地下水的预测与防治地下水运动的基本规律
地下水运动的基本规律
地下水运动的基本规律
因为流速V=Q/A,故达西定律也可以用式(56)来表达。 V=Ki(5-6) 式中,V为渗透流速(m/d或cm/s)。
由式(5-6)可知,K是水力坡度为1时的 渗透流速,称为渗透系数。渗透系数可以用来 比较不同岩石的透水性,是水文地质学中一个 非常重要的水文地质参数。
地下水运动的基本规律
地下水运动的基本规律
在满足生产要求和方便研究的前提下,可以不将含 水层概括为均质各向同性、均质各向异性、非均质各向 同性和非均质各向异性的含水层。所谓均质各向同性就 是指渗透系数在含水层的任何空间位置上、任何渗透方 向上均为一个常数;如不为常数则属非均质各向异性, 其余可类推。
对于渗透系数的测定,一般采用室内土柱试验(达 西试验)和野外抽水试验两种方法。一些松散岩石的渗 透系数参考值见表5-4,表见下页。
应该明确,渗透系数不仅取决于 岩石的空隙性质及水在空隙中的存在 形式,而且与地下水的一些物理性质 ,如黏滞性等有关。在具有同样空隙 的岩石中,当水力坡度相等时,黏滞 性大的水(或液体)渗透系数小。
一般情况下,当地下水的黏 滞性相近时可以不予考虑,但在 研究卤水时,不可忽视。因此, 除个别特殊情况外,可以把渗透 系数看作衡量岩石透水性能的参 数。岩石的透水性能在不同空间 位置和渗透方向上是不一致的, 即渗透系数是不相等的。
地下水运动的基本规律
工程地质Βιβλιοθήκη 工程地质地下水运动的基本规律
地下水在岩石空隙(孔隙、裂隙及溶穴) 中的运动称为渗流(渗透),地下水运动的 场所称为渗流场。渗流是在与介质发生密切 联系的条件下进行的,由于受到介质的阻滞, 地下水的运动远较地表水缓慢。
在岩层空隙中渗流时,水的质点有秩序 地、互不混杂地流动,称为层流运动。水的 质点无秩序地、互相混杂地流动,称为紊流 运动。一般认为渗流属于层流。
水文地质-地下水的运动
第三节 地下水向井的稳定运动
四、裘布依公式的讨论
(2)抽水井流量与井径的关系
但实际情况远非如此,井径 对流量的影响比Dupuit公 式反映的关系要大得多。
第三节 地下水向井的稳定运动
四、裘布依公式的讨论
(3)水跃对裘布依公式计算结果的影响
在潜水的出口处一般都存 在渗出面。当潜水流入井 中时也存在渗出面,也称水 跃,即井壁水位hs高于井 中水位hw(图4一10),而潜 水井的Dupuit公式并没有 考虑渗出面的存在。
H Z p
图4-5 流网示意图
在渗流场中,把水头值相等的点连成线或面就构成了等水 头线或等水头面。
流网是由等水头线和流线所组成的正交网格。流网直观地 描述了渗流场(或流速场)的特征。它可以是正方形、长 方形或曲边方形。
第二节 地下水运动规律
水流类型
一维流任意点的水力坡度均相等(
图4-6a);
s1=1.00 m s2=1.75 m s3=2.50 m 求K?
Q1=4500 m3/d; Q2=7850 m3/d; Q3=11250 m3/d;
第三节 地下水向井的稳定运动
五、地下水流向非完整井和直线边界附近的完整井
1、承压水非完整井 当α=1时,A=0,就变成 完整井公式,当α很小, A值很大,则公式变为:
第三节 地下水向井的稳定运动
五、地下水流向非完整井和直线边界附近的完整井
2、潜水非完整井 潜水非完整井可以看做上段 是潜水完整井,下段是承压 水非完整井。这样可以近似 的看做总流量Q等于两段Q1 和Q2的和。
第三节 地下水向井的稳定运动
裘布衣假设:
天然水力坡度为0,井附近水力坡度<1/4; 含水层是均质各向同性的,含水层的底板
第四章地下水运动的基本规律
h—水头损失(h=H1-H2,即上下游过水断面的水头差);
L—渗透途径(上下游过水断面的距离); I—水力梯度(相当于h/L,即水头差除以渗透途径); k—渗透系数。
第9页,本讲稿共59页
由水力学可知,通过某一断面的流量Q等于流速V与过 水断面ω的乘积,即:
孔介质都可能存在。
第26页,本讲稿共59页
(二)均质各向同性介质中的流网
• 在均质各向同性介质中,地下水必定沿
着水头变化最大的方向——即垂直于等
水头线的方向运动。 • 流线与等水头线构成正交网格。
第27页,本讲稿共59页
流网的绘制(以均质各向同性介质中的稳定流网的
绘制为例): • 精确绘制定量流网需要充分掌握有关的边界条件及
• 实验:装有砂的圆筒(图)。
水由筒的上端加入,流经砂柱,由下端 流出。上游用溢水设备控制水位,使实 验过程中水头始终保持不变。在圆筒的 上下端各设一根测压管,分别测定上下 两个过水断面的水头。下端出口处设管 嘴以测定流量。
第8页,本讲稿共59页
根据实验结果,得到下列关系式:
Q = Kωh/L = KωI (达西公式) 式中:Q—渗透流量(出口处流量,通过砂柱各断面的流量;
达西定律适用范围很广。它不仅是水文地质定量计算的基础,还是定性 分析各种水文地质过程的重要依据。深入掌握达西定律的物理实质,灵 活的运用它来分析问题,是水文地质工作者应当具备的基本功。
第21页,本讲稿共59页
达西定律具体适用范围为:
• 存在一个临界雷诺数Re临(1~10), Re临是达西定律成 立的上限,当Re< Re临,即低雷诺数时,属低速流,这 时该区域内达西定律适用。
• 在稳定流条件下,流线与迹线重合。 • 等水头线:在某时刻,渗流场中水头值相等的各点连线。(水势场
地下水运动的基本规律
断面的水头,水头差为h;两断面相距L; (5)下端出口测定流量为Q。
0
0
图4-1 达西实验装置图
5.4.1.2 实验成果
Q KA h KAI L
Q AV
V KI
5.4.2 达西公式中各项的物理意义
5.4.2.1 渗透流速(V) >>在达西定律表达公式中,渗透流速是一个宏观概念,并且
它很容易测量。 >>因此,必须把它与单个水质点在砂粒中寻路而曲折前进的
地下水迹线示意图
5.1.2.3 二者区别
流线和迹线都是流场中的一簇曲线,都与流 体的运动有关,但各自代表了不同的概念:
>>流线反映的是某时刻流体的流速向量,迹线 是反映流体中某一质点不同时间走过的轨迹;
>>因此流线可看作水质点运动的摄影,迹线则 可看作对水质点运动所拍摄的电影。
5.1.3 过水断面与流量
5.4 地下水运动的基本规律
5.4.1 达西定律
达西定律是法国水利学家H.Darcy通过大量的实验,得到的线 性渗透定律。
5断面面积A;
(2)上游置一个稳定的溢水装置→保持稳定
水头;
(3)实验上端进水,下端出水→示意流线;
(4)圆筒中上、下断安装测压管→测定两个
>>稳定流条件下,流体的流线与迹线重合!
