经典单方程计量经济学模型多元线性回归模型
计量经济学 第三章
3-2.答:变量非线性、系数线性;变量、系数均线性;变量、系数均 线性;变量线性、系数非线性;变量、系数均为非线性;变量、系数均 为非线性;变量、系数均为线性。 3-3.答:多元线性回归模型与一元线性回归模型的区别表现在如下几 方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性 回归模型比一元线性回归模型多了“解释变量之间不存在线性相关关
方和较大,但相对来说其AIC值最低,所以我们选择该模型为最优的模
型。
(4)随着收入的增加,我们预期住房需要会随之增加。所以可以预
期β3>0,事实上其估计值确是大于零的。同样地,随着人口的增加,
住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如
此。随着房屋价格的上升,我们预期对住房的需求人数减少,即我们预
其中:——某天慢跑者的人数 ——该天降雨的英寸数 ——该天日照的小时数 ——该天的最高温度(按华氏温度) ——第二天需交学期论文的班级数Байду номын сангаас
请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么? (2)为什么用相同的数据去估计相同变量的系数得
到不同的符号? 3-18.对下列模型: (1)
(2) 求出β的最小二乘估计值;并将结果与下面的三变量回归方程的最小二 乘估计值作比较:
(1) 检验模型A中的每一个回归系数在10%水平下是否为零(括 号中的值为双边备择p-值)。根据检验结果,你认为应该把 变量保留在模型中还是去掉?
(2) 在模型A中,在10%水平下检验联合假设H0:i =0(i=1,5,6,7)。说明被择假设,计算检验统计值,说明其 在零假设条件下的分布,拒绝或接受零假设的标准。说明你 的结论。
(3) ,你认为哪一个估计值更好? 3-19.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭 价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千 人)作为解释变量,进行回归分析;假设不管是否有假期,食堂都营 业。不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失,无 法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括 号内为标准差):
计量经济学课程第4章(多元回归分析)
§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS
N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1
2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2
2,
0
HA :
2
2 0
计量经济学期末考试重点整理
第一章绪论1、什么是计量经济学?由哪三组组成?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科。
统计学、经济理论和数学三者结合起来便构成了计量经济学。
2、计量经济学的内容体系,重点是理论计量和应用计量和经典计量经济学理论方法方面的特征答:1)广义计量经济学和狭义计量经济学 2)初、中、高级计量经济学3)理论计量经济学和应用计量经济理论计量经济学是以介绍、研究计量经济学的理论与方法为主要内容,侧重于理论与方法的数学证明与推导,与数理统计联系极为密切。
除了介绍计量经济模型的数学理论基础、普遍应用的计量经济模型的参数估计方法与检验方法外,还研究特殊模型的估计方法与检验方法,应用了广泛的数学知识。
应用计量经济学则以建立与应用计量经济学模型为主要内容,强调应用模型的经济学和经济统计学基础,侧重于建立与应用模型过程中实际问题的处理。
本课程是二者的结合。
4)、经典计量经济学和非经典计量经济学经典计量经济学(Classical Econometrics)一般指20世纪70年代以前发展并广泛应用的计量经济学。
经典计量经济学在理论方法方面特征是:⑴模型类型—随机模型;⑵模型导向—理论导向;⑶模型结构—线性或者可以化为线性,因果分析,解释变量具有同等地位,模型具有明确的形式和参数;⑷数据类型—以时间序列数据或者截面数据为样本,被解释变量为服从正态分布的连续随机变量;⑸估计方法—仅利用样本信息,采用最小二乘方法或者最大似然方法估计模型。
经典计量经济学在应用方面的特征是:⑴应用模型方法论基础—实证分析、经验分析、归纳;⑵应用模型的功能—结构分析、政策评价、经济预测、理论检验与发展;⑶应用模型的领域—传统的应用领域,例如生产、需求、消费、投资、货币需求,以及宏观经济等。
5)、微观计量经济学和宏观计量经济学3、为什么说计量经济学是经济学的一个分支?(4点和综述)答:(1)、从计量经济学的定义看(2)、从计量经济学在西方国家经济学科中的地位看(3)、从计量经济学与数理统计学的区别看(4)、从建立与应用计量经济学模型的全过程看综上所述,计量经济学是一门经济学科,而不是应用数学或其他。
计量经济学复习资料2
2、如果假设 4 满足,则假设 2 也满足。
以上假设也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模
型,也称为经典线性回归模型
二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要求样本回归函数尽可能好地拟合这组值.
