第17讲:反比例函数

合集下载

沪科版数学九年级上册21.5《反比例函数》教学设计

沪科版数学九年级上册21.5《反比例函数》教学设计

沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册21.5《反比例函数》是本册教材中的一个重要内容,它主要包括反比例函数的定义、性质和图象。

本节课的内容对于学生来说是比较抽象的,需要学生具备一定的函数概念和几何知识。

通过本节课的学习,使学生掌握反比例函数的基本概念、性质和图象,培养学生运用函数知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对于函数的图象和性质有一定的了解。

但是,对于反比例函数这一抽象的概念,学生可能难以理解。

因此,在教学过程中,需要关注学生的认知基础,引导学生通过观察、操作、思考、交流等活动,自主探索反比例函数的性质和图象,提高学生解决问题的能力。

三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象,学会用反比例函数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生自主学习的能力和合作意识。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和实践能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。

2.自主学习法:引导学生自主探索反比例函数的性质和图象,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。

4.实践教学法:让学生运用反比例函数解决实际问题,提高学生的实践能力。

六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。

2.教学素材:准备一些实际问题,让学生运用反比例函数解决。

3.教学设备:投影仪、计算机、黑板等。

七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解反比例函数的定义,引导学生通过观察、操作、思考等活动,探索反比例函数的性质和图象。

第17讲:不规则图形与转化化归

第17讲:不规则图形与转化化归

第17讲不规则图形与转化化归1.如图,正方形的边长为a,以各边为直径在正方形内画半圆,求围成的图形(阴影部分)的面积.2.如图,在Rt△ABC中,∠B=90°,AB=BC=4,AB为直径的⊙O交AC于点D,求图中两个阴影部分的面积之和.3.如图,CD,EF与x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,求图中阴影部分面积.4.如图,正方形ABCD的边长为a,以相邻的两边为直径分别画两个半圆。

求阴影部分的面积.5.如图,反比例函数y=kx(x>0)的图象交直线MA:y=x+4于点A,交直线NB:y=x-2于点B,将反比例函数的图象沿MA的方向平移4个单位,分别交直线MA,NB于C,D两点,则图中阴影部分面积为________.6.如图,ΔABC中,∠C是直角,AB=12 cm,∠ABC=60°,将ΔABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积________2cm( =3.14159……,最后结果保留三个有效数字).7.如图所示,分别以n边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为_________个平方单位.8.如图,E,F分别是ABCD的边AB,CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD2,S△BQC=9cm2,则阴影部分的面积为cm2.9. 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,若OA=2,求阴影部分的面积.10.如图是两个半圆,点O为大半圆的圆心,AB是大半圆的弦且与小半圆相切,且AB//直径,AB=24. 问:能求出阴影部分的面积吗?若能,求出此面积;若不能,试说明理由.答案:1. 解:图中阴影部分面积可以看作是4个半圆的面积之和与正方形面积之差(重叠部分).2222114.222a S a a a ππ∴⋅⋅-=-阴影=() 2. 解:联结BD ,由AB 为⊙O 的直径得∠ADB =90°,Rt △ABC 中∠B =90°,AB =BC =4,得∠A =45°且AC =42AD =BD =CD =22 ∴A D BnD S S 弓形m 弓形=, ∴112222422CDB S S CD BD ∆=⨯⨯⨯阴影===3. 解:图中的半圆和抛物线均以y 轴为对称轴,故可用对称性将y 轴右侧的两个阴影“叶片”翻折到y 轴的左侧,同原来y 轴左侧的曲边三角形阴影组合成一个半圆. 221111222S OA πππ∴⋅⋅阴影===. 4. 解:取两半圆弧的交点O ,作OE ⊥AB 于E ,作OF ⊥BC 于F ,则得到小正方形OEBF 、扇形EOB 、扇形FOB . S 阴影=S 扇形OEA +S 扇形OFC +S 正方形OEBF =2222229090(2)22.2360360488a a a a a a ππππ⎛⎫⎛⎫⋅⋅ ⎪ ⎪+⎛⎫⎝⎭⎝⎭++=+= ⎪⎝⎭5. 解:如图,∵MA 的解析式y =x +4向下平移6个单位得到NB 的解析式y =x -2,∴MA ∥NB ,M 点的纵坐标为4,N 点的纵坐标为-2,∵直线与x 轴夹角为45º,且MN 的长为6,∴直线AC 、BD 间的距离h =MN 2,联结AB ,CD 。

反比例函数专题复习及中考真题

反比例函数专题复习及中考真题

★★★(I)考点突破★★★考点1:反从例函数的意义及其图象和性质一、考点讲解:1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y=xk(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 备注:反比例函数的另外两种形式,k xy kx y ==-,1(k ≠0).2.注意:(1)k 为常数,必须强调k ≠0;例如y= kx就不是反比例函数;(2)xk中分母x 的指数为1; (3)自变量x 的取值范围是x ≠0;(4)因变量y 的取值范围是y ≠0. 3.反比例函数的图象和性质.利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,反比例函数y=kx具有如下的性质(见下表)①当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加而减小;②当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.注意:分析反比例函数增减性时,必须强调“在每一个象限内或者X ﹥0,X ﹤0”。

4.反比例函数y=xk(k ≠0)中k 的几何意义 过反比例函数y=xk图象上任一点P 作x 轴、y 轴的垂线PM 、PN ,垂足为M 、 N (如图),则矩形PMON 的面积S=PM ·PN=|y |·|x |=|xy |=|k |。

所以,对双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所围成的矩形面积为常数k。

从而有注意:所围矩形的面积为k,而不是k 。

若其面积为6,则k=±6。

二、经典考题剖析:【考题1、】(2009、宁安)函数y= kx与y=kx+k 在同一坐标系的图象大致是图 1-5-l 中的( )解:B 点拨:A 中,y= kx 的图象过第一、三象限,则k >0.而y=kx+b 过第一、二、四象限,则k <0,矛盾;C 中,由y= kx 的图象知,在k <0.但一次函数y=kx +k 与y 轴交于正半轴,和k <0矛盾;D 中,由y= kx的图象知,k <0.Y=kx +k 中,k >0,矛盾.故选B .【考题2】(2009、潍坊)若M (-12 ,y 1),N (-14 ,y 2),P (12 ,y 3)三点都在函数y= kx (k <0)中的图象上,则y 1,y 2,y 3,的大小关系为( ) A .y 2 >y 3>y 1 B 、y 2>y 1>y 3 C .y 3 >y 1>y 2 D 、y 3>y 2>y 1解:如上图数形结合得B ;还可以由y= kx 中k <0,故y 的值在每个象限内随x 的增大而增大.而-14 >-12 ,故 y 2>y 1>0.由于 P 点在第四象限,故y 3 <0 .【考题3】(2009、湟中)点P 既在反比例函 数y=- 3x(x >0)的图象上,又在一次函数y =-x -2的图象上,则P 点的坐标是( , )解:点P 是两函数的交点,则同时满足两个解析式,联立解析式得 ⎪⎩⎪⎨⎧--=-=,2,3x y xy 得到- 3x =-x —2,化简得0322=-+x x ,解得3,121-==x x (舍去)。

17[1].1.2反比例函数的图象和性质第一课时教学设计

17[1].1.2反比例函数的图象和性质第一课时教学设计

17.1.2反比例函数的图象和性质第一课时教学设计南孙庄乡中学一、教材分析:主要从地位与作用、教学目标、重点难点三方面进行阐述。

(一)地位与作用:本节教材是在学生理解反比例函数的意义和掌握了用描点法画函数图象的基础上进行教学的,反比例函数图象和性质的学习,是继一次函数后,知识与方法上的一次拓展,理解与认识上的一次升华,也是思维上的一次飞跃。

图象由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,无不反映出对函数概念本质属性认识的进一步深化。

反比例函数是最基本的初等函数之一,是后续学习各类函数的基础。

反比例函数的核心内容是反比例函数的概念、图象和性质。

反比例函数的图象和性质的核心,是图象“特征”、函数“特性”以及它们之间的相互转化关系,这也正是反比例函数的本质属性所在。

反比例函数的图象和性质,蕴含着丰富的数学思想。

首先,反比例函数图象和性质,本身就是“数”与“形”的统一体。

通过对图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法。

这在学习数轴、平面直角坐标系时,学生已经接触过,结合本课内容,可以进一步加强对数形结合思想方法的理解,发挥从“数”和“形”两个方面共同分析解决问题的优势。

其次,从本节课知识的形成过程来看,由“解析式(确定自变量取值范围)”到“作图(列表、描点、连线)”,再到“性质(观察图象探究性质)”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,这种函数解析式及性质与函数图象之间的联系,突出体现了两者间的转化对分析解决问题的特殊作用,是转化思想的具体应用。

再次,将函数中变量x、y之间的对应关系,通过图象的形状、变化趋势,借助平面直角坐标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想。

因此,学好本节课内容,将为今后的函数学习奠定坚实的基础。

(二)教学目标:根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。

北师大版数学九年级上册《反比例函数》教案

北师大版数学九年级上册《反比例函数》教案

北师大版数学九年级上册《反比例函数》教案一、教学目标1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解;3.能够应用反比例函数解决实际问题;4.发展学生的数学思维能力和解决问题的能力。

二、教学重点1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解。

三、教学难点1.能够应用反比例函数解决实际问题;2.发展学生的数学思维能力和解决问题的能力。

四、教学内容及教学方法教学内容1.反比例函数的定义及其特点;2.反比例函数的表格、图像、实例;3.反比例函数的应用。

教学方法1.归纳法和演绎法相结合;2.以实例为基础进行教学;3.组织学生进行小组讨论;4.利用多种教学手段,如讲解、展示、讨论等。

五、教学步骤第一步:引入介绍本课的主题:反比例函数,通过捕捉学生的注意力引入本课。

第二步:概念的讲解1.反比例函数的定义;2.反比例函数的图像及其特点;3.反比例函数的一般式及其性质。

第三步:小组讨论案例提供 5~10 个实际问题,组织学生分组讨论如何用反比例函数来解决这些问题。

第四步:作业辅导老师根据本课教学内容布置作业,并对学生作业进行辅导。

六、教学评价1.学生通过小组讨论和作业完成任务,能够较好的理解反比例函数的定义、特点和应用;2.学生在课堂上和小组中能积极表达,互相交流,并进行了有效合作;3.学生通过课堂练习和作业完成,能够掌握所学知识,较好的掌握了课堂所学内容。

七、教学反思通过本课的教学,学生在课堂上和小组中都能积极参与讨论,并且能够掌握反比例函数的基本概念和应用,达到了本课的预期教学目标。

同时也发现了一些问题:部分学生对于难度较大的问题理解困难,需要老师进一步解释;有些学生的知识储备较少,需要老师根据学生的情况进行差异化教学。

在以后的教学中,需要更注重学生的个性化需求,实现更有效的教学效果。

反比例函数k的几何意义

反比例函数k的几何意义

知识讲解1.反比例函数的概念如图所示,过双曲线)0(k≠=kxy上任一点),(yxP作x轴、y轴的垂线PM、PN,垂足为M、N,所得矩形PMON的面积S=PM∙PN=|y|∙|x|.,yxk=∴||kSkxy==,。

这就说明,过双曲线上任意一点作x轴、y轴的垂线,所得到的矩形的面积为常数|k|。

这是系数k几何意义,明确了k的几何意义,会给解题带来许多方便。

(请学生思考,图中三角形OEF的面积和系数k的关系。

)2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x的取值不能为0,应从1或-1开始对称取点.例题1函数y=1x-(x>0)的图象大致是( )例题2 函数y=kx+1与函数y=kx在同一坐标系中的大致图象是( )yOxAyO xByOxCyOxD y y y y3.反比例函数y=kx 中k 的意义注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.例题1:如图,P 、C 是函数x4y =(x>0)图像上的任意两点,过点P 作x 轴的垂线PA,垂足为A ,过点C 作x 轴的垂线CD,垂足为D ,连接OC 交PA 于点E ,设⊿POA 的面积为S1,则S1= ,梯形CEAD 的面积为S2,则S1与S2的大小关系是S1 S2, ⊿POE 的面积S3和梯形CEAD 的面积为S2的大小关系是S2 S3.例题1图 例题2图 例题3图例题2:如图所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S1,⊿BOD 的面积S2,⊿POE 的面积S3的大小: 。

例题3:如图所示,点A(x1,y1)、B(x2,y2)都在双曲线)0x (k>=xy 上,且x2-x1=4,y1-y2=2;分别过点A 、B 向x 轴、y 轴作垂线,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 。

