能及外观质量等。

应力开裂的必要条件是试样或零件内存在应力,并存在某种应力集中因素如缺口、表面划伤等。

那么塑件应力从何而来呢?塑胶件内应力产生的原因依引起内应力的原因不同,可将内应力分成如下几类:(1)取向内应力取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。

取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。

塑料制品的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化。

(2)冷却内应力冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产的一种内应力。

尤其对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能还是热熔体,这徉芯层就会限制表层的收缩,导致芯层处于压应力状态,而表层处于拉应力状态。

塑料制品冷却内应力的分布为从制品的表层到内层越来越大,并也呈抛物线变化。

另外,带金属嵌件的塑料制品,由于金属与塑料的热胀系数相差较大,容易形成收缩不一均匀的内应力。

(3)环境应力环境应力开裂是聚烯烃类塑料的特有现象,它是指当制品存在应力时,与某些活性介质接触,会出现脆性裂纹,最终可能导致制品破坏。

这些活性物质可以是洗涤剂、皂类、水、油、酸、碱、盐及对材料并无显着溶胀作用的有机溶剂。

原料混有其它杂质或掺杂不适当的或过量的溶剂或其它添加剂时,在某些应力集的位置就会导致裂纹。

有些塑料如ABS等,在受潮状况下加热会与水汽发生催化裂化反应,使制件发生大的应变从而开裂。

塑料的内应力

塑料的内应力

塑料分子内应力与加工成型(一)理论解释:塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。

内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。

当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。

几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。

内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。

为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1 热学等性能。

塑料内应力产生的原因产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。

依引起内应力的原因不同,可将内应力分成如下几类。

(1)取向内应力取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。

取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。

取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。

塑胶件应力形成的原因

塑胶件应力形成的原因

塑胶件应力形成的原因引言:塑胶件是指通过塑料材料加工而成的各种形状的产品,广泛应用于日常生活和工业生产中。

塑胶件在加工过程中,往往会出现应力现象,这种应力可能对产品的使用性能和寿命产生不良影响。

本文将从塑胶件的材料特性、加工工艺以及产品设计等方面探讨塑胶件应力形成的原因。

一、材料特性:1.1塑料材料的流变性:塑料具有可塑性和可压性的特性,容易受外力作用而发生变形。

在塑胶件加工过程中,由于注塑或挤出等成型工艺的复杂性,塑料材料会经历多次变形和冷却,使得材料内部产生残余应力。

这种残余应力会导致塑胶件在使用过程中产生应力集中和应力松弛现象。

1.2材料粘度和分子结构:塑料材料的粘度和分子结构也会对塑胶件的应力形成产生影响。

粘度较高的塑料流动性差,容易产生应力积累现象;而分子结构复杂的塑料,如聚合物材料,由于分子链的交联和纠缠,容易导致塑胶件产生内应力。

二、加工工艺:2.1成型工艺参数:塑料件的成型工艺参数,如温度、压力和速度等,对于塑胶件的应力形成有重要影响。

温度过高或过低、压力过大或过小、注射速度过快或过慢等都可能引起应力集中和应力积累现象。

例如,温度过高会导致材料熔化不充分,形成含气孔的塑胶件,从而产生内应力。

2.2成型工艺选择:不同的成型工艺对塑胶件的应力形成也有不同的影响。

常见的成型工艺有注塑、挤出、吹塑等,每种工艺的特点和应用领域不同,其应力形成的机理也不同。

例如,注塑工艺易于产生内应力,而挤出工艺易于产生表面应力。

2.3产品尺寸和形状:塑胶件的尺寸和形状设计是影响应力形成的重要因素之一、当塑胶件的尺寸较大或形状复杂时,由于塑料材料的热胀冷缩和冷却不均匀等原因,易导致内部应力集中。

此外,塑胶件的壁厚也会对应力形成产生影响,过大或过小的壁厚都可能引起应力积累现象。

三、产品设计:3.1断面形状:塑胶件的断面形状对于应力形成具有重要影响。

常见的塑胶件断面形状有矩形、圆形、梯形等,不同形状的断面对应力分布有不同的影响。

塑料内应力为何形成?怎么检测和解决?

