由2014全国1卷高考压轴题想到函数与导数专题的一种解法
2014年高考导数压轴题汇编解析
2014年高考导数压轴题汇编1.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ; 当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . (2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减.则g (x )不可能恒为正,也不可能恒为负.故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点; 当a ≥e 2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意. 所以12<a <e 2. 此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0.又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增.所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).2.[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *.(1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立.②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x .所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立.(2)方法一:先用数学归纳法证明a n >c 1p. ①当n =1时,由题设知a 1>c 1p成立. ②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立. 由a n +1=p -1p a n +c p a 1-p n易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c pa -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p =⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p · 1p ⎝⎛⎭⎫ca p k -1=ca p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立. 综合①②可得,对一切正整数n ,不等式a n >c 1p均成立. 再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n<1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *. 方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c , 所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p. ①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p, 故当n =1时,不等式a n >a n +1>c 1p成立. ②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p), 即有a k +1>a k +2>c 1p, 所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立. 3.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,故g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x .故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c>1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立.令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x. 所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0.即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法二:(1)同方法一.(2)同方法一.(3)对任意给定的正数c ,取x 0=4c , 由(2)知,当x >0时,ex >x 2,所以e x =e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22, 当x >x 0时,e x >⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法三:(1)同方法一.(2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=-1<0,即13x 3<e x . 取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .4.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式;(2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x 1+x(x ≥0). (1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x 1+2x , g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x,结论成立. ②假设n =k 时结论成立,即g k (x )=x 1+kx. 那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx=x 1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax 1+x恒成立. 设φ(x )=ln(1+x )-ax 1+x(x ≥0), 则φ′(x )=11+x -a (1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增,又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax 1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )<0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax 1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+n n +1, 比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n . 下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立. ②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1). 那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2), 即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12, ln 3-ln 2>13, ……ln(n +1)-ln n >1n +1, 上述各式相加可得ln(n +1)>12+13+…+1n +1, 结论得证.方法三:如图, x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+n n +1是图中所示各矩形的面积和,∴12+23+…+n n +1> x x +1d x = ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.5.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln x x的单调区间;(2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln x x ,所以f ′(x )=1-ln x x 2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增;当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π. 于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中.由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln e e . 由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3; 由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3. 综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3.又由(2)知,ln ππ<ln e e ,得πe <e π. 故只需比较e 3与πe 和e π与π3的大小.由(1)知,当0<x <e 时,f (x )<f (e)=1e, 即ln x x <1e . 在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-e π.① 由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3e π>6-e>π,即3ln π>π, 所以e π<π3.综上可得,3e <e 3<πe <e π<π3<3π,即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π.6.[2014·湖南卷] 已知常数a >0,函数f (x )=ln(1+ax )-2x x +2. (1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.22.解:(1)f ′(x )=a 1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*) 当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增.当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去. 当x ∈(0,x 1)时,f ′(x )<0;当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减,在区间(x 1,+∞)上单调递增.综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝ ⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增. (2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-a a ,且由f (x )的定义可知, x >-1a且x ≠-2, 所以-21-a a >-1a ,-21-a a ≠-2, 解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点. 而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2. 令2a -1=x .由0<a <1且a ≠12知, 当0<a <12时,-1<x <0; 当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x 2<0, 因此,g (x )在区间(-1,0)上单调递减,从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0. (ii)当0<x <1时,g (x )=2ln x +2x-2, 所以g ′(x )=2x -2x 2=2x -2x 2<0, 因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0. 综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.7.[2014·全国大纲卷] 函数f (x )=ln(x +1)-ax x +a (a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2. 22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2. (i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数;若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数. (iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数;若x ∈(0,a 2-2a ),则f ′(x )<0,所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数.(2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数.当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2x x +2(x >0). 又由(1)知,当a =3时,f (x )在[0,3)是减函数.当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3x x +3(0<x <3). 下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立.根据(i)(ii)知对任何n ∈结论都成立.8.[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.21.解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2. (2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x , 则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ), 所以当x >0时,g (x )>h (x ),即f (x )>1.9.[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x . (1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001). 21.解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立, 所以f (x )在(-∞,+∞)上单调递增. (2)g (x )=f (2x )-4bf (x )=e 2x -e -2x -4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e-2x-2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2).(i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693.10.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.20.解:(1)函数y =f (x )的定义域为(0,+∞), f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点. 当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22.11.[2014·天津卷] 设f (x )=x -a e x (a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2. (1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大. 20.