数学复习:反比例函数

数学复习:反比例函数

数学复习:反比例函数反比例函数从代数定义上来说非常简单,即ky x=或xy k =,从函数的图像上来看就是分布在不同像限的两条曲线,简称双曲线.随着近几年各地中考的各种变式题型出现,对反比例函数“数形结合”的数学思想考查越来愈多.每一次的命题设计,其背后都有隐藏的二级定理和二级结论.数学的学习,总是在思考中归纳总结从而得出结论,站在结论的平台向上展望,看清命题者的命题逻辑,很多问题将会大大简化.本专题从反比例函数的本质入手,通过寻找反比例函数的不变特性来进行分析,力争化繁为简,并能在平常的训练中找到思考和结论的平衡点.第一讲 反比例函数的本质系数m 与面积关系在之前对正比例函数和反比例函数的理解中,似乎只有k xy=和k xy =,翻译成语言文字就是,当自变量扩大m 倍,则因变量也随即扩大m 倍,此为正比例函数;同理当自变量扩大m 倍,而因变量随即缩小m1,则为反比例函数.函数是一个连续的曲线,不是只分析单一定点,所以引入比例系数m 对研究函数大有帮助,正比例函数由于过于单调的形式和结论,所以没有成为命题重难点,那么反比例函数呢?【例1】如图,反比例函数)0(>=k xky 的图像与矩形OABC 的AB 、BC 边分别交于点M 、N ,延长MN 分别交坐标轴于点D 、E .(1)如图11-1-5,若2:1:=AB AM ,则=CB CN : ; (2)如图11-1-6,若4:1:=AB AM ,则=CB CN : ; (3)如图11-1-7,若n AB AM :1:=,则=CB CN : ;直线MN 与AC 的位置关系是 ,EN 与MD 的大小关系 .图11-1-5 图11-1-6 图11-1-7【例2】(2020•九龙坡月考)如图11-1-8,ABC Rt △的顶点A 和斜边中点D 在反比例函数(00)k y k x x =≠>,的图像上,若5k =,则ABC △的面积为( ) A.B.C .4 D .5xxx图11-1-8【例3】(2020•朝阳二模)如图11-1-11,在平面直角坐标系中,直线6y x =-+分别与x 轴、y 轴交于点A 、B ,与函数(00)k y k x x =>>,的图像交于点C 、D .若12CD AB =,则k 的值为( )A .9B .8C .427D .6图11-1-11思考 前面分析了一条直线与反比例函数图像交于一个像限的情况,那么一条直线与反比例函数图像交于两个像限会有怎样的几何性质呢? 【例4】(1)如图11-1-17,反比例函数)00(>>=x k xky ,的图像与直线DE 交于点M 、N ,y MA ⊥轴于点A ,x NC ⊥轴于点C ,请探究直线MN 与AC 的位置关系,线段EN 与MD 的大小关系. (2)如图11-1-18,反比例函数)0(>=k xky 的图像与直线EF 交于点M 、N ,y MA ⊥轴于点A ,x MC ⊥轴于点C ,y ND ⊥轴于点D ,x NB ⊥轴于点B ,请探究直线MN 与线段AB 、线段CD 的位置关系,以及线段ME 与FN 的大小关系.图11-1-17 图11-1-18【例5】如图11-1-19,一次函数b ax y +=的图像与x 轴,y 轴交于A 、B 两点,与反比例函数xky =的图像相交于C 、D 两点,分别过C 、D 两点作y 轴,x 轴的垂线,垂足为E 、F ,连接CF 、DE .有下列四个结论:①DEF CEF S S △△=;②FOE AOB ∽△△;③CDF DCE ≌△△;④BD AC =.其中正确的结论x是 .(把你认为正确结论的序号都填上)图11-1-19【例6】(1)如图11-1-26,BC AB =,AOB △的面积为3,则k 的值为 . (2)如图11-1-27,点A ,C 在双曲线xky =上运动,x AB ⊥轴,BC AC =. ①在运动过程中,ABC △的面积是不是定值?答: ; ②若32=k ,且ABC △是正三角形,则点A 的坐标为 .图11-1-26 图11-1-27【例7】(1)如图11-1-30, OABC 中,︒=∠60B ,3=OA ,双曲线经过点C 和AB 中点D ,则该双曲线的解析式为 .(2)如图11-1-31,正AOB △的边长为5,双曲线xky =经过点C 、D ,且OB CD ⊥,则k 的值为 .图11-1-30 图11-1-31【例8】如图11-1-34,反比例函数16(0)y x x=>的图像经过Rt △BOC 斜边上的中点A ,与边BC 交于点D ,连接AD ,则ADB △的面积为( ) A .12B .16C .20D .24图11-1-34【例9】(2020·威海中考)如图11-1-36,点)1(,m P ,点)2(n Q ,-都在反比例函数xy 4=的图像上.过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作1S ,POQ △的面积记作2S ,则( )图11-1-36 A .3:2:21=S S B .1:1:21=S S C .3:4:21=S S D .3:5:21=S S【例10】(2020•龙华二模)如图11-1-38,已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,与双曲线(0)ky x x=>交于C 、D 两点,且AOC ADO ∠=∠,则k 的值为 .图11-1-38【例11】如图11-1-40,矩形OABC 的边2OA =,4OC =,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数(0)ky x x=>的图像与边BC 交于点F .当四边形AOFE 的面积最大时,FC 的长度为( ) A .8.0B .1C .6.1D .8.1图11-1-40【例12】如图11-1-41,A 、B 是函数x y 6=上两点,P 为一动点,作y PB //轴,x PA //轴,下列说法:①BOP AOP ≌△△;②BOP AOP S S △△=;③若OB OA =,则OP 平分AOB ∠;④若2=BOP S △,则4=ABP S △,正确有 .(填序号)图11-1-41【例13】如图11-1-45,点)31(,A 为双曲线x ky =上的一点,连接AO 并延长与双曲线在第三像限交于点B ,M 为y 轴正半轴上一点,连接MA 并延长与双曲线交于点N ,连接BM 、BN ,已知MBN △的面积为233,则点N 的坐标为 .图11-1-45【例14】如图11-1-47所示,PAB Rt △的直角顶点)43(,P 在函数(0)ky x x=>的图像上,顶点A 、B 在函数(00)ty x t k x=><<,的图像上,//PA y 轴,连接OP ,OA ,记OPA △的面积为OPA S △,PAB △的 面积为PAB S △,设OPA PAB w S S =-△△. ①求k 的值以及w 关于t 的表达式;②若用max w 和min w 分别表示函数w 的最大值和最小值,令max 2T w a a =+-,其中a 为实数,求min T .图11-1-47【例15】如图11-1-49,已知平面直角坐标系中A 点坐标为)40(,,以OA 为一边在第一像限作平行四边形OABC ,对角线AC 、OB 相交于点E ,OA AB 2=.若反比例函数x ky =的图像恰好经过点C 和点E ,则k的值为 .图11-1-49【同步训练】1.如图11-1-52,双曲线xky =与过原点的直线l 交于点A 、B ,点M 在双曲线上,直线AM 、BM 分别交y 轴于点P 、Q . 若设PM m AM ⋅=,QM n BM ⋅=,则=-n m .图11-1-522.如图11-1-53,在矩形OABC 中,)01(,A ,)20(,C ,双曲线)20(<<=k xky 分别交AB 、BC 于点E 、F ,连接OE 、OF 、EF ,BEF OEF S S △△2=,则k 的值为 .图11-1-53 图11-1-543.如图11-1-54,在平面直角坐标系xOy 中,OAB △的顶点A 在x 轴的正半轴上,AC BC 2=,点B 、C 在反比例函数)0(>=x xky 的图像上.若OBC △的面积等于12,则k 的值为 . 4.如图11-1-55,1P 、2P 是反比例函数xy 4=的图像上任意两点,过点1P 作y 轴的平行线,过点2P 作x 轴的平行线,两线相交于点N .若点)(n m N ,恰好在另一个反比例函数)00(>>=x k xky ,的图像上,且221=⋅NP NP ,则=k .图11-1-55 图11-1-565.(2020•江阴一模)如图11-1-56,在AOB ∆中,OC 平分AOB ∠,43OA OB =,反比例函数(0)ky k x=<图像经过点A 、C 两点,点B 在x 轴上,若AOB ∆的面积为7,则k 的值为( ) A .4-B .3-C .215-D .73-6.(2019•莲湖期末)如图11-1-57,双曲线k y x =经过Rt BOC △斜边上的点A ,且满足12AO AB =,与BC 交于点D ,4BOD S =△,则k 的值为( ) A . 19B .1C .2D .8图11-1-577.(2019•武侯模拟)双曲线x k y =1和)0(32>=k xky 在第一像限的图像如图11-1-58所示,过2y 上的任意一点A 作x 轴的平行线交1y 于B ,交y 轴于C ,过A 作x 轴的垂线交1y 于D ,交x 轴于E ,连结BD ,CE ,则有下列结论:①CE BD //; ②k S ABOD 2=四边形;③5:4:=BDEC ABD S S 四边形△;④DE CB =; 图11-1-58 ⑤2:1:=BOD ABD S S △△.其中正确的有 (填番号).8.(2019•杭州一模)一次函数b ax y +=的图像分别与x 轴、y 轴交于点M ,N ,与反比例函数xky =的图像相交于点A ,B .过点A 分别作x AC ⊥轴,y AE ⊥轴,垂足分别为C ,E ,过点B 分别作x BF ⊥轴,y BD ⊥轴,垂足分别为F ,D ,AC 与BD 交于点K ,连接CD .对于下述结论: ①CFBK AEDK S S 四边形四边形=;②BM AN =;③CD AB //; 不论点A ,B 在反比例函数xky =的图像的同一分支上 (如图11-1-59),还是点A ,B 分别在反比例函数xky =的图像的不同分支上(如图11-1-60),都正确的是( ) 图11-1-59 图11-1-60 A .①② B .①③ C .②③ D .①②③9.(2020•长春期末)如图11-1-61,在平面直角坐标系中,四边形ABCD 的顶点A 、B 在函数)0(>=x xmy 的图像上,顶点C 、D 在函数)0(>=x xny 的图像上,其中n m <<0,对角线y BD //轴,且AC BD ⊥于点P .已知点B 的横坐标为4. (1)当4=m ,20=n 时,①点B 的坐标为 ,点D 的坐标为 ,BD 的长为 . ②若点P 的纵坐标为2,求四边形ABCD 的面积. ③若点P 是BD 的中点,请说明四边形ABCD 是菱形.(2)当四边形ABCD 为正方形时,直接写出m 、n 之间的数量关系. 图11-1-61第二节 反比例函数的面积关系特殊到一般的转化上一讲提到了以原点为顶点的三角形面积转化,如果不过原点呢?答案还是要找准特殊的模特三角形,然后进行面积的转化.【例1】如图11-2-1,在平面直角坐标系中,A 是第一像限内一点,过A 作//AC y 轴交反比例函数(0)ky x x =>的图像于B 点,E 是y 轴上一点,AE 交反比例函数的图像于点D ,若B 是AC 的中点,:3:2DE AD =,且BDE △的面积为94,则k 的值为( ) A .7 B .215 C .8 D .217图11-2-1【例2】如图11-2-3,点A 、B 是反比例函数(0)ky k x=≠图像上的两点,延长线段AB 交y 轴于点C ,且点B 为线段AC 中点,过点A 作AD x ⊥轴于点D ,点E 为线段OD 的三等分点,且OE DE <.连接AE 、BE ,若7ABE S =△,则k 的值为( ) A .12-B .10-C .9-D .6-图11-2-3【例3】(2021·成都嘉祥)如图11-2-6,在直角坐标系中,已知)40(,A 、)42(,B ,C 为x 轴正半轴上一点,且OB 平分ABC ∠,过B 的反比例函数xky =交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记BDF △的面积为1S ,OEF △的面积为2S ,则=21S S .图11-2-6前篇所有的面积和比值问题都来自辅助矩形和辅助比例系数m ,但不是每一个题目都是来自矩形的变x形,最近几年以平行四边形和反比例交点和面积问题也开始频繁出现,平行四边形和菱形上的两点与反比例函数相交,到底隐藏了多少秘密呢?【例4】(2017•南通)如图11-2-11,四边形OABC 是平行四边形,点C 在x 轴上,反比例函数(0)ky x x=>的图像经过点(512)A ,,且与边BC 交于点D .若AB BD =,则点D 的坐标为 .图11-2-11【例5】(2020•孝南二模)如图11-2-15,在平面直角坐标系中,O 为坐标原点,OC 在x 轴正半轴上,四边形OABC 为平行四边形,反比例函数k y x =的图像经过点A ,与BC 交于点D ,若154ABC S =△,2CD BD =,则k = .图11-2-15【例6】(2020•沙坪坝月考)如图11-2-18,平行四边形OABC 的顶点A 在x 轴的正半轴上,点D 在对角线2:3OB y x =上,且满足OD =(00)ky k x x==>>,的图像经过C 、D 两点.已知平行四边形OABC 的面积是203,则点B 的坐标为 .图11-2-18【例7】(2020•两江模拟)如图,双曲线(0)ky x x=>经过平行四边形OABC 的顶点A ,交边BC 于点D ,交对角线AC 于点E ,连接OE .若2BD CD =且OAE △的面积为163,则k 的值为( ) A.B .12C .10D.图平移问题小试牛刀【例8】(2020•西藏)如图,在平面直角坐标系中,直线y x =与反比例函数4(0)y x x=>的图像交于点A ,将直线y x =沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图像于点C .若2OA BC =,则b 的值为( )A .1B .2C .3D .4【例9】(2018•锦江区模拟)已知如图, 直线23y x =分别与双曲线(0,0)my m x x=>>、双曲线(0,0)n y n x x =>>交于点A ,点B ,且23BA OA =,将直线23y x =向左平移 6 个单位长度后, 与双曲线ny x=交于点C ,若4ABC S ∆=,则mn 的值为 .【同步训练】1.(2018•九龙坡区校级期末)如图,Rt ABC ∆中,30B ∠=︒,90ACB ∠=︒,点A 、C 在双曲线(0)ky k x=≠的图像上,//AB x 轴,AC 交x 轴于点F ,满足23AF CF =,10AC =,BC 交双曲线于点E ,连接AE ,则ACE ∆的面积为( )A .BCD .2.(2020•碑林区校级三模)如图,在平面直角坐标系中,O 为坐标原点,OC 在x 轴正半轴上,四边形OABC 为平行四边形,反比例函数ky x=的图像经过点A 与边BC 相交于点D ,若15ABC S ∆=,2CD BD =,则k = .3.(2020•苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点(3,2)D 在对角线OB 上,反比例函数(0,0)k y k x x =>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为()A .8(4,)3B .9(2,3)C .10(5,)3D .24(5,16)54.(2020•相城区期末)如图,Rt OAB ∆中,90OAB ∠=︒,6OB =,反比例函数(0)ky k x=≠的图像经过点B ,将Rt OAB ∆沿着x 轴向右平移6个单位,得到Rt CDE ∆,反比例函数图像恰好经过CE 的中点F ,则k 的值为( )A B .C .D .5.(2020•宁波模拟)如图,点A ,B 是反比例函数6(0)y x x=>图像上的两点,延长线段AB 交x 轴于点C ,且点B 为线段AC 中点,过点A 作AD y ⊥轴于点D ,点E 为线段OD 上的点,且2DE OE =.连结AE ,BE ,则ABE ∆的面积为 .第三讲反比例函数隐藏的等角等边关系在反比例函数的背景下,隐藏了比值关系,我们在前两节已经给到了探讨和证明,那么反比例函数还有哪些矩形圈不住的性质呢?或者说不以比值系数m 相关的等量关系呢?下面我们来探讨一些等角和等边的性质.【例1】(2020•武汉模拟)如图,在平面直角坐标系中,(1,0)A ,(0,2)B -,将线段AB 平移得到线段CD ,当13AE AC =时,点C 、D 同时落在反比例函数(0)ky k x=<的图像上,则k 的值为 .【例2】(2018•十堰中考)如图1,直线x y -=与反比例函数xky =的图像交于A ,B 两点,过点B 作x BD //轴,交y 轴于点D ,直线AD 交反比例函数xky =的图像于另一点C ,求CB CA 的值.图1【例3】(2019•长沙)如图,函数(ky k x=为常数,0)k >的图像与过原点的O 的直线相交于A ,B 两点,点M 是第一像限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①ODM ∆与OCA ∆的面积相等;②若BM AM ⊥于点M ,则30MBA ∠=︒;③若M 点的横坐标为1,OAM ∆为等边三角形,则2k =+;④若25MF MB =,则2MD MA =.其中正确的结论的序号是 .(只填序号)x【例4】(2018•武汉模拟)如图,直线112y x =-+分别交x 轴、y 轴于A 、B 两点,将线段AB 绕点M 旋转180︒得到线段CD ,双曲线(0)ky k x=>恰好经过C 、D 、M 三点,则k 的值为( )A .43B .1C .98D .89【例5】已知双曲线x y 4=与直线x y 41=交于A 、B 两点(点A 在点B 的左侧).如图,点P 是第一像限内双曲线上一动点,AP BC ⊥于C ,交x 轴于F ,PA 交y 轴于E ,则2224EF BF AE +的值是_________.【例6】如图1,AB OA =,双曲线经过点C 、D 、E ,求证:AE AC AD ⋅=2.图1【同步训练】1.如图,点A ,B 在双曲线xky =上,AB 经过原点O ,过点A 作x AC //∥轴,连接BC 并延长,交双曲线于点D .①求证:CD AD =; ②求BD AD :的值.2.如图所示,平行四边形ABCD 的顶点A 、B 位于反比例函数xky =第一像限的图像上,点C 、D 分别位于x 轴正半轴和y 轴正半轴上. 