线性代数教案正式打印版
(完整版)线性代数教案(正式打印版)
特征值与特征向量的求解方法
注意事项
在求解过程中,需要注意特征多项式f(λ)的根可能为重根,此时需要验证 是否满足定义中的条件。
在求解特征向量时,需要注意齐次线性方程组的基础解系的求法。
特征值与特征向量的应用举例
01
应用一
判断矩阵是否可对角化。若矩阵A有n个线性无关的特征向 量,则A可对角化。
02
图像处理
在图像处理中,经常需要对图像进行旋转、缩放等操作,这些操作可以通过矩阵对角化来实现。例如,将一个图像矩 阵与一个旋转矩阵相乘,就可以实现图像的旋转。
数据分析
在数据分析中,经常需要对数据进行降维处理,以提取数据的主要特征。通过对数据的协方差矩阵进行对角化,可以 得到数据的主成分,从而实现数据的降维。
REPORTING
线性代数课程简介
线性代数是数学的一个重要分支,主 要研究向量空间、线性变换及其性质 。
本课程将系统介绍线性代数的基本概 念、理论和方法,包括向量空间、矩 阵、线性方程组、特征值与特征向量 、线性变换等内容。
它是现代数学、物理、工程等领域的 基础课程,对于培养学生的抽象思维 、逻辑推理和问题解决能力具有重要 作用。
工具。
2023
PART 04
线性方程组与高斯消元法
REPORTING
线性方程组概念及解法
线性方程组定义
由n个未知数和m个线性方程组成的方程组,形如Ax=b,其中A为系数矩阵,x为未知数 列向量,b为常数列向量。
解的存在性与唯一性
当系数矩阵A的秩等于增广矩阵(A,b)的秩,且等于未知数个数n时,方程组有唯一解;当 秩小于n时,方程组有无穷多解;当秩大于n时,方程组无解。
要作用。
向量空间与子空间
《线性代数》教案
《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念、理论和方法,培养学生运用线性代数解决实际问题的能力。
2. 适用对象:本教案适用于大学本科生线性代数课程的教学。
3. 教学方式:采用讲授、讨论、练习相结合的方式进行教学。
二、教学内容1. 第一章:线性代数基本概念1.1 向量及其运算1.2 线性方程组1.3 矩阵及其运算1.4 行列式2. 第二章:线性空间与线性变换2.1 线性空间2.2 线性变换2.3 矩阵与线性变换2.4 特征值与特征向量3. 第三章:特征值与特征向量3.1 特征值与特征向量的定义3.2 矩阵的特征值与特征向量3.3 矩阵的对角化3.4 二次型4. 第四章:线性方程组的求解方法4.1 高斯消元法4.2 克莱姆法则4.3 矩阵的逆4.4 最小二乘法5. 第五章:线性代数在实际应用中的案例分析5.1 线性规划5.2 最小二乘法在数据分析中的应用5.3 线性代数在工程中的应用5.4 线性代数在计算机科学中的应用三、教学方法1. 讲授:通过讲解线性代数的基本概念、理论和方法,使学生掌握线性代数的基础知识。
2. 讨论:组织学生就线性代数中的重点、难点问题进行讨论,提高学生的思维能力和解决问题的能力。
3. 练习:布置适量的练习题,让学生通过自主练习巩固所学知识,提高解题能力。
四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等方面,占总评的30%。
2. 期中考试:考察学生对线性代数知识的掌握程度,占总评的40%。
3. 期末考试:全面测试学生的线性代数知识水平和应用能力,占总评的30%。
五、教学资源1. 教材:推荐使用《线性代数》(高等教育出版社,同济大学数学系编)。
2. 辅助教材:可参考《线性代数教程》(清华大学出版社,谢乃明编著)。
3. 网络资源:推荐学生浏览线性代数相关网站、论坛,拓展知识面。
4. 软件工具:推荐使用MATLAB、Mathematica等数学软件,辅助学习线性代数。
《线性代数》教案
《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。
2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。
二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。
2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。
三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。
2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。
四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。
2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。
五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。
2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。
六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。
2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。
线性代数教案
线性代数教案一、教学目标通过本节课的学习,学生应能够:1. 了解线性代数的基本概念和相关术语;2. 理解线性方程组和矩阵的概念、性质和运算规则;3. 掌握矩阵的基本运算,包括矩阵的加法、数乘和矩阵乘法;4. 能够求解线性方程组,并应用到实际问题中。
二、教学重点与难点1. 教学重点:线性方程组和矩阵的概念及其运算规则;2. 教学难点:矩阵乘法的理解和应用。
三、教学过程1. 导入(5分钟)引入线性代数的概念,向学生介绍线性方程组和矩阵的相关背景知识,并激发学生的学习兴趣。
2. 理论讲解(20分钟)2.1 线性方程组的定义和解法- 介绍线性方程组的概念以及线性方程组的解的定义;- 分析线性方程组解的情况:无解、唯一解和无穷解;- 通过实例讲解线性方程组解的求解方法。
2.2 矩阵的定义和性质- 介绍矩阵的基本概念和符号表示方法;- 讲解矩阵的加法、数乘以及矩阵乘法的规则;- 引导学生理解矩阵乘法的几何意义。
3. 实例分析与练习(25分钟)3.1 线性方程组的求解实例- 给出一些线性方程组的实际问题,引导学生运用所学知识解决;- 指导学生使用矩阵运算进行线性方程组的求解。
3.2 矩阵运算实例- 给出一些矩阵的实际运用问题,让学生通过实例进行练习;- 帮助学生熟练掌握矩阵的加法、数乘和矩阵乘法。
4. 拓展延伸(15分钟)通过引导学生思考,结合线性代数在实际问题中的应用,进一步拓展学生的知识面。
5. 归纳总结(10分钟)对本节课所学内容进行总结,强化学生对线性代数的理解和掌握。
