神经网络的BP算法实验报告

合集下载

7基于神经网络的模式识别实验要求

7基于神经网络的模式识别实验要求

实验七基于神经网络的模式识别实验一、实验目的理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。

通过构建BP网络和离散Hopfield 网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。

二、实验原理BP学习算法是通过反向学习过程使误差最小,其算法过程从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正。

BP 网络不仅含有输入节点和输出节点,而且含有一层或多层隐(层)节点。

输入信号先向前传递到隐节点,经过作用后,再把隐节点的输出信息传递到输出节点,最后给出输出结果。

离散Hopfield神经网络的联想记忆过程分为学习和联想两个阶段。

在给定样本的条件下,按照Hebb学习规则调整连接权值,使得存储的样本成为网络的稳定状态,这就是学习阶段。

联想是指在连接权值不变的情况下,输入部分不全或者受了干扰的信息,最终网络输出某个稳定状态。

三、实验条件Matlab 7.X 的神经网络工具箱:在Matlab 7.X 的命令窗口输入nntool,然后在键盘上输入Enter键,即可打开神经网络工具箱。

四、实验内容1.针对教材P243例8.1,设计一个BP网络结构模型(63-6-9),并以教材图8.5 为训练样本数据,图8.6为测试数据。

(1)运行train_data.m和test_data.m文件,然后从Matlab工作空间导入(Import)训练样本数据(inputdata10,outputdata10)和测试数据(testinputdata,testoutputdata),其次新建一个神经网络(New Network),选择参数如下表1,给出BP神经网络结构图。

表1 BP网络结构模型的各项参数设置Network Name(神经网络名称)nn10_1Network Type(神经网络类型)Feed-forward backprop(前馈反向传播)Input ranges(输入信息范围)来自训练样本的输入数据(inputdata10)Training function(训练函数)TRAINGD(梯度下降BP算法)Performance function(性能函数)MSE(均方误差)Number of layers(神经网络层数)2Layer1(第1层)的Number ofneurons (神经元个数)6Layer1(第1层)的TransferFunction (传递函数)LOGSIG(S型函数)Layer2(第2层)的Number ofneurons (神经元个数)9Layer2(第2层)的TransferFunction (传递函数)LOGSIG(S型函数)(2)输入训练样本数据(inputdata10,outputdata10),随机初始化连接权(Initialize Weights),然后进行训练(Train),训练参数设置如表2所示,并观察训练目标值变化曲线图,最后把BP神经网络训练成功后(即误差不再变化后)的误差值填入表3。

