一元一次方程一次方程组专题训练
完整版七年级数学一元一次方程应用题专题练习
完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
一元一次方程组20道及答案
一元一次方程组20道及答案
一、题目
1.求解方程组: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
2.解方程组: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
3.求解下列方程组: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \] …
二、答案
1.第一题答案: $ x=2, y=1 $
2.第二题答案: $ x=4, y=1 $
3.第三题答案: $ x=1, y=2 $
…
三、解答
1.第一题解答:
方程组为: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
解方程可得: $ x=2, y=1 $
2.第二题解答:
方程组为: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
求解可得: $ x=4, y=1 $
3.第三题解答:
方程组为: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \]
解得: $ x=1, y=2 $
…
四、总结
通过解这20道一元一次方程组题目,我们可以加深对于方程组解的理解。
这些题目的解答过程中,可以运用代入法、消元法等数学方法来求解方程组,希望此练习对大家的数学能力有所提升。
中考数学《一元一次方程》专题练习(附带答案)
中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。
一元一次方程组练习题
一元一次方程组练习题第一篇:一元一次方程组练习题(1-10)1. 某书店销售了3本数学书和5本英语书,共收入65元。
已知数学书的价格是英语书的2倍,求数学书和英语书的价格各是多少元?设数学书的价格为x元,英语书的价格为y元。
根据题意,我们可以得到以下两个方程:1 x + 5y = 65 (1)x = 2y (2)将方程(2)代入方程(1),得到:2 (2y) + 5y = 653 y + 5y = 654 y = 65解得y = 65/11 = 5将y = 5代入方程(2),得到:x = 2(5) = 10因此,数学书的价格为10元,英语书的价格为5元。
2. 一个长方形的长度是宽度的3倍,其周长为28cm,求该长方形的长和宽各是多少厘米?设长方形的宽度为x厘米,则长度为3x厘米。
根据题意,我们可以得到以下两个方程:5 (x + 3x) = 28 (1)x + 3x = 14 (2)解方程(2),得到:6 x = 14x = 14/4 = 3.5将x = 3.5代入方程(1),得到:7 (3.5 + 3(3.5)) = 288 (3.5 + 10.5) = 289 (14) = 28因此,长方形的长为14厘米,宽为3.5厘米。
3. 一架飞机从A地到B地的飞行速度是每小时350公里,返回时的飞行速度是每小时400公里,往返共花费6个小时,求A地到B地的距离是多少公里?设A地到B地的距离为x公里。
根据题意,我们可以得到以下两个方程:x/350 + x/400 = 6 (1)解方程(1),得到:[(x * 400) + (x * 350)] / (350 * 400) = 6(750x) / 140000 = 610 x = 840000x = 840000/750 = 1120因此,A地到B地的距离是1120公里。
4. 一个三位数,百位数数字是个位数和十位数数字之和的两倍,且百位数数字加十位数数字再加个位数数字等于12,求该三位数。
备战中考数学一元一次方程专题综合能力提升练习(含解析)
2019备战中考数学一元一次方程专题-综合能力提升练习(含解析)一、单选题1.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x月后他能捐出100元,则下列方程中能正确计算出x的是:()A. 10x+20=100B. 10x-20=100C. 20-10x=100D. 20x+10=1002.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( )A. 9<x<10B. 10<x<11 C. 11<x<12 D. 12<x<133.某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A. 7折B. 8折C. 9折D. 6折4.把方程x=1变形为x=2,其依据是()A. 等式的性质1B. 等式的性质2 C. 分式的基本性质 D. 不等式的性质15.如果x=y,a为有理数,那么下列等式不一定成立的是()A. 4﹣y=4﹣x B. x2=y2C.D. ﹣2ax=﹣2ay6.若a:2=b:3=c:7,且a﹣b+c=12,则2a﹣3b+c等于()A. 2B. 4C.D. 127.某工程甲独做12天完成,乙独做8天完成,现在由甲先做3天,乙再参加合做.设完成此工程一共用了x天,则下列方程正确的是()A. +=1B. +=1 C. +=1 D. +=18.某商店一套服装进价为300元,如果按标价的八折销售可获利80元,那么该服装的标价是()A. 375元B. 380元C. 450元D. 475元9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A. 1B. 2C. 3D. 410.已知a+ =b﹣= =2019,且a+b+c=2019k,那么k的值为()A.B. 4C. ﹣D. ﹣411.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是()A. 10岁B. 15岁C. 20岁D. 30岁12.已知3是关于x的方程2x-a=1的解,则a的值是()A. -5B. 5C. 7D. 2二、填空题13.方程﹣=1可变形为﹣=________.14.用长12cm的铁丝围成一个长是宽2倍的长方形,则长方形的面积是________15.方程8x=16两边同时________ 得到另一个方程4x=8,8x=16与4x=8的解________ .像这样,两个方程的解相同,我们称这两个方程为________ .16.