>>严格说来,自然界中的地下水都属于非稳定流,但是, 但为了便于分析和运算,也可以将某些运动要素变化微小的 渗流,近似地看作稳定流。
5.1.7 均匀流与非均匀流
>>均匀流——在实际水流中,如果流线是彼此平行的直线, 而且在同一流线上的点,其实际流速相等,即沿水流方向实 际流速的大小和方向皆不变。显然,在均匀流中,质点的时 变加速度和位变加速度都等于零。亦即流体在运动过程中, 其运动要素不随坐标位置而改变!
地下水科学概论[整理版]
《地下水科学概论》一、名词解释。
第一章地下水分布1. 地下水:分布在地下岩石空隙之中的水。
2.岩石的透水性:岩石允许水透过的能力。
3. 结合水:由于固体颗粒表面的静电作用而吸附在颗粒表面的水。
4. 重力水:重力对它的影响大于固体表面对它的吸引力,因而能在自身重力作影响下运动的那部分水。
5. ★☆毛细水:在毛细力作用,水从地下水面沿着细小空隙上升到一定高度,形成一个毛细水带6. 支持毛细水:由于毛细力的作用,水从地下水面沿孔隙上升形成一个毛细水带,此带中的毛细水下部有地下水面支持。
7.孔角毛细水:在包气带中颗粒接点上由毛细力作用而保持的水。
8. 悬挂毛细水:由于上下弯液面毛细力的作用,在细土层会保留与地下水面不相联接的毛细水。
9. 空隙:地下岩石中没有被固体颗粒或固体骨架占据的那一部分空间。
10. 多孔介质:含有空隙的固体称为多孔介质。
11.孔隙:松散的(或未固结的)固体颗粒之间或颗粒集合体之间的空隙。
12.★孔隙度:某一体积的孔隙介质中孔隙体积与孔隙介质体积之比。
13. ★孔隙比:某一体积孔隙介质内孔隙体积与固体颗粒体积之比14. 有效空隙:相互连通而能使水流通过的孔隙称为有效空隙。
15. 孔隙介质的比表面积:一定体积的孔隙介质中所有颗粒的总面积与孔隙介质体积之比。
16.裂隙:固结的和坚硬的岩石在成岩过程中或成岩以后由于受到一些地质营力的作用而形成的沿一定平面方向展布的空隙。
17.★裂隙率:一定体积的裂隙介质内裂隙的体积与裂隙介质体积之比。
18.溶穴:可溶的沉积岩在地下水溶蚀下产生的空洞。
19.岩溶率:一定体积的岩溶介质内溶穴的体积与岩溶介质体积之比。
20. ☆容水度:一定体积的多孔介质完全被水饱和时所能容纳的水的体积与多孔介质体积之比。
21.★持水度:地下水位下降一个单位深度,单位水平面积岩石柱体中反抗重力而保持于岩石空隙中的水量。
22. ★☆给水度:一定体积的饱水多孔介质在重力作用下释放出的水体积与多孔介质体积之比(重力给水度:地下水位下降一个单位深度,从地下水位延伸到地表面的单位水平面积岩石柱体,在重力作用下释出的水的体积)。
水文地质学基础 第四章 地下水运动的基本规律.
1.渗透与渗流
渗透: 地下水在岩石空隙中的运动
渗流是一种假想水流。
假想水流应满足下列条件: (1)性质(如密度、粘滞
性等)和真实地下水相同; (2)充满含水层的整个空
间; (3)运动时,在任意岩石
体积内所受的阻力与真实水流 相同;
(4)通过任一断面的流量 及任一点的压力或水头均和实 际水流相同。 渗流区或渗流场:假想水流所 占据的空间。
• 流线:是渗流场中某一瞬时的一条线,线上各水 质点在此瞬时的流向均与此线相切。
• 迹线:则是对水质点运动所拍的电影。在稳定流 条件下,流线与迹线重合。
一、均质各向同,流线与等水头线构成 正交网格。 • 分析均质各向同性介质中的稳定流网。 • 徒手绘制定性流网
地下水的运动绝大多数服从Darcy定律。
二、非线性渗透定律—哲才(Chezy)定律
地下水在较大的空隙中运动且流速较大时,呈紊 流运动,此时的渗流服从哲才定律。有:
1
Q KI 2
1
V KI 2
即此时渗透流速V与水力梯度I的1/2次方成正比.