普通最小二乘法给出的判断标准是:二者之差的平方和最小。
R 2 1 RSS /(n k 1) TSS /(n 1) 其中:n-k-1 为残差平方和的自由度,n-1 为总体平方和
的自由度。
R 2 1 (1 R 2 ) n 1 n k 1
三、方程的显著性检验(F 检验) H0: ß0= ß1= ß2= … =ßk=0 H1: ßj 不全为 0
TSS yi2 (Yi Y )2 总体平方和
ESS yˆi2 (Yˆi Y )2 回归平方和
RSS ei2 (Yi Yˆi )2 残差平方和
1、TSS=ESS+RSS 2、可决系数 R2 统计量
记
R 2 ESS 1 RSS
TSS
TSS
称 R2 为(样本)可决系数/判定系数 可决系数的取值范围:[0,1] R2 越接近 1,说明实际观测点离样本线越近,拟合优度越高。 T 检验 检验步骤: (1)对总体参数提出假设
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i ))2
1
1
xi2
(X i X )2
X
2 i
1 n
Xi 2
xi yi
(X i X )(Yi Y )
X
iYi
1 n
X i Yi
上述参数估计量可以写成:
ˆ1
计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
第二章 多元线性回归模型
ˆ ˆ ˆ) ( Y Y 2Y Xβ β X Xβ 0 ˆ β
ˆ X Y X Xβ 0
得到:
ˆ XY XXβ
ˆ β ( X X) 1 X Y
于是:
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
1 ( X ' X) X 1 1 X2 1 X1 1 1 X 2 n X n X i 1 X n
可以证明,随机误差项的方差的无偏估计量为
e e ˆ n k 1 n k 1
2
e i2
二、最大或然估计
对于多元线性回归模型: i N 0, 2 , i 1, 2, , n
易知:
Yi ~ N ( X i β , 2 ) 其中: Xi 1 Xi1 Xi1 Xik
j
一、普通最小二乘估计
对于随机抽取的n组观测值 Yi , X ij , i 1, 2,, n; j 0,1, 2,, k , 其中X i 0 1
k 1个未知参数,如果样本函数的参数估计值已经得到,则有:
Y i 0 1 X i1 2 X i 2 k X ik , i 1, 2,, n
五、多元线性回归模型的参数估计实例
地区城镇居民消费模型
• 被解释变量:该地区城镇居民人均消费Y
• 解释变量:
– 该地区城镇居民人均可支配收入X1 – 前一年该地区城镇居民人均消费X2
• 样本:2006年,31个地区
数据
地区 2006年消费 支出 Y
北 天 河 山 辽 吉 上 江 浙 安 福 江 山 河 京 津 北 西 宁 林 海 苏 江 徽 建 西 东 南 14825.4 10548.1 7343.5 7170.9 7666.6 7987.5 7352.6 6655.4 14761.8 9628.6 13348.5 7294.7 9807.7 6645.5 8468.4 6685.2
5、计量经济学【多元线性回归模型】
那么,多元线性样本回归函数 (方程) (3.3) 式的矩阵
表达式为: ˆ0
ˆ1
其中:ˆ
ˆ2
M
ˆk
(
Yˆ
YYˆˆ12 M
Yˆn
k 1)1
Yˆ X ˆ, , , , , , , , , , , , , , , , , , , , , , , (3.7)
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 L k X k1 1 .Y.2.........0.......1.X...1.2........2.X...2.2. L k X k 2 2 Yn 0 1 X1n 2 X 2n L k X kn n
M
k
(k 1)1
n
n1
2、多元线性回归模型的几种形式:
并且,记
Y
Y1
Y2
为被解释变量的观测值向量;
M
Yn n1
1 X11 X 21 L
记
X 1 M
X12 M
X 22 M
L
1 X1n X 2n L
Xk1
X
k
Yi 0 1X1i 2 X 2i L k X ki i , , , ,i 1, 2,L , n, , , , (3.1)