解:(1)由f (x )=x -a e x ,可得f ′(x )=1-a e x .下面分两种情况讨论:(i)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (ii)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).(2)证明:由f (x )=x -a e x =0,有a =x e x .设g (x )=xe x ,由g ′(x )=1-x e x ,知g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.并且,当x ∈(-∞,0]时,g (x )≤0; 当x ∈(0,+∞)时,g (x )>0.由已知,x 1,x 2满足a =g (x 1),a =g (x 2).由a ∈(0,e -1)及g (x )的单调性,可得x 1∈(0,1),x 2∈(1,+∞).对于任意的a 1,a 2∈(0,e -1),设a 1>a 2,g (ξ1)=g (ξ2)=a 1,其中0<ξ1<1<ξ2;g (η1)=g (η2)=a 2,其中0<η1<1<η2.因为g (x )在(0,1)上单调递增,所以由a 1>a 2,即g (ξ1)>g (η1),可得ξ1>η1.类似可得ξ2<η2. 又由ξ1,η1>0,得ξ2ξ1<η2ξ1<η2η1, 所以x 2x 1随着a 的减小而增大.(3)证明:由x 1=a e x 1,x 2=a e x 2,可得ln x 1=ln a +x 1,ln x 2=ln a +x 2.故x 2-x 1=ln x 2-ln x 1=ln x 2x 1.设x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=ln t ,解得x 1=ln t t -1,x 2=t ln tt -1,所以x 1+x 2=(t +1)ln t t -1.① 令h (x )=(x +1)ln x x -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x(x -1)2.令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎫x -1x 2.当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0,由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增.因此,由①可得x 1+x 2随着t 的增大而增大.而由(2),t 随着a 的减小而增大,所以x 1+x 2随着a 的减小而增大.12.[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.22.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8. (ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ), 则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3. 由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立,即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2, 因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.13.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x-cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围. 20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e-2x)=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1. (2)当c =3时,f (x )=e 2x -e -2x-3x ,那么f ′(x )=2e 2x +2e-2x-3≥22e 2x ·2e -2x-3=1>0,故f (x )在R 上为增函数. (3)由(1)知f ′(x )=2e 2x +2e-2x-c ,而2e 2x +2e-2x≥22e 2x ·2e-2x=4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e-2x-c >0,此时f (x )无极值. 当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x-4>0,此时f (x )无极值.当c >4时,令e 2x =t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0.从而f(x)在x=x2处取得极小值.综上,若f(x)有极值,则c的取值范围为(4,+∞).。
2014年高考数学大题中的导数问题浅析
2014年高考数学大题中的导数问题浅析作者:李志忠来源:《中学生数理化·学研版》2015年第01期一、函数、导数、不等式综合在一起,解决单调性、最值等问题解决单调性问题转化为解含参数的一元二次不等式或高次不等式的问题;求解参数的取值范围问题转化为不等式的恒成立、能成立、恰成立来求解.进一步转化求函数的最值或一元二次不等式在给定区间上(或实数集R)的恒成立问题来解决,从而达到考查分类与整合、化归与转化的数学思想.例1 (2014年新课标Ⅱ宁夏卷)已知函数f(x)=ex-e-x-2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)-4bf(x),当x>0时,求b的最大值.解析:(Ⅰ)f′(x)=ex+e-x-2≥0,等号仅当x=0时成立.所以f(x)在(-∞,+∞)上单调递增.(Ⅱ)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(ex-e-x)+(8b-4)x.g′(x)=2[e2x+e-2x-2b(ex+e-x)+(4b-2)]=2(ex+e-x-2)(ex+e-x-2b+2).①当b≤2,g′(x)≥0,等号仅当x=0时成立.所以g(x)在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x>0,g(x)>0.②当b>2时,若x满足2综上,b的最大值为2.二、函数、导数、方程、不等式综合在一起,利用导数的几何意义,解决求函数的解析式、切线方程及与切线方程有关的问题此类问题求单调性的过程就是解一元二次不等式和高次不等式的问题,从而达到考查化归与转化数学思想的目的.例2 (2014年新课标全国卷Ⅰ)设函数f(x)=aexlnx+bex-1x,曲线y=f(x)在点(1,f (1))处的切线为y=e(x-1)+2.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>1.解析:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=aexlnx+axex-bx2ex-1+bxex-1由题意可得f(1)=2,f′(1)=e,故a=1,b=2.(Ⅱ)由(Ⅰ)知,f(x)=exlnx+2ex-1x,从而f(x)>1等价于xlnx>xe-x-2e.设函数g(x)=xlnx,则g′(x)=x+lnx,所以当x∈0,1e时,g′(x)<0,x∈1e,+∞时,g′(x)>0,故g(x)在0,1e上单调递减,在1e,+∞上单调递增,从而g(x)在(0,+∞)上的最小值为g1e=-1e.设函数h(x)=xe-x-2e,则h′(x)=e-x(1-x),所以当x∈(0,1)时,h′(x)>0,当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而g(x)在(0,+∞)上的最小值为h(1)=-1e.综上:当x>0时,g(x)>h(x),即f(x)>1.三、函数、导数、方程、不等式综合在一起,解决恒成立问题此类问题常常借助极值的分布特征,再结合函数的单调性,函数的零点值、端点值,画出原函数的草图来解决.值得强调的是:必须考虑函数的定义域,从而达到考查数形结合的思想.例3 (2014年北京卷)已知函数f(x)=xcosx-sinx,x∈0,π2.(Ⅰ)求证:f(x)≤0;(Ⅱ)若a解析:(Ⅰ)证明:f′(x)=cosx+x(-sinx)-cosx=-xsinx.因为x∈0,π2,所以f′(x)≤0,即f(x)在0,π2上单调递增,所以f(x)在0,π2上的最大值为f(0)=0,所以f(x)≤0.(Ⅱ)一方面令g(x)=sinxx,x∈0,π2,则g′(x)=cosx·x-sinxx2,由(1)可知,g′(x)<0,故g(x)在0,π2上单调递减,从而g(x)>gπ2=2π,故a≤2π,所以amax=2π.令h(x)=sinx-bx,x∈0,π2,则h′(x)=cosx-b.当b≥1时,h′(x)<0,h(x)在x∈0,π2上单调递减,故h(x)所以h(x)=sinx-bx<0恒成立.当b<1时,h′(x)=cosx-b=0在0,π2有唯一解x0,且x∈(0,x0),h′(x)>0.故h(x)在(0,x0)上单调递增,从而h(x)>h(0)=0,即sinx-bx>0sinx>bxsinxx>b与sinxx<b恒成立矛盾.综上:b≥1,故bmin=1.通过以上分析可知:对于这部分知识的学习,要认识到新课程中增加了导数内容,在学习中要明确导数作为一种工具在研究函数的变化率,解决函数的单调性、极值等方面的作用,要全面学习,抓住导数基础知识学习.注意考题的难度逐年增大,要有意识地与解析几何(特别是切线,最值),函数的单调性、函数的极值、最值、二次函数、方程、不等式、代数式的证明等知识进行交汇进行综合训练,特别是精选一些以导数为工具分析和解决一些函数问题、切线问题的典型问题进行训练,提高应用导数知识分析问题和解决问题的能力.作者单位:甘肃省白银市靖远一中。
2014年高考数学一轮复习 热点难点精讲精析 2.11导数及其应用
2014年高考一轮复习热点难点精讲精析:2.11导数及其应用一、变化率与导数、导数的运算 (一)利用导数的定义求函数的导数 1、相关链接(1)根据导数的定义求函数()y f x =在点0x 处导数的方法: ①求函数的增量00()()y f x x f x ∆=+∆-;②求平均变化率00()()f x x f x y x x+∆-∆=∆∆; ③得导数00()lim x yf x x∆→∆'=∆,简记作:一差、二比、三极限。
(2)函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数。
2、例题解析 〖例1〗求函数x=1处的导数。
解析:y∆=-=x 0x 0x 1y x y 1limlim[.x 21y |.2∆→∆→==∆=∆∆==-∆∴'=-〖例2〗一质点运动的方程为283s t =-。
(1) 求质点在[1,1+Δt]这段时间内的平均速度;(2) 求质点在t=1时的瞬时速度(用定义及求求导两种方法)分析(1)平均速度为s t∆∆; (2)t=1时的瞬时速度即283s t =-在t=1处的导数值。
解答:(1)∵283s t =-∴Δs=8-3(1+Δt)2-(8-3×12)=-6Δt-3(Δt)2,63sv t t-∆==--∆∆. (3) 定义法:质点在t=1时的瞬时速度00lim lim(63)6t t sv t t ∆→∆→∆==--∆=-∆(4) 求导法:质点在t 时刻的瞬时速度2()(83)6v s t t t ''==-=,当t=1时,v=-6×1=-6.注:导数的物理意义建立了导数与物体运动的瞬时速度之间的关系。
对位移s 与时间t 的关系式求导可得瞬时速度与时间t 的关系。
根据导数的定义求导数是求导数的基本方法,请按照“一差、二比、三极限”的求导步骤来求。
(二)导数的运算 1、相关链接(1)运用可导函数求导法则和导数公式,求函数()y f x =在开区间(a,b )内的导数的基本步骤: ①分析函数()y f x =的结构和特征; ②选择恰当的求导法则和导数公式求导; ③整理得结果。
2014高考函数与导数汇编及详细解答
2014高考函数与导数解答题汇编1.[2014·江西卷18] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19.2.[2014·安徽卷18] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 18.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值;当1<a <4时,f (x )在x =0处取得最小值.3.[2014·北京卷18] 已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.18.解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎡⎦⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎝⎛⎭⎫0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎫0,π2上的情况如下:因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.4.[2014·福建卷20] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2. 当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,e x>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .5.[2014·湖北卷22] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx 的单调区间;(2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π. 于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中.由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln ee .由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3;由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3.综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3.又由(2)知,ln ππ<ln e e ,得πe <e π.故只需比较e 3与πe 和e π与π3的大小.由(1)知,当0<x <e 时,f (x )<f (e)=1e ,即ln x x <1e.在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-eπ.①由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3eπ>6-e>π,即3ln π>π,所以e π<π3.综上可得,3e <e 3<πe <e π<π3<3π,即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π.6.[2014·湖南卷22] 已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.(1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.解:(1)f ′(x )=a1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*)当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增.当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去.当x ∈(0,x 1)时,f ′(x )<0;当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减,在区间(x 1,+∞)上单调递增.综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增.(2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-aa,且由f (x )的定义可知,x >-1a且x ≠-2,所以-21-a a >-1a ,-21-a a ≠-2,解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点.