4.2 流 网
• 流网:在渗流场的某一典型剖面或切面上,由一 系列等水头线与流线组成的网格.
2.层流和紊流
层流运动:水质点作有秩序的、互不混杂的流动. 紊流运动:水质点无秩序的、互相混杂的流动.
地下水在岩石空隙中的运动速度一般较慢,大多为层流 运动。只有在大裂隙、溶洞中地下水流速大,才可能出现紊 流运动。此外,在抽水井附近小范围内,当降深很大时,流 速增大,也可出现紊流现象。
3. 稳定流和非稳定流
实际流速,ω有:
Q Kw h KwI Vw L
Q= ω/·u= ω·ne·u=
4.水文地质学基础-地下水的基本运动规律
4.1 重力水运动的基本规律
渗透系数(K)的影响因素:
d0 —— 孔隙直径;γ——水的重率;μ——动力粘滞系数
K与岩石空隙性质、水的某些物理性质有关。
(1)孔隙直径大则渗透性强,取决于最小孔隙直径。 (2)圆管通道:形状弯曲而变化时,渗透性较差。 (3)颗粒分选性:比对孔隙度的影响要大。 (4)水的物理性质:粘滞性大的液体K<粘滞性小的液体
4.1 重力水运动的基本规律
4.1.4渗透系数 渗透系数(K)是水力梯度等于1时的渗透流速,单位:m/d,cm/s. 关系: V = K I 1)I为定值时,K大,V大;K小,V小(V=KI); 2)V为定值时,K大,I小等水位线疏;K小,I大等水位线密。 渗透系数可定量说明岩石的渗透性:K大→渗透性强;K小→渗 透性弱。
Q K ω I K M 1 I H H H H b a b K a 2 L K 2 2 Ha H b 2L
4.2 流 网
流线(flow line, stream line)是渗流场中某一瞬时的一条 线,线上各个水质点在此时刻的流向均与此线相切。 迹线(path line)是渗流场中某一时间段内某一水质点的运动 轨迹。
h1 0
K
M
h2
0’ L
dh dx 单宽流量为: v K dh dh q v K M 1 KM dx dx
qdx KMdh
L
0
qdx KMdh
h1 L h2 0 h1
h2
分离变量并积分:
q dx KM dh h1 h2 q KM KMI L
0 h1 L h2
h1 h2 h1 h2 qK KM I 2 L
第三章地下水运动的基本规律
3、3 流 网
四、层状非均质中得流网
层状非均质介质就是指介质场内各岩层内部渗透 性为均质各向同性,但不同层介质得渗透性不同。水流 折射定律:
K1 tan1 K 2 tan 2
式中:K1--地下水流入岩层(K1层)得渗透系数; K2--地下水流出岩层(K2层)得渗透系数; θ1--地下水流向与流入岩层(K1层)层界法线之间
1、 等水位(压)线——潜水位(测压水位)相等得各点 得连线,称为等水位(压)线。 2、 流线——渗流场中某一瞬间得一条曲线,曲线上各水 质点在此瞬间得流向均与此线相切。 3、 流网——在渗流场得某一典型剖面或切面上由一系 列等水头线与流线所组成得网络。
3、3 流 网
二、渗流场性质
(一)渗流场介质类型 均质—非均质;各向同性—各向异性
(2)根据边界条件绘制容易绘制得流线或等水头线
a、 定水头边界:相当于等水头线,等水头面。 b、 隔水边界:相当于流线。 c、 潜水面边界:无入渗补给时为流线
有入渗补给时,水面即不就是流线也不为等水头线
(3)按照“正交”原则,等间距内插其它得流线或等水头线。
3、3 流 网
河间地块流网
河间地块流网
3、1 地下水运动得基本特点
注意:
1、 自然界中地下水都属于非稳定流。 ⑴ 补给水源受水文、气象因素影响大,呈季节性变化; ⑵ 排泄方式具有不稳定性;
⑶ 径流过程中存在不稳定性。 2、 为了便于计算,常将某些运动要素变化微小得渗流,近似 地瞧作稳定流。
3、2 达西定律
一、实验条件
H、Darcy—法国水力学家,1856年 (以实验为基础研究时期)通过大量得室 内实验得出了达西定律。
3、2 达西定律
2、 求水平等厚承压含水层流量与承压水头线。 承压含水层由均质等厚得砂组成,隔水底板水平,地下水做水平稳定
地下水运动的基本规律
地下水运动的基本规律地下水是地球上最重要的自然资源之一,它在地下岩石和土壤中流动,为生态系统和人类提供了重要的水源。
地下水运动是指地下水在地下岩石和土壤中的流动过程,它受到许多因素的影响,具有一些基本规律。
本文将介绍地下水运动的基本规律,并通过事实举例进行解释。
一、地下水运动的主要影响因素地下水运动受到多种因素的影响,包括地形、气候、岩石类型、土壤类型、植被覆盖等。
其中,地形是最基本的影响因素之一。
地形的高低起伏会影响水的流动方向和速度,水会从高处向低处流动,形成河流、湖泊、泉眼等水体。
气候也是影响地下水运动的重要因素之一。
气候的干湿程度会影响土壤和岩石的渗透能力,从而影响地下水的流动速度和方向。
岩石和土壤的类型也会影响地下水运动。
不同的岩石和土壤具有不同的渗透能力和水储存能力,从而影响地下水的流动速度和方向。
植被覆盖也会影响地下水运动。
植被的根系可以增加土壤的渗透能力和水储存能力,从而影响地下水的流动速度和方向。
二、地下水运动的基本规律1.地下水流动的方向与地形有关地下水流动的方向与地形有关,一般是从高处向低处流动。
在山区,地下水会从山顶、山腰向山下流动,形成山间河流和泉眼。