塑料内应力为何形成?怎么检测和解决?

塑料内应⼒为何形成?怎么检测和解决?⼀、什么是内应⼒?塑料内应⼒是指在塑料熔融加⼯过程中由于受到⼤分⼦链的取向和冷却收缩等因素影响⽽产⽣的⼀种内在应⼒。

⼏乎所有塑料制品都会不同程度地存在内应⼒,尤其是塑料注射制品的内应⼒更为明显。

内应⼒的存在不仅使塑料制品在储存和使⽤过程中出现应⼒开裂和翘曲变形,也影响塑料制品的⼒学性能、光学性能、电学性能及外观质量等。

内应⼒的存在会出现以下常见危害:(1)开裂:因为应⼒的存在,在受到外界作⽤后(如移印时接触到化学溶剂或者烤漆后端时⾼温烘烤),会诱使应⼒释放⽽在应⼒残留位置开裂。

开裂主要集中在浇⼝处或过度填充处。

图:内应⼒导致的开裂(2)翘曲及变形:因为残留应⼒的存在,因此产品在室温时会有较长时间的内应⼒释放或者⾼温时出现短时间内残留应⼒释放的过程,同时产品局部存在位置强度差,产品就会在应⼒残留位置产⽣翘曲或者变形问题。

(3)产品尺⼨变化:因为应⼒的存在,在产品放置或后处理的过程中,如果环境达到⼀定的温度,产品就会因应⼒释放⽽发⽣变化。

图:内应⼒导致的发亮、发⽩图:内应⼒集中处产⽣彩虹纹(透明产品)⼆、5种常见塑料测试应⼒开裂的⽅法材料名称测试应⼒开裂⽅法PMMA制品⽤酒精:⽔=9:1溶液中浸15分钟后取出,放置1⼩时后观察,若开裂则存在应⼒。

应进⾏退⽕(韧化)处理:热风循环/除湿机器,在低于材料热变形温度10-15℃情况下进⾏约1h的处理。

红外线退⽕可在热变形温度基础上提⾼10℃,时间约10-15min即可。

PC将PC制品浸⼊四氯化碳溶液中,以制品发⽣开裂破坏所需的时间来判断应⼒的⼤⼩,时间越长则应⼒越⼩。

如果浸5-15秒就开裂,说明应⼒很⼤;如果浸1-2分钟不出现裂纹,说明内应⼒很⼩POM将经过热处理后的制品,放⼊30%盐酸溶液中浸渍30分钟,若不出现裂纹,说明制品中残存的内应⼒较⼩ABS将制品浸⼊冰醋酸中,5-15秒内出现裂纹,则说明制品内应⼒⼤;⽽2分钟后⽆裂纹出现,则表明制品内应⼒⼩PA PA材料消除⽅法:⼩部件在沸⽔中泡煮约2h,尺⼨⼤的部件应采⽤悬挂式,在蒸汽房⾥保持吸湿⾄⽔分平衡。

大分子取向与内应力——塑料加工与成型

大分子取向与内应力——塑料加工与成型

大分子取向与内应力——塑料加工与成型塑料属于大分子,正如大分子这个名字,分子量很大,分子量大的后果比较多,但是一个比较突出的问题就是大分子在加工的时候容易取向,因为有了取向,然后就有了解取向,然后又有了内应力,有了内应力呢,就有可能在后续使用中开裂,要解决开裂,又要涉及塑料回火处理,回火处理出现致解取向,所以我觉得取向、解取向、内应力、应力开裂、回火应该是一个比较热的题目,所以就收点学费,免得写了半天,版主们也不给我加分,不加分我就看不了别人的帖子,废话少说,先看看他们的关系:大分子链—— 取向—— 内应力—— 应力开裂—— 回火—— 解取向取向定义我们就不去谈取向度,多轴取向这些抽象概念了,先说说什么叫取向:线性高分子就如同毛线,当其充分伸展时,长度与直径比非常大(L/D),这种结构上的不对称性使它们在某些情况下很容易沿某个特定方向占优势平行排列,这种现象就称为取向。