根据图中提供的信息,可知一个杯子的价格是________元.17.已知x=﹣1是关于x的方程2x﹣3a=﹣4的解,则a为________.18.校用56m长的篱笆围成一个长方形的生物园,要使长为16 m,则宽为________m.19.方程2x﹣3=6的解是________.三、计算题20.解方程:x﹣=1﹣.21.计算题(1)计算:;(2)解方程:.22.定义新运算符号“*”的运算过程为a*b= a﹣b,试解方程2*(2*x)=1*x.23.解方程:﹣3(2+x)=2(5﹣x).四、解答题24.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.25.已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?五、综合题26.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使=b,点Q为PB的中点,请画出图形并求出线段AQ的长.27.我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样.(1)这列队伍一共有多少名战士?(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?28.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?答案解析部分一、单选题1.【答案】A【考点】一元一次方程的实际应用-和差倍分问题【解析】【解答】根据题意得,月存钱为,则可列方程为故A符合题意.故答案为:A.【分析】根据x个月存的钱+原有的20元=100元列方程.2.【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:根据题意得:x+3.6=15,解得:x=11.4 ;故答案为: C【分析】根据数轴上两点间的距离得出原点右边的线段长度+原点左边的线段长度=15,列出方程,求解得出x的值,从而得出答案。
一元一次方程组题目
一元一次方程组题目下列哪一组方程构成了一元一次方程组?A. { x + y = 1, x - y = 2 }B. { x2 + x = 1, x - 1 = 0 }C. { x + 1 = 2, 2x - 1 = 3 }D. { x/y = 1, x + y = 2 }对于一元一次方程组 { 2x + y = 5, x - y = 1 },下列哪个选项是其解?A. { x = 2, y = 1 }B. { x = 1, y = 2 }C. { x = 3, y = -1 }D. { x = -1, y = 3 }已知一元一次方程组的解为 { x = 3, y = -2 },则下列哪个方程可能是该方程组中的一个方程?A. x + y = 1B. 2x - y = 5C. x - 2y = 8D. 3x + y = 7对于一元一次方程组,如果其中一个方程的解能使另一个方程的左右两边相等,则称这两个方程为“相容方程”。
下列哪一组方程是相容方程?A. { x + 1 = 2, x - 1 = 3 }B. { 2x = 4, x + 2 = 1 }C. { x/2 = 1, 2x - 1 = 3 }D. { x - 3 = -1, 2x + 1 = 5 }一元一次方程组的解集是满足所有方程的未知数的集合。
下列哪个选项描述了一元一次方程组 { x + y = 3, x - y = 1 } 的解集?A. 所有满足 x + y = 3 的 (x, y) 的集合B. 所有满足 x - y = 1 的 (x, y) 的集合C. 所有同时满足 x + y = 3 和 x - y = 1 的 (x, y) 的集合D. 所有满足 x = 2 和 y = 1 的 (x, y) 的集合已知一元一次方程组的增广矩阵为 \begin{bmatrix} 1 & 1 & 3 \ 1 & -1 & 1 \end{bmatrix},则下列哪个选项是该方程组的解?A. { x = 2, y = 1 }B. { x = 1, y = 2 }C. { x = 3, y = -1 }D. { x = -1, y = 3 }对于一元一次方程组,如果其中一个方程的解不能使另一个方程的左右两边相等,则称这两个方程为“不相容方程”。
一元一次方程组练习题
一元一次方程组练习题一元一次方程组练习题一元一次方程组是初中数学中的基础知识点之一,它是解决实际问题的重要工具。
通过练习一元一次方程组的题目,我们可以提高我们的数学思维能力和解决实际问题的能力。
下面,我将给大家提供一些一元一次方程组的练习题,希望能够帮助大家更好地理解和掌握这一知识点。
1. 小明和小红一起去超市买东西,小明买了3个苹果和2个橘子,一共花了15元;小红买了2个苹果和4个橘子,一共花了14元。
问苹果的价格是多少,橘子的价格是多少?解:设苹果的价格为x元,橘子的价格为y元。
根据题目中的信息,我们可以列出如下的方程组:3x + 2y = 152x + 4y = 14接下来,我们可以使用消元法或代入法来解这个方程组。
这里我们使用代入法。
首先,我们可以从第一个方程中解出x的值:3x = 15 - 2yx = (15 - 2y) / 3然后,我们将x的值代入第二个方程中:2((15 - 2y) / 3) + 4y = 14化简得到:10 - 4y + 12y = 428y = 32y = 4将y的值代入第一个方程中,可以解出x的值:3x + 2(4) = 153x + 8 = 153x = 7x = 7 / 3所以,苹果的价格为7/3元,橘子的价格为4元。
2. 一家餐馆的午餐套餐包括一份主菜和两份配菜,共计花费28元。
某天,小明去餐馆吃午餐,他点了一份鱼香肉丝作为主菜,还点了两份土豆丝和一份西红柿炒蛋作为配菜。
已知鱼香肉丝的价格是8元,土豆丝的价格是3元,西红柿炒蛋的价格是5元。
问小明需要支付多少钱?解:设小明需要支付的金额为x元。
根据题目中的信息,我们可以列出如下的方程:8 + 2(3) + 5 = x8 + 6 + 5 = x19 = x所以,小明需要支付19元。
通过这两个练习题,我们可以看到一元一次方程组的解题步骤是相似的。
首先,我们要根据实际问题列出方程组;然后,我们可以使用消元法或代入法来解方程组;最后,我们要对解进行验证,确保解符合实际问题的要求。
一元一次方程练习题20道