而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2.令2a -1=x .由0<a <1且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(-1,0)上单调递减, 从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0.(ii)当0<x <1时,g (x )=2ln x +2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0.综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.7.[2014·江苏卷19] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.8.[2014·辽宁卷] 已知函数f (x )=(cos x -x )(π+2x )-83(sin x +1),g (x )=3(x -π)cos x -4(1+sin x )ln⎝⎛⎭⎫3-2x π.证明:(1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1<π.21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=-(1+sin x )·(π+2x )-2x -23cos x <0,函数f (x )在⎝⎛⎭⎫0,π2上为减函数.又f (0)=π-83>0,f ⎝⎛⎭⎫π2=-π2-163<0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)记函数h (x )=3(x -π)cos x 1+sin x-4ln ⎝⎛⎭⎫3-2πx ,x ∈⎣⎡⎦⎤π2,π.令t =π-x ,则当x ∈⎣⎡⎦⎤π2,π时,t ∈⎣⎡⎦⎤0,π2.记u (t )=h (π-t )=3t cos t 1+sin t -4 ln ⎝⎛⎭⎫1+2πt ,则u ′(t )=3f (t )(π+2t )(1+sin t ). 由(1)得,当t ∈(0,x 0)时,u ′(t )>0,当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )<0.故在(0,x 0)上u (t )是增函数,又u (0)=0,从而可知当t ∈(0,x 0]时,u (t )>0,所以u (t )在(0,x 0]上无零点.在⎝⎛⎭⎫x 0,π2上u (t )为减函数,由u (x 0)>0,u ⎝⎛⎭⎫π2=-4ln 2<0,知存在唯一t 1∈⎝⎛⎭⎫x 0,π2,使u (t 1)=0,故存在唯一的t 1∈⎝⎛⎭⎫0,π2,使u (t 1)=0.因此存在唯一的x 1=π-t 1∈⎝⎛⎭⎫π2,π,使h (x 1)=h (π-t 1)=u (t 1)=0.因为当x ∈⎝⎛⎭⎫π2,π时,1+sin x >0,故g (x )=(1+sin x )h (x )与h (x )有相同的零点,所以存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.因为x 1=π-t 1,t 1>x 0,所以x 0+x 1<π.9.[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.21.解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e.设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ),所以当x >0时,g (x )>h (x ),即f (x )>1.10.、[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x . (1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).21.解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立, 所以f (x )在(-∞,+∞)上单调递增.(2)g (x )=f (2x )-4bf (x )=e 2x -e -2x -4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e -2x -2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2).(i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693.11.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a (a >1).(1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数. (iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立.根据(i)(ii)知对任何n ∈N *结论都成立.12.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 20.解:(1)函数y =f (x )的定义域为(0,+∞),f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点.当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 13.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x1+x ,g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立. (2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2,当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x 1+x ,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立. 方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x 1+x,x >0.令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n xx +1d x =⎠⎛0n ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1),结论得证.14.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1. 当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).15.、[2014·天津卷] 设f (x )=x -a e x (a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2. (1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大.20.解:(1)由f (x )=x -a e x ,可得f ′(x )=1-a e x . 下面分两种情况讨论:(i)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (ii)a >0时,由f ′(x )=0,得x =-ln a .当x 变化时,f ′(x )这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).(2)证明:由f (x )=x -a e x =0,有a =x e x .设g (x )=xe x ,由g ′(x )=1-x e x ,知g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.并且,当x ∈(-∞,0]时,g (x )≤0; 当x ∈(0,+∞)时,g (x )>0.由已知,x 1,x 2满足a =g (x 1),a =g (x 2).由a ∈(0,e -1)及g (x )的单调性,可得x 1∈(0,1),x 2∈(1,+∞).对于任意的a 1,a 2∈(0,e -1),设a 1>a 2,g (ξ1)=g (ξ2)=a 1,其中0<ξ1<1<ξ2;g (η1)=g (η2)=a 2,其中0<η1<1<η2.因为g (x )在(0,1)上单调递增,所以由a 1>a 2,即g (ξ1)>g (η1),可得ξ1>η1.类似可得ξ2<η2.又由ξ1,η1>0,得ξ2ξ1<η2ξ1<η2η1,所以x 2x 1随着a 的减小而增大.(3)证明:由x 1=a e x 1,x 2=a e x 2,可得ln x 1=ln a +x 1,ln x 2=ln a +x 2.故x 2-x 1=ln x 2-ln x 1=ln x 2x 1.设x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=ln t ,解得x 1=ln t t -1,x 2=t ln tt -1,所以x 1+x 2=(t +1)ln t t -1.① 令h (x )=(x +1)ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x (x -1)2. 令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎫x -1x 2.当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0,由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增.因此,由①可得x 1+x 2随着t 的增大而增大.而由(2),t 随着a 的减小而增大,所以x 1+x 2随着a 的减小而增大.16.[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.22.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8. (ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ), 则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3.由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2, 因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.17.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x )=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1.(2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立. 下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x -c >0,此时f (x )无极值.当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2. 当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).。
2014年全国高考新课标理科卷导数题的解法探究
2014年全国高考新课标理科卷导数题的解法探究一、2014新课标卷一导数题第二问: 证明:12()ln 1x xe f x e x x -=+>. 分析:考虑到()f x 的导数()f x '是很难讨论其符号的,所以凭着经验应当知道,ln x x 、ln x x 、x xe 和x x e等是很好讨论其导数的符号的,从而容易求出它们的最值,所以考虑重新构造两个函数. 证明:首先两边同除以x e :21ln x x xe e +>, 然后同乘以x 有2ln x x x x e e +>, 令2()ln g x x x e =+,()x x h x e =, 因为()ln 1g x x '=+,所以当10x e<<时,()0g x '<,()g x 是减函数, 当1x e>时,()0g x '>,()g x 是增函数, 所以min 11121()()ln g x g e e e e e==+=; 因为1()x x h x e-'=,所以当01x <<时,()0h x '>,()h x 是增函数, 当1x >时,()0h x '<,()h x 是减函数, 所以max 11121()()ln h x h e e e e e==+=. 注意到(),()g x h x 的最值不同时取到,所以()()g x h x >, 即12()ln 1x xe f x e x x -=+>. 二、2014新课标卷二导数题第二、三问:已知函数()2x x f x e e x -=--.(2)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值.(3)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).解:(2)22()44(2)x x x x g x e e x b e e x --=-----,()222(2)4(2)x x x x g x e e b e e --'=+--+-,令x x e e t -+=,则2222x x e e t -+=-,所以2()2(4)4(2)(2)(22)(2)[(22)]g x t b t t t b t t b '=---=-+-=---,注意到2(0)x x t e e x -=+>=>,所以当222b -≤即2b ≤时,()0g x '≥,()g x 为增函数,所以()(0)0g x g >=, 当2b >时,存在00x >,当0(0,)x x ∈时,()0g x '<,()g x 为减函数,所以()(0)0g x g <=,不合题意,所以b 的最大值2.(3)考虑4(g e e b e e --=----1322ln 24ln 2)(42)ln 2222b b =----=-+-,由(1)知道,当2b =时,3(ln 2(422)ln 202g =-+⨯->,所以 1.54 1.4142 1.5ln 20.692866⨯->>=, 那么,下一步如何再取b 的值呢?这是不可以随意取的,我们不得不考虑第二问中的0x x =这个分界点满足的条件,可以考虑x =满足(22)0x x e e b -+--≤,考虑到满足等号成立的b 的值,(22)0e e b ----=,解得14b =+,则由(1)知,当1b =+时,31)[41)2]ln 202g =-+⨯+-<,所以1818 1.4143ln 20.69342828+<==, 所以0.6928ln 20.6934<<,所以ln 20.693=.。
2014高考理科数学必考点解题方法秘籍函数与导数1
2014高考理科数学必考点解题方法秘籍:函数与导数1题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=⇔x g x f x h 恒成立;参考例4; 例1.已知函数321()23f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间; (Ⅱ)若当[1, 3]x ∈时,22()3f x a ->恒成立,求a 的取值范围.例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P .(Ⅰ)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式; (Ⅱ)若3>a ,求函数)(x f y =的单调区间.例3.设22(),1x f x x =+()52(0)g x ax a a =+->。
(1)求()f x 在[0,1]x ∈上的值域;(2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。
例4.已知函数32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。
2014年高考“函数与导数”专题分析
践 与反 思 ,现 提炼 出导 数 问题 的基 本 类 型 为 4种 ,导 内容 . 数 问题 的常见 类 型为 6种 ,具 体如 下 .