那些情况下容易取向当塑料处于玻璃态时,其分子链出去冻结状态,自然是不能取向,所以加温,当温度超过玻璃态,也就是到了高弹态,分子链的链锻可以运动了,也就具备了取向的第一个条件:链锻运动。

假如继续加温,超过高弹态,也就是到了粘流态,这个分子链都可以运动,当然就更容易取向了,但是只有温度还不行,还需要借助一个外力:比如流动,压力等。

这个道理就如同将毛线放入水中,毛线自然随水运动,这个叫随波逐流,所以取向的两个条件,抽象来说就是:温度、外力,形象来说就是:加工时塑料都会取向。

加工当然是高温加工,加工当然有流动。

所以,只要你加工塑料,取向就不可避免:取向真是无处不在,防不胜防的。

取向与解取向俗话说,那里有压迫,那里就有反抗,那里有取向,那里就有解取向,在加工时的高温加工状态,取向与解取向时刻都在进行,取向的同时在解取向,解取向的同时又在取向(假如这个时候塑料还在流动),只是在流动状态时,取向占据了上风,部分分子链拉直了,在不流动时,解取向占据上风,部分分子链解取向成功。

注塑零件的内应力分析及控制-精

注塑零件的内应力分析及控制-精

注塑制品内注塑制品内应力应力应力的分析及控制的分析及控制在注塑加工过程中,注塑制品存在着一个内在的质量问题-内应力。

内应力的来源与所使用的塑料原料种类、注塑机的类型与塑化系统的结构、模具的结构及精度、塑料制品的结构、注塑成型的工艺参数的设定及控制、生产环境及操作者的状态等有关。

其中任何一项出现问题,都将影响到制品的质量。

而且,由于制品的表面质量是内在质量的反映,所以,凡是能引起制品内在质量的因素,都能同时引起制品的表面质量及其他质量问题,如引起制品的开裂、银纹、翘曲、变形、力学强度降低,甚至失去使用价值等问题。