四、教学评价1. 在教学过程中,观察学生的学习状态,及时给予指导和帮助;2. 布置相关习题,检验学生对所学知识的掌握情况;3. 根据学生的表现进行评价,及时给予反馈和指导。
五、教学资源准备1. 教材和课件;2. 相关实例分析的教学素材;3. 学生练习题、作业等。
总结:通过本节课的教学,学生能够理解线性代数的基本概念和相关术语,掌握线性方程组和矩阵的运算规则,并能够应用所学知识解决实际问题。
线性代数电子教案
3.三阶行列式定义:式的左边称为三阶行列式(3-th determinant ),通常也记为∆.在∆中,横的称为行(row ),纵的称为列(column ),其中a ij (i ,j =1,2,3)是数,称它为此行列式的第i 行第j 列的元素.式的右边称为三阶行列式的展开式.利用二阶行列式可以把展开式写成:323122211333312321123332232211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a +-= 若记 3332232211a a a a M =, 3331232112a a a a M =, 3231222113a a a a M =, 111111)1(M A +-=, 122112)1(M A +-=, 133113)1(M A +-=则有 131312121111333231232221131211A a A a A a a a a a a a a a a ++==∆ 其中 j A 1称为元素j a 1的代数余子式(algebraic complement minor)(3,2,1=j ),j M 1称为元素j a 1的余子式(complement minor),它是∆中划去元素j a 1所在的行、列后所余下的元素按原位置组成的二阶行列式.4.三元线性方程组的解法:引进了三阶行列式, 对于三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 的解就可写成: ∆∆=11x ∆∆=22x ∆∆=33x .称也为方程组(1—4)的系数行列式,它是由未知数的所有系数组成的行列式, j ∆(j =1,2,3)是将∆的第j 列换成常数列而得到的三阶行列式。
5.三阶行列式对角线法则计算法则:如图1—1.例1 计算三阶行列式312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=。
大学线性代数教案
教案:大学线性代数课程名称:大学线性代数课程性质:专业基础课程授课对象:管理类专业学生教学目标:1. 掌握线性代数的基本概念、理论和方法。
2. 能够运用线性代数知识解决实际问题。
3. 提高逻辑思维能力和数学素养。
教学内容:1. 线性方程组2. 矩阵及其运算3. 线性空间与线性变换4. 特征值与特征向量5. 二次型教学安排:共48课时,每课时45分钟。
第一章:线性方程组(8课时)1.1 线性方程组的定义及其解法1.2 矩阵的概念及其运算1.3 高斯消元法1.4 克莱姆法则第二章:矩阵及其运算(10课时)2.1 矩阵的概念2.2 矩阵的运算2.3 逆矩阵2.4 矩阵的行列式第三章:线性空间与线性变换(10课时)3.1 线性空间的概念3.2 线性变换的概念3.3 线性变换的性质3.4 线性变换的矩阵表示第四章:特征值与特征向量(8课时)4.1 特征值与特征向量的概念4.2 特征值与特征向量的求解4.3 矩阵的对角化4.4 二次型第五章:二次型(12课时)5.1 二次型的概念5.2 二次型的标准形5.3 二次型的判定定理5.4 二次型的最小值教学方法:1. 讲授法:通过讲解基本概念、理论和方法,使学生掌握线性代数的基本知识。
2. 案例教学法:通过分析实际问题,引导学生运用线性代数知识解决问题。
3. 讨论法:组织学生分组讨论,培养学生的合作精神和沟通能力。
4. 练习法:布置课后习题,巩固所学知识,提高解题能力。
教学评价:1. 平时成绩:考察学生的出勤、作业和课堂表现。
2. 期中考试:检查学生对线性代数知识的掌握程度。
3. 期末考试:全面考察学生的线性代数理论知识和应用能力。
教学资源:1. 教材:选用权威、实用的线性代数教材。
2. 课件:制作精美、清晰的课件,辅助教学。
3. 习题集:提供丰富的习题,帮助学生巩固知识。
4. 网络资源:利用网络平台,提供在线学习资料和交流平台。
课程总结:通过本课程的学习,使学生掌握线性代数的基本概念、理论和方法,能够运用线性代数知识解决实际问题,提高逻辑思维能力和数学素养。
线性代数教案(正式打印版)
第(1)次课授课时间()基本内容备注第一节二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组⎩⎨⎧=+=+22222211212111bxaxabxaxa用消元法,当021122211≠-aaaa时,解得211222111212112211222112121221,aaaababaxaaaababax--=--=令2112221122211211aaaaaaaa-=,称为二阶行列式 ,则如果将D中第一列的元素11a,21a换成常数项1b,2b ,则可得到另一个行列式,用字母1D表示,于是有2221211ababD=按二阶行列式的定义,它等于两项的代数和:212221abab-,这就是公式(2)中1x的表达式的分子。
同理将D中第二列的元素a 12,a 22换成常数项b1,b2 ,可得到另一个行列式,用字母2D表示,于是有2121112babaD=按二阶行列式的定义,它等于两项的代数和:121211baba-,这就是公式(2)中2x的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==DDxDDx2211其中0≠D例1.解线性方程组.1212232121⎪⎩⎪⎨⎧=+=-xxxx同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa用消元法解得定义设有9个数排成3行3列的数表333231232221131211aaaaaaaaa记333231232221131211aaaaaaaaaD=322113312312332211aaaaaaaaa++=332112322311312213aaaaaaaaa---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2. 计算三阶行列式 243122421----=D .(-14)例3. 求解方程094321112=x x (32==x x 或)例4. 解线性方程组 .55730422⎪⎩⎪⎨⎧=+-=++-=++-z y x z y x z y x解 先计算系数行列式573411112--=D 069556371210≠-=----+-=第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容:行列式按行(列)展开;2.时间安排:2学时;3.