小波变换和多分辨率处理
基于小波变换的图像处理方法研究
基于小波变换的图像处理方法研究近年来,小波变换技术在图像处理领域得到了广泛的应用。
它能够提取图像中的特征信息,减少图像噪声,较好地保留图像的细节等。
基于小波变换的图像处理方法,可以应用于医学影像诊断、卫星遥感图像处理等多个领域。
本文将介绍小波变换技术的一些基础知识,分析小波变换在图像处理中的应用,并探讨基于小波变换的图像处理方法研究。
一、小波变换的基础知识小波变换(Wavelet Transform)是一种能将时间序列信号或图像信号分解成不同尺度的子信号的数学变换技术。
在小波变换中,小波函数是用作基函数的,通过对小波基函数的线性组合,得到原始信号的一个系数序列,这个系数序列记录了不同尺度下信号的信息。
小波变换的优点之一是信号的时频局部性,它能够对信号的低频和高频部分进行分离。
二、小波变换在图像处理中的应用小波变换在图像处理中有着广泛的应用。
主要应用在图像压缩、噪声去除和边缘检测等方面。
在图像压缩中,小波变换可将图像分为不同频率的子带,其位于较低频段的子带较为平滑,可以用较少的信息来表示;其位于较高频段的子带包含了图像的细节信息,通过对子带系数进行量化和编码,可以实现图像压缩。
在噪声去除方面,小波变换可以通过阈值去除图像中的高频噪声,从而获得更好的图像质量。
在边缘检测方面,小波变换的多尺度分析特性可以用于提取图像中的边缘信息。
三、基于小波变换的图像处理方法研究基于小波变换的图像处理方法研究,是利用小波变换技术进行图像处理的一种方法。
在此方法中,首先对图像进行小波变换,然后根据具体的应用需求对小波系数进行处理,最后通过逆小波变换将处理后的小波系数重构成图像。
目前,该方法已经应用于图像增强、图像恢复和图像分割等多个领域。
在图像增强领域,基于小波变换的增强方法主要是通过增大图像中的高频分量,从而达到增强图像细节信息的目的。
该方法可以应用于医学影像诊断、高清视频制作等多个领域。
在图像恢复方面,基于小波变换的方法可以减少噪声干扰,恢复损坏的图像部分信息。
第7章图像处理 课后答案
7.1.1 图像金字塔
一系列以金字塔形状排列的分辨率逐步降低的图集合。 金字塔的底部是待处理图像的高分辨率表示,而顶部 是低分辨率的近似。基级J的尺寸是2J×2J或N×N (J=log2N), 中间级j的尺寸是2j×2j ,其中0<= j <=J。
图7.2b表示,各级的近似值和预测残差金字塔都是以 一种迭代的方式进行计算的。第一次迭代和传递时, j = J ,并且2J×2J的原始图像作为J级的输入图像,从 而产生J-1级近似值和J级预测残差,而J-1级近似值又 作为下一次迭代的输入,得到J-2级近似值和J-1级预 测残差。 迭代算法:
1, 0 x 0.5 ψ( x) 1, 0.5 x 1 0,在,有了尺度函数和小波函数,可以正式定义小 波变换了,它包括:一般小波序列展开、离散小波 变换和连续小波变换。
7.3.1 小波序列展开
首先根据小波函数ψ( x)和尺度函数 ( x)为函数f(x)定 义小波序列展开:
高斯近似值和预测残差金字塔
基级,第9级
第8级 第7级 第6级
图像重建
7.1.2 子带编码
另一种与多分辨率分析相关的重要图像技术是子带 编码。在子带编码中,一幅图像被分解成为一系列 限带分量的集合,称为子带,它们可以重组在一起 无失真地重建原始图像。最初是为语音(一维信号) 和图像压缩而研制的,每个子带通过对输入进行带 通滤波而得到(相当于分解一个频段为若干个子频 段)。因为得到的子带的带宽要比原始图像的带宽 小,子带可以无信息损失的抽样。 原始图像的重建可以通过内插、滤波和叠加单个子 带来完成。
k
V Spk an{k ( x)}
7.2.2 尺度函数
现在来考虑由整数平移和实数二值尺度、平方可积 函数 ( x) 组成的展开函数集合,即集合{ j ,k ( x)} : j/2 j j ,k ( x) 2 (2 x k ) 式7.2.10 k决定了 j ,k ( x)在x轴的位置(平移k个单位),j决定 了 j ,k ( x) 的宽度,即沿x轴的宽或窄的程度,而2j/2 控制其高度或幅度。由于 j ,k ( x)的形状随j发生变化, ( x) 被称为尺度函数。 如果为赋予一个定值,即j = j0,展开集合 { j0 ,k ( x)} 将是 { j ,k ( x)}的一个子集,一个子空间:
外文翻译---多分辨率分析 & 连续小波变换
题目:多分辨率分析&连续小波变换TITLE: MULTIRESOLUTION ANALYSIS & THE CONTINUOUS WA VELETTRANSFORM院系:电气信息工程系专业:通信工程姓名:学号:毕业设计(论文)外文资料翻译多分辨率分析&连续小波变换多分辨率分析虽然时间和频率分辨率的问题是一种物理现象(海森堡测不准原理)无论是否使用变换,它都存在,但是它可以使用替代方法分析,称为信号多分辨率分析(MRA)。