2.1 线性回归模型概述
△几点注意
– 不线性相关并不意味着不相关; 不线性相关并不意味着不相关; – 有相关关系并不意味着一定有因果关系; 有相关关系并不意味着一定有因果关系; – 相关分析对称地对待任何( 两个 )变量,两 变量, 相关分析对称地对待任何 对称地对待任何 个变量都被看作是随机的;回归分析对变量的 个变量都被看作是随机的;回归分析对变量的 处理方法存在不对称性,即区分因变量( 处理方法存在不对称性,即区分因变量(被解 不对称性 释变量)和自变量(解释变量):前者是随机 释变量)和自变量(解释变量):前者是随机 ): 变量,后者不是。 变量,后者不是。
• 回归与因果关系
– 回归分析研究的一个变量对另一个变量的依 赖关系可以是一种因果关系,但也可能不是 因果关系。 – 统计关系本身不可能意味着任何因果关系
• 回归与相关
– 回归分析和相关分析都是研究变量间关系的统计学 课题 – 两者的主要差别: 两者的主要差别: – ◇回归分析中需要区别自变量和因变量;相关分析 回归分析中需要区别自变量和因变量; 中则不需要区分 – ◇相关分析中所涉及的变量y与x全是随机变量。而 相关分析中所涉及的变量y 全是随机变量。 回归分析中,因变量y是随机变量,自变量x 回归分析中,因变量y是随机变量,自变量x 可以 是随机变量, 是随机变量,也可以是非随机的确定变量 –◇相关分析的研究主要是为刻画两类变量间线性相 ◇ 关的密切程度。而回归分析不仅可以揭示变量X 关的密切程度。而回归分析不仅可以揭示变量X对 变量y的影响大小, 变量y的影响大小,还可以由回归方程进行预测和 控制
描出散点图发现:随着收入的增加,消费 “平均地说”也在增加,且Y的条件均值均落在 平均地说” 平均地说 总体回归线。 一根正斜率的直线上。这条直线称为总体回归线 总体回归线
计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型
第三章、经典单方程计量经济学模型:多元线性回归模型一、内容提要本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。
主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。
只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。
本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。
与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。
本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。
这里需要注意各回归参数的具体经济含义。
本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。
参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。
检验都是以F检验为主要检验工具,以受约束模型与无约束模型是否有显著差异为检验基点。
参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。
它们仍以估计无约束模型与受约束模型为基础,但以最大似然原χ分布为检验统计量理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的2的分布特征。
非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。
二、典型例题分析例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为36.0.+=-10+094medufedu.0sibsedu210131.0R2=0.214式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年数。
计量经济学
1、什么是计量经济学?计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
(同一)3、建立与应用计量经济学模型的主要步骤。