在平原地区,地下水会从中心向四周流动,形成河流、湖泊等水体。
例如,中国的黄河流域就是一个典型的平原地区。
黄河流域的地势平坦,地下水流动的方向主要是从中心向四周流动。
在黄河流域,地下水是重要的水源之一,支撑着当地的生态系统和农业生产。
2.地下水流动的速度与渗透能力有关地下水流动的速度与渗透能力有关,渗透能力越强的岩石和土壤,地下水流动的速度就越快。
渗透能力强的岩石和土壤可以更好地储存和输送水分,从而支撑着生态系统和人类的生产生活。
例如,美国科罗拉多州的大草原上有一个叫做奇卡斯特水源保护区的地方。
这个地方的地下水渗透能力非常强,地下水流动的速度非常快,可以达到每小时几百米。
这个水源保护区是科罗拉多州最重要的水源之一,为当地的生态系统和人类生产生活提供了重要的支撑。
地下水运动基本规律
地下水运动基本规律地下水呀,就像是地球的秘密宝藏,一直在默默地流淌和运动着。
你想想看,那在地底下的水,是不是有点像一群调皮的小精灵,在黑暗中欢快地穿梭呀!地下水的运动可有意思啦!它可不是毫无规律地瞎跑哦。
它会受到好多因素的影响呢,就像我们人会受到各种事情影响心情一样。
比如说地形吧,高的地方水就会往低的地方流,这不是很简单的道理嘛。
那山山水水的,不就是给地下水指引了方向嘛。
还有呀,地质结构也很重要呢。
有的地方石头多,水就流得慢;有的地方土松松的,水就跑得快。
这就好像我们走路,在平路上走得快,在荆棘丛里就走得慢啦。
地下水还和气候有关系呢!下雨多的时候,地下水就像被打了鸡血似的,欢腾起来啦,水量也会变多。
要是一直不下雨,它也会变得有点“蔫蔫的”。
而且地下水可神奇啦,它有时候会突然从某个地方冒出来,变成了泉水。
这就好像是它在地底下玩累了,跑出来透透气一样。
那清清凉凉的泉水,多让人喜欢呀!你知道吗,我们生活中的很多用水都来自地下水呢。
农民伯伯灌溉农田要用它,我们日常生活用水也有它的功劳。
它就像是我们的默默奉献的好朋友,一直在背后支持着我们。
可是呀,如果我们不好好对待它,它也会发脾气的哦。
过度开采地下水,会让地面下沉,这可不是开玩笑的呀!就好像我们一直从一个朋友那里索取太多,朋友也会不开心的嘛。
所以呀,我们要好好保护地下水,让它能一直欢快地流淌。
我们要节约用水,不要让它太累啦。
我们也要保护好环境,让它能一直保持干净纯洁。
地下水运动的基本规律其实并不复杂,但却非常重要。
它就像是大自然的一个小秘密,等待着我们去发现和珍惜。
让我们一起行动起来,保护好我们的地下水朋友吧,可别等到它真的生气了才后悔呀!毕竟,没有了它,我们的生活可就没那么滋润啦!原创不易,请尊重原创,谢谢!。
水文地质学基础》试题库及参考答案
校重点建设课程《水文地质学基础》试题库及参考答案水文地质学基础课程组前言水文地质学基础是我校水文与水资源工程和环境工程专业的专业基础课,本课程主要阐叙了以下几方面内容:自然界水的存在形式和循环过程;地下水的赋存空间、存在形式和水理性质;地下水的分类以及各种类型地下水的特征;地下水的运动规律;地下水的化学成份及形成作用;地下水的补给、径流、排泄和地下水系统;地下水的动态与均衡地下水资源分类和特征;地下水与环境的关系等。
该课程全面介绍了现代水文地质学的基本概念与原理,为后续课程的学习奠定基础。
水文地质学基础试题库不仅用于考核学生的学习情况,而且对学生的学习内容、学习方法有一定的引导作用。
因此,水文地质学基础试题库内容紧紧围绕教学大纲要求,并考虑了以下几点:第一,以基本概念和基本理论为主;第二,正确地理解水文地质概念,避免死板地套用;第三,地下水与环境有着密切联系,必须结合具体的自然地理地质条件,用系统观点考察众多因素对地下水的综合影响;第四,不能满足于字面上的理解,而应勤于思索,弄清实质。
本次水文地质学基础试题库的修订,是在1997年第一次建库的基础上进行的,对原库的部分试题作了调整,本试题库选题涉及书内全部内容,因此,覆盖面宽。
同时,考虑到教学的重点和难点,在重点章节和重点内容上题量偏重。
全库共有试题576题。
为综合考察学生对基本概念和基本理论的掌握情况,以及对课本内容的理解和综合能力,共包含五种题型,分别为:名词解释、填空题、判断题、简答题和论述题。
目录第一章地球上的水及其循环 (1)第二章岩石中的空隙与水分 (3)第三章地下水的赋存 (6)第四章地下水运动的基本规律 (9)第五章毛细现象与包气带水的运动 (11)第六章地下水的化学成分及其形成作用 (13)第七章地下水的补给与排泄 (17)第八章地下水系统 (19)第九章地下水的动态与均衡 (20)第十章孔隙水 (22)第十一章裂隙水 (23)第十二章岩溶水 (24)第十三章地下水资源 (26)第十四章地下水与环境 (27)第一章地球上的水及其循环一、名词解释:1.水文地质学:水文地质学是研究地下水的科学。
《水文地质学》课程笔记 (2)
《水文地质学》课程笔记第一章绪论一、水文地质学的研究对象1. 地下水- 定义:地下水是指在地表以下岩石空隙和土壤孔隙中储存的水。
- 特点:地下水具有隐蔽性、循环性、动态性、可再生性和不可替代性。
- 研究内容:地下水的水位、流量、水质、水温、化学成分、运动规律等。
- 分类:根据埋藏条件,地下水可分为潜水、承压水等类型。