MRA,如它的名字一样,分析了不同分辨率不同频率的信号。
每个频谱分量不能得到同样的解决是因为在STFT的情况下。
MRA是为了在高频率时,能够得到良好的时间分辨率和较差的频率分辨率,而在低频率时,能够得到良好的频率分辨率和较差的时间分辨率而设计的。
这种方法是十分有意义的,特别是当手头的信号高频成分持续时间短和低频成分持续时间长时。
幸运的是,在实际应用中所遇到的信号往往是这种类型。
例如,下面显示了这种类型的信号。
它有一个贯穿整个信号相对较低的频率分量,而在信号中间有一个短暂的、相对较高的频率成分。
连续小波变换连续小波变换作为一种替代快速傅里叶变换办法来发展,克服分析的问题。
小波分析和STFT的分析方法类似,在这个意义上说,就是信号和一个函数相乘,{\它的小波},类似的STFT的窗口功能,并转换为不同分段的时域信号。
但是,STFT和连续小波变换二者之间的主要区别是:1、Fourier转换的信号不采取窗口,因此,单峰将被视为对应一个正弦波,即负频率是没有计算。
2、窗口的宽度是相对于光谱的每一个组件变化而变化的,这是小波变换计算最重要的特征。
连续小波变换的定义如下:公式3.1从上面的方程可以看出,改变信号功能的有两个变量,τ和s,分别是转换参数和尺度参数。
psi(t)为转化功能,它被称为母小波。
母小波一词得名是由于如下所述的两个小波分析的重要性质:这个词意味着小波浪。
小指的条件是本(窗口)函数的有限长度的(紧支持)。
小波变换原理
小波变换原理
小波变换是一种信号分析方法,它可以将一个信号分解成不同频率和时间的小波基函数的线性组合。
这种分解能够提供关于信号局部特征的信息,并且具有较好的时频局部化性质。
小波变换的基本原理是利用小波基函数对信号进行多尺度分析。
小波基函数是一组函数,它们具有有限时间和频率的特性。
通过对不同尺度的小波基函数进行缩放和平移,可以得到不同频率和时间的基函数。
在小波变换中,通常采用离散小波变换(DWT)进行信号分析。
离散小波变换将信号分解成不同尺度和位置的小波系数,每个小波系数表示信号在相应尺度和位置上的能量。
小波变换的优点之一是可以提供多分辨率的信号分析。
通过对信号进行分解,可以得到不同尺度上的信息,从而揭示信号在局部的频率特征。
这对于处理非平稳信号和突发信号非常有用。
小波变换还具有较好的时频局部化性质。
在时域上,小波基函数具有较短的时域长度,可以更好地描述信号的瞬时特征。
在频域上,小波基函数具有较宽的频带,可以更好地描述信号的频率特征。
小波变换在信号处理、图像处理、模式识别等领域有着广泛的应用。
它可以用于信号去噪、压缩、特征提取等任务,也可以用于图像边缘检测、纹理分析等任务。
总之,小波变换是一种多尺度信号分析方法,通过对信号进行分解,可以提取信号在不同尺度和位置上的特征。
它具有较好的时频局部化性质,可以有效地描述非平稳信号和突发信号的特征。
小波变换的多尺度分析方法及实现步骤
小波变换的多尺度分析方法及实现步骤引言:小波变换是一种信号处理技术,它能够将信号分解成不同尺度的频率成分,从而实现对信号的多尺度分析。
本文将介绍小波变换的基本原理、多尺度分析方法以及实现步骤。
一、小波变换的基本原理小波变换是一种时间和频率的联合变换方法,它将信号分解成一系列的小波函数。
与傅里叶变换相比,小波变换具有更好的时频局部性,能够更准确地描述信号的瞬时特征。
小波变换的基本原理是通过将信号与小波函数进行内积运算,得到信号在不同尺度和位置上的频率成分。
小波函数是一种具有局部化特征的函数,它在时域和频域上都有一定的局部性。
二、多尺度分析方法小波变换的多尺度分析方法主要包括连续小波变换和离散小波变换两种。
1. 连续小波变换(CWT)连续小波变换是将信号与连续小波函数进行内积运算,得到信号在不同尺度和位置上的频率成分。
连续小波变换具有较好的时频分辨率,但计算量较大。
2. 离散小波变换(DWT)离散小波变换是将信号进行离散化处理后,与离散小波函数进行内积运算,得到信号在不同尺度和位置上的频率成分。
离散小波变换具有较好的计算效率,适用于实际应用中的信号处理。
三、实现步骤小波变换的实现步骤主要包括信号预处理、小波函数选择、小波变换计算和结果分析等。
1. 信号预处理在进行小波变换之前,需要对信号进行预处理,包括去除噪声、归一化处理等。
预处理的目的是提高小波变换的精度和稳定性。
2. 小波函数选择选择合适的小波函数对信号进行分析是小波变换的关键。
常用的小波函数有高斯小波、Morlet小波、Daubechies小波等。
选择小波函数时需要考虑信号的特性和分析的目的。
3. 小波变换计算根据选择的小波函数,对信号进行小波变换计算。
连续小波变换可以通过积分运算实现,离散小波变换可以通过快速小波变换算法实现。
