《勾股定理的应用》教学设计1

合集下载

北师大版八年级数学上册:1.3《勾股定理的应用》教案

北师大版八年级数学上册:1.3《勾股定理的应用》教案

北师大版八年级数学上册:1.3《勾股定理的应用》教案一. 教材分析《勾股定理的应用》是北师大版八年级数学上册第一章第三节的内容。

本节课主要让学生掌握勾股定理在实际问题中的应用,培养学生的解决问题的能力。

教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探索直角三角形斜边与两直角边的关系,从而引入勾股定理。

学生通过观察、实验、猜想、验证等过程,体验数学的探索乐趣,提高解决问题的能力。

二. 学情分析学生在七年级已经学习了直角三角形的性质,对直角三角形的边长关系有一定了解。

但勾股定理的应用涉及实际问题,对学生来说是一个新的挑战。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。

三. 教学目标1.理解勾股定理的含义,掌握勾股定理在直角三角形中的应用。

2.能够运用勾股定理解决实际问题,提高解决问题的能力。

3.培养学生的合作、交流、探究能力,体验数学探索的乐趣。

四. 教学重难点1.重难点:勾股定理的应用。

2.难点:如何将实际问题转化为勾股定理的形式,求解问题。

五. 教学方法1.采用问题驱动法,引导学生探究勾股定理的应用。

2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。

3.采用启发式教学法,教师提问、学生回答,激发学生的思维。

4.利用多媒体辅助教学,展示勾股定理的应用实例。

六. 教学准备1.准备相关课件、教学素材。

2.设计好教学问题,准备好答案。

3.安排好教学过程中的各个环节。

七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的动画故事,引导学生了解勾股定理的背景。

同时,提问学生:“你们认为直角三角形的斜边与两直角边有什么关系?”2.呈现(10分钟)教师提出一组实际问题,如:“一个直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。

”让学生尝试解决。

学生在解决过程中,发现无法直接运用已知的直角三角形性质解决问题,从而引出勾股定理。

3.操练(10分钟)教师提出多个关于勾股定理的应用问题,让学生在小组内讨论、交流,共同解决。

八年级数学下册《勾股定理的应用》教学设计一等奖3篇

八年级数学下册《勾股定理的应用》教学设计一等奖3篇

1、八年级数学下册《勾股定理的应用》教学设计一等奖在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。

一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。

学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。

《数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。

2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。

把实际问题化归成数学模型是难点。

二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。

2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。

启发学生对空间的认知,为将来学习空间几何奠定根底。

二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。

2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。

三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。

【难点】:查找长方体中最短路线。

四、教学方法本课采纳学生自主探究归纳教学法。

教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。

五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。

思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。

【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。

1.3勾股定理的应用(教案)

1.3勾股定理的应用(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量距离或高度,却无法直接测量的情况?”比如,我们想测量学校旗杆的高度,却无法直接到达顶部。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理在解决实际问题中的奥秘。
五、教学反思
在今天的课堂中,我尝试通过生活实例导入勾股定理的应用,希望让学生感受到数学与生活的紧密联系。从学生的反应来看,这个话题确实引起了他们的兴趣,但在讲解过程中,我意识到有些学生对定理的理解还不够深入,需要我在教学中更加细致地引导。
在理论介绍环节,我尽力用简洁明了的语言解释勾股定理的概念,并通过案例让学生看到定理在解决问题中的具体应用。然而,我也发现有些学生在转换实际问题时,还是不太会灵活运用勾股定理。这让我认识到,在今后的教学中,需要加强学生对定理应用场景的识别和问题转化能力的培养。
实践活动环节,学生分组讨论和实验操作进行得如火如荼,他们积极参与,热烈讨论。但从成果展示来看,部分小组在解决问题时还是存在一定的困难,尤其是在单位换算和实际操作中。这说明我在教学中还要加强对这些方面的讲解和练习。
学生小组讨论环节,大家围绕勾股定理在实际生活中的应用展开了热烈的讨论。我在一旁观察,适时引导,发现学生在互相交流中碰撞出了不少思维的火花。但也有一些学生在讨论中显得较为被动,可能是因为他们对定理的理解还不够自信。为此,我计划在后续的教学中,多关注这些学生,鼓励他们大胆表达自己的想法。
-在实际问题中,能够准确地识别出直角三角形,并将问题简化为勾股定理的应用;
-掌握在勾股定理应用中的单位换算,如长度单位、角度单位等,确保计算准确无误。