由于注塑过程中,除了引起制品翘曲变形的内应力可以直观感觉到外,其它质量问题不但用肉眼看不到,而且在短时间内也没有表露出来。

所以注塑加工现场的工程人员对于这个问题一般不很重视,但是却可能存在着很大的质量隐患。

所以,本文针对内应力这个内在的质量问题展开分析,并提出控制的一些方法,希望对现场控制产品质量的工程人员有所帮助和启示。

一、内应力应力的种类及产生原因的种类及产生原因注塑制品的内应力主要有以下四种:1、温度应力:是制品冷却时温度不均产生的应力。

当熔体进入温度较低的模具时,靠近模腔壁的熔体迅速地冷却而固化。

由于凝固的聚合物层导热性很差,因而在制品厚度方向上产生较大的温度梯度。

先凝固的外层熔体要阻止后凝固的内层熔体的收缩,结果在外层产生压应力(收缩应力),内层产生拉应力(取向应力)。

另方面,因制品壁厚不均匀,冷却速度不一致,从而产生冷却温度不均现象。

2、取向应力:是制品内部大分子取向产生的应力。

对于线形树脂和纤维增强的塑料,在加工中最容易产生取向应力。

其结果,沿着流动方向的分子取向程度最大,在速冷条件下,如果被拉直的分子链来不及松弛,则在该方向上产生了取向应力。

3、收缩应力:注塑过程中,塑料分子本身的平衡状态受到破坏,并产生不平衡体积时的应力。

如结晶塑料的晶区与非晶区界面因收缩不均产生的内应力。

塑胶应力分析

塑胶应力分析

注塑产品内应力问题?塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。

内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。

当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。

几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。

内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。

为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。

塑料内应力产生的原因产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。

依引起内应力的原因不同,可将内应力分成如下几类。

(1)取向内应力取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。

取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。

取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。

用热处理的方法,可降低或消除塑料制品内的取向应力。

[整理版]塑料结晶取向应力分析

[整理版]塑料结晶取向应力分析

塑料结晶取向应力分析第一节结晶效应1、结晶概念聚合物的超分子结构对注塑条件及制品性能的影响非常明显。

聚合物按其超分子结构可分为结晶型和非结晶型,结晶型聚合物的分子链呈有规则的排列,而非结晶态聚合物的分子链呈不规则的无定型的排列。

不同形态表现出不同的工艺性质误物理—机械性质。

一般结晶型聚合物具有耐热性和较高的机械强度,而非结晶型则相反。

分子结构简单,对称性高的聚合物都能生成结晶,如PE等,分子链节虽然大,但分子间的作用力很强也能生成结晶,如POM,PA等。

分子链刚性大的聚合物不易生成结晶,如PC,PSU,PPO等。

评定聚合物结晶形态的标准是晶体形状,大小及结晶度。

2 、聚合物结晶度对制品性能的影响(1)密度. 结晶度高说明多数分子链已排列成有序而紧密的结构,分子间作用力强,所以密度随结晶度提高而加大,如70%结晶度的PP,其密度为0.896,当结晶度增至95%时则密度增至o.903。

(2)拉伸强度结晶度高,拉伸强度高。

如结晶度70%的聚丙烯其拉伸强度为27.5mpa,当结晶度增至95%时,则拉伸强度可提高到42mpa。

(3)冲击强度冲击强度随结晶度提高而减小,如70%结晶度的聚丙烯,其缺口冲击强度15.2kgf-cm/cm2,当结晶度95%时,冲击强度减小到4.86kgf-cm/cm2。

(4)热性能结晶度增加有助于提高软化温度和热变形温度。

如结晶度为70%的聚丙烯,载荷下的热变形温度为125度,而结晶度95%时侧为151度。

刚度是注塑制品脱模条件之一,较高的结晶度会减少制品在模内的冷却周期。

结晶度会给低温带来脆弱性,如结晶度分别为55%,85%,95%的等规聚丙烯其脆化温度分别为0度,10度,20度。

(5)翘曲结晶度提高会使体积减小,收缩加大,结晶型材料比非结晶型材料更易翘曲,这是因为制品在模内冷却时,由于温度上的差异引起结晶度的差异,使密度不均,收缩不等,导致产生较高的内应力而引起翘曲,并使耐应力龟裂能力降低。

塑胶产品内应力研究与消除方法之欧阳道创编

塑胶产品内应力研究与消除方法之欧阳道创编

塑胶产品内应力研究与消除方法一1.注塑制品一个普遍存在的缺点是有内应力。

内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因,也是影响制件光学性能、电学性能、物理力学性能和表观质量的重要因素。

因此找出各种成型因素对注塑制品内应力影响的规律性,以便采取有效措施减少制件的内应力,并使其在制件断面上尽可能均匀地分布,这对提高注塑制品的质量具有重要意义。

特别是在制件使用条件下要承受热、有机溶剂和其他能加速制件开裂的腐蚀介质时,减少制件的内应力对保证其正常工作具有更加重要的意义。

此外,掌握注塑制品内应力的消除方法和测试方法也很有必要2 内应力的种类高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。