一元一次方程练习题20道第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3 B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1% 15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:-9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.=========================================================== ===========3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x 的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案:1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19] 9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).601. 2(x-2)-3(4x-1)=9(1-x)2. 11x+64-2x=100-9x3. 15-(8-5x)=7x+(4-3x)4. 3(x-7)-2[9-4(2-x)]=225. 3/2[2/3(1/4x-1)-2]-x=26. 2(x-2)+2=x+17. 0.4(x-0.2)+1.5=0.7x-0.388. 30x-10(10-x)=1009. 4(x+2)=5(x-2)10. 120-4(x+5)=2511. 15x+863-65x=5412. 12.3(x-2)+1=x-(2x-1)13. 11x+64-2x=100-9x14. 14.59+x-25.31=015. x-48.32+78.51=8016. 820-16x=45.5×817. (x-6)×7=2x18. 3x+x=1819. 0.8+3.2=7.220. 12.5-3x=6.5。
一元一次方程专题训练(附有答案详解,下载即可用)
一元一次方程专题训练姓名:___________班级:___________一、单选题1.已知x=1是方程x+2a=-1的解,那么a 的值是( )A .-1B .0C .1D .22.下列利用等式的性质,错误的是( )A .由a =b ,得到5﹣2a =5﹣2bB .由a c =b c ,得到a =bC .由a =b ,得到ac =bcD .由a =b ,得到a c =b c 3.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A .1 B .2 C .3 D .44.如果代数式5x-7与4x+9的值互为相反数,则x 的值等于( )A .92B .-92C .29D .29- 5.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A .7 B .5 C .3 D .06.对于非零的两个数a ,b ,规定a ⊗b =3a -b ,若(x +1)⊗2=5,则x 的值为( ) A .1 B .-1 C .43 D .-2 7.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x+2y =0.其中一元一次方程的个数是( )A .2B .3C .4D .58.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有( )A .0个B .1个C .2个D .3个 9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是( )A .亏2元B .亏4元C .赚4元D .不亏不赚10.如图,小明将一个正方形纸剪出一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A .16cm 2B .20cm 2C .80cm 2D .160cm 211.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( ) A .()13x 12x 1060=++B .()12x 1013x 60+=+C .x x 60101312+-=D .x 60x 101213+-= 12.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5秒B .6秒C .5秒D .4秒13.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( ) A .75B .90C .105D .120二、填空题14.李明和他父亲年龄和为 55 岁,又知父亲的年龄比他年龄的 3 倍少 1 岁,若设李明年龄为 x 岁,则可列方程为_____.15.若方程(a ﹣3)x |a|﹣2﹣7=0是一个一元一次方程,则a 等于_____.16.某种品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为________元.17.由一个两位数,十位上的数字比个位上的数字大3,把个位数字与十位数字对调之后所得新数与原数之和是77,这个两位数为_____.18.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班的学生有_____人.19.图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.20.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.三、解答题21.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.22.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.23.解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)13(x﹣5)=3﹣23(x﹣5)(3)24x+﹣1=326x-(4)x﹣19(x﹣9)=13[x+13(x﹣9)](5) 210.5x--30.6x+=0.5x+224.