①理论模型的建立;②收集数据,参数估计;③模型检验;④模型应用;4、并说明时间序列数据和横截面数据有和异同?时间序列:同一个统计指标,在同一时间点上,不同的对象所得的数据;横截面积:同一指标,同一对象在不同时间点上所得的数据5、试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
6、常用的样本数据有哪些?(同第四题)1、最基础的:经典单方程计量经济学模型;2、运用最小二乘法,3、最基本假定:简单线性回归;对随机扰动项的假定:①零均值;②同方差;③无自相关4、统计检验:一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度5、后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
6、总体回归函数是对总体变量间关系的定量表述7、样本估计量优劣的最主要的衡量准则:无偏性、有效性与一致性8、Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
9、运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
10、总体回归函数:将总体被解释变量Y的条件均值表现为解释变量X 的某种函数11、样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。
总体回归函数与样本回归函数的区别与联系12、随机扰动项:被解释变量实际值与条件均值的偏差,代表排除在模型以外的所有因素对Y的影响。
13、引入随机扰动项的原因:未知影响因素的代表●无法取得数据的已知影响因素的代表●众多细小影响因素的综合代表●模型的设定误差●变量的观测误差●变量内在随机性14、为什么要作基本假定:模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计●只有具备一定的假定条件,所作出的估计才具有较好的统计性质15、拟合优度:样本回归线对样本观测数据拟合的优劣程度,16、可决系数:在总变差分解基础上确定的,模型解释了的变差在总变差中的比重1、多元线性回归模型基本假定:①零均值;②同方差;③无自相关;④不存在相关性2、在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。
李子奈《计量经济学》(第4版)配套题库-经典单方程计量经济学模型:多元线性回归模型章节题库(圣才出品
第3章经典单方程计量经济学模型:多元线性回归模型一、选择题1.一元回归方程∧Y i=32.03+0.22X i,其斜率系数对应的t统计量为2.00,样本容量为20,则在5%显著性水平下,对应的临界值及显著性为()。
A.临界值为1.734,系数显著不为零B.临界值为2.101,系数显著不为零C.临界值为1.734,系数显著为零D.临界值为2.101,系数显著为零【答案】B【解析】在变量显著性检验中,针对变量βj设计的原假设与备择假设为H0:βj=0,H1:βj≠0。
给定一个显著性水平α,得到临界值tα/2(n-k-1),于是可根据|t|>tα/2(n-k-1)(或|t|≤tα/2(n-k-1))来决定拒绝(或接受)原假设H0,从而判定对应的解释变量是否显著为零。
由已知条件可知tα/2(n-k-1)=t0.025(18)=2.101>2.00,故拒绝原假设,系数显著不为零。
2.接上题,该方程对应的方程显著性检验的F统计量为()。
A.1.85B.4.00C.11.83D.61.92【答案】B【解析】在一元线性回归中,方程总体线性显著性检验的F 统计量与用于斜率参数β1的显著性检验的t 统计量的关系是:F=t 2,故F=2.002=4.00。
二、判断题1.回归平方和是指被解释变量的总体平方和与残差平方和之差。
()【答案】√2.在满足基本假定的条件下,利用最小二乘法对多元线性回归模型的估计量不具有无偏性。
()【答案】×【解析】当多元线性回归模型满足基本假设的情况时,其参数的普通最小二乘估计、最大似然估计及矩估计具有线性性、无偏性和有效性。
同时,随着样本容量增加,即当n→∞时,参数估计量具有渐进无偏性、一致性及渐进有效性。