4. 结果分析对小波变换的结果进行分析和解释。
可以通过频谱图、小波系数图等方式对信号的频率成分和时域特征进行分析。
结论:小波变换是一种有效的多尺度分析方法,能够在时频域上对信号进行精确的分析。
数字信号处理中的小波变换与滤波应用
数字信号处理中的小波变换与滤波应用随着计算机技术的发展,数字信号处理(DSP)已经成为了许多领域的必备工具。
其中,小波变换与滤波应用在信号处理中应用非常广泛。
它们可以用于信号的压缩、去噪、特征提取等等,具有重要的实际应用价值。
一、小波变换的基本原理小波变换(Wavelet Transform)是一种信号分析的工具,它可以将信号分解成不同频率的子信号。
与傅里叶变换相比,小波变换可以更好地应对非平稳信号的分析。
其基本原理是将信号与一组称之为小波函数的特定函数进行卷积运算。
小波变换有两个主要特性:尺度变换和平移变换。
其中,尺度变换是指通过缩放小波函数的时间轴来改变小波函数的频率;平移变换是指通过移动小波函数的时间轴来改变小波函数的相位。
利用小波变换可以将信号分解成多个尺度和频率上的子信号,并且可以对这些子信号进行重构。
小波变换具有多分辨率分析的特点,可以在不同分辨率下对信号进行分解和重构。
二、小波变换在信号处理中的应用1. 信号压缩小波变换可以将信号分解成多个尺度和频率上的子信号,这些子信号可以被视为信号的特征。
通过保留重要的子信号,可以实现对信号的压缩。
这种方法被称为小波压缩。
小波压缩的基本步骤是进行小波分解,然后对分解得到的系数进行阈值处理,去除一些小的系数,最后再进行小波重构。
这样可以减小信号的维度,实现信号的压缩。
2. 信号去噪噪声是指不想要的信号成分,会使原信号数据变得不可靠。
小波变换可以将信号分解成多个尺度和频率上的子信号,可以很好地分离出噪声信号。
通过去除噪声信号,可以实现信号的去噪。
信号去噪的基本步骤是进行小波分解,然后对分解得到的系数进行阈值处理,去除一些小的系数,最后再进行小波重构。
这样可以去除噪声信号,实现信号的去噪。
3. 特征提取小波变换可以将信号分解成多个尺度和频率上的子信号,在不同的尺度下,可以捕捉到信号的不同特征。
因此,小波变换可以用来进行信号特征提取。
特征提取的方法是通过小波分解,挑选出某些尺度和频率下的小波系数,然后再将这些系数用于信号的分类、识别等任务中。
小波变换与多分辨率分析课件
有效地去除信号中的噪声。
02
小波变换在信号压缩中的应用
小波变换可以将信号分解为近似分量和细节分量,通过去除细节分量,
可以实现信号的压缩。
03
小波变换在信号恢复中的应用
小波变换可以捕捉到信号中的突变部分,通过逆变换,可以恢复出原始
信号。
多分辨率分析在图像处理中的实验演示
多分辨率分析在图像去噪中的应用
领域也有广泛的应用。
算法复杂度
小波变换的算法复杂度相对 较低,容易实现,而多分辨 率分析的算法复杂度较高, 实现相对困难。
小波变换与多分辨率分析的未来展望
01
应用领域拓展
02
算法优化
ቤተ መጻሕፍቲ ባይዱ
03
结合其他技术
小波变换和多分辨率分析在信号处理、 图像处理、数据压缩等领域已经得到 广泛应用,未来随着技术的不断发展, 它们的应用领域将会更加广泛。
小波变换的应用
小波变换在图像处理中有着广泛的应用,例如图像压缩、去噪、
01
重建等。
02
小波变换在音频处理中也得到了广泛应用,例如音频压缩、去
噪、特征提取等。
小波变换还被广泛应用于信号处理、数字水印、雷达信号处理
03
等领域。
02
多分辨率分析基
多分辨率分析的定 义
定义概述
多分辨率分析是信号处理中的一种重要技术,它通过在不同尺度上分析信号,能够同时获得信号的时间和频率信息。
定义背景
随着信号处理技术的发展,人们逐渐认识到仅通过傅里叶分析无法完全揭示信号的时频特性,因此需要一种更全面的 分析方法。
定义目的 多分辨率分析旨在提供一种框架,将信号分解成不同尺度的成分,以便更精细地描述信号的时频特性。
02-多分辨率信号分解理论:小波变换
一个多分辨率信号分解理论:小波表示摘要:多分辨率表示对于分析图像信号内容十分有效,我们研究了在一给定分辨率下逼近信号算子的性能。
显示出在分辨率12+j 和j 2下逼近信号的信息不同,通过在小波标准正交基2L 上分解这一信号可以将其提取。
小波标准正交基是一系列函数,它由扩大和转化唯一函数)(x ψ来构建。
这一分解定义了一个正交多尺度表示叫做小波表示。
它由金字塔算法来计算,其基于正交镜像滤波器的卷积。
对于图像,小波表示区分了几种空间定位。
我们研究这一表示在数据压缩,图像编码,结构辨别及分形分析上的应用。
关键词-编码,分形,多分辨率金字塔,正交镜像滤波器,结构辨别,小波变换 1. 引言在计算机视觉方面,很难由图像像素的灰度强度来直接分析一个图像的信息内容。
的确,这一数值依赖于照明条件。
更为重要的是图像强度的局部变化。