教学方法:讲授与讨论相结合;4.教学手段:黑板讲解与多媒体演示.基本内容备注第六节行列式按行(列)展开定义在n阶行列式中,把元素ija所处的第i行、第j列划去,剩下的元素按原排列构成的1-n阶行列式,称为ij a的余子式,记为ijM;而ijjiijMA+-=)1(称为ij a的代数余子式.引理如果n阶行列式中的第i行除ija外其余元素均为零,即:nnnjnijnjaaaaaaaDΛΛMMMΛΛMMMΛΛ11111=.则:ijijAaD=.证先证简单情形:nnnnnaaaaaaaDΛMMMΛΛ212222111=再证一般情形:定理行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即按行:()jiAaAaAajninjiji≠=+++02211Λ按列:()jiAaAaAanjnijiji≠=+++02211Λ证:(此定理称为行列式按行(列)展开定理)nnnniniinaaaaaaaaaDΛΛΛΛΛΛΛΛΛΛΛΛΛΛ2121112110+++++++++=nnnninnnnnninnnnninaaaaaaaaaaaaaaaaaaaaaΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ211121121211211211112110+++=).,2,1(2211niAaAaAaininiiiiΛΛ=+++=例1:335111243152113------=D.解:例2:21122112----=OOOOnD解:21122112----=OOOOnD2112211121---=+++OOOOΛn rr1+=nDn.从而解得1+=nDn.例3.证明范德蒙行列式112112222121111---=nnnnnnnxxxxxxxxxDΛΛΛΛΛΛΛΛ()1i jn i jx x≥>≥=-∏.其中,记号“∏”表示全体同类因子的乘积.证用归纳法因为=-==1221211xxxxD()21i ji jx x≥>≥-∏所以,当2=n n=2时,(4)式成立.现设(4)式对1-n时成立,要证对n时也成立.为此,设法把nD降阶;从第n行开始,后行减去前行的1x倍,有()()()()()()21311221331122222133111111nn nnn n nn nx x x x x xx x x x x x x x xDx x x x x x x x x---------=---LLLL L L LL(按第一列展开,并提出因子1xxi-)第( 4 )次课授课时间()第(5)次课授课时间()基本内容备注第一节矩阵一、矩阵的定义称m行、n列的数表mnmmnnaaaaaaaaaΛΛΛΛΛΛΛ212222111211为nm⨯矩阵,或简称为矩阵;表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=mnmmnnaaaaaaaaaAΛΛΛΛΛΛΛ212222111211或简记为nmijaA⨯=)(,或)(ijaA=或n m A⨯;其中ij a表示A中第i行,第j列的元素。
(完整版)线性代数课程教案
重点
难点
教学重点:使学生掌握线性代数的基本概念、基本理论及基本方法,使学生初步掌握处理线性数量关系的基本思想和方法,培养学生运用线性代数方法分析问题和解决实际问题的能力。
教学难点:向量的线性相关性的性质的证明、线性方程组解的结构、二次型。
教材和参考书
1、中国人民大学出版社 赵树嫄主编《线性代数》(第三版)
克莱姆法则
教授思路,采用的教学方法和 辅助手段,板ห้องสมุดไป่ตู้设计,重点如何突出,难点如何解决,师生互动等
讲解法,详见课时教案。
本章思考题和习题
详见课时教案.
主要
参考资料
见参考书有关章节。
章节
§1.1行列式的概念
讲授主要内容
二、三阶行列式、n阶行列式的定义
重点
难点
二、三阶行列式
特殊行列式的值
要求掌握知识点和分析方法
二、三阶行列式、n阶行列式的定义、解二、三元线性方程组
教授思路,采用的教学方法和 辅助手段,板书设计,重点如何突出,难点如何解决,师生互动等
1、先由解二元一次方程组引入二阶行列式、再由解三元一次方程组引入三阶行列式。
2、分析三阶行列式的项与符号规律,引入排列及其逆序数,给出n阶行列式的定义。
3、本节重点是分析分析三阶行列式的项与符号规律以便引入n阶行列式,要把主要精力花在这一部分,利用对角线法则计算二阶三阶行列式不要太花时间、应强调对角线法则对于高阶行列式不适用。
4、在适当时候提出问题让学生思考,来解决师生互动问题。
作业布置
见作业册P6
章节
§1.2行列式的展开
§1.3行列式的性质
讲授主要内容
行列式的展开、余子式、代数余子式、行列式的性质
线性代数word教案下载
线性代数word教案下载【篇一:线性代数microsoft word 文档】实践课(或无上课时间)信息:现上课时间地点申请时间申请原因编号课程名称原上课时间地点以下是您在本年里的工资及酬金汇总记录2010年【篇二:线性代数第一章word版】第一章矩阵1.2 gauss消元法1.基本概念一般的n元线性方程组:?a11x1+a12x2+ +a1nxn=b1?ax+ax++ax=b?2112222nn2(*) ? ???am1x1+am2x2+ +amnxn=bm未知数:x1,x2, ,xn系数:ai j(i=1,2, ,m;j=1,2, ,n)常数项:b1,b2, ,bm一个解:n元有序数组c1,c2, ,cn,令x1=c1, x2=c2,, xn=cn,使(*)的所有方程变为恒等式。
解集合:(*)的全部解的集合。
不相容线性方程组:解集合为空集。
一般解(通解):解集合中全部元素的通项表达式。
具体解(特解):解集合中一个特定元素。
解的存在性:解集合是否为空集。
解的唯一性:非空的解集合是否只有一个元素。
线性方程组同解:解集合相同。
非齐次线性方程组:b1,b2, ,bm不全为零齐次线性方程组:b1,b2, ,bm全为零一般的n元齐次线性方程组:?a11x1+a12x2+ +a1nxn=0?ax+ax+ +ax=0?2112222nn(**) ? ???am1x1+am2x2++amnxn=0零解:所有未知数均取零的解非零解:未知数不全取零的解2. gauss 消元法例 1 解线性方程组:?2x1+2x2-4x3=4??x1-x2-x3=1?3x-4x-2x=5?123阶梯形方程组: 从上到下,方程中具有非零系数的第一个未知数的下标严格增大. 例如…. 注:(1) 它包含两个过程: 一是消元; 二是回代.(2) 将方程组化为阶梯形时所做的操作有如下三种: (i) 交换某两个方程, 如第i个和第j个, 表示为ri?rj. (ii) 用非零常数k乘某个方程, 如第i个方程, 表示为 kri. (iii) 将第i个方程的l倍加到第j个方程, 表示为 rj+lri. 这三种变换称为线性方程组的初等变换. 定理 1线性方程组的初等变换将方程组化为同解的方程组.解线性方程组的步骤:第一步若第一个方程的x1的系数为零,则选择一个x1的系数不为零的方程, 如第i个方程,交换它们的位置,即r1?ri.第二步用变换kr1 将x1的系数化为1.第三步用变换ri+lr1,i1, 将x1从第一个方程以下的所有方程中消去。