勾股定理的应用教案

勾股定理的应用教案

勾股定理的应用教案一、知识目标:1. 理解勾股定理的数学定义;2. 掌握如何应用勾股定理解决直角三角形问题;3. 了解勾股定理的历史背景和意义。

二、能力目标:1. 能够运用勾股定理求解直角三角形的边长;2. 能够利用勾股定理解决实际问题,如测量不可直接测量的距离。

三、情感目标:1. 培养学生喜欢探索和发现数学规律的兴趣;2. 培养学生运用数学知识解决实际问题的能力;3. 增强学生对于数学的信心和兴趣。

四、教学步骤:Step 1:导入(5分钟)教师通过介绍勾股定理在现实生活中的应用,引发学生的兴趣。

例如:勾股定理可以用来计算斜坡的高度、建筑物的高度等。

Step 2:理论讲解(15分钟)1. 教师简要回顾勾股定理的数学定义:直角三角形的两条直角边的平方和等于斜边的平方。

2. 教师通过示意图解释勾股定理的几何含义。

3. 教师讲解勾股定理的证明过程,能够引导学生思考推导过程。

Step 3:应用演示(15分钟)教师通过实际示例演示如何运用勾股定理求解直角三角形的边长。

例如:已知两条直角边长分别为3和4,求斜边长。

Step 4:练习(20分钟)1. 学生在教师的引导下,尝试利用勾股定理求解直角三角形的边长。

2. 学生自愿上台演示解题过程,教师进行点评和指导。

Step 5:拓展应用(15分钟)教师提出一个实际问题:甲、乙两人在山上的两侧,他们分别测得距山脚的距离为3km和4km,他们两人之间的直线距离可以用勾股定理计算吗?请学生思考并解答。

Step 6:总结(10分钟)教师对本节课的内容进行总结,并提醒学生勾股定理的应用要点。

鼓励学生在日常生活中尝试运用数学知识解决问题。

五、板书设计:勾股定理直角三角形的两条直角边的平方和等于斜边的平方应用示例:已知直角边长分别为3和4,求斜边长a^2 + b^2 = c^23^2 + 4^2 = c^2c = 5六、教学反思:本节课通过简单举例和实际问题引导学生理解了勾股定理的数学定义和几何含义。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。