收 稿 日期 :2 0 1 4 — 0 7 — 2 8
下 面列 举一 些今 年 的高考 题x  ̄ , J t U J n 以说 明.
作 者简介 -徐 波 ( 1 9 6 4 ~) ,男,四川 大竹人 , 中学特级教 师 ,全 国模 范教 师,新疆数 学学会理 事 , 乌鲁木 齐市学科 带头人 ,鸟
( 不 包括 上 海) 的 3 5份 高 考试 卷 中 “ 函数 与 导数 ”试
题 ,提炼 整 理 如 下 .
一
( 3 ) 极 值 点 问题 :探 究 极 值 点 的有 关 属 性 ,或 是
已知极值点的范同求参数的有关范围问题. 今年有 3 份
试 卷考 查 了这个 内容 .
( 4 ) 恒 成 立 问题 ( 厂 ( )≥ m 型 、厂 ( )≥ 妣 型 、
试 题 研 究
0 l }0 ~ j
摘 要 :2 0 1 4年 高考 “ 函数 与 导数 ” 试题 ,考 查 的 内容 和 问题 类 型 更加 趋 于稳 定 ,重 点 落在 对 核 心 概 念
课 本上 以及 高考 中 ,导数 问题 的基本 类 型有 4种 : ( I ) 用 导数 求 切线 ( 求 曲线 上 一 点处 的切 线 方程 ;
鲁木 齐市数 学名师工作室主持人 ,主要从事 中学数 学教 育与教 学研 究. 2 0" / 4:  ̄ Nhomakorabea8期
韭 型刻圜
试 题 研 究
i 、 } {
例 1 ( 新 课 程 全 国 Ⅱ卷 ・ 理8 ) 设 曲 线 Y= 一
2014高考数学专题复习——函数与导数问题解题方法探寻及典例剖析[1]
函数与导数问题解题方法探寻及典例剖析【考情分析】【常见题型及解法】1. 常见题型求函数的解析式2. 在解题中常用的有关结论(需要熟记): x I ,(f 0x I ∃∈,使得3. 解题方法规律总结联想基本不定式(上述结论中的13),确定要证明的函数不定式(往往与所给的函数及上一问所得到的结论有关),再对自变量x赋值,令x分别等于1、2、…….、n,把这些不定式累加,可得要证的不定式。
)5. 关于方程的根的个数问题:一般是构造函数,有两种形式,一是参数含在函数式中,二是参数被分离,无论哪种形式,都需要研究函数在所给区间上的单调性、极值、最值以及区间端点的函数值,结合函数图象,确立所满足的条件,再求参数或其取值范围。
【基本练习题讲练】【例1】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()【答案】B【解析】在选项B中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.【点评】函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.【例2】(山东高考题)已知定义在R上的奇函数)(xf,满足(4)()f x f x-=-,且在区间A B C D[0,2]上是增函数,若方程()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=【例3】若1x 是方程lg 3x x +=的解,2x 是310=+x x 的解,则21x x +的值为( )A . 23B .32C .3D .31【例4】若函数()(01)x f x a x a a a =-->≠且有两个零点,则实数a 的取值范围是 .【例5】已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1()3f 的x 取值范围是( )(A )(1,2) (B) [1,2) (C)(1,2) (D) [1,2)【例6】某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?购地总费用)(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积【典型题剖析及训练】【例1】已知a、b为常数,且a≠0,函数()lnf x ax b ax x,()2f e。
高考考前复习:2014年高考数学押题复习技巧_答题技巧
高考考前复习:2014年高考数学押题复习技巧_答题技巧高考考前复习:2014年高考数学押题复习技巧【摘要】查字典数学网为大家带来高考考前复习:2014年高考数学押题复习技巧,希望大家喜欢下文!函数与导数押题范围:函数主要考查函数与方程、函数与数列、函数与不等式的相互渗透和交叉。
抽象函数问题、函数与向量结合、函数与概率统计结合。
导数主要考查导数的定义、导数的几何意义、导数的物理意义、求导的公式和求导的法则、函数的极值,求函数的单调区间,证明函数的增减性。
这些部分都以简单、中等题出现。
难题部分将导数与不等式、函数、解析几何等知识有机地结合在一起,设计综合试题。
有了这些我们整理出来的内容做指引,那么我们很容易将题归类,容易根据自己的优缺点重点去押题,去突破。
再说技巧,过于特殊的技巧,针对性过于特殊的技巧或技巧就不要考虑了,奉劝诸位,一天一道题、一天一个思想只能害了你。
只有一天一类题、思想归类才是做题的根本。
如我们玖久教育提倡从题目信息角度出发式的做题方法、思维方式,就属于放在哪里都能用上的。
我们提倡同学们这阶段复习的方法和技巧仍旧是基础知识点的理解,而不是简单的记背。
对概念形成应用上的认识。
知道公式定理怎么来、怎么去才是做题的根本。
在解答选择题方面上,虽然讲究的技巧是不择手段,但从根源上说是利用题目的一切信息,尤其是选项比较。
在解答题方面上,常规方法为主,大家常用的有数形结合、判别式、数学归纳法、构造同分母等等。
这些虽然细致,但是用惯了就成。
整体的解题思维希望大家统一为题目让干什么,我们做什么,完全跟着题目走,尽量少用知识点去套用。
当然,一眼看出可以套用的,不用就傻了。
这段时间,我们简单阐述一下数学的考点以及押题的方向,给同学们做个参考。
函数与导数押题方向见上文,通用备考方法和技巧:数形结合、取值范围、极值点概率与统计(偏重文科押题方向,简单、中等题,难题不出):涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法。
由全国1卷高考压轴题想到函数与导数专题的一种解法
由2014全国1卷高考压轴题想到函数与导数专题的一种解法
一般的函数与导数压轴题常规思路是将所给的函数直接求导,然后根据函数的单调性就可以证明题目要证的式子了。
2014年的第21题考查的不是这种思路,而是一种更为复杂的方法。
这道题目如果直接对()f x 求导就会发现很难根据导函数来判断函数的单调性,所以我们采用的是将()f x 分解为()1()()f x g x h x -=-,这样只需要证明min max ()()g x h x >就行了,那么,现在关键的问题就是如何划分()g x 和()h x ,我的方法是试探法,本题的()f x 只有3项,而且还有一项是常数,所以就很容易划分了,常数项放在()g x 或者()h x 都行,如果有更多的项,那就要试探了。
最后需要注意的就是使用这个方法的前提了,那就是常规思路行不通的情况我们才“出此下策”。
2014高考数学典型试题解析3-1导数及导数的运算
一、选择题1.(文)曲线y=-x3+3x2在点(1,2)处的切线方程为()A.y=3x-1 B.y=-3x+5C.y=3x+5 D.y=2x[答案] A[解析]该题考查导数的几何意义,注意验证点在曲线上.y′=-3x2+6x在(1,2)处的切线的斜率k=-3+6=3,∴切线方程为y-2=3(x-1).即y=3x-1.(理)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1[答案] A[解析]本题考查了导数的概念、运算以及导数的几何意义.y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1.2.已知f0(x)=cos x,f1(x)=f′0(x),f2(x)=f′1(x),f3(x)=f′2(x)…,f n+1(x)=f′n(x),n∈N+,则f2013(x)=()A.sin x B.-sin xC.cos x D.-cos x[答案] B[解析] f 1(x )=-sin x ,f 2(x )=-cos x ,f 3(x )=sin x , f 4(x )=cos x ,f 5(x )=-sin x …,故f n (x )的周期为4, ∴f 2013(x )=f 1(x )=-sin x .3.(文)已知函数f (x )在x =1处的导数为-12,则f (x )的解析式可能为( )A .f (x )=12x 2-ln x B .f (x )=x e x C .f (x )=sin x D .f (x )=1x +x[答案] D[解析] 本题考查导数的运算,据导数的运算公式知只有D 符合题意.(理)若函数f (x )=e x sin x ,则此函数图像在点(4,f (4))处的切线的倾斜角为( )A.π2 B .0 C .钝角 D .锐角[答案] C[解析] f ′(x )=e x sin x +e x cos x =e x(sin x +cos x )=2e xsin(x +π4).f ′(4)=2e 4sin(4+π4)<0,则此函数图像在点(4,f (4))处的切线的倾斜角为钝角,故选C.4.若函数f (x )=12sin2x +sin x ,则f ′(x )是( ) A .仅有最小值的奇函数 B .仅有最大值的偶函数C .既有最大值又有最小值的偶函数D .非奇非偶函数 [答案] C[解析] f (x )=sin x cos x +sin x ,则f ′(x )=cos x cos x +sin x ·(-sin x )+cos x =cos 2x -sin 2x +cos x =2cos 2x +cos x -1,显然f ′(x )是偶函数,又因为cos x ∈[-1,1],所以函数f ′(x )既有最大值又有最小值.5.(文)若曲线y =x-12在点(a ,a-12)处的切线与两个坐标轴围成的三角形的面积为18,则a =( )A .64B .32C .16D .8[答案] A[解析] 求导,得y ′=-12x- 32(x >0),所以曲线y =x-12在点(a ,a - 12)处的切线l 的斜率k =y ′|x =a =-12a-32,由点斜式,得切线l的方程为y -a -12=-12a- 32(x -a ),易求得直线l 与x 轴,y 轴的截距分别为3a ,32a - 12 ,所以直线l 与两个坐标轴围成的三角形面积S =12×3a ×32a - 12 =94a 12 =18,解得a =64.(理)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12 C.23 D .1[答案] A [解析]本小题考查的内容是导数的几何意义. y ′=(e -2x +1)′=-2·e -2x ,令x =0,y ′=-2,∴k =-2,∴切线方程为y =-2x +2.如下图,联立⎩⎨⎧y =-2x +2y =x,∴⎩⎪⎨⎪⎧x =23y =23,∴S =12×1×23=13.6.(文)若函数f (x )=13x 3-f ′(-1)x 2+x +5,则f ′(1)的值为( ) A .2 B .-2 C .6 D .-6[答案] C[解析] ∵f (x )=13x 3-f ′(-1)x 2+x +5, ∴f ′(x )=x 2-2f ′(-1)x +1,∴f ′(-1)=(-1)2-2f ′(-1)(-1)+1, 解得f ′(-1)=-2.∴f ′(x )=x 2+4x +1,∴f ′(1)=6.(理)设函数f (x )=cos(3x +φ)(-π<φ<0),若f (x )+f ′(x )是偶函数,则φ的值是( )A.π3B.π6 C .-π3 D .-π6 [答案] C[解析] f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2cos ⎝ ⎛⎭⎪⎫3x +φ+π3,显然当φ=-π3时,f (x )+f ′(x )=2cos 3x 是偶函数.二、填空题7.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为________.