《线性代数》教案
《线性代数》教案一、教学目标1. 知识与技能:(1)理解线性代数的基本概念,如向量、矩阵、行列式等;(2)掌握线性方程组的求解方法,如高斯消元法、矩阵的逆等;(3)熟悉线性代数在实际问题中的应用。
2. 过程与方法:(1)通过实例讲解,培养学生的空间想象能力;(2)运用数学软件或工具,提高学生解决实际问题的能力;(3)引导学生运用线性代数的知识,分析、解决身边的数学问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)感受数学在生活中的重要性,培养学生的应用意识;(3)引导学生树立正确的数学观念,克服对数学的恐惧心理。
二、教学内容1. 第一章:向量(1)向量的概念及几何表示;(2)向量的线性运算;(3)向量的数量积与向量垂直;(4)向量的坐标表示与运算。
2. 第二章:矩阵(1)矩阵的概念与运算;(2)矩阵的行列式;(3)矩阵的逆;(4)矩阵的应用。
3. 第三章:线性方程组(1)线性方程组的解法;(2)高斯消元法;(3)矩阵的逆与线性方程组的解;(4)线性方程组的应用。
4. 第四章:矩阵的特征值与特征向量(1)特征值与特征向量的概念;(2)矩阵的特征值与特征向量的求解;(3)矩阵的对角化;(4)矩阵的特征值与特征向量的应用。
5. 第五章:二次型(1)二次型的概念;(2)二次型的标准形;(3)二次型的判定;(4)二次型的应用。
三、教学方法1. 采用启发式教学,引导学生主动探索、思考;2. 结合实例讲解,培养学生的空间想象能力;3. 利用数学软件或工具,提高学生解决实际问题的能力;4. 组织课堂讨论,促进学生交流与合作;5. 注重练习与反馈,巩固所学知识。
四、教学评价1. 平时成绩:课堂表现、作业、小测验等;2. 期中考试:检测学生对线性代数知识的掌握程度;3. 期末考试:全面考察学生的线性代数知识、技能及应用能力。
五、教学资源1. 教材:《线性代数》;2. 辅助教材:《线性代数学习指导》;3. 数学软件:如MATLAB、Mathematica等;4. 网络资源:相关在线课程、教学视频、练习题等。
完整word版线性代数教案设计
《线性代数》教案设计新疆财经大学教案课程名称:线性代数任课班级:任课教师:应用数学系基础数学教研室二○一_二○一学年第学期1 / 28《线性代数》教案设计课程教案概貌2 / 28《线性代数》教案设计课程单元教案(单元 1 )2个标准学时。
1.一单元为2.教学设计指在个标准学时内教学活动的时间安排2 .单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项33 / 28《线性代数》教案设计课程单元教案(单元 2 )后手写;讲师以上(含)为可选项,助教及教员为必选项3 4 / 28《线性代数》教案设计课程单元教案(单元 3 )§1.3 行列式的展开定理2.教学设计指在2个标准学时内教学活动的时间安排3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项5 / 28《线性代数》教案设计课程单元教案(单元 4 )§1.4行列式的计算2.教学设计指在2个标准学时内教学活动的时间安排3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项6 / 28《线性代数》教案设计课程单元教案(单元 5 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项7 / 28《线性代数》教案设计课程单元教案(单元 6 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项8 / 28《线性代数》教案设计课程单元教案(单元7 )§2.2几种特殊矩阵1.对角矩阵定义及性质后手写;讲师以上(含)为可选项,助教及教员为必选项3 9 / 28《线性代数》教案设计课程单元教案(单元8 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项10 / 28《线性代数》教案设计课程单元教案(单元9 )§2.4 矩阵的分块3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项11 / 28《线性代数》教案设计课程单元教案(单元10 )§2.5初等变换与初等矩阵3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项12 / 28《线性代数》教案设计课程单元教案(单元11 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项13 / 28《线性代数》教案设计课程单元教案(单元12 )后手写;讲师以上(含)为可选项,助教及教员为必选项3 14 / 28《线性代数》教案设计课程单元教案(单元13 )后手写;讲师以上(含)为可选项,助教及教员为必选项15 / 28 《线性代数》教案设计课程单元教案(单元14 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项16 / 28《线性代数》教案设计课程单元教案(单元15 )§3.4 向量空间1.向量空间的概念后手写;讲师以上(含)为可选项,助教及教员为必选项317 / 28《线性代数》教案设计课程单元教案(单元16 )后手写;讲师以上(含)为可选项,助教及教员为必选项3 18 / 28《线性代数》教案设计课程单元教案(单元17 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项19 / 28《线性代数》教案设计课程单元教案(单元18 )§4.2 矩阵的相似对角化1. 矩阵的相似概念、性质后手写;讲师以上(含)为可选项,助教及教员为必选项3 20 / 28《线性代数》教案设计课程单元教案(单元19 )后手写;讲师以上(含)为可选项,助教及教员为必选项321 / 28《线性代数》教案设计课程单元教案(单元20 )§4.4 实对称矩阵的相似对角化后手写;讲师以上(含)为可选项,助教及教员为必选项22 / 28 《线性代数》教案设计课程单元教案(单元21 )后手写;讲师以上(含)为可选项,助教及教员为必选项323 / 28《线性代数》教案设计课程单元教案(单元22 )后手写;讲师以上(含)为可选项,助教及教员为必选项324 / 28《线性代数》教案设计课程单元教案(单元23 )后手写;讲师以上(含)为可选项,助教及教员为必选项325 / 28《线性代数》教案设计课程单元教案(单元24 )§5.4 正定二次型和正定矩阵后手写;讲师以上(含)为可选项,助教及教员为必选项3 26 / 28《线性代数》教案设计课程单元教案(单元25 )后手写;讲师以上(含)为可选项,助教及教员为必选项327 / 28《线性代数》教案设计课程单元教案(单元26 )§5.5 投入产出数学模型1.投入产出平衡表。