BP神经网络的优化算法比较研究

BP神经网络的优化算法比较研究

BP神经网络的优化算法比较研究优化算法是神经网络中的关键技术之一,它可以帮助神经网络快速收敛,有效地优化模型参数。

目前,常用的优化算法包括梯度下降法、动量法、Adagrad、Adam等。

本文将比较这些优化算法的优缺点。

1. 梯度下降法(Gradient Descent)梯度下降法是最基本的优化算法。

它通过计算损失函数对参数的梯度,不断地朝着梯度的相反方向更新参数。

优点是实现简单,容易理解。

缺点是容易陷入局部最优,并且收敛速度较慢。

2. 动量法(Momentum)动量法在梯度下降法的基础上增加了动量项。

它通过累积之前的梯度信息,使得参数更新时具有一定的惯性,可以加快收敛速度。

优点是减少了陷入局部最优的可能性,并且对于存在波动的梯度能够平滑更新。

缺点是在平坦区域容易产生过大的动量,导致无法快速收敛。

3. AdagradAdagrad算法基于学习率的自适应调整。

它通过累积梯度平方的倒数来调整学习率,使得对于稀疏梯度的参数每次更新较大,对于频繁出现的梯度每次更新较小。

优点是适应性强,能够自动调整学习率。

缺点是由于学习率的不断减小,当训练时间较长时容易陷入局部最优。

4. AdamAdam算法结合了动量法和Adagrad算法的优点。

它维护了一种动态的学习率,通过计算梯度的一阶矩估计和二阶矩估计来自适应地调整学习率。

优点是适应性强,并且能够自适应学习率的大小和方向。

缺点是对于不同的问题,参数的敏感性差异较大。

在一些问题上可能不适用。

综上所述,每个优化算法都有自己的优点和缺点。

梯度下降法是最基本的算法,容易理解,但是收敛速度较慢。

动量法通过增加动量项加快了收敛速度,但是容易陷入局部最优。

Adagrad和Adam算法具有自适应性,能够自动调整学习率,但是在一些问题上可能效果不佳。

因此,在实际应用中应根据具体问题选择适合的优化算法或采取集成的方式来提高模型的性能。

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。

本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。

二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。

将数据集进行标准化处理,以提高神经网络的收敛速度和精度。

2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。

本实验采用Xavier初始化方法。

4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。

5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。

使用梯度下降算法对参数进行优化,减小损失函数的值。

6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。

三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。

经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。

通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。

随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。

因此,选择合适的隐藏层结点个数是模型性能优化的关键。

此外,迭代次数对模型性能也有影响。

随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。

因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。

四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。

实训神经网络实验报告

实训神经网络实验报告

一、实验背景随着人工智能技术的飞速发展,神经网络作为一种强大的机器学习模型,在各个领域得到了广泛应用。

为了更好地理解神经网络的原理和应用,我们进行了一系列的实训实验。

本报告将详细记录实验过程、结果和分析。

二、实验目的1. 理解神经网络的原理和结构。

2. 掌握神经网络的训练和测试方法。

3. 分析不同神经网络模型在特定任务上的性能差异。

三、实验内容1. 实验一:BP神经网络(1)实验目的:掌握BP神经网络的原理和实现方法,并在手写数字识别任务上应用。

(2)实验内容:- 使用Python编程实现BP神经网络。

- 使用MNIST数据集进行手写数字识别。

- 分析不同学习率、隐层神经元个数对网络性能的影响。

(3)实验结果:- 在MNIST数据集上,网络在训练集上的准确率达到98%以上。

- 通过调整学习率和隐层神经元个数,可以进一步提高网络性能。

2. 实验二:卷积神经网络(CNN)(1)实验目的:掌握CNN的原理和实现方法,并在图像分类任务上应用。

(2)实验内容:- 使用Python编程实现CNN。

- 使用CIFAR-10数据集进行图像分类。

- 分析不同卷积核大小、池化层大小对网络性能的影响。

(3)实验结果:- 在CIFAR-10数据集上,网络在训练集上的准确率达到80%以上。

- 通过调整卷积核大小和池化层大小,可以进一步提高网络性能。

3. 实验三:循环神经网络(RNN)(1)实验目的:掌握RNN的原理和实现方法,并在时间序列预测任务上应用。

(2)实验内容:- 使用Python编程实现RNN。

- 使用Stock数据集进行时间序列预测。

- 分析不同隐层神经元个数、学习率对网络性能的影响。

(3)实验结果:- 在Stock数据集上,网络在训练集上的预测准确率达到80%以上。

- 通过调整隐层神经元个数和学习率,可以进一步提高网络性能。

四、实验分析1. BP神经网络:BP神经网络是一种前向传播和反向传播相结合的神经网络,适用于回归和分类问题。

神经网络的BP算法实验报告

神经网络的BP算法实验报告

计算智能基础实验报告实验名称:BP神经网络算法实验班级名称:341521班专业:探测制导与控制技术姓名:***学号:********一、 实验目的1)编程实现BP 神经网络算法;2)探究BP 算法中学习因子算法收敛趋势、收敛速度之间的关系;3)修改训练后BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。

二、 实验要求按照下面的要求操作,然后分析不同操作后网络输出结果。

1)可修改学习因子2)可任意指定隐单元层数3)可任意指定输入层、隐含层、输出层的单元数4)可指定最大允许误差ε5)可输入学习样本(增加样本)6)可存储训练后的网络各神经元之间的连接权值矩阵;7)修改训练后的BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果 。

三、 实验原理1BP 神经网络算法的基本思想误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法。

由于BP 算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为“反向传播”。

BP 神经网络是有教师指导训练方式的多层前馈网络,其基本思想是:从网络输入节点输入的样本信号向前传播,经隐含层节点和输出层节点处的非线性函数作用后,从输出节点获得输出。

若在输出节点得不到样本的期望输出,则建立样本的网络输出与其期望输出的误差信号,并将此误差信号沿原连接路径逆向传播,去逐层修改网络的权值和节点处阈值,这种信号正向传播与误差信号逆向传播修改权值和阈值的过程反复进行,直训练样本集的网络输出误差满足一定精度要求为止。