[答案] ln2-1[解析] 由已知条件可得k =(ln x )′=1x =12,得切点的横坐标x =2,切点坐标为(2,ln2),由点(2,ln2)在切线y =12x +b 上可得b =ln2-1.8.过原点作曲线y =e x 的切线,则切点的坐标为________,切线的斜率为________.[答案] (1,e) e[解析] 设切点坐标为(x 0,e x0), 则切线的斜率k =y ′|x =x 0=e x0. 切点与原点连线的斜率k ′=e x0x 0.∵k =k ′,∴e x 0=e x0x 0.∴x 0=1,∴切点为(1,e),k =e.三、解答题9.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.[分析] (1)在点P 处的切线以点P 为切点.(2)过点P 的切线,点P 不一定是切点,需要设出切点坐标. [解析] (1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′⎪⎪⎪x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′⎪⎪x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0.∴x 30+x 20-4x 20+4=0.∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0.∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2. 故所求的切线方程为4x -y -4=0或x -y +2=0.一、选择题1.(文)曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12 B.12 C .-22 D.22[答案] B[解析] 本题考查导数几何意义,求导公式. ∵y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,∴y ′|x =π4=12. (理)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率...是-10ln2(太贝克/年),则M (60)=( ) A .5太贝克 B .75ln2太贝克 C .150ln2太贝克 D .150太贝克[答案] D[解析] 本题考查导数在生活中的应用. M ′(t )=-M 030ln2·2-t30,∴M ′(30)=-M 060ln2=-10ln2,∴M 0=600,∴M (t )=600·2-t30,∴M (60)=600·2-2=150.2.(文)若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,经过点P 的切线的斜倾角为α,则角α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2 B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,πC.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎦⎥⎤π2,2π3 [答案] B[解析] y ′=3x 2-6x +3-3=3(x -1)2-3≥- 3 ∴tan α≥-3 α∈(0,π) ∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π,故选B.(理)已知函数f (x )=x (x -1)(x -2)…(x -100),则f ′(0)=( ) A .0 B .1002 C .200 D .100![答案] D[解析] 解法1:f ′(0)=lim Δx →0f (0+Δx )-f (0)Δx=lim Δx →0Δx (Δx -1)(Δx -2)…(Δx -100)-0Δx=lim Δx →0[(Δx -1)(Δx -2)…(Δx -100)]=(-1)(-2)…(-100)=100!.解法2:∵f ′(x )=[x (x -1)(x -2)…(x -100)]′=x ′[(x -1)(x -2)…(x -100)]+x [(x -1)(x -2)…(x -100)]′ =(x -1)(x -2)…(x -100)+x [(x -1)(x -2)…(x -100)]′, ∴f ′(0)=(-1)(-2)…(-100)+0=100!.解法3:由多项式展开式的性质知,f (x )=a 101x 101+a 100x 100+…+a 2x 2+a 1x +a 0,则f ′(x )=b 100x 100+b 99x 99+…+b 1x +a 1,∴f ′(0)=a 1. 又a 1=(-1)(-2)…(-100)=100!,∴f ′(0)=100!. 二、填空题3.点P 是曲线y =x 2-ln x 上任意一点,则P 到直线y =x -2的距离的最小值是________.[答案]2[解析] 作直线y =x -2的平行线使其与曲线y =x 2-ln x 相切,则切点到直线y =x -2的距离最小.由y ′=2x -1x =1,得x =1,或x =-12(舍去). ∴切点为(1,1),它到直线x -y -2=0的距离为d =|1-1-2|12+(-1)2=22= 2.4.(文)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________.[答案] (-2,15)[解析] ∵y =x 3-10x +3,∴y ′=3x 2-10.由题意,设切点P 的横坐标为x 0,且x 0<0,3x 20-10=2,∴x 20=4,∴x 0=-2,∴y 0=x 30-10x 0+3=15,∴点P 的坐标为(-2,15).(理)若曲线f (x )=ax 2+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.[答案] (-∞,0)[解析] f ′(x )=2ax +1x ,x ∈(0,+∞).∵f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即2ax +1x =0有解,∴a =-12x 2,∴a ∈(-∞,0).三、解答题5.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,求a 的值.[解析] 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32, 当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564, 当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以a =-1或-2564.6.已知函数f (x )=x 3+ax ,g (x )=2x 2+b ,它们的图像在x =1处有相同的切线.(1)求函数f (x )和g (x )的解析式;(2)如果F (x )=f (x )-mg (x )在区间[12,3]上是单调增函数,求实数m的取值范围.[解析] (1)f ′(x )=3x 2+a ,g ′(x )=4x ,由条件知⎩⎨⎧ f (1)=g (1)f ′(1)=g ′(1),∴⎩⎨⎧ 1+a =2+b 3+a =4,∴⎩⎨⎧ a =1,b =0,∴f (x )=x 3+x ,g (x )=2x 2. (2)F (x )=f (x )-mg (x )=x 3+x -2mx 2,∴F ′(x )=3x 2-4mx +1,若F (x )在区间[12,3]上为增函数,则需F ′(x )≥0,即3x 2-4mx +1≥0,∴m ≤3x 2+14x .令h (x )=3x 2+14x ,x ∈[12,3],则h (x )在区间[12,3]上的最小值是h (33)=32,因此,实数m 的取值范围是m ≤32.7.设曲线y =e -x (x ≥0)在点M (t ,e -t )处的切线l 与x 轴、y 轴所围成的三角形面积为S (t ).(1)求切线l 的方程;(2)求S (t )的最大值.[解析] (1)因为f ′(x )=(e -x )′=-e -x ,所以切线l 的斜率为-e -t ,故切线l 的方程为y -e -t =-e -t (x -t ),即e -t x +y -e -t (t +1)=0.(2)令y =0得x =t +1,又令x =0得y =e -t (t +1),∵t ≥0,∴t +1>0,e -t (t +1)>0,∴S (t )=12(t +1)·e -t (t +1)=12(t +1)2e -t ,从而S ′(t )=12e -t (1-t )(1+t ).∵当t ∈(0,1)时,S ′(t )>0,当t ∈(1,+∞)时,S ′(t )<0,所以S (t )的最大值为S (1)=2e .。
2014年高考数学冲刺压轴题解答技巧_答题技巧
2014年高考数学冲刺压轴题解答技巧_答题技巧2014年高考数学冲刺压轴题解答技巧首先同学们要正确认识压轴题压轴题主要出在函数,解几,数列三部分内容,一般有三小题。
记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。
同学们记住:心理素质高者胜!以2009年的上海高考数学卷的压轴题为例,分析其中一半左右分值的易得分部分,谈一谈解题心态。
同学可以再做一下2010年的高考卷最后一题,或者今年二模卷的最后一题,能否拿到比以往更多的分数。
2009年高考数学上海卷23题:第二重要心态:千万不要分心其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。
高考时,你是不可能这么想的。
你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想最后一道题目难不难?不知道能不能做出来我要不要赶快看看最后一题,做不出就去检查前面题目前面不知道做的怎样,会不会粗心错这就是影响你解题的分心,这些就使你不专心。
专心于现在做的题目,现在做的步骤。
现在做哪道题目,脑子里就只有做好这道题目。
现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!第三重要心态:重视审题你的心态就是珍惜题目中给你的条件。
数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。
所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出新条件,步骤(2)将题目结论推导到新结论,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到新条件。
2014年高考导数问题的题型方法盘点
2014年高考导数问题的题型方法盘点新教材引入导数的内容后,拓展了高中数学学习和研究的领域,给传统的中学数学内容注入了生机与活力,也为高中数学解题增添了新的视角,新的方法。
此外,由于导数的工具性和导数的几何意义也使得导数与解析几何、不等式、函数等知识的紧密相联,在这些知识交汇点处设计层次不同,难度可控的试题,拓宽了高考的命题空间。
近几年的高考,加大了对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,以考查学生对知识的整体把握和综合能力已成为新高考中的一道靓丽的风景线。
导数在高考中经常考的如下内容1.导数的概念,导数的几何意义,几种常见函数的导数.2.两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值.3.利用结论求参数的范围.4.由前面的结论证明与自然数相关的不等式下面笔者就2014年高考题谈谈导数问题的常见类型及其解法,以供参考。