证明:21∠=∠,43∠=∠.3.如图所示,已知四边形ABCD 是平行四边形,AB BC 2=,A 、B 两点的坐标分别是)01(,-和)20(,,C 、xxD 两点在反比例函数xky =长的图像上,则=k .4.如图所示,点A 在反比例函数)0(1>=x x k y 的图像上,点B 在反比例函数)0(2<=x xky 的图像上,124k k =,且直线AB 经过坐标原点,点C 在y 轴的正半轴上,直线CA 交x 轴于点E ,直线CB 交x 轴于点F .若3=AE AC ,则=CFBF.5.如图1,已知平行四边形ABCD ,A 、B 在反比例函数xky =上,C 、D 分别在x 轴、y 轴正半轴,且反比例图像经过平行四边形对角线的交点E ,已知平行四边形ABCD 面积为6,则=k .图1xxx6.(2020•宁德二模)如图,点A,B,C在反比例函数4yx=-的图像上,且直线AB经过原点,点C在第二像限上,连接AC并延长交x轴于点D,连接BD,若BOD∆的面积为9,则ACCD=.第四节 反比例函数的特殊等量关系和叠罗汉模型 一、平方关系二、乘积关系三、多个三角形矩形问题【例1】如图1,OAC ∆和BAD ∆都是等腰直角三角形,90ACO ADB ∠=∠=︒,反比例函数8y x=在第一像限的图像经过点B ,则OAC ∆与BAD ∆的面积之差为( ) A .1B .2C .3D .4图1【例2】如图1,在第一像限内,动点P 在反比例函数ky x=的图像上,以P 为顶点的等腰OPQ ∆,两腰OP 、PQ 分别交反比例函数my x=的图像于A 、B 两点,作PC OQ ⊥于点C ,BE PC ⊥于点E ,AD OQ ⊥于点D ,则以下说选正确的个数为( )个①AO PQ 为定值;②若4k m =,则A 为OP 中点;③2PEB k mS ∆-=;④222OA PB PQ +=;图1A .4B .3C .2D .1【例3】如图47所示,直线b x y +-=交y 轴于点B ,与双曲线)0(<=x xky 交于点A .若622=-OB OA ,则=k .图47【例4】如图49所示,点A 、B 为直线x y =上的两点,过A 、B 两点分别作y 轴的平行线交双曲线)0(1>=x xy 于点C 、D .若AC BD 2=,则224OD OC -的值为 .图49【例5】如图51所示,直线52-=x y 分别交x 轴、y 轴于点A 、B ,点M 是反比例函数)0(>=x xky 的图像上位于直线上方的一点,x MC //轴交AB 于点C ,MC MD ⊥交AB 于点D .已知5=⋅BD AC ,则k 的值为 .图51【例6】(2020•鄂州)如图53,点A 1,A 2,A 3…在反比例函数y =(x >0)的图像上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1OA 1=∠B 2B 1A 2=∠B 3B 2A 3=…,直线y =x 与双曲线y =交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是( )图53A .(2,0)B .(0,)C .(0,)D .(0,2)【例7】如图54,在y 轴的正半轴上,自O 点开始依次间隔相等的距离取点1A ,2A ,3A ,4A ,⋯,n A ,分别过这些点作y 轴的垂线,与反比例函数2(0)y x x=-<的图像相交于点1P ,2P ,3P ,4P ,⋯,n P ,作2111P B A P ⊥,3222P B A P ⊥,4333P B A P ⊥,⋯,111n n n n P B A P ---⊥,垂足分别为1B ,2B ,3B ,4B ,⋯,1n B -,连接12P P ,23P P ,34P P ,⋯,1n n P P -,得到一组Rt △112PB P ,Rt △223P B P ,Rt △334P B P ,⋯,Rt △11n n n P B P --,它们的面积分别记为1S ,2S ,3S ,⋯,1n S -,则12S S += ,1231n S S S S -+++⋯+= .图54【例8】(2015•贵港)如图55,已知点1A ,2A ,⋯,n A 均在直线1y x =-上,点1B ,2B ,⋯,n B 均在双曲线1y x =-上,并且满足:11A B x ⊥轴,12B A y ⊥轴,22A B x ⊥轴,23B A y ⊥轴,⋯,n n A B x ⊥轴,1n n B A y +⊥轴,⋯,记点n A 的横坐标为(n a n 为正整数).若11a =-,则2015a = .图55【例9】如图56所示,等腰三角形△11OA B ,△122B A B ,△233B A B ,⋯,△1(n n n B A B n -为正整数)的一直角边在x 轴上,双曲线ky x=经过所有三角形的斜边中点1C ,2C ,3C ,⋯,n C ,已知斜边1OA =点n A 的坐标为 .图56【同步训练】1.(2019秋•龙岗区校级期中)如图,BOD ∆是等腰直角三角形,过点B 作AB OB ⊥交反比例函数(0)ky x x=>于点A ,过点A 作AC BD ⊥于点C ,若3BOD ABC S S ∆∆-=,则k 的值为 .2.(2020•海门市二模)如图,在平面直角坐标系xOy 中,已知点(,)P a a ,过点P 作OP 的垂线交(0)ky x x=>的图像于点Q .若2212OP PQ -=,则k 的值为( )A .12B .9C .6D .33.(2018•越秀区二模)如图, 点A ,B 为直线y x =上的两点, 过A ,B 两点分别作y 轴的平行线交双曲线2(0)y x x=>于C ,D 两点 . 若3BD AC =,则229OC OD -的值为( )A . 16B . 27C . 32D . 484.(2017•十堰)如图, 直线6y =-分别交x 轴,y 轴于A ,B ,M 是反比例函数(0)ky x x=>的图像上位于直线上方的一点,//MC x 轴交AB 于C ,MD MC ⊥交AB 于D ,43AC BD =k 的值为( )A .3-B .4-C .5-D .6-5.(2013秋•洞头县期中)如图,△11POA 、△212P A A 、△323P A A 、⋯、△10099100P A A 是等腰直角三角形,点1P 、2P 、3P 、⋯、100P 在反比例函数4y x=的图像上,斜边1OA 、12A A 、23A A 、⋯、99100A A 都在x 轴上,则点100A 的坐标是 .6.如图,已知反比例函数1y x =的图像,当x 取1,2,3,n ⋯时,对应在反比例图像上的点分别为1M 、2M 、3n M M ⋯,则11222311P M M P M M Pn Mn MnSSS--++⋯= .7.(2015•威海一模)如图,在平面直角坐标系中,已知直线:1l y x =--,双曲线1y x=,在直线l 上取点1A ,过点1A 作x 轴的垂线交双曲线于点1B ,过点1B 作y 轴的垂线交直线l 于点2A ,过点2A 作x 轴的垂线交双曲线于点2B ,过点2B 作y 轴的垂线交直线l 于点3A ⋯,这样依次得到直线l 上的点1A ,2A ,3A ,4A ,⋯,n A ,⋯若点1A 的横坐标为2,则点2015A 的坐标为 .8.(2019•淄博)如图,△11OA B ,△122A A B ,△233A A B ,⋯是分别以1A ,2A ,3A ,⋯为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点11(C x ,1)y ,22(C x ,2)y ,33(C x ,3)y ,⋯均在反比例函数4(0)y x x=>的图像上.则1210y y y ++⋯+的值为( )A .B .6C ..达标训练1.如图所示,矩形ABCO 的顶点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,反比例函数)0(≠=x xky 的图像分别与BC 、BA 的延长线交于E 、F 两点,连接AC . 证明:(1)EF AC //;(2)FH GE =.2.如图所示,平行四边形ABCD 的顶点A 、B 位于反比例函数xky =第一像限的图像上,点C 、D 分别位于y 轴负半轴和x 轴负半轴上,AD 交y 轴于点H ,BC 交x 轴于点G . 证明:(1)21∠=∠,43∠=∠;(2)四边形CDHG 是菱形.3.如图所示,A 、B 为反比例函数xky =第一像限图像上任意两点,连接OA 并延长交反比例函数图像另一支于点C ,连接BC 交x 轴于点G 、交y 轴于点F ,连接AB 并向两侧延长分别交x 轴于点E 、交y 轴于点D .证明:21∠=∠,43∠=∠.4.如图所示,□ABCD 的顶点A 、B 的坐标分别是)01(,-A 、)20(-,B ,顶点C 、D 在双曲线xky =上,边AD 交y 轴于点E ,且四边形BCDE 的面积是ABE △的面积的5倍,则=k .5.如图所示,矩形ABCD 的顶点C 、D 在反比例函数)00(>>=x k xky ,的图像上,顶点A 在y 轴上,顶点B 在x 轴上,连接OD .若︒=∠60ODC ,则=ADAB.6.如图,函数1(0)y x x =>和3(0)y x x=>的图像分别是1l 和2l .设点P 在2l 上,//PA y 轴交1l 于点A ,//PB x轴,交1l 于点B ,PAB ∆的面积为( )A .12B .23 C .13D .347.(2020•崇川一模)如图,直线y kx b =+与曲线3(0)y x x=>相交于A 、B 两点,交x 轴于点C ,若2AB BC =,则AOB ∆的面积是( ) A .3B .4C .6D .8yxAC BE D O y xBADCO8.(2019•双峰一模)如图,ABCD 的顶点A 、B 的坐标分别是(1,0)A -,(0,3)B -,顶点C 、D 在双曲线ky x=上, 边AD 交y 轴于点E ,且ABCD 的面积是ABE ∆面积的 8 倍, 则k = .8题图 9题图9.(2019•如东期末)如图,AOB ∆的顶点B 在x 轴上,点C 在AB 边上且2AC BC =,若点A 和点C 都在双曲线(0)ky x x=>上,AOC ∆的面积为4,则k 的值为 .10.(2017•孝义二模)如图,点A 是反比例函数(0)k y x x =>的图像上一点,OA 与反比例函数1(0)y x x=>的图像交于点C ,点B 在y 轴的正半轴上,且AB OA =,若ABC ∆的面积为6,则k 的值为 .11.(2017•慈溪模拟)如图,在平面直角坐标系中,O 为坐标原点,平行四边形ABOC 的对角线交于点M ,双曲线(0)ky x x=<经过点B 、M .若平行四边形ABOC 的面积为12,则k = .12.(2016•青羊月考)如图,已知点(4,3)P -是双曲线11(0k y k x=<,0)x <上一点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线221(0||)k y k k x=<<于E 、F 两点.记PEF OEF S S S ∆∆=-,则S 的取值范围是 .13.(2020•雨花期中)如图,在平面直角坐标系中,Rt AOB ∆的边OA 在y 轴上,OB 在x 轴上,反比例函数(0)ky k x=≠与斜边AB 交于点C 、D ,连接OD ,若:1:2AC CD =,14OBD S ∆=,则k 的值为 .14.(2020•常熟期末)如图,在平面直角坐标系中,ABO ∆的边AB 平行于y 轴,反比例函数(0)ky x x=>的图像经过OA 中点C 和点B ,且OAB ∆的面积为6,则k = .x15.(2020•随州中考)如图,直线AB 与双曲线(0)ky k x =>在第一像限内交于A 、B 两点,与x 轴交于点C ,点B 为线段AC 的中点,连接OA ,若AOC ∆的面积为3,则k 的值为 .16.(2020•平湖二模)如图,已知OAB ∆中,AB OB ⊥,以O 为原点,以BO 所在直线为x 轴建立坐标系.反比例函数的图像分别交AO ,AB 于点C ,D ,已知32OC AC =,ACD ∆的面积为169,则该反比例函数的解析式为 .17.如图所示,双曲线)0(4>=x xy 与直线EF 交于点A 、B ,且BF AB AE ==,线段AO 、BO 分别与双曲线)0(2>=x xy 交于点C 、D ,则: (1)AB 与CD 的位置关系是;(2)四边形ABDC 的面积为 .18.如图所示,在平面直角坐标系xOy 中,梯形ABCO 的底边AO 在x 轴上,AO BC //,AO AB ⊥,过点C 的反比例函数)0(>=x x k y 的图像交OB 于点D ,且21=DB OD .若16=OBC S △,k 的值是__________.19.如图所示,在平面直角坐标系xOy 中,点A 、B 在反比例函数)0(4>=x xy 的图像上,延长AB 交x 轴于点C ,且21=AB BC ,连接OA 交反比例函数)0(1>=x xy 的图像于点D ,则=ABD S △ .19题图 20题图20.(2019•鼓楼期末)如图,A 、B 是反比例函数ky x=图像上的两点,过点A 作AC y ⊥轴,垂足为C ,交OB 于点D ,且D 为OB 的中点,若ABO ∆的面积为4,则k 的值为 .21.(2017•长春模拟)如图,在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在第一像限,点C 在线段AB 上,点D 在AB 的右侧,OAB ∆和BCD ∆都是等腰直角三角形,90OAB BCD ∠=∠=︒,若函数6(0)y x x=>的图像经过点D ,则OAB ∆与BCD ∆的面积之差为( )A .12B .6C .3D .222.(2020•广西)如图,点A ,B 是直线y x =上的两点,过A ,B 两点分别作x 轴的平行线交双曲线xy CB AD O1(0)y x x=>于点C ,D .若AC ,则223OD OC -的值为( )A .5B .C .4D .23.(2020•宁乡市一模)如图,点M 为双曲线1y x=上一点,过点M 作x 轴、y 轴的垂线,分别交直线2y x m =-+于D 、C 两点,若直线2y x m =-+交y 轴于A ,交x 轴于B ,则AD BC 的值为 .24.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点1A 、2A 、3A 、4A 、5A 分别作x 轴的垂线与反比例函数(0)4y x x=≠的图像相交于点1P 、2P 、3P 、4P 、5P ,得直角三角形11OP A 、122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为1S 、2S 、3S 、4S 、5S ,则10S = .(1n 的整数)25.如图,在AOC ∆中,90OAC ∠=︒,AO AC =,2OC =,将AOC ∆放置于平面直角坐标系中,点O 与坐标原点重合,斜边OC 在x 轴上.反比例函数(0)ky x x=>的图像经过点A .将AOC ∆沿x 轴向右平移2个单位长度,记平移后三角形的边与反比例函数图像的交点为1A ,2A .重复平移操作,依次记交点为3A ,4A ,5A ,6A ⋯分别过点A ,1A ,2A ,3A ,4A ,5A ⋯作x 轴的垂线,垂足依次记为P ,1P ,2P ,3P ,4P ,5P ⋯若四边形11APP A 的面积记为1S ,四边形2233A P P A 的面积记为2S ⋯,则n S = .(用含n 的代数式表示,n 为正整数)26.如图所示,点1A ,2A ,3A ⋯⋯.n A 在x 轴上,且1121n n OA A A A A -==⋯⋯=,分别过点1A ,2A ,3A ⋯,n A ⋯作y 轴的平行线,与反比例函数8(0)y x x =>的图像分别交于点1B ,2B ,3n B B ⋯,分别过点1B ,2B ,3B ⋯⋯,.n B 作x 轴的平行线交y 轴交于点1C ,2C ,3:C ⋯⋯.n C ,连接1OB ,2OB ,3n OB OB ⋯,得到△11OB C ,△222D B E .△333D B E ⋯⋯△n n n D B E ,则△201820182018D B E 图面积等于 .27.(2016•抚顺模拟)如图,点11(P x ,1)y ,点22(P x ,2)y ,⋯,点(n nP x ,)n y 在函数1(0)y x x=>的图像上,△1POA ,△212P A A ,△323P A A ,⋯,△1n n n P A A -都是等腰直角三角形,斜边1OA ,12A A ,23A A ,⋯,1n n A A -都在x 轴上(n 是大于或等于2的正整数).若△11POA 的内接正方形1111B C D E 的周长记为1l ,△212P A A 的内接正方形的周长记为2l ,⋯,△1n n n P A A -的内接正方形n n n n B C D E 的周长记为n l ,则123n l l l l +++⋯+= (用含n 的式子表示).28.(2019•鞍山一模)如图,直线4y x =-+分别交x 轴、y 轴于A 、B 两点,P 是反比例函数(0)ky x x=>,图像上位于直线4y x =-+下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F ,并且4AF BE = (1)求k 的值; (2)若反比例函数ky x=与一次函数4y x =-+交于C 、D 两点,求三角形OCD 的面积.29.(2013秋•龙湾区校级月考)如图,点1P 、2P 、n P ⋯是反比例函数16y x=在第一像限图像上,点1A 、2n A A ⋯在x 轴上,若△11POA 、△212P A A ⋯△1n N N P A A -均为等腰直角三角形,则: (1)1P 点的坐标为 ; (2)求点2A 与点2P 的坐标; (3)直接写出点n A 与点n P 的坐标.30.(2018•景德镇二模)如图,四边形111OP A B 、1222A P A B 、2333A P A B 、⋯⋯、1n n n n A P A B -都是正方形,对角线1OA 、12A A 、23A A 、⋯⋯、1n n A A -都在y 轴上(2)n ,点11(P x ,1)y ,点22(P x ,2)y ,⋯⋯,点(n n P x ,)n y 在反比例函数(0)ky x x=>的图像上,已知1(1,1)B -. (1)反比例函数解析式为 ; (2)求点3P 和点2P 的坐标;(3)点n P 的坐标为( )(用含n 的式子表示),△n n P B O 的面积为 .31.(2020•江夏区模拟)如图,在平面直角坐标系中,函数(0)ky x x=>的图像经过菱形OACD 的顶点D 和边AC 上的一点E ,且2CE AE =,菱形的边长为8,则k 的值为 .32.(2018•武侯区模拟)如图,在平面直角坐标系中,平行四边形ABOC 的边OB 在x 轴上,过点(3,4)C 的双曲线与AB 交于点D ,且2AC AD =,则点D 的坐标为 .。