另外,外力使制件产生强迫高弹形变也会在其中形成内应力。

根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。

对注塑制件力学性能影响最大的是取向应力和体积温度应力。

2.1取向应力高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的取向应力。

试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。

2.2体积温度应力体积温度应力是制件冷却时不均匀收缩引起的。

因内外收缩不均而产生的体积温度应力主要靠减少制件内外层冷却降温速率的差别来降低。

这可以通过提高模具温度、降低加工温度来达到。

加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。

模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。

带金属嵌件的塑件成型时,嵌件周围的料层由于两种材料线膨胀系数不等而出现收缩应力,可通过预热嵌件降低应力。

这两种内应力主要是由于收缩不均而产生的,也属于体积温度应力。

2.3与制件体积不平衡有关的应力高分子在模腔内凝固时,甚至在极其缓慢的条件下要使制件在脱模后立即达到其平衡体积,在实际上是不可能的。

第二节 取向效应

第二节 取向效应

第二节取向效应1取向机理聚合物在加工过程中,在力的作用下,流动的大分子链段一定会取向,取向的性质和程度根据取向条件有很大的区别。

按熔体中大分子受力的形式误作用的性质可分为剪切应力作用下的“流动取向”和受拉伸作用下的“拉伸取向”。

按取向结构单元的取向方向,可分单轴和双轴或平面取向。

按熔体温场的稳定性可分等温和非等温流动取向。

也可分结晶和非结晶取向。

聚合物熔体在模腔中的流动是注塑的主要流动过程,熔体在型腔中取向过程,将直接影响制品的质量。

欲理解注塑制品在型腔中成型的机理需了解无定型聚合物的取向机理。

充模时,无定型聚合物熔体是沿型壁流动,熔体流入型腔首先同模壁接触霰成来不及取向的冻结层外壳。

而新料沿着不断增长地凝固层内壁向前流动。

推动波前峰向前移动。

靠近凝固层的分子链,一端被固定凝固层上,而另一端被邻层的分子链沿着流动方向而取向。

由于靠近凝固层助力最大,速度最小;而中心外流动助力最小,速度最大,这样在垂直于流动方向上形成速度梯度;凝固层处的速度梯度最大,中心处的速度梯度最小,因此靠近凝固层的熔体流受剪切作用最强,取向程度最大,而在靠近中心层剪切作用最小,取向也最小,形成小取向层区。

2 取向对制品性能的影响由于非结晶型聚合物的取向是大分子链在应力作用方向上的取向,所以在取向方向的力学性质明显增加,而垂直于取向方向的力学性质却又明显地降低;在取向方向的拉伸强度,断裂伸长率,随取向度增加而提高。

双轴取向的制品其力学性质具有各异性并与两个方向拉伸倍数有关。

双轴取向改变了单轴取向的力学性质。

在通常注塑条件下,注塑制品在流动方向上的拉伸强度大约是垂直方向的确良1~2.9倍,而冲击强度为1~10倍,说明垂直于流动方向上的冲击强度降低很多。

注塑制品的玻璃化转变温度随取向度提高而上升。

有的随取向度高和结晶度的提高,其聚合物的玻璃化温度值可升高~25度。

由于在制品中存在有一定的高弹形秋,一定温度下已取向的分子链段要产生松驰作用:非结晶型聚合物的分子链要重新蜷曲,结晶率与取向度成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塑料结晶取向应力分析第一节结晶效应1、结晶概念聚合物的超分子结构对注塑条件及制品性能的影响非常明显。

聚合物按其超分子结构可分为结晶型和非结晶型,结晶型聚合物的分子链呈有规则的排列,而非结晶态聚合物的分子链呈不规则的无定型的排列。

不同形态表现出不同的工艺性质误物理—机械性质。

一般结晶型聚合物具有耐热性和较高的机械强度,而非结晶型则相反。

分子结构简单,对称性高的聚合物都能生成结晶,如PE等,分子链节虽然大,但分子间的作用力很强也能生成结晶,如POM,PA等。

分子链刚性大的聚合物不易生成结晶,如PC,PSU,PPO等。

评定聚合物结晶形态的标准是晶体形状,大小及结晶度。

2 、聚合物结晶度对制品性能的影响(1)密度. 结晶度高说明多数分子链已排列成有序而紧密的结构,分子间作用力强,所以密度随结晶度提高而加大,如70%结晶度的PP,其密度为0.896,当结晶度增至95%时则密度增至o.903。