勾股定理的应用教案

勾股定理的应用教案

勾股定理的应用教案教案标题:勾股定理的应用教案教案目标:1. 使学生了解勾股定理的基本概念和公式。

2. 培养学生运用勾股定理解决实际问题的能力。

3. 提高学生的逻辑思维和问题解决能力。

教案步骤:引入(5分钟):1. 向学生介绍勾股定理的概念和公式,解释直角三角形的构成。

2. 引导学生思考直角三角形的特点和勾股定理的应用场景。

探究(15分钟):1. 分发给学生一份有关勾股定理应用的练习题,要求学生自行解决问题。

2. 引导学生思考如何运用勾股定理解决问题,鼓励他们在小组内合作讨论并互相交流思路。

3. 监督学生的解题过程,及时给予指导和帮助。

总结(10分钟):1. 邀请学生上台展示他们解决问题的方法和答案,鼓励他们分享自己的思考过程。

2. 引导学生总结勾股定理的应用场景,并与实际生活中的问题进行联系。

3. 提醒学生勾股定理只是解决实际问题的一种方法,鼓励他们探索其他解决问题的途径。

拓展(15分钟):1. 分发给学生一份拓展练习题,要求他们独立解决并思考不同的解题方法。

2. 鼓励学生在解题过程中思考如何应用勾股定理解决更复杂的问题。

3. 邀请学生分享他们的解题思路和答案,引导他们相互学习和交流。

作业(5分钟):1. 布置一道与勾股定理相关的作业题,要求学生独立完成并书写解题过程。

2. 强调作业的重要性,鼓励学生在家继续思考和应用勾股定理解决实际问题。

评估:1. 在探究和拓展环节中观察学生的参与度和解题能力,及时给予指导和帮助。

2. 收集学生的练习题和作业,评估他们对勾股定理的理解和应用能力。

3. 根据学生的表现,给予针对性的反馈和指导,帮助他们提高问题解决能力。

教学资源:1. 勾股定理的相关教材和练习题。

2. 黑板/白板、彩色粉笔/白板笔。

3. 学生练习纸和作业纸。

教学反思:通过本节课的教学,学生能够了解勾股定理的基本概念和公式,并能够运用勾股定理解决实际问题。

在教学过程中,我注重培养学生的合作学习和思维能力,鼓励他们思考和分享解题思路。

八年级数学上册《勾股定理的应用》教案、教学设计

八年级数学上册《勾股定理的应用》教案、教学设计
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入,对数学问题的分析和解决能力也将得到提升。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解勾股定理的本质和灵活运用方面存在困难。因此,在教学过程中,教师应关注以下几点:
-详细讲解勾股定理的推导过程。
2.教学方法:
-采用直观演示法,让学生对勾股定理有更深刻的理解;
-结合实际例子,解释勾股定理在生活中的应用;
-通过讲解和推导,使学生掌握勾股定理的原理。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,每组讨论以下问题:
a.勾股定理的推导方法有哪些?
b.勾股定理在生活中的应用实例;
-教师进行点评,总结学生在课堂上的表现;
-鼓励学生提出问题,激发他们进一步探索勾股定理的兴趣。
五、作业布置
为了巩固本节课所学内容,培养学生的独立思考能力和解决问题的能力,特布置以下作业:
1.基础巩固题:
-根据课堂练习,完成课后习题第1-10题,要求学生独立完成,家长签字确认;
-通过勾股定理计算以下直角三角形的斜边长度:3,4,5;5,12,13;8,15,17等,并简要说明计算过程。
5.培养学生热爱科学、追求真理的价值观,树立正确的人生观和价值观。
在具体的教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们主动参与课堂活动,提高教学效果。同时,注重课后辅导,帮助学生巩固所学知识,提高数学素养。总之,本章节教学设计旨在使学生在掌握勾股定理的基础上,提高数学应用能力,培养良好的情感态度和价值观。
3.精讲精练,巩固提高:
-对勾股定理进行详细讲解,强调关键点,帮助学生建立清晰的知识结构;

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。

它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。

关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。

之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。

2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。

通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

勾股定理的应用教案 (1)

勾股定理的应用教案 (1)

14.2勾股定理的应用(1)教材分析:勾股定理是我国古代数学的一项伟大成就。

它为我们提供了直角三角形三边间的数量关系,其逆定理又为我们提供了判断三角形是否为直角三角形的依据,这些成果被广泛的应用于数学和实际生活的各个方面。

本节教材是在学生研究了勾股定理及其逆定理在数学应用的基础上进一步研究其在实际生活中的应用。

通过这部分内容的学习可以帮助学生进一步理解勾股定理的应用方法,同时亦为学生对数学与生活之间的联系有一个更深层次的体会。

学情分析:本节课的教学对象是八年级学生,他们的参与意识强,思维活跃,对于真实情境及现实生活中的数学问题具有极大的学习兴趣,而且在前面的学习中,学生已经历了探索和验证勾股定理的过程,又通过观察、操作、思考,充分认识了勾股定理的本质特征,并在此过程中,获得了初步的数学活动经验和体验,具备了一定的动手操作、合作交流和观察、分析的能力。

初步具备了有条理地思考与表达的能力。

教学目标:1、能运用勾股定理及直角三角形的判定条件解决实际问题。

2、在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想,进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