2. 岩土- 定义:岩土是指地球表层及其内部的岩石和土壤。
- 特性:岩土的物理性质(如密度、孔隙度、渗透性)、化学性质(如酸碱度、氧化还原性)和力学性质(如抗压强度、抗剪强度)。
- 研究内容:岩土的结构、组成、分布、成因、水文地质特性等。
3. 水资源- 定义:水资源是指地球表层可供人类利用的水。
- 特点:水资源具有时空分布不均、可再生性和有限性。
- 研究内容:水资源的评价、开发、利用、管理和保护。
4. 水文地质环境- 定义:水文地质环境是指地球表层地下水、岩土、气候、生态等因素相互作用的综合体。
- 研究内容:水文地质环境的调查、评价、监测、预测和调控。
二、地下水的功能1. 供水- 地下水是重要的饮用水源,尤其在干旱和半干旱地区。
- 地下水供水稳定,受气候变化影响较小。
2. 农业灌溉- 地下水灌溉可以提高作物产量,保障粮食安全。
- 地下水灌溉系统简单,易于管理。
3. 生态保护- 地下水维持河流、湖泊、湿地等生态系统的稳定。
- 地下水是许多生态系统的重要补给来源。
4. 灾害防治- 地下水可以调节地表水循环,减轻洪水和干旱灾害。
- 地下水开采可以降低地面沉降和海水入侵的风险。
5. 工业生产- 地下水用于冷却、洗涤、制造等多种工业用途。
- 地下水的水质稳定,适合特定工业需求。
6. 科研价值- 地下水研究为地质学、气候学、生态学等领域提供重要信息。
- 地下水是研究地球历史和地质作用的天然实验室。
三、水文地质学发展简史1. 古代阶段- 早期人类对地下水的利用主要限于井、泉等自然出露点。
- 古代文明(如古埃及、美索不达米亚)已有简单的地下水开发利用技术。
第七章矿井水文地质与防治第一节地下水的基本知识第二节
赋存承压水的单斜构造。 (1)由断层形成的自流斜地:
ⅰ断层不导水:承压水无独立的排泄通道,当补给水量大于含水 层所能容纳的水量时,含水层的水就通过补给区低洼区排泄,此 时补给排泄区一致。 ⅱ断层导水:含水层通过断层排泄,断层与地表相交并形成泉。
2、裂隙:由于受地壳运动或外力作用,坚硬岩层中的各种裂缝。 裂隙度:裂隙体积Vt 与包括裂隙在内的岩石总体积V之比。 用百分数表示:Kt=Vt/V×100%
3、岩溶:可溶性岩石中的洞穴。 岩溶度:可溶性岩层中洞穴体积与包括岩溶洞穴在内的岩石总
体和V之比。 用百分数表示:Kk=Vk/V×100% (二)岩石的水理性:
(三)岩石的溶隙
岩石的溶隙是可溶性岩层被溶蚀而形成。
岩溶区岩溶水的运动和岩溶溶洞的发育、分布,具有垂直分带性: 1、包气带(I):
位于最高地下水位以上。 2、水位季节变动带(Ⅱ):
位于高水位和低水位之间 3、饱水带(Ⅲ):处于地下水面以下。 4、深部循环带(Ⅳ):位于当地侵蚀基准面以下。 (四)人工通道 1、崩落法采煤造成的裂隙。 2、钻孔造成的涌水通道。
(二)上升泉
由承压含层水形成的泉
1、侵蚀上升泉: 河谷、冲沟切穿承压含水层的隔水层顶板
2、断裂上升泉: 导水断层通过承压含水层,
由于承压水水位较高,底下水沿着断层、 裂隙上升溢出地表。
第二节 矿井充水条件
矿井水:流入井筒、巷道和工作面的水。 矿井充水的主要因素:水的来源、涌水通道和影响水量大小的因 素,它们是计算涌水量、预测突水的重要依据。 一、矿井水的来源 (一)矿体及围岩空隙中的地下水: 有些矿体本身充满来哦地下水,这些水在开采时可以直接流入 巷道,成为涌水水源。
(新)地下水的分类特点及运移规律
地下水的分类特点及运移规律(第一章)地下水的分类、特点及运移规律第一节地下水的类型及其特征埋藏在地表以下岩石(包括土层)的空隙(包括孔隙、裂隙和空洞等)中的各种状态的水称为地下水。
地下水这一名词有广义与狭义之分。
广义的地下水是指赋存于地面以下岩土空隙中的水;包气带及饱水带中所有含于岩石空隙中的水均属之。
狭义的地下水仅指赋存于饱水带岩土空隙中的水。
饱水带中的重力水是开发利用或排除的主要对象。
地下水的运动和聚集,必须具有一定的岩性和构造条件。
空隙多而大的岩层能使水流通过,称为透水层。
贮存有地下水的透水岩层,称为含水层。
空隙少而小的致密岩层是相对的不透水岩层,称为隔水层。
然而,在各种不同情况下,人们所指称的含水层与隔水层涵义有所不同,他们的定义具有相对性。
岩性相同、渗透性完全一样的岩层,可能在有的地方被当作含水层,而在另一些地方被当作隔水层。
即使在同一个地方,渗透性相同的某一岩层,在涉及某些问题时被看作透水层,在涉及另一些问题时则可能被看作隔水层。
含水层、隔水层与透水层的定义取决于运用他们时的具体条件。
地下水受诸多因素的影响,各种因素的组合错综复杂,因此,出于不同的目的或角度,人们提出了各种各样的地下水分类。
但概括起来主要有两种:一种是根据地下水的某种单一的因素或某种特征进行的分类,如按硬度分类、按地下水起源分类等;另一种是根据地下水的若干特征综合考虑进行的分类。
如根据地下水的埋藏条件则可分为包气带水、潜水和承压水。
不沦哪种类型的地下水,均可按其含水层的空隙性质分为孔隙水、裂隙水和岩溶水。
一、包气带水位于潜水面以上未被水饱和的岩土巾的水,称为包气带水。
包气带水主要是土壤水和上层滞水,如图1—1所示。
(一)土壤水埋藏于包气带土壤层中的水,称土壤水。