(2)拉伸强度结晶度高,拉伸强度高。

如结晶度70%的聚丙烯其拉伸强度为27.5mpa,当结晶度增至95%时,则拉伸强度可提高到42mpa。

(3)冲击强度冲击强度随结晶度提高而减小,如70%结晶度的聚丙烯,其缺口冲击强度15.2kgf-cm/cm2,当结晶度95%时,冲击强度减小到4.86kgf-cm/cm2。

(4)热性能结晶度增加有助于提高软化温度和热变形温度。

如结晶度为70%的聚丙烯,载荷下的热变形温度为125度,而结晶度95%时侧为151度。

刚度是注塑制品脱模条件之一,较高的结晶度会减少制品在模内的冷却周期。

结晶度会给低温带来脆弱性,如结晶度分别为55%,85%,95%的等规聚丙烯其脆化温度分别为0度,10度,20度。

(5)翘曲结晶度提高会使体积减小,收缩加大,结晶型材料比非结晶型材料更易翘曲,这是因为制品在模内冷却时,由于温度上的差异引起结晶度的差异,使密度不均,收缩不等,导致产生较高的内应力而引起翘曲,并使耐应力龟裂能力降低。

(6)光泽度结晶度提高会增加制品的致密性。

使制品表面光泽度提高,但由于球晶的存在会引起光波的散射,而使透明度降低。

3、影响结晶度的因素(1)温度及冷却速度结晶有一个热历程,必然与温度有关,当聚合物熔体温度高于熔融温度时大分子链的热运动显著增加,到大于分子的内聚力时,分子就难以形成有序排列而不易结晶;当温度过低时,分子链段动能很低,甚至处于冻结状态,也不易结晶。

所以结晶的温度范围是在玻璃化温度和熔融温度之间。

在高温区(接近熔融温度),晶核不稳定,单位时间成核数量少,而在低温区(接近玻璃化温度)自由能低,结晶时间长,结晶速度慢,不能为成核创造条件。

这样在熔融温度和玻璃化温度之间存在一个最高的结晶速度和相应的结晶温度。

温度是聚合物结晶过程最敏感性因素,温度相差1度,则结晶速度可能相差很多倍。

聚合物从熔点温度以上降到玻璃化温度以下,这一过程的速度称冷却速度,它是决定晶核存在或生长的条件。

注塑时,冷却速度决定于熔体温度和模具温度之差,称过冷度。

根据过冷度可分以下三区。

①等温冷却区,当模具温度接近于最大结晶速度温度时,这时过冷度小,冷却速度慢,结晶几乎在静态等温条件下进行,这时分子链自由能大,晶核不易生成,结晶缓慢,冷却周期加长,形成较大的球晶。

②快速冷却区,当模具温度低于结晶温度时过冷度增大,冷却速度很快结晶在非等温条件下进行,大分子链段来不及折叠形成晶片,这时高分子松驰过程滞后于温度变化的速度,于是分子链在骤冷下形成体积松散的来不及结晶的无定型区。

例如:当模具型腔表面温度过低时,制品表层就会出现这种情况,而在制品心部由于温度梯度的关系,过冷度小,冷却速度慢就形成了具有微晶结构的结晶区。

③中速成冷却区,如果把冷却模温控制在熔体最大结晶速度温度与玻璃化温度之间,这时接近表层的区域最早生成结晶,由于模具温度较高,有利于制品内部晶核生成和球晶长大。

结晶的也比较完整。

在这一温度区来选择模温对成型制品是有利的,因为这时结晶速率常数大,模温较低,制品易脱模,具注塑周期短。

例如:PETP。

建议模温控制在(140~190度),PA6, PA66,模温控制在(70~120度),PP模温控制在(30~80)这有助于结晶能力提高在注塑中模温的选择应能使结晶度尽可能达到最接近于平衡位置。