中考数学复习考点知识讲解与练习17 一次函数与反比例函数综合训练(基础篇)

中考数学复习考点知识讲解与练习17 一次函数与反比例函数综合训练(基础篇)

中考数学复习考点知识讲解与练习专题17 一次函数与反比例函数综合训练(基础篇)中考中,一次函数与反比例函数相结合的题型是必考点,难度分为中档和偏难两个考点,分值点比高,也是期末考试的必考点,因此,本中考数学复习考点知识讲解与练习 专题汇编了一次函数与反比例函数综合训练中考数学复习考点知识讲解与练习 专题,有针对性训练学生的能力,也是教学辅导学生的较好的参考资料,本中考数学复习考点知识讲解与练习 专题分为两部分,基础篇以中档偏下难度为主,以填空和选择题形式出现,提高篇以综合解答题为本,着重培养学生综合能力,本中考数学复习考点知识讲解与练习 专题着眼于数形结合思想解题,提升学生数学思想。

一、单选题1.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是()A .B .C .D .2.一次函数y =ax -a 与反比例函数y =ax(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.一次函数y=ax+b 与反比例函数cy x=的图象如图所示,则( )A .a >0,b >0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a <0,b <0,c >04.(2022·监利县新沟新建中学九年级月考)已知反比例函数y =kx的图象过一、三象限,则一次函数y =kx +k 的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、二、四象限D .一、三、四象限5.对于一次函数3y mx =+,如果y 随x 的增大而减小,那么反比例函数my x=满足() A .当0x >时,0y > B .在每个象限内,y 随x 的增大而减小 C .图像分布在第一、三象限D .图像分布在第二、四象限6.如图,已知点A 是一次函数y =x 的图象与反比例函数的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为()A.2 B. C. D.7.已知反比例函数kyx(k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(2022·河南九年级期末)已知一次函数y1=kx+b((k≠0)与反比例函数y2=mx(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<39.(2014·甘肃九年级期末)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为()A .B .C .D . 10.(2022·河南郑州外国语中学九年级期中)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x11.(2017·江苏八年级期末)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x12.一次函数y ax a =-与反比例函数(0)a y a x=≠在同一坐标系中的图象可能是() A . B .2y x =2y x =-12y x =12y x=-C .D .13.(2016·河南九年级月考)反比例函数和一次函数在同一直角坐标系中的图象大致是()A .B .C .D .14.(2016·山西九年级期末)一次函数与反比例函数在同一平面直角坐标系中的图象可能是()A .B .C .D .15.(2022·山西八年级月考)如图,一次函数()0y kx b k =+≠与反比例函数()0m y m x =≠分别交于,A B 两点,则不等式mkx b x+<的解集是()A .2x <-B .4x >C .2x <-或04x <<D .24x -<<16.已知一次函数y k kx =-与反比例函数ky x=,当k 0<时,它们的图像在同一直角坐标平面内大致是()A .B .C .D .17.如图,一次函数23y x =-+分别与x 轴y 轴交于A ,B 两点,AC y ∥轴,BC x ∥轴,反比例函数(0)k y x x=>经过点C ,则k 的值为().A .92B .92-C .94D .94-18.(2022·全国九年级单元测试)如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值大于一次函数的值的x 的取值范围是( )A .x <﹣1B .x >2C .﹣1<x <0或x >2D .x <﹣1或0<x <219.(2011·贵州中考真题)一次函数y=kx+k (k≠0)和反比例函数(0)ky k x=≠在同一直角坐标系中的图象大致是( )A .B .C .D .20.一次函数y =ax +a(a 为常数,a≠0)与反比例函数y =ax(a 为常数,a≠0)在同一平面直角坐标系内的图像大致为( )A .B .C .D .二、填空题21.(2022·全国九年级单元测试)如图,一次函数与反比例的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是________.22.(2022·黑龙江九年级期末)已知一次函数23y x =-与反比例函数ky x=的图象交于点()2,3P a -,则k =________.23.如图,一次函数y 1=﹣x ﹣1与反比例函数y 2=﹣2x 的图象交于点A (﹣2,1),B(1,﹣2),则使y 1>y 2的x 的取值范围是_____.24.如图,一次函数y 1=ax +b 和反比例函数y 2=xk的图象相交于A ,B 两点,则使y 1>y 2成立的x 取值范围是_____.25.(2022·四川中考模拟)一次函数y 1=k 1x +b 和反比例函数y 2=2k x(k 1•k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是_______.26.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 27.如图,一次函数y kx b =+与反比例函数ky x=交于点()1,A m -、()3,B n ,要使一次函数值大于反比例函数值,则x 的范围是________.28.反比例函数ky x=的图象与一次函数y mx b =+的图象交于()1,3A ,(),1B n -两点.则反比例函数的解析式是________,一次函数的解析式是________.29.(2017·山东中考模拟)如图,反比例函数的图象与一次函数y =x +2的图象交于A 、B 两点. 当x __________时,反比例函数的值小于一次函数的值.30.如图,已知一次函数y kx b =+与反比例函数my x=(0m <)图象在第二象限相交于A (﹣4,12),B (n ,2)两点,当x 满足条件:_____时,一次函数大于反比例函数的值.31.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m, 2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.32.(2022·浙江八年级单元测试)已知反比例函数2ky x=和一次函数,y=2x-1,其中一次函数图象经过(a, b)和(a+1,b+k) 两点,则反比例函数的解析式是__________.三、解答题33.如图,一次函数y x b =+和反比例函数()0ky k x=≠交于点()2,1A .()1求反比例函数和一次函数的解析式; ()2求AOB 的面积;()3根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.34.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于点()1,6A -,(),2B a .求一次函数和反比例函数的解析式.35.(2022·保定市第三中学分校九年级期末)已知:如图,反比例函数ky x=的图象与一次函数y x b =+的图象交于点(1,4)A 、点(4,)B n -. (1)求一次函数和反比例函数的解析式; (2)求OAB ∆的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.36.如图,一次函数y kx b =+的图象与反比例函数m y x =的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式; (2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.37.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()2,1A -,()1,B n 两点.(1)试确定上述反比例函数和一次函数的表达式; (2)当x 为何值时反比例函数值大于一次函数的值;(3)当x 为何值时一次函数值大于比例函数的值;(4)求AOB ∆的面积.38.(2022·山西九年级期末)如图,反比例函数k y x=(0k ≠)的图象与一次函数y ax b =+的图象交于(1,3)A ,(3,)B m -两点. (1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出x 的取值范围.39.(2022·江西九年级)如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x 的取值范围.40.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB 的面积.(3)根据图象写出反比例函数y≥n 的x 取值范围.。