3. 培养合情推理能力,体会数形结合的思维方法,激发学习热情教学重点:实际问题转化成数学问题再转化为直角三角形中教学难点:“转化”思想的应用教学过程:一.提纲导学(一)创设情境,导入新课1. 在Rt △ABC 中,∠C =90°,如果b =8,c =10,求a = .2.(1)什么叫勾股定理?(2)勾股定理的逆定理是 .(二)出示导纲 (三)自学导纲阅读课本P120页,学生自己尝试解决下列问题:1.一架2.5m 长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m ,墙高 m ;如果梯子的顶端沿墙下滑0.4m ,这时梯脚距离墙角 m ; 梯脚移动的距离是 m2. 如图,在锐角三角形ABC 中,AD ⊥BC ,AD=12,AC=13,BC=14. 则AB=_____.3. 如图是一个育苗棚,棚宽a=4m , 棚高b=3m ,棚长d=10m ,则覆盖在棚斜面上的塑料薄膜的面积为_________m 2.4.在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要___________m .5.如图 ,在平静的湖面上,有一荷花,高出湖水面1米,一阵风来,荷花吹到一边,花朵齐及水面.已知荷花移动的水平距离为2米,求这里的水深是多少米.二、合作互动1、小组交流学生进行充分自学后,提出疑问,师归纳疑问,然后进行小组交流.ABCD (第2题)bd a (第3题)135(第4题)2、展示评价小组交流快结束时,师出示展示评价分工表,学生展示时,师适当补充点拨。

勾股定理的应用教学设计

勾股定理的应用教学设计

勾股定理的应用教学设计勾股定理的应用教学设计(精选篇1)一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。

学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。

具体内容是运用勾股定理及其逆定理解决简单的实际问题。

当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

三、本节课的教学目标是:1、通过观察图形,探索图形间的关系,发展学生的空间观念。

2、在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点。

四、教法学法1、教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。

2、课前准备教具:教材、电脑、多媒体课件。

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具。

五、教学过程分析本节课设计了七个环节、第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。

人教版八年级数学下册17.1.2勾股定理的应用(解决问题)教学设计

人教版八年级数学下册17.1.2勾股定理的应用(解决问题)教学设计
(二)教学设想
1.教学导入:
-利用历史故事,如毕达哥拉斯在埃及发现勾股定理的传说,激发学生的兴趣和探究欲望。
-通过实际生活中的问题,如房屋建造中的直角三角形问题,引导学生思考勾股定理的实际意义。
2.教学过程:
-采用探究式教学,鼓励学生通过观察、实验、猜想、证明等过程,自主发现勾股定理。
-利用信息技术手段,如几何画板、多媒体演示等,增强学生对定理直观和动态的理解。
2.实践应用:
-选择一个生活中的直角三角形问题,如测量窗台到地面的距离、计算三角形花园的面积等,运用勾股定理解决问题,并将解题过程写成小报告。
-利用勾股定理,设计一个测量远处物体高度的实验方案,并简述实验步骤。
3.拓展提升:
-探索勾股定理的逆定理,即如果一个三角形的三边满足a² + b² = c²,那么这个三角形是直角三角形。尝试自己证明这个结论。
-关注学生在解决问题时的思维过程和方法,鼓励创新和思考,而非单纯的答案正确性。
四、教学内容与过程
(一)导入新课
1.历史故事引入:讲述古希腊数学家毕达哥拉斯在埃及发现勾股定理的传说,引发学生对勾股定理的好奇心和探究欲望。
2.实际问题导入:展示生活中常见的直角三角形实物图片,如楼梯、房屋斜顶等,提问学生:“这些直角三角形有什么特点?如何计算它们的边长?”从而引出勾股定理。
3.回顾旧知:引导学生回顾直角三角形的基本概念和性质,为学习勾股定理打下基础。
(二)讲授新知
1.演示勾股定理:利用几何画板或实物模型,展示直角三角形三边的关系,引导学生观察、猜想勾股定理。
2.证明勾股定理:通过数学证明,让学生理解勾股定理的严谨性。可以采用多种证明方法,如割补法、相似三角形法等,以拓宽学生思维。