邻居的大小即对比计算处必须被采用于我们要分析的物体大小。
这一尺寸为测量图像局部变化定义了参考分辨率。
总的来说,我们想要识别的结构具有差异很大的尺寸。
因此,定义分析图像的优先或最优分辨率是不可能的。
一些研究人员发明了图像比对算法用来处理不同分辨率下的图像。
为这一目的,一种算法可以识别图像信息至一系列在不同分辨率下显现的细节。
给定一个提高分辨率的序列j r ,在分辨率j r 下的图像细节被定义为它的分辨率j r 下逼近与低分辨率1-j r 下逼近之间的信息差别。
多分辨率分解使得我们可以获得图像的尺度不变性演绎。
图像尺度随着场景与相机光学中心间的距离而变化。
当图像尺寸修改时,我们对于图像的演绎不应该变化。
多分辨率分解可以满足局部尺度不变性如果分辨率参量j r 的序列以指数形式变化。
我们假设存在分辨率一步R ∈α对于所有整数j ,j j r α=。
如果相机靠近场景时间为α,则每一物体被投影到一个2α的区域比相机焦平面更大。
即每一物体以α倍大的分辨率度量。
因此,新图片在分辨率j α下细节与先前在分辨率1+j α下图像细节相一致。
小波变换的几个典型应用
第六章 小波变换的几个典型应用6.1 小波变换与信号处理小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。
同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。
比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。
本部分将举例说明。
6.1.1 小波变换在信号分析中的应用[例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。
已知信号的表达式为For personal use only in study and research; not for commercial use⎪⎪⎩⎪⎪⎨⎧≤≤++-≤≤++-=1000501)()3.0sin(50010005001)()3.0sin(5001)(t t b t t t t b t t t s应用db5小波对该信号进行7层分解。
xiaobo0601.m1002003004005006007008009001000-4-3-2-10123456样本序号 n幅值 A图6-1含躁的三角波与正弦波混合信号波形分析:(1) 在图6-2中,逼近信号a7是一个三角波。
(2) 在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。
01002003004005006007008009001000-101a 701002003004005006007008009001000-202a 601002003004005006007008009001000-202a 501002003004005006007008009001000-202a 401002003004005006007008009001000-505a 301002003004005006007008009001000-505a 2010*******4005006007008009001000-505a 1样本序号 n图6-2 小波分解后各层逼近信号01002003004005006007008009001000-101d 701002003004005006007008009001000-101d 601002003004005006007008009001000-101d 501002003004005006007008009001000-202d 401002003004005006007008009001000-202d 301002003004005006007008009001000-202d 2010*******4005006007008009001000-505d 1样本序号 n图6-3 小波分解后各层细节信号6.1.2 小波变换在信号降躁和压缩中的应用一、信号降躁1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。
小波变换和多分辨率处理
例如,N=4时,
k
p
q
k,p,q的值如右:
0
0
0
1
0
1
2
1
1
3
1
2
则,4×4变换矩阵H4
1 1 1 1
H4
1
2
4 2
1 2
1 0
10ຫໍສະໝຸດ 002 2
2×2变换矩阵H2
H2
1 1 2 1
1 1
离散小波变换的哈尔函数
64×64
128×128
图示为哈尔基函数对 图像的多分辨率分解, 离散小波变换包含了 与原始图像相同的像 素数
T=HFHT
F是N×N图象矩阵,H是N×N变换矩阵,T是N×N变换的 结果
哈尔基函数