人教八下“第17章 反比例函数”精讲精练

人教八下“第17章 反比例函数”精讲精练

人教八下“第17章 反比例函数”精讲精练丁浩勇(安徽省无为县刘渡中心学校 238341)一、精心挑选,小心有陷阱哟!1.若点(2,5)是反比例函数xm m y 222++=的图象上一点,则此函数图象必经过点( )A.(-2,5)B.(-5,2)C.(4,-2.5)D.(-4,-2.5) 推荐指数:★★★★★推荐理由:根据k xy =(k 为定值)这一性质,我们只要知道代数式222++m m 的值就可以了,不必求出具体的m 的值.这样不但降低了解题难度,而且减少了运算量!答案:D .2.在函数xa y 12--=(a 为常数)的图象上有三点),3(1y -、),1(2y -、),2(3y .则函数值y 1、y 2、y 3的大小关系是( )A. 2y <13<y yB. 3y <12<y yC. 21<y y <3yD. 3y <21<y y 推荐指数:★★★★推荐理由:本题容易被错选C ,错选的原因是看到“12--a <0”就认为“y 随着x 的增大而增大”,其实反比例函数的增减性只能分别在每个象限内考虑,而不能在整个取值范围内考虑.答案:D .3.函数kx y =和函数xky -=(0≠k )在同一坐标系中的图象大致是( ) 推荐指数:★★★★推荐理由:此类问题需要分类讨论,有利于培养学生分类讨论的思想以及全面考虑问题的能力! 答案:B4.夏天,一杯开水放在桌子上,杯中水的温度随时间变化的关系的大致图象是( )OyBxOyxACxOyOyxDxyC x yB x yA x y推荐指数:★★★★★推荐理由:这个问题是每个学生都会遇到的生活问题,非常有利于培养学生用数学的眼光分析问题、解决问题的能力,真正达到了学以致用的目的.答案:B二、细心填空,看谁又对又快哟! 5.已知反比例函数xky =(k 是常数,0≠k )的图象过(3,4)和(2,a ),则a 等于________. 推荐指数:★★★★推荐理由:此类问题的常规解题思路是先根据图象经过(3,4)点求出函数解析式,然后再把点(2,a )的横坐标的值2代入函数解析式求出a 的值.如果根据横坐标与纵坐标之积为定值可以直接列出()432-⨯=a ,这样会优化解题过程,提高解题效率.答案:-6.6.若函数x y 4=与x y 1=的图象有一个交点是(2,21),则另一个交点坐标是 .推荐指数:★★★★★推荐理由:解决这类问题的一般方法是联立方程组求解.但解决这类问题有简便的方法:利用“正比例函数的图象与反比例函数的图象有交点时,交点关于原点对称”这一特征来解,既省时间又不会出错.答案:(2,21--).7.如右图,直线l 与双曲线交于A 、C 两点,将直线l 绕点O 顺时针旋转α度角(0°<︒≤45α),与双曲线交于B 、D 两点,则四边形ABCD 的形状一定是_________形.推荐指数:★★★★★推荐理由:本题把数与形有机地联系在一起,有效地考查了反比例函数和四边形的相关知识.答案:平行四边形.8.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜片的焦距为0.25米,小明的眼镜是200度,则他的镜片焦距是 米.推荐指数:★★★★推荐理由:这是一道贴近学生生活实际的问题,有利于培养解决实际问题的能力. 答案:0.5.三、细心解答,追求完美.9.某人用50N 的恒定压力用气筒给车胎打气.(1)打气所产生的压强P (帕)与受力面积S (米2)之间的函数关系是 . (2)若受力面积是100cm 2,则产生的压强是 .(3)你能根据这一知识解释:为什么刀刃越锋利,刀具就越好用,为什么坦克的轮子上安装又宽又长的履带呢?推荐指数:★★★★★推荐理由:本题素材取自于现实世界,其中蕴涵着丰富的数学思想,学生在做题的过程中能够发现其中的数学内涵.解答:(1)sp 50=;(2)5000帕;(3)接触面积越小,压强越大,所以刀具越好用;接触面积越大,压强越小,所以坦克的轮子上安装又宽又长的履带来增大接触面积,减小压强.10.若点),2(1y -、),1(2y -、),1(3y 在反比例函数xy 2-=的图象上,试判断1y ,2y ,3y 三者之间的大小关系.推荐指数:★★★★★推荐理由:反比例函数的增减性与我们已学过的一次函数及正比例函数的增减性不同,我们不能片面地认为它也是单纯的递增或单纯的递减.求它的增减性,一定要分x >0与x <0两个区间加以讨论.解:因为2-=k <0,得此函数图象在二、四象限,且在x >0时,以及在x <0时,y 都随x 的增大而增大.先分析第二象限内两点),2(1y -、),1(2y -,由于2-<1-<0,则0<21<y y ;又由于),1(3y 是第四象限内点,则3y <0.所以3y <21<y y . 11.已知21y y y +=,1y 与2x 成正比例,2y 与2-x 成反比例,且1-=x 时,1=y ,0=x 时,2=y ,求y 与x 之间的函数关系式.推荐指数:★★★★推荐理由:求函数的解析式通常用待定系数法,但不同函数的系数不能设为同一个未知数来求,学生做题时常常会犯这样的错误.解析:设211x k y =,222-=x k y ,由21y y y +=,得2221-+=x k x k y .根据题意,得 ⎪⎩⎪⎨⎧=-=-2213221k k k 解得⎪⎩⎪⎨⎧-=-=43121k k∴y 与x 之间的函数关系式24312---=x x y . 12.舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,也能由黑夜变成白昼,这样的效果是通过改变电阻控制电流的变化实现的.当电流I 较小时,灯光较暗,反之,灯光较亮.在某一电路保持电压不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻20=R 欧姆时,电流11=I 安培.(1)求I 与R 的函数关系式. (2)当电流8=I 时,求电阻R 的值. 推荐指数:★★★★★推荐理由:能够从实际问题中抽象出反比例函数这一数学模型,是解决这本题的关键.解决本题要用到反比例函数的性质、待定系数法和物理学科中的知识,因此本题是一道综合性较强的好题.解:(1)因为电流I (安培)与电阻R (欧姆)成反比例,所以可以设RUI =,把20=R ,11=I 代入RUI =,解得220=U . 所以I 与R 的函数关系式为RI 220=. (2)把8=I 代入RI 220=,得到5.27=R .所以当电流8=I 时,求电阻R 的值为27.5欧姆.。

第17章 函数及其图象

第17章 函数及其图象

知识点 函数的表示方法
棱长为a的小正方体,按照如图所示的方法一直
摆放下去,自上而下分别叫第1层,第2层,…,第n(n>0)层,第n层的小正方体 的个数记为S,则第n个图中第n层小正方体的个数S可用下表来表示:
知识点 函数的表示方法
第1个图有1层,共1个小正方体; 第2个图有2层,第2层共有小正方体的个数为1+2=3; 第3个图有3层,第3层小正方体的个数为1+2+3=6,…, 以此类推,第n个图有n层,第n层小正方体的个数为S=1+2+3+4+…+n=
知识点 一次函数的性质
(1)当k>0时,y随x的增大而增大,这时函数的图象从左向右呈现上升趋势.
知识点 一次函数的性质
(2)当k<0时,y随x的增大而减小,这时函数的图象从左向右呈现下降趋势.
知识点 一次函数的性质
由k,b的符号可以确定一次函数y=kx+b(k≠0)图象所经过的象限;反过来, 由一次函数y=kx+b(k≠0)图象所经过的象限也可以确定k,b的符号.
k
知识点 反比例函数y= x (k≠0)的图象和性质
双曲线教堂 伦敦著名的建筑事务所steynstudio,最近在南非,美丽的乡村庄园中完成 了一个惊艳世界的作品——双曲线建筑的教堂,建筑师通过双曲线的设 计元素赋予了这座教堂轻盈、极简和雕塑般的气质.
k
知识点 反比例函数y= x (k≠0)的图象和性质
知识点 平面直角坐标系内点的坐标特征
(2)平面直角坐标系中对称点的坐标特征:
知识点 函数的图象及其画法
“龟兔赛跑”讲述了这样的故事:兔子和乌龟同时起跑后,领先的兔子看着慢慢 爬行的乌龟骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙 追赶,但为时已晚,乌龟还是先到达了终点……下面表示的是乌龟和兔子所行 的路程s与时间t的函数图象,你觉得这个图象与故事情节相吻合关概念

浙教版数学八年级下册《6.1 反比例函数》教案2

浙教版数学八年级下册《6.1 反比例函数》教案2

浙教版数学八年级下册《6.1 反比例函数》教案2一. 教材分析浙教版数学八年级下册《6.1 反比例函数》是学生在学习了正比例函数之后的一个拓展,它既是一个新的知识点,也是初中数学中的重要内容。

本节内容通过生活中的实例让学生感受反比例函数的实际意义,从而引出反比例函数的定义,并通过自主探究、合作交流等活动,让学生理解反比例函数的性质。

教材内容由浅入深,由具体到抽象,符合学生的认知规律。

二. 学情分析学生在学习本节内容前,已经学习了正比例函数,对函数的概念、图像有一定的了解。

但反比例函数与正比例函数有很大的不同,它没有图像,性质也不易理解。

因此,在学习本节内容时,学生可能会感到困惑。

同时,八年级的学生已经具备了一定的自主学习能力,合作交流的能力也在不断提高。

三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。

2.能根据反比例函数的性质判断函数图像和解析式。

3.能运用反比例函数解决实际问题。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数图像的特点。

3.反比例函数在实际问题中的应用。

五. 教学方法采用自主探究、合作交流、讲授法、实践操作等教学方法。

通过生活中的实例引入反比例函数,激发学生的兴趣;在学生自主探究、合作交流的过程中,引导学生理解反比例函数的性质;通过实践操作,让学生感受反比例函数在实际问题中的应用。