三、证明题1.在经典假定成立条件下,以解释变量样本值为条件,对所有的j=1,2,…,k,都有:Var(∧βj )=σ2/[TSS j (1-R j 2)]式中,()21nj ij j i TSS X X ==-∑为X j 的总样本变异(总离差平方和);R j 2将X j 对所有其他自变量(并包括一个截距项)进行回归所得到的样本可决系数R 2。
教材第2章习题
第二章 经典单方程计量经济学模型:多元线性回归模型1、下列表达式中,哪些是正确的,哪些是错误的,为什么?⑴ n t X Y tt ,,2,1 =+=βα ⑵ n t X Y tt t ,,2,1 =++=μβα ⑶ n t X Y tt t ,,2,1ˆˆ =++=μβα ⑷ n t X Y tt t ,,2,1ˆˆˆ =++=μβα ⑸ n t X Y tt ,,2,1ˆˆ =+=βα ⑹ n t X Y tt ,,2,1ˆˆˆ =+=βα ⑺ n t X Y t tt ,,2,1ˆˆˆ =++=μβα ⑻ n t X Y t t t ,,2,1ˆˆˆˆ =++=μβα2、一元线性回归模型的基本假设主要有哪些?违背基本假设的计量经济学模型是进行普通最小二乘估计吗?3、线性回归模型n i X Y ii i ,,2,1 =++=μβα 的零均值假设是否可以表示为011=∑=ni i n μ?为什么?4、假设已经得到关系式X Y 10ββ+=的最小二乘估计,试回答:(1)假设决定把变量X 的单位扩大10倍,这样做对回归模型的斜率和截距的估计会有什么样的影响?如果把变量Y 的单位扩大10倍,结果又会怎样?(2)假定给X 的每个观测值都增加2,对原回归的斜率和截距会有什么样的影响?如果给Y 的每个观测值都增加2,又会怎样?5、假使在回归模型i i i X Y μββ++=10中,用不为零的常数δ去乘每一X 值,这会不会改变Y 的拟合值及残差?如果对每个X 都加大一个非零常数δ,又会怎样?6、假设有人做了如下的回归i i i x y μββ++=10其中,i i x y ,分别为i i X Y ,关于各自均值的离差。
求1β和0β的普通最小二乘估计?7、令YX βˆ和XYβˆ分别为Y 对X 回归和X 对Y 回归中的斜率(假设X 与Y 之间互为因果关系),证明2ˆˆr XYYX =ββ,其中r 为X 与Y 之相的样本相关系数。
单方程计量经济学模型第二章经典单方程计量经济学模型
• 回归分析构成计量经济学的方法论基础, 回归分析构成计量经济学的方法论基础, 其主要内容包括: 其主要内容包括: • (1)根据样本观察值对经济计量模型参 数进行估计,求得回归方程; 回归方程; 回归方程 • (2)对用回归方程进行分析、评价及预 测。
例2.1中,个别家庭的消费支出为:
(*) 即,给定收入水平Xi ,个别家庭的支出可表示为两部分之和: (1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为 系统性( 确定性( 系统性(systematic)或确定性(deterministic)部分 ) 确定性 )部分。 (2)其他随机 非确定性 随机或非确定性 随机 非确定性(nonsystematic)部分µi。 部分
二、总体回归函数
例2.1:一个假想的社区有100户家庭组成,要研 : 究该社区每月家庭消费支出 家庭消费支出Y与每月家庭可支配收 家庭消费支出 家庭可支配收 入X的关系。 即如果知道了家庭的月收入,能否预测该社区 家庭的平均月消费支出水平。 为达到此目的,将该100户家庭划分为组内收入 差不多的10组,以分析每一收入组的家庭消费支出。
样本散点图近似于一条直线,画一条直线以尽好地拟合该 散点图,由于样本取自总体,可以该线近似地代表总体回归线。 该线称为样本回归线(sample regression lines)。 样本回归线( )。 样本回归线 记样本回归线的函数形式为: ˆ ˆ ˆ Yi = f ( X i ) = β 0 + β 1 X i 称为样本回归函数(sample regression function,SRF)。 样本回归函数( 样本回归函数 , )
四、样本回归函数(SRF) 样本回归函数( )
总体的信息往往无法掌握,现实的情况只能是在 一次观测中得到总体的一个样本。 问题: 问题:能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息? 2.2: 2.1 例2.2:在例2.1的总体中有如下一个样本, 问:能否从该样本估计总体回归函数PRF?