2 BP 神经网络算法步骤和流程BP 神经网络步骤和流程如下:1) 初始化,给各连接权{},{}ij jt W V 及阈值{},{}j t θγ赋予(-1,1)间的随机值;2) 随机选取一学习模式对1212(,),(,,)k k k k k k k n k n A a a a Y y y y ==提供给网络;3) 计算隐含层各单元的输入、输出;1n j ij i j i s w a θ==⋅-∑,()1,2,,j j b f s j p ==4) 计算输出层各单元的输入、输出;1t t jt j t j l V b γ==⋅-∑,()1,2,,t t c f l t q ==5) 计算输出层各单元的一般化误差;()(1)1,2,,k k t t tt t t d y c c c t q =-⋅-=6) 计算中间层各单元的一般化误差;1[](1)1,2,,q kk jt jt j j t e d V b b j p ==⋅⋅-=∑7) 修正中间层至输出层连接权值和输出层各单元阈值;(1)()k jt jt t j V iter V iter d b α+=+⋅⋅(1)()k t t t iter iter d γγα+=+⋅8) 修正输入层至中间层连接权值和中间层各单元阈值;(1)()kk ij ij j i W iter W iter e a β+=+⋅⋅(1)()kj j j iter iter e θθβ+=+⋅9) 随机选取下一个学习模式对提供给网络,返回步骤3),直至全部m 个模式训练完毕;10) 重新从m 个学习模式对中随机选取一个模式对,返回步骤3),直至网络全局误差函数E 小于预先设定的一个极小值,即网络收敛;或者,当训练次数大于预先设定值,强制网络停止学习(网络可能无法收敛)。

基于BP算法的人工神经网络建模研究

基于BP算法的人工神经网络建模研究

因素对热流值 等测试结果的影响 。根据项 目要 求拟 采用基 于人工神经 网络 B P算法的管线表面温度值和热流值的标 准
化转换模 型。 人 工神经 网络是一种模仿 大脑神 经网络行 为特征 , 进行 分布式并行信息 处理 的算 法数 学模 型。 这种 网络依
靠 系统的复杂程度 , 通过调 整 内部大量节点之 间相互连接 的关 系, 从 而达 到处理信 息的 目的。 关键词 : B P算 法; 网络拟合 ; 误 差曲线
之间相互连接的关系 , 从而达到处理信息的 目的。本 映射能力。 理论上对于一个三层和三层以上的 B P网
项 目的研 究 的 核 心 问题 是 建 立管 线 表 面 温度 值 和 热 络 , 只要 隐层 神 经 元数 目足 够 多 , 该 网络 就能 以任 意 流 值 的标 准 化 转 换模 型 系 统 。该 系统模 型 主要 用 来 精 度 逼近 一个 非 线性 函数 。
收 稿 日期 : 2 0 1 3 — 1 0 — 0 2 作者简 介 : 王 玲( 1 9 8 2 一) , 女, 天津 人 , 讲师, 工程硕士学位 , 主要研究方 向 : 自动化 。
l 6 2
《 装备制造技术 ̄ 2 0 1 4 年第 1 期 过改变 隐层神经元数 目能够增加神经 网络的拟合程 度。再观察网络预测误差 曲线 , 误差输 出区间在( 一 3
函数输 出具 有 预测 能力 。经过 训 练后 , 系统模 型 基本 热流值进行标 准化转换和预测 。以下研究基于人工 上 拟合 了原 始 数 据 , 只是 曲线 拟 合 有所 欠 缺 , 就这 一 神 经 网络 B P算 法 的管 线 表 面 温 度 值 和 热 流 值 的标 问题 接下 来进 行 改进 。 准 化转 换模 型 。 2 . 1 网络层 数 的 改变