主要包括气态水、吸着水、薄膜水和毛管水。
靠大气降水的渗人、水汽的凝结及潜水由下而上的毛细作用补给。
大气降水向下渗入,必须通过土壤层,这时渗入的水一部分保持在土壤层中,成为所谓的田间持水量(即土壤层中最大悬着毛管水含水量),多余的部分呈重力水下渗补给潜水。
第四章地下水运动的基本规律
4.2 饱水带重力水运动的基本规律-达西定律
一、线性渗透定律-达西定律 1.达西定律 H.Darcy—法国水力学家,1856年通过大量的室内实验得出的线性渗 透定律 实验条件 1)等径圆筒装入均匀砂样,断面为ω 2)上下各置一个稳定的溢水装置——保持稳定水流 3)实验时上端进水,下端出水——示意流线 4)砂筒中安装了2个测压管 5)下端测出水量-Q 根据实验结果,得到下列关系式:
第四章 地下水运动的基本规律
4.1 地下水运动-渗流运动要素 4.2 饱水带重力水运动的基本规律-达西定律 4.3 流网 4.4 饱水粘性土中结合水的运动规律
4.1 地下水运动-渗流运动要素
一、地下水存在及运动
1.岩石空隙介质:三种。 2.地下水在岩石空隙介质中的存在形式:强、弱结合水;毛细水;重 力水。
Q-渗透流量(出口处流量,即为通过砂柱各断面的流量); ω-过水断面(在实验中相当于砂柱横断面积); h -水头损失( h = H1 − H2 ,即上下游过水断面的水头差); L -渗透途径(上下游过水断面的距离); I -水力梯度(相当于h / L ,即水头差除以渗透途径); K -渗透系数
2)水力梯度(I)
地下水在渗透过程中,不断克服阻力而消耗机械能,出现水头损失。 水力梯度(I) 为沿渗透途径水头损失与相应渗透途径长度的比值, 即: I=h/L,h:水头差,h=H1-H2
水在空隙中运动时,必须克服水与隙壁以及流动快慢不同的水质点 之间的摩擦阻力(这种摩擦阻力随地下水流速增加而增大),从而消 耗机械能,造成水头损失。因此,水力梯度可以理解为水流通过单位 长度渗透途径为克服摩擦阻力所耗失的机械能。从另一个角度,也可 以将水力梯度理解为驱动力,即克服摩擦阻力使水以一定速度流动的 力量。既然机械能消耗于渗透途径上,因此求算水力梯度I 时,水头 差必须与相应的渗透途径相对应。
地下水运动的基本规律名词解释渗流地下水在岩石
第四章地下水运动的基本规律一、名词解释1.渗流:地下水在岩石空隙中的运动。
2.渗流场:发生渗流的区域。
3.层流运动:在岩层空隙中流动时,水的质点作有秩序的、互不混杂的流动。
4.紊流运动:在岩层空隙中流动时,水的质点作无秩序地、互相混杂的流动。
5.稳定流:水在渗流场内运动,各个运动要素(水位、流速、流向)不随时间改变。
6.非稳定流:水在渗流场中运动,各个运动要素随时间变化的水流运动。
7.渗透流速:地下水通过某一过水断面的平均流速。
8.迹线:渗流场中某一段时间内某一质点的运动轨迹。
9.水力梯度:沿渗透途径水头损失与相应渗透途径之比。
10.渗透系数:水力坡度等于1时的渗透流速。
11.流网:在渗流场的某一典型剖面或切面上由一系列流线和等水头线组成的网。
12.流线:流场中某一瞬时的一条线,线上各水质点的流向与此线相切。
二、填空1.据地下水流动状态,地下水运动分为层流和紊流。
2.据地下水运动要素与时间的关系,地下水运动分为稳定流和非稳定流。
3.水力梯度为定值时,渗透系数愈大,渗透流速就愈大。
4.渗透流速为定值时,渗透系数愈大,水力梯度愈小。
5.渗透系数可以定量说明岩石的渗透性能。
渗透系数愈大,岩石的透水能力愈强。
6.流网是由一系列流线与等水头线组成的网格。
7.如果规定相邻两条流线之间通过的流量相等,则流线的疏密可以反映径流强度,等水头线的疏密则说明水力梯度的大小。
8.在均质各向同性介质中,地下水必定沿着水头变化最大的方向,即垂直于等水头线的方向运动,因此,流线与等水头线构成正交网格。
9.流线总是由源指向汇。
三、判断题1.当含水层中存在强渗透性透镜体时,流线将向其汇聚。
(√)2.两层介质的渗透系数相差越大,则其入射角和折射角也就相差越大。
(√)3.达西定律中的过水断面是指包括砂颗粒和空隙共同占据的面积。
( √ )4.在渗流场中,一般认为流线能起隔水边界作用,而等水头线能起透水边界的作用。
( √ )5.渗透流速是指水流通过岩石空隙所具有的速度。
第4章 地下水运动的基本规律
由水力学:
Q V
V
Q
即(对地下水也适用) 达西定律也可以另一种形式表达(流速):
V KI 式中:V––––渗透流速,m/d,cm/s;
K––––渗透系数,m/d,cm/s; I––––水力梯度,无量纲(比值)。 具体到实际问题:
关于有效孔隙度ne: 1)ne<n; 2)一般重力释水时,空隙中有结合水、毛 细水,所以 <ne; 3)对于粘性土,空隙细小、结合水所占的 比例大,所以ne很小,尽管n很大; 4)对于空隙大的岩层(如大的溶隙、裂 隙),ne≈≈n。
在各向同性介质中,流线与等水头线正交;在各向 异性介质中,流线与等水头线斜交
流网的画法: 1.均质各向同性介质中的流网(稳定流) 均质各向同性介质中流线与等水头线构成 正交网格。 水文地质边界: a. 定水头边界H(t)= c;(一类边界) b. 隔水边界,零通量边界;(二类边界) c. 地下水面边界。