《计量经济学》第三版课后题答案李子奈
封面作者:Pan Hongliang仅供个人学习第一章绪论参考重点:计量经济学的一般建模过程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
5.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别?2.总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。
第三章 经典单方程计量经济学模型(全)2022
j也被称为偏回归系数,表示在其他解释变量
保持不变的情况下,Xj每变化1个单位时,Y的 均值E(Y)的变化;
或者说j给出了Xj的单位变化对Y均值的“直
接”或“净”(不含其他变量)影响。
总体回归模型n个随机方程的矩阵表达式为
Y Xβ μ
其中
1 X11 X12 ... X1k
模型的良好性质只有在大样本下才能得 到理论上的证明。
四、多元线性回归模型的参数估计实例
例3.2.2 城镇居民家庭人均可支配收入与人均消 费支出
•被解释变量:城镇居民人均消费Y •解释变量:—地区城镇居民人均可支配收入X1
—前一年城镇居民人均消费X2 •样本:2006年、2005年,31个地区
EViews: 建立Workfile和Objects后, 在命令窗口输入 ls y c x1 x2 回车
但是,现实情况往往是,由增加解释变量个数 引起的R2的增大与拟合好坏无关,R2需调整。
调整的可决系数(adjusted coefficient of determination)
在样本容量一定的情况下,增加解释变量必 定使得自由度减少,所以调整的思路是:将残差平 方和与总离差平方和分别除以各自的自由度,以 剔除变量个数对拟合优度的影响:
一、多元线性回归模型的形式 二、多元线性回归模型的基本假定
一、多元线性回归模型的形式
多元线性回归模型:表现在线性回归模型中的 解释变量有多个。一般表现形式:
Y 0 1X1 2 X 2 k X k
其中:k为解释变量的数目,j称为回归参数
(regression coefficient)。 习惯上:把常数项看成为一虚变量的系数,该
1
计量经济学多元线性回归模型及参数估计
-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
2.多元线性回归模型的基本假定(矩阵形式)
V
ar
Cov( N
)
E
N
E(N
)N
E(
N
)
E(
NN
)
1
E
n2 1
2
12
n
E
2 1
n1
12 22
n2
1n
2n
n2
2
0
0
0
2
0
2
I
0
0
2
2.多元线性回归模型的基本假定(矩阵形式)
E(X
N )
E
1 X 11
ei 0 X i1ei 0 X i2ei 0
X ik ei 0
(*) (*)或(**)是多 元线性回归模型正
(**) 规方程组的另一种 写法。
离差形式的样本回归方程
由于
Yˆi ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik
[Yi (ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik )] 0
????eemm??所以有???eem??mnnee???ee?????????????????????????????????????????????nnnnnnnnmmmmmmmmme??????????????2121222211121121????????????????????????????????????????nnnnnnnnnnmmmmmmmmme?????????????????21221122221121221111因为xxxxim?????1为对称等幂矩阵即mm??mmmm???2????????nnnnnnnnnnmmmmmmmmme?????????????????????????????22112222211211221111??nnnnnmmmememem??????????22112222222111?????1212122??????????????kntrtrtrmtr????????xxxxixxxxi其中符号tr表示矩阵的迹其定义为矩阵主对角线元素的和
(NEW)李子奈《计量经济学》(第3版)课后习题详解
目 录第1章 绪 论第2章 经典单方程计量经济学模型:一元线性回归模型第3章 经典单方程计量经济学模型:多元线性回归模型第4章 经典单方程计量经济学模型:放宽基本假定的模型第5章 经典单方程计量经济学模型:专门问题第6章 联立方程计量经济学模型:理论与方法第7章 扩展的单方程计量经济学模型第8章 时间序列计量经济学模型第9章 计量经济学应用模型第1章 绪 论1什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:(1)计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为主要内容,是由经济理论、统计学和数学三者结合而成的交叉学科。
(2)计量经济学方法通过建立随机的数学方程来描述经济活动,并通过对模型中参数的估计来揭示经济活动中各个因素之间的定量关系,是对经济理论赋予经验内容;而一般经济数学方法是以确定性的数学方程来描述经济活动,揭示的是经济活动中各个因素之间的理论关系。
2计量经济学的研究对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:(1)计量经济学的研究对象是经济现象,主要研究的是经济现象中的具体数量规律,即是利用数学方法,依据统计方法所收集和整理到的经济数据,对反映经济现象本质的经济数量关系进行研究。
(2)计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用计量经济学。
任何一项计量经济学研究和任何一个计量经济学模型赖以成功的三要素是理论、方法和数据。