h0zh00 z
1 N
z0,1
2p/2 q1/2pzq0.5/2p
hkzhpq z1 N 2 0p/2
q0.5/2pzq/2p
其它 z 0,1 ,
(3) 哈尔变换
N×N哈尔变换矩阵第i行包含元素hi(z),其中z = 0/N, 1/N, …, (N-1)/N。
主要内容
背景 图象金字塔 子带编码 哈尔变换
多分辨率展开 一维小波变换 快速小波变换 二维小波变换 小波包
1.背景
物体的尺寸很小或者对比度不高的时候,通常采用 较高的分辨率观察。
物体尺寸很大或者对比度很强,只需要较低的分辨 率。
物体尺寸有大有小,强弱对比度同时存在,则适合 用不同的分辨率对其进行研究。
12G1(z)[H1(z)X(z)H1(z)X(z)]
滤波h0(n)的输出
h 0 n * x n h 0 n k x k H 0 z X z
小波变换的多分辨率分析原理与应用
小波变换的多分辨率分析原理与应用引言:小波变换是一种在信号处理和图像处理领域中广泛应用的数学工具。
它通过将信号分解成不同频率的子信号,以实现对信号的多分辨率分析。
本文将介绍小波变换的原理和应用,并探讨其在信号处理和图像处理中的潜在价值。
一、小波变换的原理小波变换是一种基于窗函数的变换方法,它通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和频率上的分解系数。
小波基函数是一种具有有限长度的波形,它可以在时间和频域上进行调整,以适应不同尺度和频率的信号特性。
小波变换的核心思想是多分辨率分析,即将信号分解成不同尺度的子信号。
通过对信号进行连续缩放和平移操作,小波变换可以捕捉到信号在不同频率上的细节信息。
与傅里叶变换相比,小波变换可以提供更好的时频局部化特性,能够更准确地描述信号的瞬时特征。
二、小波变换的应用1. 信号处理小波变换在信号处理中有广泛的应用。
通过对信号进行小波变换,可以实现信号的降噪、压缩和特征提取等操作。
由于小波基函数具有时频局部化的特性,它可以有效地消除信号中的噪声,并提取出信号的重要特征。
因此,在语音识别、图像处理和生物医学信号处理等领域,小波变换被广泛应用于信号的预处理和特征提取。
2. 图像处理小波变换在图像处理中也有重要的应用。
通过对图像进行小波变换,可以实现图像的去噪、边缘检测和纹理分析等操作。
由于小波基函数具有多尺度分析的能力,它可以捕捉到图像中不同尺度上的细节信息。
因此,在图像压缩、图像增强和图像分割等领域,小波变换被广泛应用于图像的处理和分析。
3. 数据压缩小波变换在数据压缩中有着重要的应用。
通过对信号或图像进行小波变换,可以将其表示为一组小波系数。
由于小波系数具有稀疏性,即大部分系数都接近于零,可以通过对系数进行适当的量化和编码,实现对信号或图像的高效压缩。
因此,在音频压缩、图像压缩和视频压缩等领域,小波变换被广泛应用于数据的压缩和传输。
结论:小波变换是一种强大的信号处理和图像处理工具,它通过多分辨率分析实现对信号的精确描述和处理。
小波变换和多分辨率概念
每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。
而该小波的basis 函数其实就是对这个母小波和父小波缩放和平移形成的。
缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。
还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。
小波展开的近似形式是这样:其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。
和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。
我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。
但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的?在这一篇文章里,我们就来讨论一下这些特性背后的原理。
首先,我们一直都在讲小波展开的近似形式。
那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。
但是,母小波并非唯一的原始基。
在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。
它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交:另外,为了方便处理,父小波和母小波也需要是正交的。
可以说,完整的小波展开就是由母小波和父小波共同定义的。
其中是母小波,是父小波。
需要提醒一点的是,这个正交纯粹是为了小波分析的方便而引入的特性,并不是说小波变换的基就一定必须是正交的。