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a =________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?26.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?27.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?28.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?29.A 、B 两地相距64 km ,甲从A 地出发,每小时行14 km ,乙从B 地出发,每小时行18 km.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需经过几小时两人相距16 km?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10 km?30.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a –b |,线段AB 的中点表示的数为2a b . (问题情境)如图,数轴上点A 表示的数为–2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).(综合运用)(1)填空:①A 、B 两点间的距离AB =__________,线段AB 的中点表示的数为__________;②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=12 AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.31.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.32.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税______元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是_____元.参考答案1.A【解析】试题分析:根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值.解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选A.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.2.D【解析】A.∵a=b,∴−2a=−2b,∴5−2a=5−2b,故本选项正确;B. ∵a bc c=,∴c×ac=c×bc,∴a=b,故本选项正确;C. ∵a=b,∴ac=bc,故本选项正确;D. ∵a=b,∴当c=0时,ac无意义,故本选项错误.故选:D. 3.C 【解析】【详解】设被阴影盖住的一个常数为k,原方程整理得,k=-32y+12,把53y=-代入k=-32y+12,中得,k=-32×(53-)+12=5122+=3,故选C.4.D【解析】【分析】根据互为相反数的两个数的和为0可得方程5x-7+4x+9=0,解方程求得x的值即可. 【详解】根据题意得5x-7+4x+9=0,移项得5x+4x=- 9+7,合并同类项得9x = -2,系数化为1,得29x =-. 故选D.【点睛】本题考查了一元一次方程的解法,熟知一元一次方程的解法是解决问题关键.5.A【解析】【分析】先求出213x +=的解,然后把求得的方程的解代入203a x --=即可求出a 的值. 【详解】∵213x +=,∴1x =.把1x =代入203a x --=,得 1203a --=, 解之得,7a =.故选A.【点睛】本题主要考查方程的解的概念和一元一次方程的解法,熟练掌握一元一次方程的解法是解答本题的关键.6.C【解析】【分析】根据新定义列出方程3(x-1)-2=4,解之可得.【详解】根据题意知3(x-1)-2=4,3x-3-2=4,3x=4+3+2,3x=9,x=3,故选:C .【点睛】考查解一元一次方程,解题的关键是根据题意列出关于x 的方程及解方程的步骤. 7.B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.8.C【解析】由①天平可得:一个球形物体和两个圆柱形物体质量相等;②天平是由①天平左右两边同时减去一个圆柱形物体得到的,仍然平衡;③天平时由①天平左边减去一个球形物体和一个圆柱形物体,即减去三个圆柱形物体,右边减去三个圆柱形物体得到的,左右两边仍然平衡;④天平由①天平左边减去一个圆柱形物体,右边减去三个圆柱形物体得到的,所以左右两边不平衡.故选C.点睛:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.9.A【解析】【分析】设这件商品的进价为a元,可用a表示出第一次和第二次的定价,再根据等量关系:第二次的定价=商品的实际售价48元,可列出关于a的方程;然后解关于a的方程,求出a的值,并将a的值与48进行比较即可得出结论.【详解】设这件商品的进价为a元,则a(1+20%)(1-20%)=48,解得a=50.由50-48=2可知,这次生意亏2元.故选:A.【点睛】本题主要考查的是一元一次方程的应用,根据题意得到等量关系是解题的关键;10.C【解析】【分析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少.【详解】设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm,则4x=5(x-4),去括号,可得:4x=5x-20,移项,可得:5x-4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.11.B【解析】试题解析:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选B.考点:由实际问题抽象出一元一次方程.12.D【解析】设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x秒,则100÷5×x=80,解得x=4,故选D.13.C【解析】【分析】根据题目中的数据,可以发现题目中数据的变化规律,从而可以得到第5个数.【详解】∵3=1×3,12=2×6=2×(3+3),30=3×10=3×(6+4),60=4×15=4×(10+5),∴第5个数是:5×(15+6)=5×21=105,故选C.