过低过高都会使制品结构不稳定,在后期会发生结晶过程在温度升高时而发生变化,引起制品结构的变化。

(2)熔体应力作用,熔体压力的提高,剪切作用的加强都会加速结晶过程。

这是由于应力作用会使链段沿受力方向而取向,形成有序区,容易诱导出许多晶胚,使用权晶核数量增加,生成结晶时间缩短,加速了结晶作用。

压力加大还会影响球晶的尺寸和形状,低压下容易生成大而完整的球晶,高压下容易生成小而不规则的球晶。

球晶大小和形状除与大小有关还与力的形式有关。

在均匀剪切作用下易生成均匀的微晶结构,在直接的压力作用下易生成直径小而不均匀的球晶。

螺杆式注塑机加工时,由于熔体受到很大的剪切力作用,大球晶被粉碎成微细的晶核,形成均匀微晶。

而塞式注塑机相反。

球晶的生成和发展与注塑工艺及设备条件有关。

用温度和剪切速率都能控制结晶能力。

在高剪切速率下得到的PP制品冷却后具有高结晶度的结构,而且PP受剪切作用生成球晶的时间比无剪切作用在静态熔体中生成球晶的时间要减少一半。

对结晶型聚合物来说,结晶和取向作用密切相关,因此结晶和剪切应力也就发生联系;剪切作用将通过取向和结晶两方面的途径来影响熔体的粘度。

从而也就影响了熔体在喷嘴,流道,浇口,型腔中的流动。

根据聚合物取向作用可提前结晶的道貌岸然理,在注塑中提高注射压力和注射速率而降低熔体粘度的办法为结晶创造条件。

当然,应以熔体不发生破裂为限。

在注塑模具中发生结晶过程的重要特点是它的非等温性。

熔体进入模具时,接近表面层先生成小球晶,而内层生成大的球晶;浇口附近温度高,受热时间长结晶度高,而远离浇口处因冷却快,结晶度低,所以造成制品性能上的不均匀性。

第二节取向效应1、取向机理聚合物在加工过程中,在力的作用下,流动的大分子链段一定会取向,取向的性质和程度根据取向条件有很大的区别。

按熔体中大分子受力的形式误作用的性质可分为剪切应力作用下的“流动取向”和受拉伸作用下的“拉伸取向”。

按取向结构单元的取向方向,可分单轴和双轴或平面取向。

按熔体温场的稳定性可分等温和非等温流动取向。

也可分结晶和非结晶取向。

聚合物熔体在模腔中的流动是注塑的主要流动过程,熔体在型腔中取向过程,将直接影响制品的质量。

欲理解注塑制品在型腔中成型的机理需了解无定型聚合物的取向机理。

充模时,无定型聚合物熔体是沿型壁流动,熔体流入型腔首先同模壁接触霰成来不及取向的冻结层外壳。

而新料沿着不断增长地凝固层内壁向前流动。

推动波前峰向前移动。

靠近凝固层的分子链,一端被固定凝固层上,而另一端被邻层的分子链沿着流动方向而取向。

由于靠近凝固层助力最大,速度最小;而中心外流动助力最小,速度最大,这样在垂直于流动方向上形成速度梯度;凝固层处的速度梯度最大,中心处的速度梯度最小,因此靠近凝固层的熔体流受剪切作用最强,取向程度最大,而在靠近中心层剪切作用最小,取向也最小,形成小取向层区。

2、取向对制品性能的影响由于非结晶型聚合物的取向是大分子链在应力作用方向上的取向,所以在取向方向的力学性质明显增加,而垂直于取向方向的力学性质却又明显地降低;在取向方向的拉伸强度,断裂伸长率,随取向度增加而提高。