但大部分小波变换的基确实是正交的,所以本文就直接默认正交为小波变换的主要性质之一了。
引入这个父小波呢,主要是为了方便做多解析度分析(multiresolution analysis, MRA)。
说到这里,你的问题可能会井喷了:好好的为什么出来一个父小波呢?这个scaling function是拿来干嘛的?它背后的物理意义是什么?wavelet function背后的物理意义又是什么?这个多解析度分析又是什么呢?不急,下面,我们围绕一个例子来巩固一下前面的知识,同时再引出新的特性。
第十章 离散小波变换的多分辨率分析
282第10章 离散小波变换的多分辨率分析在上一章,我们给出了连续小波变换的定义与性质,给出了在),(b a 平面上离散栅格上小波变换的定义及与其有关的标架问题。
在这两种情况下,时间t 仍是连续的。
在实际应用中,特别是在计算机上实现小波变换时,信号总要取成离散的,因此,研究b a ,及t 都是离散值情况下的小波变换,进一步发展一套快速小波变换算法将更有意义。
由Mallat 和Meyer 自80年代末期所创立的“多分辨率分析”技术[87,88,8]在这方面起到了关键的作用。
该算法和多抽样率信号处理中的滤波器组及图像处理中的金字塔编码等算法[34,33]结合起来,构成了小波分析的重要工具。
本章将详细讨论多分辨率分析的定义、算法及应用。
10.1多分辨率分析的引入10.1.1信号的分解近似现以信号的分解近似为例来说明多分辨率分析的基本概念。
给定一个连续信号)(t x ,我们可用不同的基函数并在不同的分辨率水平上对它作近似。
如图10.1.1(a)所示,令⎩⎨⎧=01)(t φ其它10<≤t (10.1.1)显然,)(t φ的整数位移相互之间是正交的,即)()(),(k k k t k t '-=〉'--〈δφφ Z k k ∈', (10.1.2) 这样,由)(t φ的整数位移)(k t -φ就构成了一组正交基。
设空间0V 由这一组正交基所构成,这样,)(t x 在空间0V 中的投影(记作)(0t x P )可表为: )()()()()(,t k a k t k at x P k 0k0k0φφ∑∑=-=(10.1.3)式中)()(,0k t t k -=φφ,)(k a 0是基)(,0t k φ的权函数。
)(0t x P 如图10.1.1(b)所示,它可以看作283是)(t x 在0V 中的近似。
)(k a 0是离散序列,如图10.1.1(c)所示。
令)()(/,k t 22t j 2j k j -=--φφ (10.1.4)是由)(t φ作二进制伸缩及整数位移所产生的函数系列,显然,对图10.1.1(a)的)(t φ,)(,t k j φ和)(,t k j 'φ是正交的。
小波变换与小波包变换的比较与适用场景分析
小波变换与小波包变换的比较与适用场景分析引言:小波变换和小波包变换是信号处理中常用的两种变换方法,它们在不同的领域和场景中有着各自的优势和适用性。
本文将对小波变换和小波包变换进行比较与分析,探讨它们的特点、应用场景以及在实际问题中的应用。
一、小波变换的特点与应用小波变换是一种时频分析方法,可以将信号分解成不同频率的成分,并且可以在时间和频率上提供更好的局部化信息。
小波变换的主要特点包括:1. 局部性:小波变换能够在时间和频率上提供更好的局部化信息,对于非平稳信号的分析具有优势。
2. 多分辨率:小波变换可以通过选择不同的小波基函数来实现多分辨率分析,从而对信号的不同频率成分进行更细致的分析。
3. 时频分析:小波变换可以提供信号在时间和频率上的精确信息,对于瞬态信号的分析有较好的效果。
小波变换在实际应用中有着广泛的应用场景,例如:1. 信号处理:小波变换可以用于信号去噪、边缘检测、特征提取等方面,对于非平稳信号的处理效果较好。
2. 图像处理:小波变换可以用于图像压缩、图像增强、图像分割等方面,对于局部特征的提取和分析有较好的效果。
3. 生物医学工程:小波变换可以用于心电信号分析、脑电信号分析等方面,对于瞬态信号和非平稳信号的分析有较好的效果。
二、小波包变换的特点与应用小波包变换是在小波变换的基础上进行的改进,它能够提供更丰富的频率信息和更灵活的分析方式。
小波包变换的主要特点包括:1. 频率分解:小波包变换可以将信号进行更细致的频率分解,对于频率信息的提取和分析有较好的效果。
2. 灵活性:小波包变换可以通过选择不同的小波包基函数和分解层数来实现不同精度的分析,具有更高的灵活性和可调节性。
3. 能量集中:小波包变换可以将信号的能量集中在少数的小波包系数上,对于信号的重要信息提取有较好的效果。
小波包变换在实际应用中也有着广泛的应用场景,例如:1. 语音信号处理:小波包变换可以用于语音信号的分析和识别,对于频率特征的提取和分类有较好的效果。