《勾股定理的应用》教学设计

《勾股定理的应用》教学设计

《勾股定理的应用》教学设计作者:雷虎生来源:《中学课程辅导·教学研究》2017年第11期一、前端分析1.教材内容分析《勾股定理的应用》是北师大版数学教材八年级上册第一章第三节的内容。

该节的主要内容为利用勾股定理及其逆定理来处理实际生产和生活中的简单问题。

从解决问题的过程来看,总是要伴随着实际问题的思考分析、抽象概括、操作实践等活动,这是学生不断强化分析问题和解决问题能力的必然需要。

对于较为复杂的应用型问题,则应该充分发挥学生小组合作和交流探究的优势。

从后续课程来看,该切内容是学生深入认识和理解直角三角形的基础,也是进行定量计算和学习三角函数的基础,教学过程中应该结合实际三角形来引导学生思考和认识边角关系。

2.学习者特征分析八年级学生在此前已经初步了解了与勾股定理相关的人文背景知识,了解了勾股定理的内容及表达式,形成了一定的学习兴趣。

从过往的学习来看,他们在数学学习过程中,表现出了较强的好奇心和求知欲,能够较为准确地掌握具体问题中的数量关系和变化规律,可以用数学语言来表达自己分析问题和解决问题的过程,懂得总结解题经验,愿意围绕疑难问题展开讨论,敢于提出自己的不同观点。

因此,在教学中应该以学生现有的生活经验和数学知识为出发点,引导他们经历由实际问题到建立数学模型再到问题的解决的过程;应该注意问题情境的创设,体现一题多变的特点,使学生经历趣味性的自主探究过程,增强学生思维的灵活性。

此外,教学过程中还应该照顾到不同学习水平的学生,注意知识难易和进度快慢的安排,使所有的学生都能有所收获、有所发展。

二、教学目标设计本节课的教学目标有两个:1.能正确运用勾股定理及其逆定理解决简单的实际问题。

2.经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想。

三、教学内容设计1.教学重点应用勾股定理及其逆定理解决实际问题2.教学难点把实际问题转化成数学模型四、教学策略分析1.教学方法引导—探究—归纳2.教具(1)教材;(2)电脑;(3)白板投影仪;(4)多媒体网络;(5)学案;(5)白板课件。

《勾股定理的应用》教案

《勾股定理的应用》教案

《勾股定理的应用》教案《勾股定理的应用》教案(通用8篇)《勾股定理的应用》教案篇1【学习目标】能运用勾股定理及直角三角形的判别条件解决简单的实际问题.【学习重点】勾股定理及直角三角形的判别条件的运用.【学习重点】直角三角形模型的建立.【学习过程】一.课前复习勾股定理及勾股定理逆定理的区别二.新课学习探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?思考:1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为这样的线路有几条?可分为几类?2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从A点到B点的最短路线是什么?你是如何画的?1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

4.你是如何将这个实际问题转化为数学问题的?小结:你是如何解决圆柱体侧面上两点之间的最短距离问题的?探究点二:利用勾股定理逆定理如何判断两线垂直?1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,但他随身只带了卷尺。

(参看P13页雕塑图1-13)(1)你能替他想办法完成任务吗?1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?探究点三:利用勾股定理的方程思想在实际问题中的应用例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.1.3思考:1.求滑道AC的长的问题可以转化为什么数学问题?2.你是如何解决这个问题的?写出解答过程。

勾股定理优秀教学设计模板(通用5篇)

勾股定理优秀教学设计模板(通用5篇)

勾股定理优秀教学设计模板(通⽤5篇)勾股定理优秀教学设计模板(通⽤5篇) 在教学⼯作者实际的教学活动中,时常需要⽤到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学⽅案的设想和计划。

那么⼤家知道规范的教学设计是怎么写的吗?以下是⼩编为⼤家收集的勾股定理优秀教学设计模板(通⽤5篇),希望能够帮助到⼤家。

勾股定理优秀教学设计1 ⼀、教案背景概述: 教材分析:勾股定理是直⾓三⾓形的重要性质,它把三⾓形有⼀个直⾓的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。