基于神经网络融合技术的BP算法研究

基于神经网络融合技术的BP算法研究

不 良的学 生 得 以克 服 困 难 和 发挥 潜 能 ” 即基 本 任 务是 对 有 需 求 社会工作理念和方法 : 。 一是要适当吸纳社会工作专业 的毕 业生 , 积 极 引 进 有 学 校 社 会 工 作 经 历 的 人 员 . 实 队 伍 。 高 其 专 业 充 提 因而 , 学校社会 工作的项 目主要是服务项 目. 大体有 4项 : 以 ① 化 水 平 : 是 通 过 加 强 学 术 交 流 和 进 行 专 业 培 训 等 途 径 . 现 二 对
整 算 法 。B P算 法 是 一 种 有导 师学 习算 法 , 法 的基 本 思 想 是 . 算 由 正 向的 计 算 传 播 与误 差 的 反 向 传 播 构 成 了学 习过 程 中信 息 传 递
B P神 经 网 络 是 一 种 多层 前 馈 型 神 经 网络 。因 其 梯 度 的 调 整 的 过 程 , 通 过 不 断 调整 权 重 使 输 出 值 逐渐 接 近 于 期 望 值 。 正 向 并 方 法 采 用 的是 反 向 传 播 ( akPo aai ) 因此 称 为 B B c rpg tn , o P神 经 网 传 播 过 程 中 , 本 信 息 由输 入 层 传 人 , 过 各 隐 含 层 的逐 层 处 理 样 经 络 。R me a 等 学 者 18 u l r ht E 9 6年 提 出 了误 差 反 向传 播 ( P 权 重 调 后 , 终 传 向输 出层 。 果 输 出 层 的实 际输 出值 与 期望 值 不 相 符 . B) 最 如 则 计算 输 出值 与 期 望 值 之 间 的误 差 , 后转 入 误 差 的 反 向传 播 阶 然
方式 比较
化 建 设 的进 程 中 、在 构 建 和 谐 社 会 的进 程 中 发 挥 个 人 的 最 优 化

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

BP神经网络算法

BP神经网络算法
BP神经网络算法
1


一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方

= 1 ෍
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:

j = 2 ෍ ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告BP神经网络实验报告一、实验目的本实验的目的是熟悉MATLAB中神经网络工具箱的使用方法,同时通过编程实现BP网络逼近标准正弦函数,来加深对BP网络的了解和认识,理解信号的正向传播和误差的反向传递过程。

二、实验原理传统的感知器和线性神经网络无法解决线性不可分问题,因此在实际应用过程中受到了限制。

而BP网络却拥有良好的繁泛化能力、容错能力以及非线性映射能力,因此成为应用最为广泛的一种神经网络。

BP算法将研究过程分为两个阶段:第一阶段是信号的正向传播过程,输入信息通过输入层、隐层逐层处理并计算每个单元的实际输出值;第二阶段是误差的反向传递过程,若在输入层未能得到期望的输出值,则逐层递归的计算实际输出和期望输出的差值(即误差),以便根据此差值调节权值。

这种过程不断迭代,最后使得信号误差达到允许或规定的范围之内。

基于BP算法的多层前馈型网络模型的拓扑结构如下图所示:BP算法的数学描述:三层BP前馈网络的数学模型如下图所示。

三层前馈网中,输入向量为X=(x1,x2.xi。

xn)T;隐层输入向量为Y=(y1,y2.___。

y_m)T;输出层输出向量为O=(o1,o2.ok。

ol)T;期望输出向量为d=(d1,d2.dk。

dl)T。

输入层到隐层之间的权值矩阵用V表示,V=(v1,v2.其中列向量vj 为隐层第j个神经元对应的权向量;v_j。

v_m)Y,隐层到输出层之间的权值矩阵用W表示,W=(w1,w2.wk。

wl),其中列向量wk为输出层第k个神经元对应的权向量。

下面分析各层信号之间的数学关系。

对于输出层,有:yj=f(netj)。

j=1,2.mnetj=∑vijxi。

j=1,2.m对于隐层,有:Ok=f(netk)。

k=1,2.l___∑wjk*yi。

k=1,2.lj=1其中转移函数f(x)均为单极性Sigmoid函数:f(x)=1/(1+e^-x),具有连续、可导的特点,且f'(x)=f(x)[1-f(x)]。

BP人工神经网络试验报告一

BP人工神经网络试验报告一

BP⼈⼯神经⽹络试验报告⼀学号:北京⼯商⼤学⼈⼯神经⽹络实验报告实验⼀基于BP算法的XX及Matlab实现院(系)专业学⽣姓名成绩指导教师2011年10⽉⼀、实验⽬的:1、熟悉MATLAB 中神经⽹络⼯具箱的使⽤⽅法;2、了解BP 神经⽹络各种优化算法的原理;3、掌握BP 神经⽹络各种优化算法的特点;4、掌握使⽤BP 神经⽹络各种优化算法解决实际问题的⽅法。