(完整word版)线性代数行列式教案-
教案教学教案设计(续页)第一 章 行列式 §1。
1 n 阶行列式定义教学目的:使学生了解和掌握n 级排列、逆序逆序数奇排列偶排列n 阶行列式定义及行列式的计算教学重点:n 阶行列式定义及计算 教学难点:n 阶行列式定义一、导入 线性方程组和矩阵在工程技术领域里有着广泛的应用,而行列式就是研究线性方程组的求解理论和矩阵理论的重要工具。
二、新授(一) 二阶、三阶行列式对于二元线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a (1.1) 采用加减消元法从方程组里消去一个未知量来求解,为此: 第一个方程乘以a 22与第二个方程乘以a 12相减得(a 11a 22-a 21a 12)x 1= b 1a 22- b 2a 12第二个方程乘以a 11与第一个方程乘以a 21相减得(a 11a 22-a 21a 12)x 2=a 11b 2—a 21b 1若a 11a 22-a 21a 12≠0,方程组的解为122122111122211a a a a a b a b x --=122122*********a a a a b a b a x --= (1。
2)容易验证(1.2)式是方程组(1.1)的解.称a 11a 22-a 21a 12为二阶行列式,它称为方程组(1.1)的系数行列式,记为D 。
我们若记 2221211a b a b D =2211112b a b a D =方程组的解(1.2)式可写成 D D x 11=DDx 22=对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (1.3) 与二元线性方程组类似,用加减消元法可求得它的解: D D x 11=D Dx 22= DD x 33= 111213212223313233112233122331132132112332122133132231a a a Da a a a a a a a a a a a a a a a a a a a a a a a (1。
(完整word版)线性代数教案
教案(2013-2014学年第2学期)课程名称:线性代数任课教师:教师职称:所在院系:教学教案设计(首页)教学教案设计(续页)第一 章 行列式 §1.1 n 阶行列式定义教学目的:使学生了解和掌握n 级排列、逆序逆序数奇排列偶排列n 阶行列式定义及行列式的计算教学重点:n 阶行列式定义及计算 教学难点:n 阶行列式定义一、导入 线性方程组和矩阵在工程技术领域里有着广泛的应用,而行列式就是研究线性方程组的求解理论和矩阵理论的重要工具。
二、新授(一) 二阶、三阶行列式对于二元线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a (1.1) 采用加减消元法从方程组里消去一个未知量来求解,为此: 第一个方程乘以a 22与第二个方程乘以a 12相减得(a 11a 22-a 21a 12)x 1= b 1a 22— b 2a 12第二个方程乘以a 11与第一个方程乘以a 21相减得(a 11a 22-a 21a 12)x 2=a 11b 2-a 21b 1若a 11a 22-a 21a 12≠0,方程组的解为122122111122211a a a a a b a b x --=122122*********a a a a b a b a x --= (1.2)容易验证(1.2)式是方程组(1。
1)的解。
称a 11a 22-a 21a 12为二阶行列式,它称为方程组(1。
1)的系数行列式,记为D .我们若记 2221211a b a b D =2211112b a b a D =方程组的解(1。
2)式可写成 D D x 11=DDx 22=对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (1。
3) 与二元线性方程组类似,用加减消元法可求得它的解: D D x 11=D Dx 22= DD x 33= 111213212223313233112233122331132132112332122133132231a a a Da a a a a a a a a a a a a a a a a a a a a a a a (1。
2024版年度线性代数教案正式打印版
线性代数教案正式打印版•线性代数概述•矩阵与行列式•线性方程组•特征值与特征向量目•线性空间与线性变换•线性代数的应用案例录01线性代数概述线性代数的定义与特点定义线性代数是研究线性方程组、矩阵、线性空间及其变换等问题的一门数学分支。
特点线性代数以向量和矩阵为基本工具,通过线性变换来研究数学对象之间的关系和性质,具有高度的抽象性和广泛的应用性。
早期发展线性代数的起源可以追溯到古代中国的《九章算术》和西方欧几里得的《几何原本》等著作,但现代线性代数主要是在19世纪和20世纪发展起来的。
矩阵理论的建立19世纪中叶,英国数学家凯莱和德国数学家西尔维斯特等人开始系统地研究矩阵理论,为线性代数的发展奠定了基础。
线性空间理论的提出20世纪初,德国数学家格拉斯曼和法国数学家若尔当等人提出了线性空间的概念,进一步推动了线性代数的发展。
工程与技术自然科学社会科学计算机科学线性代数在工程和技术领域有着广泛的应用,如电路分析、信号处理、计算机图形学等。
线性代数在社会科学领域也有一定的应用,如经济学中的投入产出分析、社会学中的社会网络分析等。
在物理学、化学、生物学等自然科学领域,线性代数也被广泛应用于描述和解决实际问题。
在计算机科学领域,线性代数被广泛应用于机器学习、数据挖掘、图像处理等方面。
02矩阵与行列式由数字组成的矩形阵列,用于表示线性方程组、线性变换等。
矩阵定义矩阵性质矩阵种类包括矩阵的加法、数乘、转置、乘法等基本性质,以及矩阵的秩、逆矩阵等特殊性质。
包括方阵、行矩阵、列矩阵、对角矩阵、单位矩阵等。
030201矩阵的定义与性质一个方阵各元素按照特定规则组成的数值,用于表示线性方程组解的情况。
行列式定义包括行列式的性质、计算法则、按行按列展开等。
行列式性质用于判断线性方程组解的情况、计算矩阵的逆矩阵等。
行列式应用行列式的定义与性质矩阵与行列式的关系矩阵与行列式的联系行列式是方阵的一个数值特征,与矩阵的逆矩阵、特征值等密切相关。
《线性代数》教案
《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念和性质,掌握线性代数的基本运算和应用,提高学生解决实际问题的能力。
2. 教学内容:本章主要介绍线性代数的基本概念、线性方程组、矩阵及其运算、线性空间和线性变换。