1对导数定义和求导法则的考查例1【2014江西高考理第14题】若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. (2ln -,2)点评:本题考查了指数函数求导公式及导数的几何意义,属于低起点题,但命题形式生动活泼.只要能够对三角函数顺利求导,就能快速做出答案.2对导数的几何意义的考查例2曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积 是 . 解:曲线xy 1=和2x y =在它们的交点坐标是(1,1),利用求导的方法求切线的斜率得,两条切线方程分别是y=-x+2和y=2x -1,它们与x 轴所围成的三角形的面积是43。
点评:本题涉及到函数曲线的切线问题,由于无法用传统的二次方程根的判别式来求解,导数的几何意义无疑为这类问题的解决提供了新方法、新途径。
实际上,涉及到曲线的切线尤其是三次或三次以上的曲线与对数曲线、指数曲线等曲线的切线和公切线问题,常常考虑利用导数来求解,可谓事半功倍。
2014年高考导数压轴题汇编解析
2014年高考导数压轴题汇编1.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ; 当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . (2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减.则g (x )不可能恒为正,也不可能恒为负.故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点; 当a ≥e 2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意. 所以12<a <e 2. 此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0.又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增.所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).2.[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *.(1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立.②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立.(2)方法一:先用数学归纳法证明a n >c 1p. ①当n =1时,由题设知a 1>c 1p成立. ②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立.由a n +1=p -1p a n +c pa 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c pa -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p =⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k-1p>1+p · 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立. 综合①②可得,对一切正整数n ,不等式a n >c 1p均成立. 再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n<1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *. 方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c , 所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p. ①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p, 故当n =1时,不等式a n >a n +1>c 1p成立. ②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p), 即有a k +1>a k +2>c 1p, 所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立. 3.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,故g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x .故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c>1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立.令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x. 所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0.即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法二:(1)同方法一.(2)同方法一.(3)对任意给定的正数c ,取x 0=4c , 由(2)知,当x >0时,e x >x 2,所以e x =e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22, 当x >x 0时,e x >⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法三:(1)同方法一.(2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=-1<0,即13x 3<e x . 取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .4.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式;(2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x 1+x(x ≥0). (1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x 1+2x , g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x,结论成立. ②假设n =k 时结论成立,即g k (x )=x 1+kx. 那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx=x 1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax 1+x恒成立. 设φ(x )=ln(1+x )-ax 1+x(x ≥0), 则φ′(x )=11+x -a (1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增,又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax 1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )<0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax 1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+n n +1, 比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n . 下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立. ②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1). 那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2), 即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12, ln 3-ln 2>13, ……ln(n +1)-ln n >1n +1, 上述各式相加可得ln(n +1)>12+13+…+1n +1, 结论得证.方法三:如图, x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+n n +1是图中所示各矩形的面积和,∴12+23+…+n n +1> x x +1d x = ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.5.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln x x的单调区间; (2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数; (3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论. 22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln x x ,所以f ′(x )=1-ln x x 2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增;当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π.于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π. 故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中. 由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln e e . 由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3; 由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3. 综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3. 又由(2)知,ln ππ<ln e e ,得πe <e π. 故只需比较e 3与πe 和e π与π3的大小. 由(1)知,当0<x <e 时,f (x )<f (e)=1e, 即ln x x <1e. 在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-e π.① 由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3e π>6-e>π,即3ln π>π, 所以e π<π3. 综上可得,3e <e 3<πe <e π<π3<3π, 即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π.6.[2014·湖南卷] 已知常数a >0,函数f (x )=ln(1+ax )-2x x +2. (1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.22.解:(1)f ′(x )=a 1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*) 当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增.当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去.