⼆、实验内容:1 案例背景1.1 BP 神经⽹络概述BP 神经⽹络是⼀种多层前馈神经⽹络,该⽹络的主要特点是信号前向传递,误差反向传播。

在前向传递中,输⼊信号从输⼊层经隐含层逐层处理,直⾄输出层。

每⼀层的神经元状态只影响下⼀层神经元状态。

如果输出层得不到期望输出,则转⼊反向传播,根据预测误差调整⽹络权值和阈值,从⽽使BP 神经⽹络预测输出不断逼近期望输出。

BP 神经⽹络的拓扑结构如图1.1所⽰。

图1.1 BP 神经⽹络拓扑结构图图1.1中1x ,2x , ……n x 是BP 神经⽹络的输⼊值1y ,2y , ……n y 是BP 神经的预测值,ij ω和jk ω为BP 神经⽹络权值。

从图1.1可以看出,BP 神经⽹络可以看成⼀个⾮线性函数,⽹络输⼊值和预测值分别为该函数的⾃变量和因变量。

当输⼊节点数为n ,输出节点数为m 时,BP 神经⽹络就表达了从n 个⾃变量到m 个因变量的函数映射关系。

BP 神经⽹络预测前⾸先要训练⽹络,通过训练使⽹络具有联想记忆和预测能⼒。

BP 神经⽹络的训练过程包括以下⼏个步骤。

步骤1:⽹络初始化。

根据系统输⼊输出序列()y x ,确定⽹络输⼊层节点数n 、隐含层节点数l ,输出层节点数m ,初始化输⼊层、隐含层和输出层神经元之间的连接权值ij ω和式中, l 为隐含层节点数; f 为隐含层激励函数,该函数有多种表达形式,本章所选函数为:步骤3:输出层输出计算。

根据隐含层输出H ,连接权值jk ω和阈值b ,计算BP 神经⽹络预测输出O 。

BP神经网络算法

BP神经网络算法

BP神经网络算法BP神经网络算法(BackPropagation Neural Network)是一种基于梯度下降法训练的人工神经网络模型,广泛应用于分类、回归和模式识别等领域。