3. 教学方法:采用讲解、案例分析、练习相结合的方法,引导学生主动探究、积极参与,培养学生的逻辑思维和抽象思维能力。
二、第一节线性代数的基本概念1. 教学目标:使学生了解线性代数的发展历程,理解向量、线性方程组、线性空间等基本概念。
2. 教学内容:a. 线性代数的起源和发展;b. 向量的定义和性质;c. 线性方程组的解法;d. 线性空间的定义和性质。
3. 教学方法:通过讲解和案例分析,让学生了解线性代数的历史背景,通过练习,巩固基本概念。
三、第二节线性方程组1. 教学目标:使学生掌握线性方程组的求解方法,会运用线性方程组解决实际问题。
2. 教学内容:a. 线性方程组的矩阵表示;b. 高斯消元法求解线性方程组;c. 克莱姆法则;d. 线性方程组在实际问题中的应用。
3. 教学方法:通过讲解和练习,使学生掌握线性方程组的求解方法,培养学生解决实际问题的能力。
四、第三节矩阵及其运算1. 教学目标:使学生理解矩阵的概念,掌握矩阵的运算规则,会运用矩阵解决实际问题。
2. 教学内容:a. 矩阵的定义和性质;b. 矩阵的运算(加法、数乘、乘法);c. 逆矩阵的概念和性质;d. 矩阵的应用。
3. 教学方法:通过讲解和练习,使学生掌握矩阵的基本运算,培养学生解决实际问题的能力。
五、第四节线性空间和线性变换1. 教学目标:使学生了解线性空间和线性变换的概念,理解它们在数学和其他领域的应用。
2. 教学内容:a. 线性空间的概念和性质;b. 线性变换的定义和性质;c. 线性变换的应用。
3. 教学方法:通过讲解和案例分析,使学生了解线性空间和线性变换的基本概念,培养学生的抽象思维能力。
六、第五节行列式1. 教学目标:使学生理解行列式的概念,掌握行列式的计算方法,会运用行列式解决实际问题。
完整word版线性代数教案设计
《线性代数》教案设计新疆财经大学教案课程名称:线性代数任课班级:任课教师:应用数学系基础数学教研室二○一_二○一学年第学期1 / 28《线性代数》教案设计课程教案概貌2 / 28《线性代数》教案设计课程单元教案(单元 1 )2个标准学时。
1.一单元为2.教学设计指在个标准学时内教学活动的时间安排2 .单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项33 / 28《线性代数》教案设计课程单元教案(单元 2 )后手写;讲师以上(含)为可选项,助教及教员为必选项3 4 / 28《线性代数》教案设计课程单元教案(单元 3 )§1.3 行列式的展开定理2.教学设计指在2个标准学时内教学活动的时间安排3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项5 / 28《线性代数》教案设计课程单元教案(单元 4 )§1.4行列式的计算2.教学设计指在2个标准学时内教学活动的时间安排3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项6 / 28《线性代数》教案设计课程单元教案(单元 5 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项7 / 28《线性代数》教案设计课程单元教案(单元 6 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项8 / 28《线性代数》教案设计课程单元教案(单元7 )§2.2几种特殊矩阵1.对角矩阵定义及性质后手写;讲师以上(含)为可选项,助教及教员为必选项3 9 / 28《线性代数》教案设计课程单元教案(单元8 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项10 / 28《线性代数》教案设计课程单元教案(单元9 )§2.4 矩阵的分块3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项11 / 28《线性代数》教案设计课程单元教案(单元10 )§2.5初等变换与初等矩阵3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项12 / 28《线性代数》教案设计课程单元教案(单元11 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项13 / 28《线性代数》教案设计课程单元教案(单元12 )后手写;讲师以上(含)为可选项,助教及教员为必选项3 14 / 28《线性代数》教案设计课程单元教案(单元13 )后手写;讲师以上(含)为可选项,助教及教员为必选项15 / 28 《线性代数》教案设计课程单元教案(单元14 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项16 / 28《线性代数》教案设计课程单元教案(单元15 )§3.4 向量空间1.向量空间的概念后手写;讲师以上(含)为可选项,助教及教员为必选项317 / 28《线性代数》教案设计课程单元教案(单元16 )后手写;讲师以上(含)为可选项,助教及教员为必选项3 18 / 28《线性代数》教案设计课程单元教案(单元17 )3.单元小节为课后手写;讲师以上(含)为可选项,助教及教员为必选项19 / 28《线性代数》教案设计课程单元教案(单元18 )§4.2 矩阵的相似对角化1. 矩阵的相似概念、性质后手写;讲师以上(含)为可选项,助教及教员为必选项3 20 / 28《线性代数》教案设计课程单元教案(单元19 )后手写;讲师以上(含)为可选项,助教及教员为必选项321 / 28《线性代数》教案设计课程单元教案(单元20 )§4.4 实对称矩阵的相似对角化后手写;讲师以上(含)为可选项,助教及教员为必选项22 / 28 《线性代数》教案设计课程单元教案(单元21 )后手写;讲师以上(含)为可选项,助教及教员为必选项323 / 28《线性代数》教案设计课程单元教案(单元22 )后手写;讲师以上(含)为可选项,助教及教员为必选项324 / 28《线性代数》教案设计课程单元教案(单元23 )后手写;讲师以上(含)为可选项,助教及教员为必选项325 / 28《线性代数》教案设计课程单元教案(单元24 )§5.4 正定二次型和正定矩阵后手写;讲师以上(含)为可选项,助教及教员为必选项3 26 / 28《线性代数》教案设计课程单元教案(单元25 )后手写;讲师以上(含)为可选项,助教及教员为必选项327 / 28《线性代数》教案设计课程单元教案(单元26 )§5.5 投入产出数学模型1.投入产出平衡表。
《线性代数》教案
1、理解矩阵的定义,知道零矩阵、单位阵、对角阵、行阶梯形阵、行最简阶梯阵、对称矩阵等特殊矩阵,知道两矩阵相等的概念;
2、掌握矩阵的线性运算、乘法运算、转置运算及其它运算规律;
3、知道矩阵的分块方法和在矩阵运算中的作用。
《线性代数》教案