小波分析
Absorbance
0.04 0.03 0.02 0.01 0.00 -0.01
2
滤波
D(5)
C(5)
D(4)
C(4)
D(3)
C(3)
D(2)
C(2)
D(1)
C(1)
4
6
8
10
Retention Time / min
12 2 4 6 8 10 12 2 4 6 8 10 12
将信号中的不同频率成分按照频率高低进行分离! 噪声属于高频部分,背景、基线属于低频部分 17
(translation parameter) ,也称为时间平移因子
t 叫作小波基,或小波母函数。 9
2. 小波变换
❖ 连续小波变换 a,b R, a 0
Wf a,b
f t, a,b t f *~a b
1 a
f
t
a,b tdt
❖ 实际应用中,一般实现时,连续小波必须加以离散化 ,所以常使用离散化小波变换。
小波分析
➢ 小波分析概况 ➢ 小波及小波变换 ➢ 一维小波分析 ➢ 多分辨率分析 ➢ 二维小波分析
❖ 一、小波分析概况
❖ “小波分析”是利用多种 “小波基函数” 对 “ 原始信号” 进行分解,分析原始信号各种变化的 特性,进一步用于趋势分析,数据压缩、噪声去除 、特征选择等。
❖ 地理学的许多现象均可视为数据信号,进行小波分 析,如气候和水文数据的时间序列,人文地理方面 的经济数值波动,遥感方面的光谱分析、遥感数据 的图像压缩,GIS方面的数据多尺度分析。
k 1
k 1
N
N
或: C j1 n h jn k *C jk g jn k * D jk
小波变换和梯度对多聚焦图像的多分辨率融合
总第171期2008年第9期舰船电子工程Ship Electronic Enginee ring Vol.28No.9135 小波变换和梯度对多聚焦图像的多分辨率融合3恐维龙1) 张朝亮2) 王荣颖2)(92823部队三中队1) 三亚 572021)(武汉海军工程大学2) 武汉 430033)摘 要 提出一种结合Ro bert s 梯度和小波变换的图像融合方法。
该方法对低频分量采用加权平均,对高频分量采用结合梯度平均值的规则。
实验结果表明,该方法能够提高多分辨率图像融合方法的效果。
关键词 图像融合;小波变换;多分辨率;多聚焦图像;梯度中图分类号 TP391.41Multi 2Resolution Fusi on of Multi 2Focus Im age Usi ngWavelet Tr ansform an d GradientKong Weilong 1) Z hang C ha olia ng 2) Wang Rongying 2)(Thir d lochus ,NO.92823Troops of PLA 1),Sanya 572021)(Naval University of Engineering 2),Wuha n 430033)Abs tra ct The paper develops a n image fusion algorithm base d on Robe rts gra die nt a nd multi 2re solution.The f used ap 2proxima te coefficients a re obtained by ave rage me thod ,and the f used detailed coeff icie nts a re obtaine d by aver age of gra die nt.Expe rimental results show that the p ropo sed algorithm could imp rove the quality of multi 2resolutio n image f usion.Ke y w ords i mage f usion ,wavelet t ransform ,multi 2r esolution ,multi 2focus ima ge ,gradient Class N umber TP391.411 引言多聚焦图像是摄像机在拍摄某一个场景时,分别聚焦到场景中的不同景物,经过拍摄多次得到多幅图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张萍 电子科技大学 光电信息学院 E-mail: pingzh@
参考资料
教材:
Rafael C. Gonzalez, etc,Digital Image Processing (Third Edition),电子工业出版社, 2010
参考书籍:
➢ (美)多布著,李建平译,小波十讲,国防 工业出版社 ,2011
➢ 孙延奎著,小波变换与图像、图形处理技术, 清华大学出版社,2012
➢ 朱希安,曹林编著,小波分析及其在数字图 像处理中的应用,电子工业出版社,2012
什么是小波?