它通过多个神经元之间的连接和权重来模拟真实神经系统中的信息传递过程,从而实现复杂的非线性函数拟合和预测。

BP神经网络由输入层、隐含层和输出层组成,其中输入层接受外部输入的特征向量,隐含层负责进行特征的抽取和转换,输出层产生最终的预测结果。

每个神经元都与上一层的所有神经元相连,且每个连接都有一个权重,通过不断调整权重来优化神经网络的性能。

BP神经网络的训练过程主要包括前向传播和反向传播两个阶段。

在前向传播中,通过输入层将特征向量引入网络,逐层计算每个神经元的输出值,直至得到输出层的预测结果。

在反向传播中,通过计算输出层的误差,逐层地反向传播误差信号,并根据误差信号调整每个连接的权重值。

具体来说,在前向传播过程中,每个神经元的输出可以通过激活函数来计算。

常见的激活函数包括Sigmoid函数、ReLU函数等,用于引入非线性因素,增加模型的表达能力。

然后,根据权重和输入信号的乘积来计算每个神经元的加权和,并通过激活函数将其转化为输出。

在反向传播过程中,首先需要计算输出层的误差。

一般采用均方差损失函数,通过计算预测值与真实值之间的差异来衡量模型的性能。

然后,根据误差信号逐层传播,通过链式法则来计算每个神经元的局部梯度。

最后,根据梯度下降法则,更新每个连接的权重值,以减小误差并提高模型的拟合能力。

总结来说,BP神经网络算法是一种通过多层神经元之间的连接和权重来模拟信息传递的人工神经网络模型。

通过前向传播和反向传播两个阶段,通过不断调整权重来训练模型,并通过激活函数引入非线性因素。

BP 神经网络算法在分类、回归和模式识别等领域具有广泛的应用前景。

BP神经网络算法实验报告

BP神经网络算法实验报告

计算各层的输入和输出
es
计算输出层误差 E(q)
E(q)<ε
修正权值和阈值


图 2-2 BP 算法程序流程图
3、实验结果
任课教师: 何勇强
日期: 2010 年 12 月 24 日
中国地质大学(北京) 课程名称:数据仓库与数据挖掘 班号:131081 学号:13108117 姓名:韩垚 成绩:
任课教师: 何勇强
(2-7)
wki
输出层阈值调整公式:
(2-8)
ak
任课教师: 何勇强
E E netk E ok netk ak netk ak ok netk ak
(2-9)
日期: 2010 年 12 月 24 日
中国地质大学(北京) 课程名称:数据仓库与数据挖掘 隐含层权值调整公式: 班号:131081 学号:13108117 姓名:韩垚 成绩:
Ep
系统对 P 个训练样本的总误差准则函数为:
1 L (Tk ok ) 2 2 k 1
(2-5)
E
1 P L (Tkp okp )2 2 p 1 k 1
(2-6)
根据误差梯度下降法依次修正输出层权值的修正量 Δwki,输出层阈值的修正量 Δak,隐含层权 值的修正量 Δwij,隐含层阈值的修正量
日期: 2010 年 12 月 24 日
隐含层第 i 个节点的输出 yi:
M
yi (neti ) ( wij x j i )
j 1
(2-2)
输出层第 k 个节点的输入 netk:
q q M j 1
netk wki yi ak wki ( wij x j i ) ak

bP神经网络控制

bP神经网络控制
doubletheta_output[numOutputLayer]; //输出结点阀值
doublew_hide_input[numHiddenLayer][numInputLayer]; //隐含结点权值
doublew_output_hide[numOutputLayer][numHiddenLayer]; //输出结点权值
}
//输入层与隐层之间的权值
for(i=0;i<numHiddenLayer;i++)
{
for(intj=0;j<numInputLayer;j++)
{
w_hide_input[i][j]=(2.0*(double)rand()/RAND_MAX)-1;
}
}
//输出层与隐层之间的权值
for(i=0;i<numOutputLayer;i++)
Y[i][0]=sin(X[i][0]);
X[iபைடு நூலகம்[0]=preminmax2(0,2*pi,X[i][0]);//输入[0,2π]归一化到[-1,1]
Y[i][0]=preminmax(-1,1,Y[i][0]);//输出[-1,1]归一化到[0,1]
return 0;
}
void initial()
智能控制实验报告
-BP神经网络
一.实验内容
设计BP网络,映射函数为:
1.y=sin(x) x (0,2 )
2.y=x1^2+x2^2+x1*x2 x1,x2 (0,1)
给出训练后的权值矩阵,并考察训练拟合的效果。
二.实验原理
1.BP网络原理
BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

BP算法程序实现

BP算法程序实现

BP算法程序实现BP算法(Back Propagation Algorithm,即反向传播算法)是一种用于训练神经网络的常用算法。

它的基本思想是通过不断地调整神经元之间的连接权值,使得网络的输出接近于期望的输出。

在实现BP算法时,需要进行以下几个步骤:1.初始化参数:首先,需要初始化神经网络的权值和偏置,通常可以使用随机的小数来初始化。

同时,需要设置好网络的学习率和最大迭代次数。

2.前向传播:通过前向传播过程,将输入数据输入到神经网络中,并计算出每个神经元的输出。

具体来说,对于第一层的神经元,它们的输出即为输入数据。

对于后续的层,可以使用如下公式计算输出:a[i] = sigmoid(z[i])其中,a[i]表示第i层的输出,z[i]为第i层的输入加权和,sigmoid为激活函数。

3.计算误差:根据网络的输出和期望的输出,可以计算出网络的误差。

一般来说,可以使用均方差作为误差的度量指标。

loss = 1/(2 * n) * Σ(y - a)^2其中,n为训练样本的数量,y为期望输出,a为网络的实际输出。

4.反向传播:通过反向传播算法,将误差从输出层向输入层逐层传播,更新权值和偏置。

具体来说,需要计算每一层神经元的误差,并使用如下公式更新权值和偏置:delta[i] = delta[i+1] * W[i+1]' * sigmoid_derivative(z[i])W[i] = W[i] + learning_rate * delta[i] * a[i-1]'b[i] = b[i] + learning_rate * delta[i]其中,delta[i]为第i层的误差,W[i]为第i层与i+1层之间的权值,b[i]为第i层的偏置,learning_rate为学习率,sigmoid_derivative为sigmoid函数的导数。

5.迭代更新:根据步骤4中的更新公式,不断迭代调整权值和偏置,直到达到最大迭代次数或误差小于一些阈值。

BP算法实验报告

BP算法实验报告

BP算法实验结果报告
1.提取数据
待拟合的非线性函数为双输入单输出函数:y=power(2,x1)+power(2,x2), 其中x1=0,0.1,0.2,…,6;x2=-3,-2.9,-2.8,…,3.即共61组数据。