1、理解齐次线性方程组的基础解系,线性方程组解的结构,并能熟练的求出它们的通解;
2、熟练掌握用初等行变换求线性方程组通解的方法;
《线性代数》教案
1、知道向量的内积与正交,了解正交矩阵的概念及性质。
2、理解方阵的特征值和特征向量的概念,掌握其求法。
1、了解相似矩阵的概念及其性质,知道矩阵对角化的充分必要条件。
会求实对称矩阵的相似对角矩阵;
2、掌握线性无关的向量组的Schmidt正交规范化的方法;
1、掌握二次型及其矩阵的表示,了解二次型秩的概念;
2、会用正交变换和配方法把二次型化为标准形的方法;
3、知道惯性定理,掌握正定二次型的判定。
线性代数教案
线性代数教案课程名称:线性代数课程目标:1. 掌握线性代数的基本概念和基本运算规则;2. 理解向量空间和矩阵的性质;3. 学会解线性方程组和矩阵的运算;4. 掌握线性变换和特征值、特征向量的概念与性质。
教学内容:第一课:向量及其运算1. 向量的概念和表示方法;2. 向量的线性组合、线性相关、线性无关的概念;3. 向量的加法和数乘运算规则;4. 向量空间的定义和基本性质;5. 向量空间的子空间和余子空间。
第二课:矩阵及其运算1. 矩阵的概念和表示方法;2. 矩阵的加法和数乘运算规则;3. 矩阵乘法和矩阵的转置;4. 矩阵的逆和矩阵的行列式;5. 线性方程组的矩阵表示和增广矩阵。
第三课:线性方程组与矩阵的解法1. 线性方程组的概念和表示方法;2. 线性方程组的解集和解的存在定理;3. 齐次线性方程组和非齐次线性方程组的解法;4. 矩阵的秩和线性方程组的解的关系;5. 矩阵的初等行变换及其应用。
第四课:特征值与特征向量1. 线性变换的概念和矩阵表示;2. 特征值和特征向量的定义与性质;3. 特征值和特征向量的计算方法;4. 对称矩阵和正交矩阵的特征值和特征向量;5. 线性变换的对角化和相似矩阵的概念。
教学方法:1. 理论讲解,通过示例引导学生理解概念和性质;2. 计算题练习,巩固和应用所学的基本运算规则;3. 探究式学习,鼓励学生自主思考和发现问题的解决方法;4. 课堂讨论,促进学生思维的活跃和合作交流。
教学评价:1. 课堂参与度,包括学生是否积极参与讨论和问题解答;2. 作业完成情况,检查学生对概念和运算规则的掌握程度;3. 期中和期末考试,考查学生综合应用所学知识解决问题的能力;4. 课堂小测验,定期检查学生对重要概念和定理的理解程度。
教学资源:1. 教科书和参考书籍:《线性代数及其应用》、《线性代数教程》等;2. 多媒体教学工具:投影仪、电脑等;3. 练习题集和习题课辅导材料;4. 在线学习资源:相关概念的视频、练习题和解析等。
线性代数电子教案
线性代数电子教案电子教案:线性代数一、教学目标:1.理解线性代数的基本概念、基本理论和基本方法。
2.掌握线性代数的基本运算和常用计算方法。
3.能够应用线性代数解决实际问题。
二、教学重点:1.线性方程组的解法。
2.矩阵及其运算。
3.向量及其运算。
三、教学难点:1.线性方程组的解法。
2.矩阵的逆与转置。
3.向量的线性相关性。
四、教学过程:1.引入(10分钟)通过实例引入线性代数的概念和应用。
如何利用线性代数解决实际问题?2.线性方程组(30分钟)2.1概念介绍:什么是线性方程组?何为解集?有唯一解、无解和无穷多解三种情况。
2.2解法:高斯消元法和矩阵法。
2.3实例演练:通过实例演示线性方程组的解法。
3.矩阵与矩阵运算(40分钟)3.1概念介绍:什么是矩阵?矩阵的行、列、元素、转置和逆。
3.2矩阵的加法和数乘。
3.3矩阵的乘法及其性质。
3.4实例演练:通过实例演示矩阵的运算。
4.向量与向量运算(40分钟)4.1概念介绍:什么是向量?向量的线性组合、线性相关和线性无关。
4.2向量的加法和数乘。
4.3内积与外积。
4.4实例演练:通过实例演示向量的运算。
5.应用与拓展(20分钟)5.1线性代数在计算机科学中的应用:图像处理、机器学习等。
5.2线性代数进一步拓展:矩阵的特征值与特征向量、二次型等。
6.总结与小结(10分钟)对本节课的内容进行总结和小结,检查学生的学习效果。
五、教学资源与评估:1.教学资源:投影仪、电子教案、线性代数教材。
2.教学评估:通过课堂练习和作业检查。
六、教学建议:1.利用多媒体技术,结合具体实例进行教学,增强学生的学习兴趣。
2.注重理论与实践的结合,引导学生进行实际问题的求解。
七、教学后记:本节课主要介绍了线性方程组、矩阵和向量的基本概念、基本运算和基本方法。
通过实例演练,学生对线性代数有了初步的了解和应用能力。
在教学过程中,学生积极参与讨论和互动,课堂气氛活跃。
但有部分学生对深入的理论和拓展知识还存在一定的困惑,需要增加相应的练习和辅导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第(1)次课授课时间()基本内容备注第一节二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
~设二元线性方程组⎩⎨⎧=+=+22222211212111bxaxabxaxa用消元法,当021122211≠-aaaa时,解得211222111212112211222112121221,aaaababaxaaaababax--=--=令2112221122211211aaaaaaaa-=,称为二阶行列式,则如果将D中第一列的元素11a,21a换成常数项1b,2b,则可得到另一个行列式,用字母1D表示,于是有2221211ababD=按二阶行列式的定义,它等于两项的代数和:212221abab-,这就是公式(2)中1x的表达式的分子。
同理将D中第二列的元素a 12,a 22换成常数项b1,b2 ,可得到另一个行列式,用字母2D表示,于是有2121112babaD=,按二阶行列式的定义,它等于两项的代数和:121211baba-,这就是公式(2)中2x的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==DDxDDx2211其中0≠D例1.解线性方程组.1212232121⎪⎩⎪⎨⎧=+=-xxxx同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa用消元法解得;定义设有9个数排成3行3列的数表333231232221131211aaaaaaaaa记333231232221131211aaaaaaaaaD=322113312312332211aaaaaaaaa++=332112322311312213aaaaaaaaa---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即·例2. 计算三阶行列式243122421----=D.(-14)例3. 求解方程094321112=xx(32==xx或)例4. 