(3)计量经济学模型研究的经济关系的两个基本特征是随机关系和因果关系。
3为什么说计量经济学在当代经济学科中占据重要地位?当代计量经济学发展的基本特征与动向是什么?答:(1)计量经济学自20世纪20年代末30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过20世纪50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中最具有权威的一部分;②从1969~2003年诺贝尔经济学奖的53位获奖者中有10位是与研究和应用计量经济学有关;③计量经济学方法与其他经济数学方法结合应用得到了长足的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章、经典单方程计量经济学模型:多元线性回归模型一、内容提要本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。
主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。
只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。
本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。
与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。
本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。
这里需要注意各回归参数的具体经济含义。
本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。
参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。
检验都是以F检验为主要检验工具,以受约束模型与无约束模型是否有显著差异为检验基点。
参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。
它们仍以估计无约束模型与受约束模型为基础,但以最大似然χ分布为检验统计原理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的2量的分布特征。
非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。
二、典型例题分析例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为36.0.+=-10+094medufedu.0sibsedu210131.0R2=0.214式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年数。
问(1)sibs 是否具有预期的影响?为什么?若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?(2)请对medu 的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为12年,另一个的父母受教育的年数为16年,则两人受教育的年数预期相差多少? 解答:(1)预期sibs 对劳动者受教育的年数有影响。
因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。
根据多元回归模型偏回归系数的含义,sibs 前的参数估计值-0.094表明,在其他条件不变的情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育的时间,兄弟姐妹需增加1/0.094=10.6个。
(2)medu 的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加1年受教育的机会,其子女作为劳动者就会预期增加0.131年的教育机会。
(3)首先计算两人受教育的年数分别为 10.36+0.131⨯12+0.210⨯12=14.452 10.36+0.131⨯16+0.210⨯16=15.816因此,两人的受教育年限的差别为15.816-14.452=1.364例2.以企业研发支出(R&D )占销售额的比重为被解释变量(Y ),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:099.0)046.0()22.0()37.1(05.0)log(32.0472.0221=++=R X X Y其中括号中为系数估计值的标准差。
(1)解释log(X1)的系数。
如果X1增加10%,估计Y 会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D 强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。
分别在5%和10%的显著性水平上进行这个检验。
(3)利润占销售额的比重X2对R&D 强度Y 是否在统计上有显著的影响? 解答:(1)log(x1)的系数表明在其他条件不变时,log(x1)变化1个单位,Y 变化的单位数,即∆Y=0.32∆log(X1)≈0.32(∆X1/X1)=0.32⨯100%,换言之,当企业销售X1增长100%时,企业研发支出占销售额的比重Y 会增加0.32个百分点。
由此,如果X1增加10%,Y 会增加0.032个百分点。
这在经济上不是一个较大的影响。
(2)针对备择假设H1:01>β,检验原假设H0:01=β。
易知计算的t 统计量的值为t=0.32/0.22=1.468。
在5%的显著性水平下,自由度为32-3=29的t 分布的临界值为1.699(单侧),计算的t 值小于该临界值,所以不拒绝原假设。
意味着R&D 强度不随销售额的增加而变化。
在10%的显著性水平下,t 分布的临界值为1.311,计算的t 值小于该值,拒绝原假设,意味着R&D 强度随销售额的增加而增加。