2)流线由源指向汇:根据补给区、排泄区判 断流线的趋向(由补给区指向排泄区)。
2、层状非均质介质中的流网 1)两层介质,渗透系数K2>K1,K2=3K1; K2中流线密度为K1的3倍,因此,K2径流强, 流量大,更多的流量通过渗透性好的介质。
2)两块介质: a. K1中等水位(头)线密,间隔数为K2的3 倍;K1中水力梯度大,K2中水力梯度小; b. 在渗透较差的K1中,消耗的机械能大,是 K2的3倍。
叙述粘性土渗透流速(V)与水力梯度(I)主要存在的三种关系? 叙述流网的画法,以及利用流网图可解决的问题? 在等厚的承压含水层中,实际过水断面面积为400平方米的流量为10000立 方米/天,含水层的孔隙度为0.25,试求含水层的实际水流速度和渗透速 度。 一底板水平的含水层,观测孔A、B、C 彼此相距1000米,A位于B的正南 方,C则在AB线的东面。A、B、C的地面高程分别是95、ll0和135米,A中 水位埋深为5米,B中和C中的水位埋深分别是30米和35米,试确定通过三 角形ABC的地下水流的方向,并计算其水力梯度。 有三个地层,每个25米厚,互相叠置,如果在这个层组中设置一个不变流 速的垂向水流场,使其顶部h=120米,底部h=100米,试计算内部两个边 界处的h值(设顶部地层的渗透系数为0.0001米/天,中部地层为0.0005米 /天,底部地层为0.001米/天)。 考虑一个饱和、均质、各向同性、长方形、垂向剖面ABCDA。其上部边界 为AB,底部边界为DC,左侧边界为AD,右侧边界为BC,使DC的距离为 AD的两倍。BC和DC是不透水的。AB是一个不变水头边界,h=100米。 AD被分为两个相等的长度,其上半部分为不透水,下半部分是不变水头边 界,h=40米。试示意绘出流网图。 已知一等厚、均质、各向同性的承压含水层,其渗透系数为15米/天,孔 隙度为0.2,沿着水流方向的两观测孔A、B间距L=1200米,其水位标高分 别为Ha=5.4米,Hb=3米。试求地下水的渗透速度和实际速度。 已知一等厚、均质、各向同性的承压含水层,其渗透系数为20米/天,A、 B两断面间距为5000米,两断面处的承压水头分别为130.2米和125.2米。 试计算两断面间的水力梯度和单宽流量。
水文地质学---地下水运动的基本规律
(以此种情况居多)
说明:只要施加微小的水力梯度,结合水就会流动,但 此时的V十分微小;随着I加大,曲线斜率(K)逐渐增大,然
后趋于定值
较多的学者认为,粘性土(包括相当致密的粘土在内)中
的渗透,通常仍然服从达西定律。例如,奥尔逊曾用高岭土作
渗透试验,加压固结使高岭土孔隙度从58.8%降到22.5%,施 加水力梯度I =0.2~40,结果得出V - I 关系为一通过原点的直
第四章 地下水运动的基本规律
4.1.6 达西定律的适用范围 1<Re<10,层流,适用,地下水低速运动,粘 滞力占优势; 10<Re<100,层流,不适用,地下水流速增大, 为过渡带,由粘滞力占优势的层流转变为以惯性 力占优势的层流运动; Re>100,紊流,不适用。
达西定律是描述层流状态下渗透流速与水头损失关系的 规律,即渗流速度V与水力坡度I成线性关系只适用于层流范 围。在水利工程中,绝大多数渗流,无论是发生于砂土中或 一般的粘性土中,均属于层流范围,故达西定律均可适用。 但以下两种情况可认为超出达西定律适用范围。
第四章 地下水运动的基本规律 ①从微观角度研究地下水运动的难度有两个方面:
A)要获得微观角度每一个空间点的水流运动参数,首 先必须获得空隙的几何参数(查明每一个空隙与固体颗粒 之间的边界位置等) B)从微观角度来看地下水流在空间上是不连续的。固 体颗粒部分是没有水流的,因此从微观角度地下水的运动 参数在空间上是不连续的,有很多地方运动参数是零。 也就是说描述水流运动的物理量是非连续函数,因此 基于连续函数的许多微积分方法无法应用。
普通水流的流向是从总水头高的地方流向总水头低的地方 水流量的大小取决于水头差和水头损失 地下水水的流向也是从高水头流向低水头 流量的大小也取决于水头差和水头损失 普通水流在管道中运动取决于管道大小、形状及管壁的粗糙度 渗流运动取决于多孔介质空隙大小、形状以及其连通性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)水位降深:初始水头减去抽水 t时间后的水头,也简称降 深。用S表示。
(7)降落漏斗:抽水时,水位降深 S在不同的位置上是不同的 ,井中心降深最大,离井 越远,降深越小,抽水井 周围总体上形成的漏斗状 水头下降区;亦即由抽水 (排水)而形成的漏斗状 的水头(水位)下降区。
H
s
z
地下水的预测与防治地下水运动的 基本规律
§12.1 地下水运动的基本规律
渗流的分类:
A
1. 层流与紊流
C
层流(laminar flow):亦称片流,指在流
B
速较小时,液体质点作有条不紊的
运动,彼此不相混掺的形态。
水质点运动连续不断,流束平行而
不混杂。
紊流(turbulent flow) :亦称湍流,是指随流速增 大,液体质点作不规则运动、互相混掺、轨 迹曲折混乱的形态。 水质点运动不连续,流束混杂而不平行。