双轴取向的制品其力学性质具有各异性并与两个方向拉伸倍数有关。

双轴取向改变了单轴取向的力学性质。

在通常注塑条件下,注塑制品在流动方向上的拉伸强度大约是垂直方向的确良1~2.9倍,而冲击强度为1~10倍,说明垂直于流动方向上的冲击强度降低很多。

注塑制品的玻璃化转变温度随取向度提高而上升。

有的随取向度高和结晶度的提高,其聚合物的玻璃化温度值可升高~25度。

由于在制品中存在有一定的高弹形秋,一定温度下已取向的分子链段要产生松驰作用:非结晶型聚合物的分子链要重新蜷曲,结晶率与取向度成正比。

所以收缩程度是取向程度的反映。

线膨胀系数也将随取向度而变化;在垂直于流动方向线膨胀系数比取向方向约大3倍。

取向后的大分子被拉长,分子之间的作用力增加,发生“应力硬化”现象,表现了注塑制品模量提高的现象。

“冻结取向”越大,则越容易发生应力松驰,制品收缩也越大。

所以制品收缩反映了取向的程度。

3、影响制品取向的因素在注塑加工中,聚合物熔体的取向过程可分两个阶段进行。

第一阶段是充模阶段,这时流动的特点是:熔体压力低,剪切速率大,模壁处的物料在快速冷却条件丐进行。

这一阶段聚合物熔体的粘度主要是温度和剪切速率的函数。

第二阶段是保压阶段。

其特点是剪切速率低,压力高,温度逐渐下降。

聚合物熔体的粘度主要依赖于温度和注射压力,但对取向影响主要是熔体加工温度。

对结晶影响主要是模具温度。

取向即与剪切或拉伸作用有关,也与大分子链的自由能有关。

根据这种机理,控制取向的条件有以下因素。

(1)物料温度和模具温度增高都会使取向效自学成才降低。

因为熔体升高时粘度会降低。

如果熔体加工温度高它和凝固温度之间的温度域加宽,松驰时间加长,容易解取向。

非结晶型聚合物的松驰时间是从加工温度降至玻璃化温度的时间,而对结晶型聚合物是加工温度至熔化温度的时间,由于熔点温度高于玻璃化温度,显然非结晶型聚合物松驰时间要长于结晶型聚合物。

因此加工结晶型聚合物冷却速度大,松驰过程短。

容易产生冻结取向。

而非结晶型聚合物冷却速度慢,松驰过程长容易解取向,取向效果将减小。

(2)注射压力增加可提高熔体的剪切自学成才力和剪切速率,有助于加速高分子的取向效应。

因此,注射压力与保压压力的提高都会使结晶与取向作用加强,制品的密度将随保压压力的升高而讯速增长。

(3)浇口封闭时间会影响取向效应。

如果熔体流动停止后,大分子的热运动仍较强烈,会使已取向的单元又发生松驰,产生解取向的效应。

采用大的浇口由于冷却得慢,封闭时间延长,熔体流动时间延长增加了取向效果,尤其在浇口处的取向更为明显,所以直浇口比点浇口更容易维持取向效应。

(4)模具温度较低时,冻结取向效应提高。

而解取向作用减小。

(5)关于充模速度对制品取向的影响。

快速充模会引起表面部位的高度取向,但内部取向小,因为在一定温度条件下,快速充模会维持其制品心部在较高的温度下冷却,使冷却时间加长,高分子松驰时间延长使解取向能力加强,所以心部取向程度反而比表层的小。

在注射温度相同条件下,慢速充模会延长流动时间,实际熔体温度要降低,剪切力要增加。

这时熔体的实际温度与玻璃化温度或熔点的区间要比快速充模区间小,则应力松驰时间也短,所以解取向作用小;另一方面慢速充模熔体的温度比快速充模时来得低些,解取向作用减小,而取向作用会增加。

就制品心部的结构形态而言,快速充模会引起较小的取向,而慢速充模反而会引起大的取向。

相关文档
最新文档