当x ∈(0,x 1)时,f ′(x )<0;当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减,在区间(x 1,+∞)上单调递增.综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝ ⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增. (2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-a a ,且由f (x )的定义可知, x >-1a且x ≠-2, 所以-21-a a >-1a ,-21-a a ≠-2, 解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点. 而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2. 令2a -1=x .由0<a <1且a ≠12知, 当0<a <12时,-1<x <0; 当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2. (i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0, 因此,g (x )在区间(-1,0)上单调递减,从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0. (ii)当0<x <1时,g (x )=2ln x +2x -2, 所以g ′(x )=2x -2x 2=2x -2x2<0, 因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0. 综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.7.[2014·全国大纲卷] 函数f (x )=ln(x +1)-ax x +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2. 22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2. (i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数;若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数. (iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数;若x ∈(0,a 2-2a ),则f ′(x )<0,所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数.(2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数.当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2x x +2(x >0). 又由(1)知,当a =3时,f (x )在[0,3)是减函数.当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3x x +3(0<x <3). 下面用数学归纳法证明2n +2<a n ≤3n +2. (i)当n =1时,由已知23<a 1=1,故结论成立. (ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立.根据(i)(ii)知对任何n ∈结论都成立.8.[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.21.解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2. (2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x , 则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ), 所以当x >0时,g (x )>h (x ),即f (x )>1.9.[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x .(1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001). 21.解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立,所以f (x )在(-∞,+∞)上单调递增. (2)g (x )=f (2x )-4bf (x )=e 2x -e -2x-4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e-2x-2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2).(i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693.10.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 20.解:(1)函数y =f (x )的定义域为(0,+∞), f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点.当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22.11.[2014·天津卷] 设f (x )=x -a e x (a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2. (1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大. 20.解:(1)由f (x )=x -a e x ,可得f ′(x )=1-a e x . 下面分两种情况讨论:(i)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (ii)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-ln a )-ln a (-ln a ,+∞)f ′(x ) + 0 - f (x )-ln a -1这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).(2)证明:由f (x )=x -a e x =0,有a =x e x .设g (x )=xe x ,由g ′(x )=1-x e x ,知g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.并且,当x ∈(-∞,0]时,g (x )≤0; 当x ∈(0,+∞)时,g (x )>0.由已知,x 1,x 2满足a =g (x 1),a =g (x 2).由a ∈(0,e -1)及g (x )的单调性,可得x 1∈(0,1),x 2∈(1,+∞).对于任意的a 1,a 2∈(0,e -1),设a 1>a 2,g (ξ1)=g (ξ2)=a 1,其中0<ξ1<1<ξ2;g (η1)=g (η2)=a 2,其中0<η1<1<η2.因为g (x )在(0,1)上单调递增,所以由a 1>a 2,即g (ξ1)>g (η1),可得ξ1>η1.类似可得ξ2<η2. 又由ξ1,η1>0,得ξ2ξ1<η2ξ1<η2η1,所以x 2x 1随着a 的减小而增大.(3)证明:由x 1=a e x 1,x 2=a e x 2,可得ln x 1=ln a +x 1,ln x 2=ln a +x 2.故x 2-x 1=ln x 2-ln x 1=ln x 2x 1.设x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=ln t ,解得x 1=ln t t -1,x 2=t ln tt -1,所以x 1+x 2=(t +1)ln t t -1.① 令h (x )=(x +1)ln x x -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x(x -1)2. 令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎫x -1x 2.当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0,由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增.因此,由①可得x 1+x 2随着t 的增大而增大.而由(2),t 随着a 的减小而增大,所以x 1+x 2随着a 的减小而增大.12.[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.22.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8. (ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ), 则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3. 由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2, 因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.13.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x-cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围. 20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e-2x)=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1. (2)当c =3时,f (x )=e 2x -e -2x-3x ,那么f ′(x )=2e 2x +2e-2x-3≥22e 2x ·2e-2x-3=1>0,故f (x )在R 上为增函数. (3)由(1)知f ′(x )=2e 2x +2e-2x-c ,而2e 2x +2e-2x≥22e 2x ·2e-2x=4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e-2x-c >0,此时f (x )无极值. 当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e-2x-4>0,此时f (x )无极值.当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).。
2014高考导数压轴题终极解答