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.14.3x ﹣1+x=55.【解析】【分析】直接利用已知表示出父亲的年龄,进而得出答案.【详解】设李明年龄为x 岁,则可列方程为:3x-1+x=55,故答案是:3x-1+x=55.【点睛】考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.15.-3【解析】试题分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.解:∵()2370a a x ---=是一个一元一次方程,∴30a -≠且 |a|−2=1,∴a =-3.故答案为-3.16.90【解析】试题分析:设进货价为x 元,根据九折降价出售,仍获利20%,列方程求解.解:设进货价为x 元,由题意得,0.9×120﹣x=0.2x , 解得:x=90.故答案为:90.考点:一元一次方程的应用.17.52【解析】【分析】设原来的这个两位数个位数字为x ,则十位数字为3+x .利用新数+原数=77,列方程求解即可.【详解】设原个位数字为x ,则十位数字为3+x ,由题意得:(10x+3+x )+10(3+x )+x=77,解得:x=2,则原数为10(3+2)+2=52.故答案为52【点睛】本题考查了一元一次方程的应用,读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程求解是解题关键.18.45名.【解析】试题分析:设这个班有x 名学生,因为每人3本,则剩余20本,所以书的总量是3x+20,又每人分4本,缺25本,所以书的总量是4x ﹣25,所以可得方程:3x+20=4x ﹣25,解得:x=45.答:这个班有45名学生.考点:一元一次方程的应用.19.1000。
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。
一元一次方程专项训练
一元一次方程专项训练
1. 理解方程的概念:方程是含有未知数的等式。
学会识别方程中的未知数和已知数,并理解它们之间的关系。
2. 解方程的步骤:掌握解方程的一般步骤,包括移项、合并同类项、化简等。
通过练习不同类型的方程,熟练掌握这些步骤。
3. 应用题:将一元一次方程应用到实际问题中,如计算速度、时间、距离等。
通过解决实际问题,加深对一元一次方程的理解。
4. 等式性质:熟悉等式的基本性质,如等式两边加上或减去同一个数,等式仍然成立;等式两边乘以或除以同一个非零数,等式仍然成立。
利用这些性质解方程。
5. 方程的变形:学会将复杂的方程进行变形,以便更容易求解。
例如,将分式方程转化为整式方程,将含有括号的方程去括号等。
6. 练习错题:收集自己做错的题目,仔细分析错误原因,并进行有针对性的练习。
通过反复练习错题,加深对知识点的理解。
7. 限时训练:设置时间限制,进行一元一次方程的解题训练。
这样可以提高解题速度和应试能力。
通过以上的专项训练,你将更好地掌握一元一次方程的概念和解题方法。
不断练习和巩固,提高自己的数学能力。
一元一次方程(组)含参数问题专项练习
一元一次方程(组)含参数问题专项练习引言本文档旨在提供一系列一元一次方程(组)含参数的问题的专项练。
通过解决这些问题,学生可以加深对于一元一次方程(组)的理解,并掌握如何处理含有参数的情况。
题目1:已知一元一次方程 $2x - 3 = 0$,求解方程。
题目2:已知一元一次方程 $ax + b = 0$,其中 $a$ 和 $b$ 是常数,求解方程。
题目3:已知一元一次方程组 $\begin{cases} 2x + 3y = 10 \\ ax + by = c \end{cases}$,其中 $a$,$b$ 和 $c$ 是常数,求解方程组。
题目4:已知一元一次方程组 $\begin{cases} x + y + z = a \\ ax + by = c \\ cx + dz = e \end{cases}$,其中 $a$,$b$,$c$,$d$ 和 $e$ 是常数,求解方程组。
题目5:已知一元一次方程组 $\begin{cases} x + y = 5 \\ x - y = a\end{cases}$,求解方程组。
题目6:已知一元一次方程组 $\begin{cases} mx - ny = a \\ bx + ay = c\end{cases}$,其中 $a$,$b$,$c$,$m$ 和 $n$ 是常数,求解方程组。
题目7:已知一元一次方程组 $\begin{cases} px + qy = a \\ rx - sy = b\end{cases}$,其中 $a$,$b$,$p$,$q$,$r$ 和 $s$ 是常数,求解方程组。
题目8:已知一元一次方程组 $\begin{cases} px + qy = a \\ rx + sy = b \end{cases}$,其中 $a$,$b$,$p$,$q$,$r$ 和 $s$ 是常数,求解方程组。
总结通过以上专项练习,学生可以巩固对一元一次方程(组)含参数问题的理解。
第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上
第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。
第五章 一元一次方程培优训练测试题(含解析)
第五章:一元一次方程培优训练测试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.若方程2512-=+-x kx x 的解为1-,则k 的值为( )A.10B.4-C.6-D.8- 2.一组数2,1,3,x ,7,,如果满足“从第三个数起,若前两个数依次为a 、b ,则紧随其后的数就是2a ﹣b ”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为( )A.-9B.-1C.5D.213.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人4.一条公路,甲队单独修需6天,乙队单独修需12天,若甲、乙两队同时分别从两端开始修,全 部修完需要( )A .2天B .3天C .4天D .5天 5.在排成每行七天的日历表中取下一个33⨯方块(如图), 若所有日期数之和为135,则n 的值为( )A .13B .14C .15D .96.