六. 教学准备1.PPT课件。

2.反比例函数的相关实例。

3.反比例函数的练习题。

七. 教学过程导入(5分钟)利用生活中的实例,如“汽车行驶过程中,速度与时间的关系”,引导学生回忆正比例函数的知识,进而引出反比例函数的概念。

呈现(10分钟)1.呈现反比例函数的定义:如果两个变量之间的关系式可以表示为(y=),其中 (k) 是常数,那么函数 (y=) 称为反比例函数。

2.呈现反比例函数的性质:反比例函数的图像是一条不经过原点的直线,且在第一、三象限;反比例函数的定义域是 (x0)。

第17讲 反比例函数的图象与性质

第17讲  反比例函数的图象与性质

第17讲 反比例函数的图象与性质考点·方法·破译1.反比例函数的定义:形如k y x=(或1y kx -=,k ≠0),y 叫做x 的反比例函数. 2.反比例函数的图象特征:反比例函数的图象是双曲线,关于y =x 或y =-x 轴对称,关于原点O 成中心对称,当k >0时,图象的两支分别在第一、三象限,当k <0时,图象的两支分别在第二、四象限,3.反比例函数的性质:当k >0时,在每个象限内,y 随x 增大而减小;当k <0时,在每个象限内,y 随x 增大而增大.经典·考题·赏析【例1】(西宁)已知函数ky x=-中,x >0时,y 随x 增大而增大,则y =kx -k 的大致图象为( )k >0,而一 次A 01.已知反比例函数a y x=(a ≠0)的图象,在每一象限内,y 的值随着x 值增大而减小,则一次函数y =-ax +a 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 02.(龙岩)函数y =x +m 与my x=(m ≠0)在同一象限内的图象可以是( 03(2,y 1随着x 其中正确结论的序号是 . 【例2】如图,A 、B 分别是反比例函数10y x =,6y x=图象上的点,过点A 、B 作x 轴的垂线,垂足分别为C 、D ,连接OB 、OA ,OA 交BD于E 点,△BOE 的面积为S 1,四边形ACDE 的面积为S 2,则S 2-S 1= .ABCDABC D【解法指导】在反比例函数kyx=中,k的几何意义为:中122121106()()22222ODE OBEk kS S S S S S∆∆-=+-+=-=-=【变式题组】01.(宁波)如图,正方形ABOC的边长为2,反比例函数kyx=过点A,则k的值是()A.2 B.-2 C.4 D.-402.(兰州)如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线3yx=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小0304y 轴,△ABC的面积记为S,则()A.S=2 B.S=4 C.2<S<4 D.S>405.(泰安)如图,双曲线kyx=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若梯形ODBC的面积为3,则双曲线的解析式为()A.1yx=B.2yx=C.3yx=D.6yx=【例3】(成都)如图,一次函数y=kx+b的图象与反比例函数myx=的图象交于点A(-2,1),B(1,n)两点⑴试确定上述反比例函数和一次函数的表达式;⑵求△AOB的面积.【解法指导】利用割补法求图形面积.解:⑴∵点A(-2,1)在反比例函数myx=的图象上,∴m=(-2)×1=-2,∴反比例函数的表达式为2yx=-.第1题图第2题图第3题图第4题图第5题图∵点 B (1,n )也在反比例函数2y x=-图象上,∴n =-2,即B (1,-2) 把点A (-2,1)点B (1,-2)代入一次函数y =kx +b 中,得212k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩ ∴一次函数的表达式为y =-x -1. ⑵在y =-x -1中,当y =0时,得x =-1,∴直线y =-x -1与x 轴的交点为C (-1,0),∵线段OC 将△AOB 分成△AOC 和△BOC ,∴1113111212222AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=+=.【变式题组】01.(徐州)如图,已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点,直线AB 与y 轴交于点C .⑴求反比例函数和一次函数的关系式; ⑵求△AOC 的面积; ⑶求不等式kx +b mx-<0的解集(直接写出答案)02.已知反比例函数112k y x=的图象与一次函数22y k x b =+的图象交于A 、B 点,A (1,n ),B (12-,-2). ⑴求两函数的解析式;⑵在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,请你直接写出P 点的坐标;若不存在,说明理由. ⑶求AOB △S ;⑷若y 1>y 2,求x 的取值范围.03.如图,A 是反比例函数1ky x=(x >0)上一点,AB ⊥x 轴,C 是OB 的中点,一次函数y 2=ax +b 的图象经过点A 、C 两点,并交y 轴为D (0,-2),AOD S ∆=4. ⑴求两函数的解析式;⑵在y 轴右侧,若y 1>y 2时,求x 的取值范围.04.如图,Rt △ABO 的顶点A 是双曲线ky x=与直线y =-x -(k +1)在第二象限的交点,AB ⊥x 轴于B ,32ABO S ∆=. ⑴求这两个函数的解析式; ⑵求A 、C 两点的坐标;⑶若P 是y 轴上一动点,5PAC S ∆=,求点P 的坐标.【例4】(咸宁)两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确的序号都填上)【解法指导】∵A 、B 两点在1y x=的图象上,根 据反比例函数ky x=中k 的几何意义可知12ODB OAC S S ∆∆==,因而①正确;∵1ODB OAC PDOC PAOB S S S S k ∆∆=--=-矩形四边形,当k 不变时,若P 变动,而四边形PAOB 的面积不变.因1x =而是②正确;若设P (t ,k t ),则A (t ,1t),B (,t k k t ),∴PA =11k k t t t --=,PB =t t k -.若PA =PB ,则有1(1)k t k t k--=.∵k ≠1,∴2t k =,∵t >0,t =,∴当P时,有PA =PB ,并不是PA 与PB 始终相等,因而③不正确;当A 为PC 的中点时,OAC OPA OBD S S S ∆∆∆==,OPC ODP S S ∆∆=,∴ODB OPB S S ∆∆=,∴DB =PB ,因而④正确;故填①,②.④.【变式题组】01.(武汉)如图,已知双曲线ky x=(k >0)经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k = . 02.如图,矩形ABCD 对角线BD 中点E 与A 都在反比例函数ky x=的图象上,且3ABCD S =矩形,则k = .03.如图,P 为x 轴正半轴上一点,过点P 作x 轴的垂线,交函数1y x =(x >0)的图象于点A ,交函数4y x=(x >0)的图象于点B ,过点B 作x 轴的平行线,交1y x=(x >0)于点C ,连接AC ,当点P 的坐标为(t ,0)时,△ABC 的面积是否随t 的变化而变化?第1题图第3题图04.函数2yx=(x>0)与8yx=(x>0)的图象如图所示,直线x=t(t>0)分别与两个函数图象交于A、C两点,经过A、C分别作x轴的平行线,交两个函数图象于B、D 两点,探索线段AB与CD的比值是否与t有关,请说明理由.05.如图,梯形AOBC的顶点A、C有反比例函数的图象上,OA∥BC,上底OA在直线y=x上,下底BC交x轴于E(2,0),求四边形AOEC的面积.演练巩固·反馈提高01.(恩施自治州)如图,一次函数y1=x-1与反比例函数22yx=的图象点A(2,1)、B (-1,-2),则使y1>y2的x的取值范围是()A.x>2 B.x>2或-1<x<0C.-1<x<2 D.x>2或x<-102.(常州)若反比例函数1kyx-=的图象在其每个象限内,y随x的增大而减小,则k的值可以是()A.-1 B.3 C.0 D.-303.(荆州)如图,直线l是经过点(1,0)且与y轴平行的直线,Rt△ABC中直角边AC=4,BC=3,将BC边在直线l上滑动,使A、B在函数kyx=的图象上,那么k的值是()第4题图A .3B .6C .12D .15404.(丽水)点P 在反比例函数1y x=(x >0)的图象上,且横坐标为2,若将点P 先向右平移两个单位,再向上平移一个单位后所得点为P /,则在第一象限内,经过点P /的反比例函数图象的解析式是( ) A . 5y x =-(x >0) B . 5y x =(x >0) C . 6y x =-(x >0) D . 6y x=(x >0)05.(铁岭)如图所示,反比例函数y 1与正比例函数y 2的图象的一个交点坐标是A (2,1),若y06.(泰安)函数1y x x=+图象如图所示,下列对该函数性质的论断不可能正确的是( ) A .该函数的图象是中心对称图形 B .当x >0时,该函数在x =1时取得上值2C .在每个象限内,y 随x 的增大而减小D . y 的值不可能为1 07.(芜湖)在平面直角坐标系xOy 中,直线y =x 向上平移一个单位长度得到直线l , 直线l与反比例函数ky x=的图象的一个交点为A (a ,2)则k 的值等于 . 08.(广安)如图,在反比例函数4y x=-(x >0)的图象上有三点P 1、P 2、P 3,它们的横坐标依次为1,2,3,分别过这3个点作x 轴、y 轴的垂线,设斩中阴影部分的面积依次为S 1、S 2、S 3,则S 1+S 2+S 3= .09.(十堰)已知函数y =-x +1的图象与x 轴、y 轴分别交于点C 、B ,与双曲线ky x=交于点A 、D ,若AB +CD =BC ,则k 的值为 . 10.(遵义)如图,在平面直角坐标系中,函数ky x=(x >0,常数k >0)的图象经过点A (1,2),B (m ,n ),(m >1),过点B 作y 轴的垂线,垂足为C ,若△ABC 的面积为2,则点B 的坐标为 .1 2 0 1 2 0 1 2 0 1 2 A B CD y x A (2,1) 0 1 2 1 Y 1Y 2第5题图 B l C1 O y x A 第3题图 y x 0 1 -2 -1 第6题图 2 y x0 1 2 3 第8题图 P 1 P 2 P 311.如图,点P的坐标为(2,32),过点P作x轴的平行线交y轴于点A,交双曲线kyx=(x>0)于点N,作PM⊥AN,交双曲线于kyx=(x>0)于点M.连接AM,已知PN=4,⑴求k的值;⑵求△APM的面积.12.如图,反比例函数kyx=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标3,D、C 为反比例函数图象上的两点,且AD、BC平行于y轴,⑴直接写出k、m的值;⑵求梯形ABCD的面积.13.如图,已知双曲线kyx=(x>0)经过Rt△OAB斜边的中点D,与直角边AB相交于点C,若△OBC的面积为3,求k的值.14.如图,Rt△ABC的直角边BC在x轴的正半轴上,斜边AC边上的中线BD反向延长交y轴负半轴于E,双曲线kyx=(x>0)的图象经过点A,若BECS∆=8,求k的值.15.如图,Rt △ABC 中,∠BAC =90°,BC 所在直线的解析式为42033y x =-+,AC =3,若AB 的D 在双曲线ay x=(x >0)上,将三角形向左平移,当点B 落在双曲线上时,求三角形平移的距离.16.(荆州)如图,D 为反比例函数ky x=(k <0)图象上一点,过D 作DC ⊥y 轴于C ,DE ⊥x 轴于E ,一次函数y x m =-+与32y x =-+的图象都经过点C ,与x 轴分别交于A 、B 两点,若梯形DCAE 有面积为4,求k 的值.17.(四川广安)如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于点A (-1,2)、点B (-4,n )⑴求一次函数和反比例函数的解析式; ⑵求△AOB 的面积.18.(河北省)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A 、C分别在坐标,顶点B 的坐标为(4,2),过点D (0,3)和E (6,0)的直线分别与AB 、BC 交于点M 、N ,⑴求直线DE 的解析式和点M 的坐标;⑵若反比例函数my x=(x >0)的图象经过点M ,求该反比例例函数的解析式,并通过计算判断点N 是否在该函数的图象上? ⑶若反比例函数my x=(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.培优升级·奥赛检测01.如图,直线l 与反比例函数m y x =与ny x=(m >n >0)的图象分别交于点A 、B ,且直线l ∥x 轴,连接PA 、PB ,小芳与小丽同学针对△PAB 面积的讨论,有以下两种意见:小芳:点P 在x 轴上移动时,△PAB 的面积总保持不变; 小丽:当直线l 上下平移时,△PAB 的面积总保持不变; 那么,你认为她们的说法中( )A .只有小芳正确B .只有小丽正确C .两人都正确D .两人都不正确02.(南昌市八年级竞赛题)在函数21a y x+=-(a 为常数)的图象上有三点:(-1,y 1),(21,4y -),( 31,2y )则函数值y 1、y 2、y 3的大小关系是( ) A . y 1<y 2<y 3 B . y 3<y 2<y 1 C . y 3<y 1<y 2 D . y 2<y 1<y 303.(济南)如图,等腰直角三角形ABC 位于第一象限,AB =AC =2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线ky x=(k ≠0)与△ABC 有交点,则k 的取值范围是( ) A .1<k <2 B .1≤k ≤3 C . 1≤k ≤4 D . 1≤k <404.(第十八届“希望杯”初二)直线l 交反比例函数3y x=的图象于点A ,交x 轴于点B ,点A 、B 与坐标原点O 构等边三角形,则直线l 的函数解析式为 05.(成都)如图,正方形OABC 的面积是4,点B 在反比例函数ky x=(k >0,x <0)的图象上,若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m <4)时,点R的坐标是.(用含m的代数式表示)06.如图,已知直线12y x=与双曲线kyx=(k>0)交于A点,且点A的横坐标为4,若双曲线kyx=(k>0)上一点B的纵坐标为8,求△AOB的面积.07.(北京)如图,A、B两点在函数myx=(x>0)的图象上,⑴求m的值及直线AB的解析式;⑵如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,请直接写出图中阴影部分(不包括边界)所含格点的个数.08.(温州)如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数myx=在第一象限的图象交于点C(1,6)点D(3,n).过点C作CE⊥y轴于E,过点D作DF⊥x轴于点F,⑴求m、n的值;⑵求直线AB的函数解析式;⑶求证:△AEC≌△DFB.09.如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数kyx=(k>0,x>0)的图象上,点P(m,n)是函数kyx=(k>0,x>0)的图象上的任意一点,过点P作x轴、y轴的垂线,垂足分别为E、F,并设在矩形OEPF 中和正方形OABC不重合的部分面积为S.⑴求点B的坐标和k的值;⑵当92S=时,求点P的坐标;⑶写出S关于m的函数关系式.10.如图,已知A(-6,n),B(3,-4)是一次函数y=kx+b的图象和反比例函数m yx =图象的两个交点,直线AB与x轴和y轴的交点分别为C、D.⑴求反比例函数和一次函数的解析式;⑵求不等式mkx bx+-<0的解集(请直接写出答案);⑶求证:AC=BD;⑷若y轴上有一动点P,使得△PAB的面积为18,求P点的坐标.。

初中数学教材目录(全)

初中数学教材目录(全)