(3)对X2,参数估计值的t 统计值为0.05/0.46=1.087,它比在10%的显著性水平下的临界值还小,因此可以认为它对Y 在统计上没有显著的影响。
例3.下表为有关经批准的私人住房单位及其决定因素的4个模型的估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量)。
数据为美国40个城市的数据。
模型如下:μββββββββ++++++++=statetax localtax unemp popchangincome value density g hou 76543210sin式中housing ——实际颁发的建筑许可证数量,density ——每平方英里的人口密度,value ——自由房屋的均值(单位:百美元),income ——平均家庭的收入(单位:千美元),popchang ——1980~1992年的人口增长百分比,unemp ——失业率,localtax ——人均交纳的地方税,statetax ——人均缴纳的州税(1)检验模型A 中的每一个回归系数在10%水平下是否为零(括号中的值为双边备择p-值)。
根据检验结果,你认为应该把变量保留在模型中还是去掉? (2)在模型A 中,在10%水平下检验联合假设H 0:βi =0(i=1,5,6,7)。
说明被择假设,计算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。
说明你的结论。
(3)哪个模型是“最优的”?解释你的选择标准。
(4)说明最优模型中有哪些系数的符号是“错误的”。
说明你的预期符号并解释原因。
确认其是否为正确符号。
解答:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t 分布表。
根据题意,如果p-值<0.10,则我们拒绝参数为零的原假设。
由于表中所有参数的p-值都超过了10%,所以没有系数是显著不为零的。
但由此去掉所有解释变量,则会得到非常奇怪的结果。
其实正如我们所知道的,多元回去归中在省略变量时一定要谨慎,要有所选择。
本例中,value 、income 、popchang 的p-值仅比0.1稍大一点,在略掉unemp 、localtax 、statetax 的模型C 中,这些变量的系数都是显著的。
(2)针对联合假设H 0:βi =0(i=1,5,6,7)的备择假设为H1:βi =0(i=1,5,6,7) 中至少有一个不为零。
检验假设H0,实际上就是参数的约束性检验,非约束模型为模型A ,约束模型为模型D ,检验统计值为462.0)840/()7763.4()37/()7763.47038.5()1/()/()(=-+-+-+=----=e e e k n RSS k k RSS RSS F U U R U U R显然,在H0假设下,上述统计量满足F 分布,在10%的显著性水平下,自由度为(4,32)的F 分布的临界值位于2.09和2.14之间。
显然,计算的F 值小于临界值,我们不能拒绝H0,所以βi (i=1,5,6,7)是联合不显著的。
(3)模型D 中的3个解释变量全部通过显著性检验。
尽管R2与残差平方和较大,但相对来说其AIC 值最低,所以我们选择该模型为最优的模型。
(4)随着收入的增加,我们预期住房需要会随之增加。
所以可以预期β3>0,事实上其估计值确是大于零的。
同样地,随着人口的增加,住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如此。
随着房屋价格的上升,我们预期对住房的需求人数减少,即我们预期β3估计值的符号为负,回归结果与直觉相符。
出乎预料的是,地方税与州税为不显著的。
由于税收的增加将使可支配收入降低,所以我们预期住房的需求将下降。
虽然模型A 是这种情况,但它们的影响却非常微弱。
4、在经典线性模型基本假定下,对含有三个自变量的多元回归模型:μββββ++++=3322110X X X Y你想检验的虚拟假设是H0:1221=-ββ。
(1)用21ˆ,ˆββ的方差及其协方差求出)ˆ2ˆ(21ββ-Var 。
(2)写出检验H0:1221=-ββ的t 统计量。
(3)如果定义θββ=-212,写出一个涉及β0、θ、β2和β3的回归方程,以便能直接得到θ估计值θˆ及其标准误。
解答:(1)由数理统计学知识易知)ˆ(4)ˆ,ˆ(4)ˆ()ˆ2ˆ(221121ββββββVar Cov Var Var +-=- (2)由数理统计学知识易知)ˆ2ˆ(1ˆ2ˆ2121ββββ---=se t ,其中)ˆ2ˆ(21ββ-se 为)ˆ2ˆ(21ββ-的标准差。
(3)由θββ=-212知212βθβ+=,代入原模型得μββθβμβββθβ+++++=+++++=33212103322120)2()2(X X X X X X X Y这就是所需的模型,其中θ估计值θˆ及其标准误都能通过对该模型进行估计得到。
三、习题(一)基本知识类题型 3-1.解释下列概念:1) 多元线性回归 2) 虚变量 3) 正规方程组 4) 无偏性 5) 一致性6) 参数估计量的置信区间 7) 被解释变量预测值的置信区间 8) 受约束回归 9) 无约束回归 10) 参数稳定性检验3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1) i i i X Y εββ++=310 2) i i i X Y εββ++=log 10 3)i i i X Y εββ++=log log 104) i i i X Y εβββ++=)(210 5) i ii X Y εββ+=106) i i i X Y εββ+-+=)1(1107) i i i i X X Y εβββ+++=10221103-3.多元线性回归模型与一元线性回归模型有哪些区别?3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用? 3-6.请说明区间估计的含义。