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( ) A .5B .4C .3D .27.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的 轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5B .6C .5D .48.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②4314010+=+n n ;③4314010-=-n n ;④40m +10=43m +1.其中正确的是( )9.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润率是5%,则出售时此商品可打( )折A. 五B.六C.七D.八二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.将方程15.013.03.02=+--x x 的分母化为整数,方程变为_______________12.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元13.关于x 的方程()2136+-=-x a ax 的解为2-=x ,则_______=a14.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为__________ 15.已知875cb a ==,且923=+-c b a ,则__________342=-+c b a 16.在等式()x x a 321+=+中,若x 是负整数,则整数a 的取值是_______三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列方程: (1)2221625312--=+--x x x ; (2)01.002.01.02.02.018xx x +=--18(本题8分).已知:关于x 的方程2(x-1)+1=x 与3(x+m)=m-1有相同的解,求:以y 为未知数的方程2333ym my -=-的解.19(本题8分).关于x 的方程1634=--+ax a x 的解是x=1,对于同样的a ,求另一个关于x 的方程1436=--+ax a x 的解.20(本题10分)(1).x 等于什么数时,代数式323-x 的值比414-x 的值的2倍小1? (2).若已知M=x 2+3x-5,N=3x 2+5,并且6M=2N-4,求x.21(本题10分).某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?22(本题12分).(1)一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数. (2)小李在解方程132253=--+mx x 去分母时方程右边的1没有乘以6,因而得到方程的解为4-=x ,求出m 的值并正确解出方程.23.(本题12分)把正整数1,2,3,4,…,2018排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示 出来,从大到小依次是 , , ; (2)当被框住的4个数之和等于416时,x 的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.。
一元一次方程组例题
一元一次方程组例题
例题:解方程3x + 5 = 2x - 1
解析:
1. 首先进行移项,把含有x的项移到等号的一边,常数项移到等号的另一边。
- 为了将2x移到左边,5移到右边,根据等式的性质,移项要变号。
- 得到3x - 2x=-1 - 5。
2. 然后进行计算:
- 左边3x-2x = x,右边-1 - 5=-6。
- 所以方程的解为x = - 6。
再看一道应用题的例题:
例题:甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒后与乙相遇?
解析:
1. 设甲出发x秒后与乙相遇。
2. 甲先走12米,甲的速度是每秒8米,那么甲走的路程为8x米;乙的速度是每秒6米,乙走的时间比甲少走12米所用的时间(因为甲先走12米),甲走12米所用时间为(12)/(8) = 1.5秒,所以乙走的时间是(x - 1.5)秒,乙走的路程为6(x - 1.5)米。
3. 根据两人相距285米,相向而行相遇时两人的路程和等于两人最初的距离,可列方程:
- 8x+6(x - 1.5)=285。
- 先展开括号得8x+6x-9 = 285。
- 移项得到8x+6x=285 + 9。
- 合并同类项得14x=294。
- 解得x = 21。
所以甲出发21秒后与乙相遇。
一元一次方程和一元一次方程组求解题
一元一次方程和一元一次方程组求解题
一元一次方程的解法
一元一次方程是指只有一个变量的一次方程,可以表示为 ax + b = 0。
其中,a和b是已知的常数,x是未知数。
解一元一次方程的关键是通过一些代数运算来求出未知数的值。
具体的解法可以分为如下几步:
1. 把方程变形为0 = ax + b的形式,即把等式移到一边,使得
另一边为0。
2. 利用运算性质和公式,将方程简化为ax = -b的形式,即将
未知数的系数和常数项进行合并。
3. 通过运算,得出未知数的解x = -b/a。
一元一次方程组的解法
一元一次方程组是指一组同时包含多个一元一次方程的方程组,可以表示为如下形式:
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0
其中,a1、b1、c1、a2、b2、c2是已知的常数,x和y是未知数。
解一元一次方程组的关键是找到满足所有方程的x和y的值。
具体的解法可以分为如下几步:
1. 可以通过消元的方法,将方程组化简为只包含一个未知数的
方程。
可以选择先消除x的系数,再消除y的系数。
2. 利用运算性质和公式,将方程组简化为只有一个未知数的方程。
3. 通过运算,得出未知数的解。
4. 将得到的未知数的解代入其他方程,验证是否满足所有方程。
通过这样的步骤,我们可以得到一元一次方程和一元一次方程
组的解。
这些解法在数学和实际问题中都有广泛的应用,可以帮助我们
解决各种类型的方程和方程组求解题。
参考资料:
- 《数学分析》