它可以解决许多直⾓三⾓形中的计算问题,它是直⾓三⾓形特有的性质,是初中数学教学内容重点之⼀。

本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学⽣分析: 1、考虑到三⾓尺学⽣天天在⽤,较为熟悉,但真正能仔细研究过三⾓尺的同学并不多,通过这样的情景设计,能⾮常简单地将学⽣的注意⼒引向本节课的本质。

2、以与勾股定理有关的⼈⽂历史知识为背景展开对直⾓三⾓形三边关系的讨论,能激发学⽣的学习兴趣。

设计理念:本教案以学⽣⼿中舞动的三⾓尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学⽣对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富⽂化内涵,体验勾股定理的探索和运⽤过程,激发学⽣学习数学的兴趣,特别是通过向学⽣介绍我国古代在勾股定理研究和运⽤⽅⾯的成就,激发学⽣热爱祖国,热爱祖国悠久⽂化的思想感情,培养他们的民族⾃豪感和探究创新的精神。

教学⽬标: 1、经历⽤⾯积割、补法探索勾股定理的过程,培养学⽣主动探究意识,发展合理推理能⼒,体现数形结合思想。

2、经历⽤多种割、补图形的⽅法验证勾股定理的过程,发展⽤数学的眼光观察现实世界和有条理地思考能⼒以及语⾔表达能⼒等,感受勾股定理的⽂化价值。

3、培养学⽣学习数学的兴趣和爱国热情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1 .2 勾股定理(二)
一、教学目标
1.会用勾股定理解决简单的实际问题。

2.树立数形结合的思想。

二、重点、难点
1.重点:勾股定理的应用。

2.难点:实际问题向数学问题的转化。

3.难点的突破方法:
数形结合,从实际问题中抽象出几何图形,让学生画好图后标图;在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,教师要向学生交代清楚,解释明白;优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度;让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性。

三、例题的意图分析
例1(教材P25页例1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。

例2(教材P25页例2)使学生进一步熟练使用勾股定理
四、课堂引入
勾股定理在实际的生产生活当中有着广泛的应用。

勾股定理的发现和使
用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你
可以吗?试一试。

五、例习题分析
例1(教材P25页例1)
分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,
即门框为长方形,四个角都是直角。

⑵让学生深入探讨图中有几个直角三角
形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。

⑸注意给学生小结深化数学建模思想,激发数学兴趣。

例2(教材P25页例2)
分析:⑴在△AOB 中,已知AB=2.6,AO=2.4,利用勾股定理计算
OB 。

⑵ 在△COD 中,已知CD=2.6,CO=1.9,利用勾股定理计
算OD 。

则BD=OD -OB ,通过计算可知BD ≠AC 。

⑶进一步让学生探究AC 和BD 的关系,给AC 不同的值,计算BD 。

六、课堂练习
1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。

2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米。

D A
B C
A
B
2题图 3题图 4题图
3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。

4.如图,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B 地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?
七、课后练习
1.如图,欲测量松花江的宽度,沿江岸取B 、C 两点,
在江对岸取一点A ,使AC 垂直江岸,测得BC=50米, ∠B=60°,则江面的宽度为 。

2.有一个边长为1米正方形的洞口,想用一个圆形盖去
盖住这个洞口,则圆形盖半径至少为 米。

3.一根32厘米的绳子被折成如图所示的形状钉在P 、Q
两点,PQ=16厘米,且RP ⊥PQ ,则RQ= 厘米。

4.如图,钢索斜拉大桥为等腰三角形,支柱高24
米,∠B=∠C=30°,E 、F 分别为BD 、CD 中点,试
求B 、C 两点之间的距离,钢索AB 和AE 的长度。

(精确到1米)
八、参考答案:
课堂练习: 1.2250; 2.6, 32;
3.18米; 4.11600;
课后练习
1.350米; 2.2
2; 3.20; 4.83米,48米,32米;
九、课后作业 优化设计18页
C
B
P Q
A
B D E F。

相关文档
最新文档