2.训练网络
网络训练过程可用如下流程图说明:
3.使用网络
设置最大训练次数为15000次,精度为期望值的1%,得到如下的仿真结果,图1中蓝线表示期望输出,红线表示实际输出,在输入数据内基本拟合。

图1
图2
图2中绘制出了误差曲线,实验要求神经网络输出与期望值的最大误差的绝对值不超过期望值的5%,本实验精度设置为期望值的1%,由图可知最大误差小于期望值的1%(0.72),达到了实验的要求。

基于BP神经网络的手写数字识别实验报告

基于BP神经网络的手写数字识别实验报告

基于BP神经网络的手写数字识别实验报告基于BP神经网络的手写体数字图像识别PT1700105 宁崇宇PT1700106 陈玉磊PT1700104 安传旭摘要在信息化飞速发展的时代,光学字符识别是一个重要的信息录入与信息转化的手段,其中手写体数字的识别有着广泛地应用,如:邮政编码、统计报表、银行票据等等,因其广泛地应用范围,能带来巨大的经济与社会效益。

本文结合深度学习理论,利用BP神经网络对手写体数字数据集MNIST进行分析,作为机器学习课程的一次实践,熟悉了目前广泛使用的Matlab工具,深入理解了神经网络的训练过程,作为非计算机专业的学生,结合该课题掌握了用神经网络处理实际问题的方法,为今后将深度学习与自身领域相结合打下了基础。

1 引言从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作。

利用巨大的存储空间和超高的运算速度,计算机已经可以非常轻易地完成一些对于人类非常困难的工作,然而,一些人类通过直觉可以很快解决的问题,却很难通过计算机解决,这些问题包括自然语言处理、图像识别、语音识别等等,它们就是人工智能需要解决的问题。

计算机要想人类一样完成更多的智能工作,就需要掌握关于这个世界的海量知识,很多早期的人工智能系统只能成功应用于相对特定的环境,在这些特定环境下,计算机需要了解的知识很容易被严格完整地定义。

为了使计算机更多地掌握开放环境下的知识,研究人员进行了很多的尝试。

其中影响力很大的一个领域就是知识图库(Ontology),WordNet是在开放环境中建立的一个较大且有影响力的知识图库,也有不少研究人员尝试将Wikipedia中的知识整理成知识图库,但是建立知识图库一方面需要花费大量的人力和物力,另一方面知识图库方式明确定义的知识有限,不是所有的知识都可以明确地定义成计算机可以理解的固定格式。

很大一部分无法明确定义的知识,就是人类的经验,如何让计算机跟人类一样从历史的经验中获取新的知识,这就是机器学习需要解决的问题。

人工智能实验报告-BP神经网络算法的简单实现

人工智能实验报告-BP神经网络算法的简单实现

⼈⼯智能实验报告-BP神经⽹络算法的简单实现⼈⼯神经⽹络是⼀种模仿⼈脑结构及其功能的信息处理系统,能提⾼⼈们对信息处理的智能化⽔平。

它是⼀门新兴的边缘和交叉学科,它在理论、模型、算法等⽅⾯⽐起以前有了较⼤的发展,但⾄今⽆根本性的突破,还有很多空⽩点需要努⼒探索和研究。

1⼈⼯神经⽹络研究背景神经⽹络的研究包括神经⽹络基本理论、⽹络学习算法、⽹络模型以及⽹络应⽤等⽅⾯。

其中⽐较热门的⼀个课题就是神经⽹络学习算法的研究。

近年来⼰研究出许多与神经⽹络模型相对应的神经⽹络学习算法,这些算法⼤致可以分为三类:有监督学习、⽆监督学习和增强学习。

在理论上和实际应⽤中都⽐较成熟的算法有以下三种:(1) 误差反向传播算法(Back Propagation,简称BP 算法);(2) 模拟退⽕算法;(3) 竞争学习算法。

⽬前为⽌,在训练多层前向神经⽹络的算法中,BP 算法是最有影响的算法之⼀。

但这种算法存在不少缺点,诸如收敛速度⽐较慢,或者只求得了局部极⼩点等等。

因此,近年来,国外许多专家对⽹络算法进⾏深⼊研究,提出了许多改进的⽅法。

主要有:(1) 增加动量法:在⽹络权值的调整公式中增加⼀动量项,该动量项对某⼀时刻的调整起阻尼作⽤。

它可以在误差曲⾯出现骤然起伏时,减⼩振荡的趋势,提⾼⽹络训练速度;(2) ⾃适应调节学习率:在训练中⾃适应地改变学习率,使其该⼤时增⼤,该⼩时减⼩。

使⽤动态学习率,从⽽加快算法的收敛速度;(3) 引⼊陡度因⼦:为了提⾼BP 算法的收敛速度,在权值调整进⼊误差曲⾯的平坦区时,引⼊陡度因⼦,设法压缩神经元的净输⼊,使权值调整脱离平坦区。