时间A
时间B
“小波”(wavelet)就是一种“尺度”很小的波动,并 具有时间和频率特性。
在信号处理领域中,自从Inrid Daubechies完善了小波变 换的数学理论和Stephane Mallat构造了小波分解和重构 的快速算法后,小波变换在各个工程领域中得到了广泛的 应用,典型的如语音信号处理、医学信号处理、图像信息 处理等。
傅里叶变换与小波变换
➢傅里叶变换的基础函数是正弦函数。 ➢小波变换基于一些小型波,称为小波,具有变化的频率和 有限的持续时间。
主要内容
背景 图象金字塔 子带编码 哈尔变换
多分辨率展开 一维小波变换 快速小波变换 二维小波变换 小波包
1.背景
物体的尺寸很小或者对比度不高的时候,通常采用 较高的分辨率观察。
物体尺寸很大或者对比度很强,只需要较低的分辨 率。
物体尺寸有大有小,强弱对比度同时存在,则适合 用不同的分辨率对其进行研究。
➢ J-1级近似输出用来建立近似值金字塔;作为金字塔基级的原 始图像和它的P级减少的分辨率近似都能直接获取并调整;
➢ J级的预测残差输出用于建立预测残差金字塔;近似值和预测 残差金字塔都通过迭代计算获得。
金字塔方框图
(1) 图像金字塔迭代算法
1. 初始化,原始图象大小2J×2J,j=J 2. j-1级,以2为步长进行子抽样,计算输入图像减
少的分辨率近似值——j-1级近似值,生成子抽 样金字塔。 3. 对j-1级近似值进行步长为2的内插,并进行过滤 ,生成与输入图像等分辨率的预测图像。 4. 计算输入图像和预测图像之间的差异,产生预测 残差金字塔。 5. 重复2、3、4步骤。
(1) 图像金字塔
图象的高斯近似值金字塔,分 辨率分别为:512×512, 256×256,128×128, 64×64。 金字塔的分辨率越低,伴随的 细节越少; 低分辨率图像用于分析大的结 构或图像的整体内容,高分辨 率图像用于分析单个物体的特 性。 相应拉普拉斯预测残差金字塔, 分辨率分别为:512×512, 256×256,128×128, 64×64。 从低级开始通过内插和滤波获 得高级高斯金字塔的预测残差 图象。
人物 Fourier
Harr Gabor
Morlet Meyer,Daubecies Meyer
Mallat
Daubecies
小波理论与工程应用
Inrid Daubechies于1988年最先揭示了小波变换和滤波器 组(filter banks)之间的内在关系,使离散小波分析变成为 现实。
Ronald Coifman和Victor Wickerhauser等著名科学家在 把小波理论引入到工程应用方面做出了极其重要贡献。
小波变换是基于具有变化的频率和有限持续时间的 小型波进行的。它是多分辨率理论的分析基础。
多分辨率理论将多种学科的技术有效地统一在一起 ,其优势很明显—某种分辨率下所无法发现的特性 在另一种分辨率下将很容易被发现。
本章将从多分辨率的角度解释小波变换。
主要内容
背景 多分辨率展开 一维小波变换 快速小波变换 二维小波变换 小波包
小波函数必须满足以下两个条件:
(1) 小波必须是振荡的; (2) 小波的振幅只能在一个很短的一段区间上非零,即是局
部化的。如:
图1 小波例1
图2 小波例2
小波变换具有良好的局部时频聚焦特性,而被称为“数学 显微镜”。
小波分析是纯数学、应用数学和工程技术的完美结合。从 数学来说是大半个世纪“调和分析”的结晶(包括傅里叶分 析、函数空间等)。
金字塔的底部是带处理图像的高分辨率表示,而顶部是低 分辨率的近似。当向金字塔的上层移动时,尺寸和分辨率 就降低。
基础级J的大小为N×N (J=log2N) 顶点级0的大小为1×1 第j级的大小为2j×2j (0j J) 共有J+1级,但是通常我们截 短到P+1级,其中1 PJ
(1) 图像金字塔
提出规范正交基。
Gabor变换(STFT),窗函数的大小和形状与时间和 频率无关而保持固定不变。不构成正交基。
提出连续小波变换。
提出离散小波变换。
Meyer证明了不可能存在时域频域同时具有正则性 的正交小波基,证明了小波的自正交性。
统一了多分辨率分析和小波变换,给出了快速算 法。
Daubecies在NSF的小波专题研讨会进行了讲座。
傅里叶变换与小波变换
傅里叶变换反映的是图像的整体特征,其频 Nhomakorabea分析 具有很好的局部性,但空间(时间)域上没有局部化 功能。
与傅里叶变换相比,小波变换是空间(时间)和频率 的局部变换,它通过伸缩平移运算对信号逐步进行 多尺度细化,最终达到高频处时间细分,低频处频 率细分,能自动适应时频信号分析的要求,从而可 聚焦到信号的任意细节。
小波变换是20世纪最辉煌科学成就之一。在信号处理、图 像处理、模式识别、语音识别、量子物理、地震勘探、流体 力学、电磁场、CT成象、机器视觉、故障诊断、分形、数值 计算等已有重大突破。
小波分析发展简史
时间 1822
1910 1946
1984 1985 1986
1987
1988
标志性事件
Fourier变换,在频域的定位最准确,无任何时域 定位能力。如:δ函数,时域定位完全准确,频域 无任何定位能力。
1.背景
从数学观点看,图像是一个亮度的二维矩阵,边界和强烈变 化的区域局部直方图统计特性不同。
无法对整个图象定义一个简单的统计模型。
一幅自然图像 及其直方图的 局部变化
(1) 图像金字塔
以多分辨率来解释图像的一种简单有效的结构。一幅图像 的金字塔是一系列以金字塔形状排列的分辨率逐步降低的 图像集合。