导数解答题专项、导数单调性、极值、最值的直接应用 (3)(7).二、交点与根的分布三、 不等式证明(一) 作差证明不等式(二) 变形构造函数证明不等式 (三) 替换构造不等式证明不等式(8)四、 不等式恒成立求字母范围(一)恒成立之最值的直接应用(一)恒成立之分离常数 (三)恒成立之讨论字母范围(13 )五、 函数与导数性质的综合运用 (16 ) 六、 导数应用题 (20 ) 七、导数结合三角函数 书中常用结论:sin x⑴sinx X,x (0,),变形即为 x 1,(21 )其几何意义为y si""(0,)上的的点与原点连线斜率小于1.⑵ e x x 1⑶ x ln(x 1)⑷ In x x e x, x 0 .一、导数单调性、极值、最值的直接应用1. (切线)设函数f(x) x2a.(1 )当a 1时,求函数g(x) xf (x)在区间[0,1]上的最小值;(2)当a 0时,曲线y f(x)在点pg, f (xJ)(X1 ,a)处的切线为I 求证:x1x2 a .2. ( 2009天津理20,极值比较讨论)已知函数f (x) (x2 ax 2a2 3a)e x(x R),其中a R⑴当a 0时,求曲线y f (x)在点(1,f (1))处的切线的斜率;2⑵当a 时,求函数f (x)的单调区间与极值.31 2 23. 已知函数f (x) x 2ax,g(x) 3a In x b.2⑴设两曲线y f (x)与y g(x)有公共点,且在公共点处的切线相同,于a的函数关系式,并求b的最大值;⑵若b [0, 2], h(x) f (x) g(x) (2a b)x在(0,4)上为单调函数,4. (最值,按区间端点讨论)a已知函数f(x)=lnx—.x(1)当a>0时,判断f(x)在定义域上的单调性;3⑵若f(x)在[1, e]上的最小值为-,求a的值•5. (最值直接应用)1 2已知函数f (x) x ax ln(1 x),其中a R .2(i)若x 2是f(x)的极值点,求a的值;(n)求f (x)的单调区间;(川)若f (x)在[0, )上的最大值是0,求a的取值范围.6. (2010北京理数18)x已知函数f (x)=ln(1+x)- x+ x2( k > 0).2(i)当k=2时,求曲线y = f (x)在点(1, f (1))处的切线方程;(n )求f (x)的单调区间.,l与x轴交于点心,0)若a 0,试建立b关求a的取值范围。
2014高考数学第一轮复习_导数应用(含答案)
第3讲导数的应用(二)【高考会这样考】1.利用导数求函数的极值.2.利用导数求函数闭区间上的最值.3.利用导数解决某些实际问题.基础梳理1.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根左右值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.两个注意(1)注意实际问题中函数定义域的确定.(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较.三个防范(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念. (2)f ′(x 0)=0是y =f (x )在x =x 0取极值的既不充分也不必要条件.如①y =|x |在x =0处取得极小值,但在x =0处不可导; ②f (x )=x 3,f ′(0)=0,但x =0不是f (x )=x 3的极值点.(3)若y =f (x )可导,则f ′(x 0)=0是f (x )在x =x 0处取极值的必要条件.双基自测1.(2011·福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ).A .2B .3C .6D .9解析 f ′(x )=12x 2-2ax -2b ,由函数f (x )在x =1处有极值,可知函数f (x )在x =1处的导数值为零,12-2a -2b =0,所以a +b =6,由题意知a ,b 都是正实数,所以ab ≤⎝⎛⎭⎪⎫a +b 22=⎝ ⎛⎭⎪⎫622=9,当且仅当a =b =3时取到等号.答案 D2.已知函数f (x )=14x 4-43x 3+2x 2,则f (x )( ). A .有极大值,无极小值 B .有极大值,有极小值 C .有极小值,无极大值 D .无极小值,无极大值解析 f ′(x )=x 3-4x 2+4x =x (x -2)2,f ′(x ),f (x )随x 变化情况如下3.(2010·山东)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( ). A .13万件 B .11万件 C .9万件 D .7万件解析 y ′=-x 2+81,令y ′=0解得x =9(-9舍去).当0<x <9时,y ′>0;当x >9时,y ′<0,则当x =9时,y 取得最大值,故选C4.(2011·广东)函数f (x )=x 3-3x 2+1在x =________处取得极小值.解析 f ′(x )=3x 2-6x =3x (x -2)当x <0时,f ′(x )>0,当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,故当x =2时取得极小值.答案 25.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.解析 ∵f (x )在x =1处取极值,∴f ′(1)=0,又f ′(x )=2x (x +1)-(x 2+a )(x +1)2,∴f ′(1)=2×1×(1+1)-(1+a )(1+1)2=0,即2×1×(1+1)-(1+a )=0,故a =3.答案 3考向一 函数的极值与导数【例1】►(2011·重庆)设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值;(2)求函数f (x )的极值.[审题视点] 由条件x =-12为y =f ′(x )图象的对称轴及f ′(1)=0求得a ,b 的值,再由f ′(x )的符号求其极值.解 (1)因f (x )=2x 3+ax 2+bx +1,故f ′(x )=6x 2+2ax +b .从而f ′(x )=6⎝ ⎛⎭⎪⎫x +a 62+b -a 26,即y =f ′(x )的图象关于直线x =-a 6对称,从而由题设条件知-a 6=-12,解得a =3.又由于f ′(1)=0,即6+2a +b =0,解得b =-12. (2)由(1)知f (x )=2x 3+3x 2-12x +1, f ′(x )=6x 2+6x -12=6(x -1)(x +2).令f ′(x )=0,即6(x -1)(x +2)=0,解得x 1=-2,x 2=1.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,1)时,f ′(x )<0,故f (x )在(-2,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 从而函数f (x )在x 1=-2处取得极大值f (-2)=21, 在x 2=1处取得极小值f (1)=-6.【训练1】 (2011·安徽)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.解 对f (x )求导得f ′(x )=e x 1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12. 综合①,可知所以,x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立.因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.考向二 函数的最值与导数【例2】►已知a 为实数,且函数f (x )=(x 2-4)(x -a ).(1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值. [审题视点] 先化简再求导,求极值、端点值,进行比较得最值. 解 (1)f (x )=x 3-ax 2-4x +4a ,得f ′(x )=3x 2-2ax -4.(2)因为f ′(-1)=0,所以a =12,有f (x )=x 3-12x 2-4x +2,所以f ′(x )=3x 2-x -4. 令f ′(x )=0,所以x =43或x =-1.又f ⎝ ⎛⎭⎪⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0,所以f (x )在[-2,2]上的最大值、最小值分别为92、-5027.一般地,在闭区间[a ,b ]上的连续函数f (x )必有最大值与最小值,在开区间(a ,b )内的连续函数不一定有最大值与最小值,若函数y =f (x )在闭区间[a ,b ]上单调递增,则f (a )是最小值,f (b )是最大值;反之,则f (a )是最大值,f (b )是最小值. 【训练2】 函数f (x )=x 3+ax 2+b 的图象 在点P (1,0)处的切线与直线3x +y =0平行(1)求a ,b ;(2)求函数f (x )在[0,t ](t >0)内的最大值和最小值. 解 (1)f ′(x )=3x 2+2ax由已知条件⎩⎨⎧ f (1)=0,f ′(1)=-3,即⎩⎨⎧ a +b +1=0,2a +3=-3,解得⎩⎨⎧a =-3,b =2.(2)由(1)知f (x )=x 3-3x 2+2,f ′(x )=3x 2-6x =3x (x -2), f ′(x )与f (x )随x 变化情况如下:由f (x )=f (0)当0<t ≤2时,f (x )的最大值为f (0)=2最小值为f (t )=t 3-3t 2+2; 当2<t ≤3时,f (x )的最大值为f (0)=2,最小值为f (2)=-2; 当t >3时,f (x )的最大值为f (t )=t 3-3t 2+2,最小值为f (2)=-2.考向三 用导数解决生活中的优化问题【例3】►(2011·江苏)请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[审题视点] 由实际问题抽象出函数模型,利用导数求函数最优解,注意变量的实际意义. 解 设包装盒的高为h (cm),底面边长为a (cm).由已知得a =2x ,h =60-2x2=2(30-x ),0<x<30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V′=0得x=0(舍去)或x=20.当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0.所以当x=20时,V取得极大值,也是最大值.此时ha=12.即包装盒的高与底面边长的比值为12.【训练3】统计表明,某种型号的汽车在匀速行驶中,每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=1128 000x3-380x+8(0<x≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解(1)设汽车以x千米/小时的速度行驶时,其耗油量为f(x)=100x⎝⎛⎭⎪⎫1128 000x3-380x+8=x21 280+800x-154(0<x≤120),f(40)=17.5(升),因此从甲地到乙地要耗油17.5升.(2)f′(x)=x640-800x2=x3-512 000640x2=(x-80)(x2+80x+6 400)640x2又0<x≤120,令f′(x)=0解得x=80,当0<x<80时,f′(x)<0;当80<x≤120时,f′(x)>0.则当x=80时,f(x)取到最小值f(80)=11.25(升)因此当汽车以80千米/小时行驶时耗油最省,最小耗油量为11.25升.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由2014全国1卷高考压轴题想到函数与导数专题的一种解法
一般的函数与导数压轴题常规思路是将所给的函数直接求导,然后根据函数的单调性就可以证明题目要证的式子了。
2014年的第21题考查的不是这种思路,而是一种更为复杂的方法。
这道题目如果直接对()f x 求导就会发现很难根据导函数来判断函数的单调性,所以我们采用的是将()f x 分解为()1()()f x g x h x -=-,这样只需要证明min max ()()g x h x >就行了,那么,现在关键的问题就是如何划分()g x 和()h x ,我的方法是试探法,本题的()f x 只有3项,而且还有一项是常数,所以就很容易划分了,常数项放在()g x 或者()h x 都行,如果有更多的项,那就要试探了。
最后需要注意的就是使用这个方法的前提了,那就是常规思路行不通的情况我们才“出此下策”。