此外,很多国内的学者也做了不少有关⽹络算法改进⽅⾯的研究,并把改进的算法运⽤到实际中,取得了⼀定的成果:(1) 王晓敏等提出了⼀种基于改进的差分进化算法,利⽤差分进化算法的全局寻优能⼒,能够快速地得到BP 神经⽹络的权值,提⾼算法的速度;(2) 董国君等提出了⼀种基于随机退⽕机制的竞争层神经⽹络学习算法,该算法将竞争层神经⽹络的串⾏迭代模式改为随机优化模式,通过采⽤退⽕技术避免⽹络收敛到能量函数的局部极⼩点,从⽽得到全局最优值;(3) 赵青提出⼀种分层遗传算法与BP 算法相结合的前馈神经⽹络学习算法。

实验五BP神经网络的构建与使用(一)

实验五BP神经网络的构建与使用(一)

人工神经网络实验五BP神经网络的构建与使用(一)一、实验目的1、熟悉MATLAB中神经网络工具箱的使用方法;2、掌握BP神经网络的特性和应用范围;3、掌握使用BP神经网络解决实际问题的方法;二、实验内容:在第四次实验中,试图用线性神经网络求解函数逼近问题,从实验的结果可以看到未能达到预期的效果,下面使用BP 神经网络来求解函数逼近问题:1、有21组单输入矢量和相对应的目标矢量,参考书《神经网络实验教程》P36的示例程序,试设计一个BP神经网络来实现这对数组的函数关系。

BP神经网络的部分参数输入与目标数据如下:BP神经网络参数:隐含层神经元个数为5个,设置BP神经网络的最大训练次数为1000。

提示:正确选择输入层到隐含层、隐含层到输出层的激活函数,tansig的定义域为负无穷到正无穷,值域为-1到1,logsig的定义域为负无穷到正无穷,值域为0到1;为观察训练后神经网络的效果,可以利用sim()函数(参见书P22)和plot()函数(参见书P15)在同坐标中画出输入数据和期望目标数据、测试数据和测试数据输出的图形输入数据:P=-1:0.1:1期望目标数据:T=[-0.96、0.577、-0.0729、0.377、0.641、0.66、0.461、0.1336、0.201、-0.434、-0.5、-0.393、-0.1647、0.0988、0.3072、0.396、0.3449、0.1816、-0.0312、-0.2183、-0.3201](注意:为了清楚的表示数据,我在数据间加了逗号,同学们在MATLAB中使用进请将逗号改为空格)截图:代码:P=-1:0.1:1;T=[-0.960.577-0.07290.3770.6410.660.4610.13360.201-0.434-0.5-0.393-0.16470.09880.30720.3960.34490.1816-0.0312-0.2183-0.3201];%创建一个BP神经网络,每一个输入向量的取值范围为[-1,1],隐含层有5个神经元,输出层%有一个神经元,隐含层的激活函数为tansig,输出层的激活函数为logsig,训练函数为梯度下%降函数,即2.3.2节中所描述的标准学习算法net=newff([-11],[5,1],{'tansig','tansig'},'traingd');%可以改变训练步数为3000、5000、10000来查看网络的训练结果net.trainParam.epochs=5000;%目标误差设为0.01net.trainParam.goal=0.01;%设置学习速率为0.1LP.lr=0.1;net=train(net,P,T);y=sim(net,P);figurehndl1=plot(P,y);%设置线宽为2set(hndl1,'linewidth',2);%设置线的颜色为红色set(hndl1,'color','red');hold onhndl2=plot(P,T);set(hndl2,'linewidth',2);%设置图形标题title('BP神经网络逼近非线性函数的MATLAB实现'); %设置图例legend('BP神经网络逼近非线性函数','原数据')2、对1中建立的BP神经网络进行测试,测试数据为:P2=-1:0.025:1并对测试结果进行分析,3、当最大训练次数设置为3000、5000、10000时,分析网络的输出效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档