初中数学教材目录(全)七年级上册(61)第1章有理数(19)第2章整式的加减(8)第3章一元一次方程(18)第4章图形认识初步(16)七年级下册(62)第5章相交线与平行线(14)第6章平面直角坐标系(7)第7章三角形(8)第8章二元一次方程组(12)第9章不等式与不等式组(12)第10章数据库的收集整理与描述(9)八年级上册(62)第11章全等三角形(11)第12章轴对称(13)第13章实数(8)第14章一次函数(17)第15章整式的乘除与因式分解(13)八年级下册(61)第16章分式(14)第17章反比例函数(8)第18章勾股定理(8)第19章四边形(16)第20章数据的分析(15)九年级上册(62)第21章二次根式(9)第22章一元二次方程(13)第23章旋转(8)第24章圆(17)第25章概率初步(15)九年级下册(48)第26章二次函数(12)第27章相似(13)第28章锐角三角函数(12)第29章投影与视图(11)七年级上册第一章有理数1.1 正数和负数阅读与思考用正负数表示加工允许误差1.2 有理数1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动小结复习题1 第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程3.1 从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1 多姿多彩的图形阅读与思考几何学的起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4 部分中英文词汇索引七年级下册第五章相交线与平行线5.1 相交线5.2 平行线5.3 平行线的性质5.4 平移第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌数学活动小结复习题7第八章二元一次方程组8.1 二元一次方程组8.2 消元8.3 再探实际问题与二元一次方程组数学活动小结复习题8第九章不等式与不等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组9.4 课题学习利用不等关系分析比赛(1)第十章实数10.1 平方根10.2 立方根10.3 实数八年级上册第十一章一次函数11.1 变量与函数信息技术应用用计算机画函数图象11.2 一次函数阅读与思考科学家如何测算地球的年龄11.3 用函数观点看方程(组)与不等式第十二章数据的描述12.1 几种常见的统计图表12.2 用图表描述数据信息技术应用利用计算机画统计图阅读与思考作者可能是谁12.3 课题学习从数据谈节水第十三章全等三角形13.1 全等三角形13.2 三角形全等的条件阅读与思考为什么要证明13.3 角的平分线的性质第十四章轴对称14.1 轴对称14.2 轴对称变换信息技术应用探索轴对称的性质14.3 等腰三角形实验与探究三角形中边与角之间的不等关系第十五章整式15.1 整式的加减15.2 整式的乘法15.3 乘法公式15.4 整式的除法15.5 因式分解八年级下册第十六章分式16.1 分式16.1 分式的运算阅读与思考容器中的水能倒完吗16.1 分式方程第十七章反比例函数17.1 反比例函数17.1 实际问题与反比例函数阅读与思考生活中的反比例关系第十八章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第十九章四边形19.1 平行四边形19.1 特殊的平行四边形19.1 梯形观察与猜想平面直角坐标系中的特殊四边形第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3 课题学习体质健康测试中的数据分析九年级上册第二十一章二次根式21.1 二次根式21.2 二次根式乘除第二十二章一元二次方程22.1 一元二次方程22.2 降次──解一元二次方程阅读与思考黄金分割数22.3 实际问题与一元二次方程观察与猜想发现一元二次方程根与系数的关系第二十三章旋转23.1 图形的旋转23.2 中心对称信息技术应用探索旋转的性质23.3 课题学习图案设计第二十四章圆24.1 圆24.2 与圆有关的位置关系24.3 正多边形和圆24.4 弧长和扇形面积实验与研究设计跑道第二十五章概率初步25.1 概率25.2 用列举法求概率阅读与思考概率与中奖25.3 利用频率估计概率阅读与思考布丰投针实验25.4 课题学习键盘上字母的排列规律九年级下册第二十六章二次函数26.1 二次函数实验与探究推测植物的生长与温度的关系26.2 用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3 实际问题与二次函数第二十四章相似27.1 图形的相似27.2 相似三角形观察与猜想奇妙的分形图形27.3 位似信息技术应用探索位似的性质第二十八章锐角三角函数28.1 锐角三角函数阅读与思考一张古老的三角函数28.2 解直角三角形第二十九章投影与视图29.1 投影29.2 三视图阅读与思考视图的产生与应用29.3 课题学习制作立体模型。

3.1 反比例函数

3.1   反比例函数

3.1 反比例函数【知识精华点击】课标要求1.掌握反比例函数的定义,会辨认反比例函数.本节重点是理解反比例函数.难点:成反比例与反比例函数的关系. 教材详解反比例函数的定义形如xky =(k 为常数,且k ≠0)的函数叫做反比例函数. 理解反比例函数的定义时要注意以下几点:(1)反比例函数的自变量x 与函数值y 都不能为0; (2)k ≠0,即k>0或k<0;(3)反比例函数可以有以下三种表示形式:①xky =;② x y= k ;③ y= k x -1 (k 为常数且k ≠0, x ≠0),在表示形式①②中x 的指数都是1,表示形式③中x 的指数是-1.如:反比例函数m xk y =中,m=1;x m y= k 中, m=1;y= kx m中, m=-1; (4)反比例函数中的两个变量之间一定成反比例,但成反比例的关系式中的两个变量之间不一定是反比例函数关系,如:xky =中,y 与x 成反比例,而y 与x 2成反比例时,y 不是x 的反比例函数.【名师优质讲堂】例题精析例1 用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是P=I 2R ,下面说法正确的是( )A .P 为定值,I 与R 成反比例B .P 为定值,I 2与R 成反比例C .P 为定值,I 与R 成正比例D .P 为定值,I 2与R 成正比例 分析 当P 为定值时,I 2与R 的乘积是定值,所以I 2与R 成反比例. 解 选B.说明 把I 2看作一个整体时,I 2与R 成反比例,而不是I 与R 成反比例,这是易忽略的地方,应引起注意.【变式1】下列各问题情景中均包含一对变量,试判断哪对变量是成反比例的( ) A .圆的周长l 和圆的半径r B .在压力不变的情况下,压强P 和支承面的面积SC .y=x1+1中,y 与x 的关系 D .某中学的男生人数a 和女生人数b 解 l=2πr ,A 是正比例函数;C 不符合反比例函数的一般形式;D 不是函数,所以都不是反比例函数,B 是反比例函数,故选B .【变式2】已知y 与x 成正比例,z 与y 成反比例,那么z 与x 之间的关系是( ) A .成正比例 B .成反比例 C .有可能成正比例,也有可能成反比例 D .无法确定注意与正比例函数的区别.解 因为y 与x 成正比例,所以y=k 1x ,又z 与y 成反比例,所以z=y 2k .所以z=xk 12k ,即z 与x 之间的关系是成反比例.故选B .例2 下列函数中,是反比例函数的是( )A .y=3xB .y=31x C .y=x 31 D .y=x3+1 分析 A ,B 都是正比例函数;D 不符合反比例函数的定义;只有C 是反比例函数.解 选C .说明 判断一个函数是否是反比例函数,就是看其解析式是否是xky =;xy= k ;y=k x -1 (k 为常数且k ≠0, x ≠0)这三种表示形式中的一种,如果是其中的一种,就是反比例函数,否则不是.【变式1】列函数中,是反比例函数的为( )A .y=2x+1B .y=2x 2 C .y=x 51 D .2y=x解 A 是一次函数;B 不是反比例函数;D 是正比例函数,只有C 符合反比例函数的定义.选C .【变式2】y=-x2的比例系数是( ) A.2 B.-2 C.21 D.-21解 选B.例3 已知函数y=(m-2)x |m|-3是反比例函数,那么m 的值是( ) A .±2 B .2 C .-2 D .±1分析 ∵函数y=(m-2)x |m|-3是反比例函数,∴|m|-3=-1,解得m=±2,∵m-2≠0,∴m≠2,∴m=-2.解 选C .说明 根据y= k x -1求反比例函数中字母的值时,首先根据x 的指数是-1列方程,并解方程,然后代入x 的系数中检验,排除使系数为0的字母的值,留下使系数不为0的字母的值.【变式1】若函数y=(m-1)22-m x是反比例函数,则m 的值是( )A .±1B .-1C .0D .1 解 ∵y=(m-1)22-m x是反比例函数,∴⎩⎨⎧≠--=-01,12m 2m .解之得m=-1.故选B .【变式2】已知函数y=1||2--m xm 是反比例函数,则m 的值是( )例4 已知变量y 与x 成反比例函数关系,并且当x=2时,y=-3.(2)当y=2时,2=-x,∴x=-3.说明 当题目告知反比例函数的图像上一点的坐标或告知反比例函数自变量与函数的一组对应值时,我们常常运用代定系数法先设出解析式,再代入求值.【变式1】已知y 与x 的部分取值满足下表:试猜想y 与x 的函数关系可能是你们学过的哪类函数,并写出这个函数的解析式.(不要求写x 的取值范围) .解 由表得:x=-6,y=1,xy=-6×1=-6;x=-5,y=1.2,xy=-5×(1.2)=-6,当x=6时y=-1;xy=6×(-1)=-6,可知xy 为定值,故此函数为反比例函数.设这个函数的解析式为y=x k (k≠0),即k=-6,故这个函数的解析式为y=-x6. 【变式2】某服装厂承揽一项生产夏凉小衫10000件的任务,计划用t 天完成.则每天生产夏凉小衫w (件)与生产时间t (天)之间的函数关系式为 .解 很显然本题中有数量关系每天生产夏凉小衫×生产时间=生产夏凉小衫的任务,即wt=10000,所以w=t10000. 说明 运用实际问题中的数量关系求反比例函数的解析式,必须是a ×b=c 型的数量关系.如路程一定时,速度与时间的关系;总利润一定时,每件商品的利润与商品的数量的关系等.这些数量关系往往是我们列反比例函数解析式的依据. 为什么错1.弄错比例系数例5 y=-x 53的比例系数是 . 错解1 填53;错解2 填3; 错解3 填-3.分析 求反比例函数的系数时,首先要把它化成y=xk的形式,其中k 是比例系数应该包括符号,分母中只有自变量x ,错解1漏掉了符号;错解2则不仅漏掉了负号,还漏掉了分母中的5;错解3漏掉了分母中的5.正解 因为y=-x 53=x 53-,所以其系数应该是-53. 2.辨认反比例函数出错例6 下列函数一定是反比例函数的是( ) A .y=52+x B .y=kx -1 C .y=-x 8 D .y=28x错解 选A 或B 或D.分析 反比例函数的定义包括两点:(1)分母必须是自变量的一次单项式;(2)系数k ≠0.A 中的分母是x+5,是一次二项式,D 中的分母是x 2,是二次式,都不符合定义的要求;B 中则没有给出限制系数k ≠0,也不符合定义的要求.正解 选C .3.忽略比例系数k ≠0致错例7 若函数y=||1a x a -为反比例函数,则a 的值为 . 错解 根据反比例函数的定义,得|a|=1,所以a =±1,填±1.分析 错解忽略了系数不为0,没有检验,导致不符合条件的a 的值没有排除. 正解 根据反比例函数的定义,得|a|=1,所以a =±1,又因为a-1≠0,所以a ≠1,故a=-1. 探究平台例8 已知y=2y 1+y 2,y 1与x-2成正比例,y 2与5x 成反比例,且当x=2时y=109,当x=1时y=1,求y 与x 之间的函数关系式.∴10=10,m=9,5=-2k+,k=5. ∴y 与x 之间的函数关系式为:y=58x+x 59-516.说明 设y 1、y 2与x 的函数关系式时,一定要注意比例系数不能用同一个字母表示. 【变式】已知函数y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y 与x 的函数关系式; (2)当x=4时,求y 的值.(2)把x=4代入y=2x+x ,得:y=2×4+4=82. 例9 将x= 32代入反比例函数y=-x 1中,所得函数值记为y 1,又将x=y 1+1代入函数中,所得函数值记为y 2,再将x=y 2+1代入函数中,所得函数值记为y 3,…,如此继续下去.(2)观察上表,你发现了什么规律?猜想y 2004= . 分析 (1)根据要求分别代入y=-x1中计算,依次求出y 2、y 3、y 4、y 5;(2)由(1)计算的结果,探索其中的规律,再根据规律写出y.(2)由(1)计算结果可知,结果依次为:-2,2,-3,-2,2,…,三个数循环,所以,y 2004=y 668×3=y 3=-31. 说明 本题的关键是先求出前面几个y 的值,从中找到规律,然后再根据规律求解.因为本题是周期性的变化规律:y 3n = y 3, y 3n+1= y 1,y 3n+2= y 2,所以求出2004除以周期的余数,即可得出答案.【变式】已知函数解析式y=1+x10. (1)在下表的两个空格中分别填入适当的数:(2)观察上表可知,当x 的值越来越大时,对应的y 值越来越接近于一个常数,这个常数是什么?……【智能分级演练】知识达标1. 下面的函数是反比例函数的是( )A .y=3x+1B .y=x 2+2xC .y=2xD .y=x2 2.在函数y=-x1中,自变量x 的取值范围是( ) A .x≠0 B .x >0 C .x <0 D .一切实数 3.列函数关系中,成反比例函数的是( )A .矩形的面积S 一定时,长a 与宽b 的函数关系B .矩形的长a 一定时,面积S 与宽b 的函数关系C .正方形的面积S 与边长a 的函数关系D .正方形的周长L 与边长a 的函数关系 4.下列函数,①y=2x ,②y=x ,③y=x -1,④y=11+x 是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个 5.下列两个变量x 、y 不是反比例的关系是( )A .书的单价为12元,售价y (元)与书的本数x (本)B .xy=7C .当k=-1时,式子y=(k-1)x k2-2中的y 与xD .小亮上学用的时间x (分钟)与速度y (米/分钟)6.已知反比例函数y=3x17+k (k 是常数且k≠-17),则相应的比例系数为( ) A .k B .k+17 C .317+k D .3k7. 如果函数y=x 2m-1为反比例函数,则m 的值是( ) A .-1 B .0 C .21D .1 8. 当路程s 一定时,速度v 与时间t 之间的函数关系是( )A .正比例函数B .反比例函数C .一次函数D .无法确定 9.若y 与x 1成反比例,x 与z1成正比例,则y 是z 的( ) A .正比例函数 B .反比例函数 C .一次函数 D .非以上答案10.计划修建铁路Lkm ,铺轨天数为t (d ),每日铺轨量s (km/d ),则在下列三个结论中,正确的是( )(1)L 一定时,t 是s 的反比例函数;(2)当L 一定时,L 是s 的反比例函数;(3)当s 一定时,L 是T 的反比例函数A .仅(1)B .仅(2)C .仅(3)D .(1)(2)(3)11.已知函数y=-x6,当x=-2时,y 的值是 . 12. 函数y=-x8是反比例函数. (填“正确”或“错误”) 13. 若函数y=(m+2)x |m|-3是反比例函数,则m 的值是 .14. 下列函数表达式中,x 均表示自变量,那么哪些是反比例函数,如果是请在括号内填上k 的值,如果不是请填上“不是”:①y=x 5( ); ②y=x 21( ); ③y=2x ( ); ④xy=2( ); ⑤y=xπ( ); ⑥y=-2x -1( ). 能力挑战15.已知y 1是正比例函数,y 2是反比例函数,并且当自变量取1时,y 1=y 2;当自变量取2时,y 1-y 2=9,求y 1和y 2的解析式.16. 已知y 是x 的反比例函数,且当x=-2时,y=41, (1)求这个反比例函数关系式和自变量x 的取值范围; (2)求当x=3时函数y 的值. 17.函数2m x1m y -=是反比例函数,则m 的值是( )A.-1B.1C.-1或1D.以上都不对 18.已知y 与x 成反比例,当x 增加20%时,y 将( ) A .减少20% B .增加20% C .减少80% D .约减少16.7% 19. 若y+b 与ax 1+成反比例,则y 与x 的函数关系式是( ) A .正比例 B .反比例 C .一次函数 D .非以上答案 0.已知y 与x 2成反比例,并且当x=3时y=4. (1)写出y 与x 的函数解析式; (2)求当x=2时y 的值.21.已知一个长方体的体积是100cm 3,它的长是ycm ,宽是10cm ,高是xcm . (1)写出y 与x 之间的函数关系式; (2)当x=2cm 时,求y 的值..22.已知y 1与x 成正比例,y 2与x 成反比例,y=y 1+y 2,且当x=1时,y=3;当x=2时,y=4.5,求y 关于x 的函数解析式.23.已知函数y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=-1;当x=3时,y=5,求y 关于x 的函数关系式。