传递动量、热量和质量的方式不同: 层流通过分子间相互作用; 紊流主要通过质点间的混掺。紊流的传递速率远大于层流。
实验和观察表明,当地下水在孔隙和细 小的裂隙岩层中运动时,如水流速度缓慢, 多为层流状态;当地下水在大裂隙和岩溶溶 洞中运动时,由于流速较快,则多表现出紊 流状态。
由于地下水主要是在岩石的孔隙和裂隙 中运动,运动时受阻较大,流速一般较慢, 所以,一般情况下可以地下水的运动理解为 层流运动。
3.向井运动的基本规律 (1)潜水完整井稳定流裘布依
公式(J.Dupuit)
Q=1.366K(2H-S)S/(lgR-lgr)
Q—井的涌水量(或称排水量),m3/d K —潜水含水层的渗透系数,m/d H —潜水含水层厚度,m S —井中稳定的水位降深,m R —稳定时漏斗半径(影响半径), m r —井的半径,m。 说明:均质含水层,且水平分布无限广阔;
当V一定时,K越小,水头差越大,即K与机械 能的损失成反比关系。
三、紊流运动的非线性渗透定律
Q=KI1/2
或 v=Q/=KI1/2
Q—渗透流量; —过水断面总面积;
I—水力坡度; v—渗透流速(m/s);
K—渗透系数(m/s);
强调:紊流、非线性
常见情况:介于层流与紊流之间的
混合流动 Q=KI1/m (m=1~2)
无蒸发、无渗漏; 运动状态为层流状态。 R可用经验公式确定:R=3000SK1/2
R
s H
h
r
R
3. 向井运动的基本规律 (2)承压水完整井稳定流裘
布依公式
Q 2.73K MS lgR lgr
M—承压含水层的厚度,m; 其它符号同前;
R
s H
h M
r
R
3. 向井运动的基本规律
(3)潜水-承压水完整井稳定流 裘布依公式
二、达尔西定律—层流运动定律
法国水力工程师 亨利·达西(Henry Darcy)在装有均质砂 土滤料的圆柱形筒中 做了大量的渗流实验, 于l856年发现:
Darcy 实验装置
渗透流速与水力 坡度成正比,即线性 渗流定律,这是渗流 基本定律,后人称之 为达西定律。
二、达尔西定律—层流运动定律
Henri Darcy’s Law: Q=KI 或 v=Q/=KI Q—渗透流量; —过水断面总面积; I—水力坡度; v—渗透流速(m/s); K—渗透系数(m/s,为I=1时的v )
§12.1 地下水运动的基本规律
一、地下水的运动状态
一般把由固体骨架和空隙两部分组成的介 质,叫多孔介质。如砂层、裂隙岩体等。
地下水在多孔介质中的运动,称为渗流。 发生渗流的区域称为渗流场。
由于受到介质的阻滞,地下水的流动远较 地表水为缓慢。
由于地下水的类型、介质类型的不同,地 下水的运动状态多种多样。
四、地下水向井运动的基本规律
1. 相关概念 (1)井:处于含水层中有铅直轴线的圆管,其四周透水 。 (2)潜水井:当井揭露潜水含水层,由含水层中吸取无压地下
水的井称为潜水井或普通井。 (3)承压水井:当井揭露承压水含水层时,称为承压水井。 (4)完整井:揭露整个含水层,井,称为完整井。 (5)非完整井:没有打到含水层底板隔水层的潜水井或承压水
H
hr
(8)影响半径:是从抽水井到实际观测不到水位降深处的径向 距离。
2. 稳定流假设
(1) 含水层均质、各向同性,产状水平,厚度不变,分布面积很大,可 视为无限延伸;
(2) 抽水前的地下水面是水平的,并视为稳定的; (3) 含水层中的水流服从Darcy定律,并在水头下降的瞬间水就释放出来
。如有弱透水层,则忽略其弹性释水量。
(4) 在有侧向补给的有限含水层中,当降落漏斗扩展到补给边界后,侧 向补给量和抽水量平衡时,地下水向井运动便可达到稳定状态。
(5) 在有垂向补给的无限含水层中,随着降落漏斗的扩大,垂向补给量 不断增大。当它增大到与抽水量相等时,将形成稳定的降落漏斗 ,地下水向井的运动也进入稳定状态。
(6) 在没有补给的无限含水层中,随着抽水时间的延长,水位降深的 速率会越来越小,降落漏斗的扩展越来越慢,在短时间内观测不 到明显的水位下降,这种情况称为似稳定状态,也称似稳定。
a)从r0—r1 潜水完整井 Q= K(M2-h2)/(lnr1-ln r0)
b) r1 —R 承压水完整井 Q= 2KM(H-M)/ (lnR-ln r1)
用途:矿坑、地基工程中涌水量的计算。 强调:层流,线性 说明:在单位水压梯度(I=1)下,单位时间内通过单
位截面积的流量,即为岩土的渗透系数。该值可 针对具体的岩石(土),通过在室内使用达西仪 或其他渗透仪经试验求得。
达西公式讨论: 达西定律反映了能量转化与守恒。
V与I的一次方成正比;
当K一定,V增大时,水头差增大,表明单位 渗透途径上被转化成热能的机械能损失越多,即V 与机械能的损失成正比关系;
第12章 地下水的预测与防治
➢地下水运动的基本规律 ➢涌水量预测方法简介 ➢涌水量测量方法(自学) ➢矿坑突水的条件及预防
地下水的预测与防治地下水运动的 基本规律
§12.1 地下水运动的基本规律
属地下水动力学的研究范畴: 研究地下水在孔隙岩石、裂隙岩石和岩溶 岩石中运动规律的科学。 它是模拟地下水流基本状态和地下水中溶 质运移过程,对地下水从数量上和质量上进行 定量评价和合理开发利用,以及兴利防害的理 论基础。