解线性方程组.5573422⎪⎩⎪⎨⎧=+-=++-=++-zyxzyxzyx解先计算系数行列式573411112--=D069556371210≠-=----+-=` < " ·、$】第( 2 )次课授课时间()1. ~2.教学内容:对换;行列式的性质;3. 时间安排:2学时;4. 教学方法:讲授与讨论相结合;5. 教学手段:黑板讲解与多媒体演示.^基本内容备注第四节 对换、对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换.将相邻两个元素对调,叫做相邻对换. 例:b b b a a a l 11 ——b b a b a a l 11.( ;] 【| ,(第( 3 )次课授课时间()1.:2.教学内容:行列式按行(列)展开;3.时间安排:2学时;4.教学方法:讲授与讨论相结合;5.教学手段:黑板讲解与多媒体演示.|基本内容备注(第六节行列式按行(列)展开定义在n阶行列式中,把元素ija所处的第i行、第j列划去,剩下的元素按原排列构成的1-n阶行列式,称为ij a的余子式,记为ijM;而ijjiijMA+-=)1(称为ij a的代数余子式.引理如果n阶行列式中的第i行除ija外其余元素均为零,即:nnnjnijnjaaaaaaaD11111=.则:ijijAaD=.证先证简单情形:nnnnnaaaaaaaD212222111=再证一般情形:^定理行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即按行:()jiAaAaAajninjiji≠=+++02211按列:()jiAaAaAanjnijiji≠=+++02211证:(此定理称为行列式按行(列)展开定理)nnnniniinaaaaaaaaaD2121112110+++++++++=nnnninnnnnninnnnninaaaaaaaaaaaaaaaaaaaaa211121121211211211112110+++=).,2,1(2211niAaAaAaininiiii=+++=例1 :335111243152113------=D.【解:例2:21122112----=nD解:21122112----=nD2112211121---=+++n rr)1+=nDn.从而解得1+=nDn.例3.证明范德蒙行列式112112222121111---=nnnnnnnxxxxxxxxxD()1i jn i jx x≥>≥=-∏.其中,记号“∏”表示全体同类因子的乘积.证用归纳法因为=-==1221211xxxxD()21i ji jx x≥>≥-∏所以,当2=n n=2时,(4)式成立.】现设(4)式对1-n时成立,要证对n时也成立.为此,设法把nD降阶;从第n行开始,后行减去前行的1x倍,有()2n x -(按第一列展开,并提出因子1x x i -)1行列式一行(列)的各元素与另一行(列)对应第( 4 )次课授课时间()\ ;;…)|:第(5)次课授课时间()1.教学内容:矩阵;矩阵的运算;2.时间安排:2学时;^3.教学方法:讲授与讨论相结合;4.教学手段:黑板讲解与多媒体演示。
#基本内容备注第一节 矩阵一、矩阵的定义 称m 行、n 列的数表mnm m n n a a a a a a a a a212222111211为n m 矩阵,或简称为矩阵;表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=mnmmnnaaaaaaaaaA212222111211[或简记为nmijaA⨯=)(,或)(ijaA=或n m A⨯;其中ij a表示A中第i行,第j列的元素。
其中行列式mnmmnnaaaaaaaaa212222111211D=为按行列式的运算规则所得到的一个数;而nm⨯矩阵是nm⨯个数的整体,不对这些数作运算。
例如,公司的统计报表,学生成绩登记表等,都可写出相应的矩阵。
设nmijaA⨯=)(,n mijbB⨯=)(都是nm⨯矩阵,当则称矩阵A与B相等,记成BA=。
二、特殊形式n阶方阵:nn⨯矩阵《行矩阵:n⨯1矩阵(以后又可叫做行向量),记为),,,(,21naaaA=列矩阵:1⨯m矩阵(以后又可叫做列向量),记为⎪⎪⎪⎪⎪⎭⎫⎝⎛=mbbbB21零矩阵:所有元素为0的矩阵,记为O对角阵:对角线元素为nλλλ,...,,21,其余元素为D的方阵,记为单位阵:对角线元素为1,其余元素为0的方阵,记为(⎪⎪⎪⎪⎪⎭⎫⎝⎛=111E三、线性变换的系数矩阵线性变换的定义:设变量myyy,...,,21能用变量nxxx,...,,21线性表示,即⎪⎪⎩⎪⎪⎨⎧++=++=++=nmnmmmnnnnxaxaxayxaxaxayxaxaxay22112222121212121111这里ija()njmi,,2,1;,,2,1==为常数。
这种从变量nxxx,...,,21到变量myyy,...,,21的变换称为线性变换。
线性变换由m个n元函数组成,每个函数都是变量的一次幂,故而称之为线性变换。
上式的系数可构成一个nm⨯矩阵()()ijnmijmnmmnnaaaaaaaaaaaA==⎪⎪⎪⎪⎪⎭⎫⎝⎛=⨯212222111211·⎪⎪⎪⎪⎪⎭⎫⎝⎛=mnmmnnaaaaaaaaaA212222111211称之为线性变换的系数矩阵。
线性变换和系数矩阵是一一对应的。
如,直角坐标系的旋转变换(变量),(yx到变量),(yx''的变换)⎩⎨⎧+-=+=yxyyxxθθθθcossin'sincos'的系数矩阵为⎪⎪⎭⎫⎝⎛-=θθθθcossinsincosA.恒等变换$⎪⎪⎩⎪⎪⎨⎧===mmxyxyxy2211的系数矩阵为例. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111E 同样,齐次线性方程组 ⎪⎪⎩⎪⎪⎨⎧=++=++=++000221122221211212111n mn m m nn n n x a x a x a x a x a x a x a x a x a与系数矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211,也是一一对应的.非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 与增广矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=m mn m m n n b b b a a a a a a a a a A21212222111211也是一一对应的。
第二节 ^第三节矩阵的运算一、加法设n m ij a A ⨯=)(,n m ij b B ⨯=)(,都是n m ⨯矩阵,则加法定义为⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=+mn mn m m m m n n n n b a b a ba b a b a b a b a b a b a B A221122222221211112121111#| ^ } ;。