- 《高等代数学》。
一元一次方程专题训练
一元一次方程专题训练1、下列方程中,是一元一次方程的是 ( )A 、5+a=0B 、x x =+63C 、3x+2y=5D 、2x-1=3x 22、关于x 的方程12)2(1=-+-a xa 是一元一次方程,则a=_____.3、关系x 的方程(2k-1)x 2-(2k+1)x+3=0是一元一次方程,则k 值为_______4、下列变形中,正确的是( ) A. 若bc ac =,则b a = B. 若b a =,则b a = C. 若c b c a =,则b a = D. 若22b a =,则b a =5、若x =-3是关于x 的方程3x -a =2x +5的解,则a 的值为_____6、某数的4倍减去3比这个数的一半大4,则这个数为 __________.7、已知:8765+=-x x ,则122++x x 的值为_______.8、已知0)3(|4|2=-++-y y x ,则=+y x 2________.9、设P=2y -2, Q=2y+3, 有2P -Q=1, 则y 的值是_______10、关于x 的方程50x a -=的解比关于y 的方程30y a +=的解小2,则a 的值为_______11、若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=一16中,m 的值为_______ 12、在梯形面积公式s=12(a +6b)·h 中,已知b=8,h=10,s=60,则a 的值为_______.13、若a .b 互为相反数,c .d 互为倒数,p 的绝对值等于2,则关于x 的方程(a +b) 2x +3cdx —p=0的解为______________.14、在方程2x 一6=0,32x=2,6x 一5=2x 一3,31(x —1)=21中与方程5x 一9=2x 的解相同的方程有_______个 15、已知a :b :c=2:3:4,a+b+c=27,则a ―2b ―3c=_________________;16、一个两位数,个位上的数字是十位上的数字的4倍,如果把十位上的数字与个位上的数字对调,那么所得的两位数比原两位数大54,则原来的两位数是_____________17、方程432-=+x m x 与方程6)16(21-=-x 的解相同,则m 的值为______.18、一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件可获利15元,则这种服装每件成本为 元. 19、某商店卖出两件衣服,每件60元,其中一件赚25℅,另一件亏25℅,那么这两件衣服卖出后,商店是( )A. 不赚不亏B.赚8元C.亏8元D. 亏16元20、学校团委组织65名同学为学校建花坛搬砖头,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,则初一年级有_____________人参加了搬砖。
(完整版)一元一次方程简单练习题
一元一次方程练习题(一)1、2x-3=-22、1-(2x+3)= -311、7x+x+12=0 12、2x+4x+4=013、8x+3x+1=0 14、5x+3x+2=015、45x+3x+96 =0 16、4543+=-x x17、5x+3x=8 18、3x+1=2x19、x-7=6x+2 20、5x+1=9一元一次方程练习题(二)1、9x+8=262、55x+54=-13、23+58x=814、29x-66=215、0.4(x-1)+1.5=0.7x+0.56、30x-10(10-x)=1007、4(x+2)=5(x-2) 8、120-4(x+5)=259、15x+29-65x=54 10、()()12123--=+-x x x17、25211xx =-- 18、9x-6-18-x=2x19.2(x-2)+2=-4 20.(x-1)+(x-2)=-3一元一次方程练习题(三)1.今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可列方程 。
2. 如果21m x -+8=0是一元一次方程,则m= 。
3. 若3x -的倒数等于12,则x-1= 。
4. 如果方程340x +=与方程3418x k +=是同解方程,则k= 。
5. 若52x +与29x -+是相反数,则x-2的值为 。
6. 一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.7. 有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 升水。
8. 小李在解方程5a-x=13(x 为未知数)时,误将-x 看+x ,解得方程的解x=-2,则原方程的解为___________________________.9.单项式-2xa-1与12x—a+1为同类项则a= .10. 有一棵树,刚移栽时,树高为2m ,假设以后平均每年长0.3m ,几年后树高为5m ?11. 环形跑道一周长400m ,沿跑道跑多少周,可以跑3000m?12.国庆期间,“重客隆”綦江店搞促销活动,小军买了一件衣服,按8折销售的售价为88元,问这件衣服的原价是多少元?13.甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?14.x取什么数时,3x-2的是x-4的相反数?15.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?16.甲、乙两车分别从相距360千米的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程、一次方程组专题训练
等式还具有对称性和传递性:即⎩
⎨⎧=====C A C B B A A B B A 则若则若,,;,
二、方程和方程解的概念
1.方程:含有未知数的( )叫做方程。
2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解,只含有一个未知数的方程的解也叫做根。
3.解方程:求方程的解的过程,叫做解方程。
三、一次方程及其解法
1.一元一次方程:只含有( )并且未知数的次数为( ),这样的方程叫做一元一次方程。
任何一个元一次方程都可以化成( )(b a ,是常数,且0≠a )的形式。
2.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化成1.