第17章反比例函数单元计划

第17章反比例函数单元计划

第17章反比例函数单元计划第17章:反比例函数一、内容概述本章主要介绍反比例函数的概念、性质和应用。

首先,通过实际问题引入反比例函数的概念,并通过实例帮助学生理解反比例函数的特点。

然后,讲解反比例函数的定义及其一般形式,给出反比例函数的图像特点和性质。

接着,介绍反比例函数的应用,包括平均速度、流量和弹性需求等实际问题。

最后,通过练习和实例分析,帮助学生巩固和应用所学的知识。

二、教学目标1.理解反比例函数的概念,并能够根据实际问题应用反比例函数进行计算。

2.掌握反比例函数的一般形式,并能够根据已知条件求解反比例函数的参数或特点。

3.了解反比例函数的图像特点和性质,并能够基于图像判断反比例函数的参数或特点。

4.知道反比例函数的应用领域,并能够将反比例函数应用于实际问题求解。

5.提高学生的问题分析和解决问题的能力。

三、教学重点1.反比例函数的定义及一般形式。

2.反比例函数的图像特点和性质。

3.反比例函数的应用。

四、教学难点1.如何根据已知条件求解反比例函数的参数或特点。

2.如何利用反比例函数解决实际问题。

五、教学方法1.针对性讲解与例题分析相结合的方法,帮助学生理解概念和掌握解题方法。

2.引导学生思考和讨论,培养学生分析问题和解决问题的能力。

3.练习与实例分析相结合,巩固和深化学生的理解和应用能力。

六、教学过程1.引入反比例函数的概念(10分钟)a.分析一个实际问题,引出反比例函数的概念。

b.通过实例,帮助学生理解反比例函数的特点和意义。

c.用简洁明了的语言定义反比例函数。

2.反比例函数的一般形式(20分钟)a.给出反比例函数的一般形式,并解释各个参数的含义。

b.通过练习,帮助学生理解和掌握一般形式的应用方法。

c.根据已知条件求解反比例函数的参数或特点的方法和步骤。

3.反比例函数的图像特点和性质(20分钟)a.给出反比例函数的图像和特点,并解释其产生的原因。

b.通过练习,帮助学生掌握判断反比例函数的参数或特点的方法。

华师版八年级数学下册优秀作业课件 第17章 函数及其图象 专题课堂(六) 一次函数与反比例函数综合

华师版八年级数学下册优秀作业课件 第17章 函数及其图象 专题课堂(六) 一次函数与反比例函数综合
解:(1)(2,0) (2)∵将点 A(2,0)向上平移 2 个单位后得点 B,∴点 B(2,2). 设过点 B 的反比例函数表达式为 y=kx ,则有 2=k2 ,解得 k=4, ∴该反比例函数的表达式为 y=4x
3.(2021·济南)反比例函数 y=kx (k≠0)图象的两个分支分别位于第一、三象限, 则一次函数 y=kx-k 的图象大致是( D )
数学 八年级下册 华师版
第十七章 函数及其图像
专题课堂(六) 一次函数与反比例函数综合
1.(2021·淮安)如图,正比例函数 y=k1x 和反比例函数 y=kx2 的图象相交于 A,B 两点,若点 A 的坐标是(3,2),则点 B 的坐标是__(-__3_,__-__2_)____.
2.(2021·益阳)如图,已知点A是一次函数y=2x-4的图象与x轴的交点, 将点A向上平移2个单位后所得点B在某反比例函数图象上. (1)求点A的坐标; (2)求该反比例函数的表达式.
9.(2021·乐山)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间 的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状 态,随后开始分散.学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0≤x <10和10≤x<20时,图象是线段;当20≤x≤45时,图象是反比例函数的一部分.
(1)求一次函数和反比例函数的表达式; (2)当 x 为何值时,y1>0? (3)当 x 为何值时,y1<y2?请直接写出 x 的取值范围.
解:(1)一次函数的表达式为 y1=x+2.反比例函数的表达式为 y2=8x (2)由 y1>0,得 x+2>0,解得 x>-2,∴当 x>-2 时,y1>0 (3)x<-4 或 0<x<2
∴k=xy=12 (2)∵l⊥y 轴,∴OB=OA= OM2+AM2 =5,∴B(5,0). 设直线 AB 的表达式为 y=kx+b,把 A(4,3),B(5,0)代入, 可得 k=-3,b=15,∴直线 AB 的表达式为 y=-3x+15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数__________________________________________________________________________________ __________________________________________________________________________________1.掌握反比例函数的意义2.了解k 的符号不同,反比例函数与图像对应的性质1.定义:一般地,形如xk y =(k 为常数,0≠k )的函数称为反比例函数。

x ky =还可以写成__________。

2.反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数___________.⑶自变量x 的取值为一切非零实数。

⑷函数y 的取值是一切非零实数。

3.反比例函数的图像 ⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过______,断开的两个分支,延伸部分逐渐_______坐标轴,但是永远______________相交。

⑶反比例函数的图像是是轴对称图形(对称轴是______________)。

⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为______。

4.反比例函数性质如下表:k的取值图像所在象限函数的增减性ok>___________ 在每个象限内,y值随x的增大而减小ok<二、四象限____________________________________5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k)6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky=中的两个变量必成反比例关系。

1.反比例函数定义【例1】如果函数222-+=kkkxy的图像是双曲线,且在第二,四象限内,那么K的值是多少?函数的解析式?【解析】有函数图像为双曲线则此函数为反比例函数xky=,(0≠k)即kxy=1-(0≠k)又在第二,四象限内,则0<k可以求出的值【答案】由反比例函数的定义,得:⎩⎨⎧<-=-+1222kkk解得⎪⎩⎪⎨⎧<=-=211kkk或1-=∴k1-=∴k时函数222-+=kkkxy为xy1-=练习1.已知y=(a﹣1)是反比例函数,则a= .练习2.如果函数y=(k+1)是反比例函数,那么k= .练习3.如果函数y=x2m﹣1为反比例函数,则m的值是.2.增减性问题【例2】在反比例函数xy1-=的图像上有三点(1x,)1y,(2x,)2y,(3x,)3y。

若3210xxx>>>则下列各式正确的是()A.213yyy>> B.123yyy>> C.321yyy>> D.231yyy>>练习4.若A(-3,y1),B(-2,y2),C(-1,y3)三点都在函数y=-x1的图象上,则y1,y2,y3的大小关系是().A.y1>y2>y3B.y1<y2<y3C.y1=y2=y3D.y1<y3<y2练习5.已知反比例函数y=xm21-的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y 1<y 2,则m 的取值范围是( ).A.m <0B.m >0C.m <21D.m >213.交点问题【例3】如果一次函数()的图像与反比例函数xmn y m n mx y -=≠+=30相交于点(221,),那么该直线与双曲线的另一个交点为( )【解析】⎩⎨⎧==⎪⎩⎪⎨⎧=-=+∴⎪⎭⎫ ⎝⎛-=+=12132212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线 ⎪⎩⎪⎨⎧==⎩⎨⎧-=-=⎪⎩⎪⎨⎧=+==+=∴221111121,122211y x y x x y x y x y x y 得解方程组双曲线为直线为()11--∴,另一个点为【答案】(-1,-1) 练习6.13.若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b =______. 4.面积问题【例4】如图,在AOB Rt ∆中,点A 是直线m x y +=与双曲线xmy =在第一象限的交点,且2=∆AOB S ,则m 的值是_____.图4【解析】因为直线m x y +=与双曲线xmy =过点A ,设A 点的坐标为()A A y x ,. 则有AA A A x my m x y =+=,.所以A A y x m =. 又点A 在第一象限,所以A A A A y y AB x x OB ====,. 所以m y x AB OB S A A AOB 212121==•=∆.而已知2=∆AOB S .o y x y xo y x o y x o A B C D 所以4=m . 【答案】 4练习7.如图 ,A 、C 是函数xy 1=的图象上的任意两点,过A 作x 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1,Rt ΔCOD 的面积为S 2则 ( )A . S 1 >S 2B . S 1<S 2C . S 1=S 2D . S 1与S 2的大小关系不能确定1.点A(-2,y 1)与点B(-1,y 2)都在反比例函数y =-x2的图像上,则y 1与y 2的大小关系为( )A.y 1<y 2B.y 1>y 2C.y 1=y 2D.无法确定2.若点(3,4)是反比例函数y =221m m x+-图象上一点,则此函数图象必经过点( )A.(2,6)B.(2,-6)C.(4,-3)D.(3,-4)3.在函数y =x2,y =x+5,y =-5x 的图像中,是中心对称图形,且对称中心是原点的图像的个数有( )A.0B.1C.2D.34.已知函数y =kx(k <0),又x 1,x 2对应的函数值分别是y 1,y 2,若x 2>x 1>0对,则有( ) A.y 1>y 2>0 B.y 2>y 1>0 C.y 1<y 2<0 D.y 2<y 1<0 5.如图1,函数y =a(x -3)与y =ax,在同一坐标系中的大致图象是( )6.若y 与x 成反比例,x 与z 成正比例,则y 是z 的( )A 、正比例函数B 、反比例函数C 、一次函数D 、不能确定7.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数图象大致为( )8.(2014山东青岛一模)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )图1A、不小于54m 3 B 、小于54m 3 C 、不小于45m 3 D 、小于45m 39.如图 ,A 、C 是函数的图象上的任意两点,过A 作轴的垂线,垂足为B ,过C 作y轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1,Rt ΔCOD 的面积为S 2则 ( )A.S 1 >S 2 B . S 1<S 2C . S 1=S 2D . S 1与S 2的大小关系不能确定10.(2014浙江金华月考)下列函数中,图象经过点(11)-,的反比例函数解析式是( )A .1y x=B .1y x-=C .2y x =D .2y x -=11.(2014湖北孝感一模)在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3B .k >0C .k <3D . k <0 12.(2014河北省二模)如图1,某反比例函数的图像过点M 2-式为( )A.2y x =B .2y x =-C .12y x =D .12y x=-13.(2014山东临沂一模)已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A(72,y 1)、B(5,y 2),则y 1与y 2的大小关系为( )。

A 、y 1>y 2 B 、y 1=y 2 C 、y 1<y 2 D 、无法确定_________________________________________________________________________________ _________________________________________________________________________________1.反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ). A.-2 B.-1 C.0 D.1x xy 1=Oyxx-2M1 yO图12.若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A.(2,-1) B.(-21,2) C.(-2,-1) D.(21,2) 3.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4.若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A.成正比例 B.成反比例 C.不成正比例也不成反比例 D.无法确定5.一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A.当x >0时,y >0 B.在每个象限内,y 随x 的增大而减小 C.图象分布在第一、三象限 D.图象分布在第二、四象限6.如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).A.逐渐增大B.逐渐减小C.保持不变D.无法确定7.在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A.1.4kgB.5kgC.6.4kgD.7kg8.使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为_______________.9.过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 10.如图,直线y =kx(k >0)与双曲线xy 4交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.Q p xyo t /h v /(km/h ) O t /h ) O t /h v /(km/h ) O t /h v /(km/h) O A . B . C . D .11.如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是_________.12.点A(-2,y 1)与点B(-1,y 2)都在反比例函数y =-x2的图像上,则y 1与y 2的大小关系为( )A.y 1<y 2B.y 1>y 2C.y 1=y 2D.无法确定13.若点(3,4)是反比例函数y =221m m x+-图象上一点,则此函数图象必经过点( )A.(2,6)B.(2,-6)C.(4,-3)D.(3,-4)14.在函数y =x2,y =x +5,y =-5x 的图像中,是中心对称图形,且对称中心是原点的图像的个数有( )A.0B.1C.2D.315.已知函数y =kx(k <0),又x 1,x 2对应的函数值分别是y 1,y 2,若x 2>x 1>0对,则有( ) A.y 1>y 2>0 B.y 2>y 1>0 C.y 1<y 2<0 D.y 2<y 1<0 16.如图1,函数y =a (x -3)与y =ax,在同一坐标系中的大致图象是( )课程顾问签字: 教学主管签字:图1。

相关文档
最新文档