四、一次方程的应用
1.列方程解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程式;(4)解方程;(5)检验结果得出最终答案。
1.下列各式中,是方程的是( )
A.3524-=-
B.02≤-x x
C.x x 1+
D.23+=x x 2.下列等式变形错误的是( )
A.若4,31==-x x 则
B.若x x x x 21,12
1=-=-则 C.若0,33=--=-y x y x 则 D.若423,243-=-=+x x x x 则
3.一元二次方程082=-x 的解是( )
4.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x 元,则x 满足的方程是( )
5.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两,棵树的间隔相等。
如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完。
设原有树苗x 棵,则根据题意列出方程为:( )
6.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟。
问他家到学校的路程是多少km ?设他家到学校的路程是x km ,则根据题意列出方程为:( )
7.方程x x =-13的解为( )
8.已知关于x 的方程423=-m x 的解是m x =,则m 的值是( )
9.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成。
现在由初二、初三学生一起工作x 小时,完成了任务。
根据题意,列方程:( )
10.“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元。
设该电器的成本价为x 元,根据题意,列方程为:( )
11.如果3
72131
-+a a 与互为相反数,那么=a ( ) 12.小丁在解方程x x a (135=-为未知数)时,误将x -看作x +,解得方程的解是2-=x ,则原方程的解为( )
13.某公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54米,则需要更换节能灯( )盏。
14.解方程13
3221=--+x x 15.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件。
已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件。
求该企业分别捐给甲、乙两所学校的矿泉水各多少件?
16.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开放商代为租赁5年,5年期满后由开放商以比原商铺标价高20%的价格进行回购。
投资者可以在以下两种购铺方案中做选择:方案一:投资者按商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后,每年可获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用。
(1)请问,投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?
(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元,问:甲、乙两人各投资了多少万元?
五、二元一次方程组及其解法
1.含有( )未知数,并且未知数的次数都是1的方程叫做二元一次方程;使二元一次方程两边的值相等的未知数的值叫做二元一次方程的解。
2.含有两个未知数的两个一次方程所组成的一组方程叫做( ),二元一次方程(组)都是整式方程。
3.解二元一次方程的基本思想是( ),把二元一次方程组转化为( )方程。
4.二元一次方程的解法:(1)代入消元法:主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为( ),这种解方程组的方法称为代入消元法,简称代入法。
(2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。
5.二元一次方程组的应用:与一元一次方程应用类似,具体步骤:审、设、列、解、检、答。
6.三元一次方程组:如果方程组中含有三个未知数,每个方程组中一共有三个方程,这样的方程组叫做三元一次方程组。
解法主要有加减消元法,若方程难解就用代入消元法。
练习题:
1.下列方程组中是二元一次方程组的是( )
A.⎩⎨⎧=+=21y x xy
B.⎪⎩⎪⎨⎧=+=-31325y x y x
C.⎪⎩⎪⎨⎧=-=+51302y x z x
D.⎪⎩
⎪⎨⎧=+=7325y x x 2.二元一次方程组⎩⎨⎧=-=+1
22y x y x 的解是( )
3.已知⎩⎨⎧==12y x 是二元一次方程组⎩
⎨⎧=-=+17by ax by ax 的解,则b a -的值为( ) 4.在方程723=+y x 中,若y x ,互为相反数,那么()()==y x ,
5.若方程6=+ny mx 的两个解是⎩⎨⎧-==⎩⎨⎧==12,11y x y x ,则()()==n m ,
6.解方程组⎩
⎨⎧=-=+52392y x y x 7.关于y x ,的方程组⎩⎨⎧=++=-m
y x m y x 523的解满足0>>y x ,则m 的取值范围是( )
8.某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%,问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为( )
9.解方程组⎪⎩
⎪⎨⎧=-+-=+-=++5212632z y x z y x z y x
10.童星玩具厂工人的工作时间为:每月22天,每天8小时。
工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算。
该厂生产A 、B 两种产品,工人每生产一件A 种产品可得报酬1.50.元,每生产一件B 种产品可得报酬2.80元。
该工厂工人可选择A 、B 两种产品中的一种或两种进行生产,工人小李生产一件A 产品和一件B 产品需35分钟;生产3件A 产品和两件B 产品需要85分钟。
(1)小李生产1件A 产品需要( )分钟,生产一件B 产品需要( )分钟。
(2)求小李每月的工资收入范围
11.儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元。
已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?
12.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤。
妈妈:“今天买这两样菜共花了45元,上月买同量的这两种菜只要36元。
”爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%。
”小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤)
13.已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运11吨。
某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物。
根据以上信息,解答下列问题:
(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案
(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次。
请选出最省钱的租车方案,并求出最少租车费。