(完整版)初中数学勾股定理拔高综合训练(含答案),推荐文档
八年级数学勾股定理拓展提高(勾股定理)拔高练习(含答案)
八年级数学勾股定理拓展提高(勾股定理)拔高练习试卷简介:本测试卷共有13道题,其中5道填空题,5道解答题,3道证明题,分四个板块,板块一为回顾练习,回顾暑期学到的关于勾股定理的主要知识,相关题目为教材1、2、3题;板块二为直角三角形六大性质,勾股定理只是直角三角形六大性质之一,将直角三角形的性质一网打尽,相关题目为教材4、5、6、8题;板块三为折叠专题,此类题为中考常考题,需熟练掌握,相关题目为教材9、10、12题;板块四为勾股定理实际应用,有典型的拱桥问题,台风问题,趣味性强,相关题目为教材14、16题。
学习建议:1.题目中有关于直角三角形边的关系,就要想到用勾股定理。
2.折叠专题要注意解题套路,第一步:找准折痕;第二步:找准相等线段,相等角度;第三步:找直角三角形。
3.勾股定理实际应用要能根据题意和生活经验抽象出数学模型,然后用勾股定理相关知识解答。
一、填空题(共5道,每道4分)1.教材1题:△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是_______.答案:第一种情况:当高AD在三角形内部时,如图所示,利用勾股定理求出:BD=9,CD=5,BC=14,所以周长为13+14+15=42第二种情况:当高AD在三角形外部时,如图所示,同样由勾股定理求出周长为32所以,答案为42或32解题思路:此题没有给出图形,需要自己画图,所以要分类讨论:高在内部,高在外部。
易错点:只想到第一种情况,忽略了高在外部的情况,导致少一种情况。
试题难度:三颗星知识点:三角形2.教材3题:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.答案:解:由于△ABC≌△CDE,所以BC=DE∵S1是以AB为边长的正方形的面积,S2是以DE为边长的正方形的面积∴S1+S2=AB2+DE2=AB2+BC2=AC2=1,同理:S3+S4=3,故S1+S2+S3+S4=4.解题思路:要能从图形中看出那两个三角形是全等的,利用全等后对应边相等来运用勾股定理易错点:看不出哪两个三角形是全等的关系试题难度:二颗星知识点:勾股定理的应用3.教材4题:△ABC周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是_____.答案:解:一边上的中线等于他的一半,则他一定是一个直角三角形。
中考数学直角三角形与勾股定理专题训练(含答案)
中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。
初中数学 勾股定理 专题训练(含答案)
第一部分知识梳理一、直角三角形的有关性质1、直角三角形的定义:有一个角是直角,的三角形叫做解直角三角形.2、直角三角形的性质1、三角形中,如果两角之和等于第三个角,那么这个三角形是,2、三角形中,如果两角之差等于第三个角,那么这个三角形是,3、三角形中,如果三边满足a2+b2=c2,那么这个三角形是,4、三角形中,如果一边上的中线等于这边的一半,那么这个三角形是,三、其他1、了解一些勾股数2、利用勾股定理求值3、利用勾股定理的逆定理,来判定一个三角形是直角三角形4、与三角函数联系在一起。
第二部分中考链接一、选择题1.(2018•青岛)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕相交于点F.已知EF=32,则BC的长是()A.B.C.3 D.1题图2题图3题图4题图2.(2018•淄博)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.3、.(2018•威海)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .C .D .4.(2018滨州)如图,∠AOB=60°,点P 是∠AOB 内的定点且,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6 D .35.(2018临沂)如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .32 B .2 C . 2 D5题图 6题图 7题图 8题图6.(2018•黄冈)如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=( )A .2 B .3 C .4 D .7.(2019山东聊城)如图,在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是( )A .AE +AF =ACB .∠BEO +∠OFC =180° C .OE +OF =2BCD .S 四边形AEOF =12S △ABC 8.(2019山东滨州)如图,在△OAB 和△OCD 中,OA =OB ,OC =OD ,OA >OC ,∠AOB =∠COD =40°,连接AC ,BD 交于点M ,连接OM .下列结论:①AC =BD ;②∠AMB =40°;③OM 平分∠BOC ;④MO 平分∠BMC .其中正确的个数为( )A .4 B .3 C .2 D .19.(2019南通)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间10.(2019宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积 D.最大正方形与直角三角形的面积和9题图10题图11题图11.(2019河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( ) A.B.4 C.3 D二、填空题1.(2018•泰安)如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.2、(2018临沂)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=.3.(2018•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.4.(2018黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_________________cm(杯壁厚度不计).2题图3题图4题图5题图5.(2018•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=cm.6、(2018•黑龙江)如图,已知等边△ABC 的边长是2,以BC 边上的高AB 1为边作等边三角形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△AB 2C 2的B 2C 2边上的高AB 3为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2的面积为S 1,△B 2C 1B 3的面积为S 2,△B 3C 2B 4的面积为S 3,如此下去,则S n = .6题图 7题图 8题图 9题图 7.(2018青岛)如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为8.(2019山东临沂)如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 .9.(2019山东枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若AB =2,则CD = .10、(2019山东聊城)如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,DE 为△ABC 的中位线,延长BC至F ,使CF =12BC ,连接FE 并延长交AB 于点M .若BC =a ,则△FMB 的周长为 .10题图 11题图 12题图11.(2019威海)如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.12.(2019山东淄博)如图,在以A 为直角顶点的等腰直角三角形纸片ABC 中,将B 角折起,使点B 落在AC 边上的点D (不与点A ,C 重合)处,折痕是EF .如图1,当CD =12AC 时,tan α1=34;如图2,当CD =13AC 时,tan α2=512; 如图3,当CD =14AC 时,tan α3=724;……依此类推,当CD =11n +AC (n 为正整数)时,tan αn = . 13.(2019南京)在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是__________.14.(2019伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE △是直角三角形时,则CD 的长为__________.三、解答题1.(2019山东临沂)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC 方向开挖隧道,为了加快施工速度,要在小山的另一侧D (A 、C 、D 共线)处同时施工.测得∠CAB =30°,AB =4km ,∠ABD =105°,求BD 的长.2、(2019山东菏泽)如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.(1)如图1,连接BE ,CD ,BE 的廷长线交AC 于点F ,交CD 于点P ,求证:BP ⊥CD ;(2)如图2,把△ADE 绕点A 顺时针旋转,当点D 落在AB 上时,连接BE ,CD ,CD的延长线交BE 于点P ,若BC =,AD =3,求△PDE 的面积.3、(2019山东枣庄)在△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且∠BMN =90°,当∠AMN =30°,AB =2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN AM.4、.(2018济宁)如图,在正方形ABCD 中,点E,F 分别是边AD,BC 的中点,连接DF,过点E 作EH⊥DF,垂足为H,EH 的延长线交DC 于点G.(1)猜想DG 与CF 的数量关系,并证明你的结论;(2)过点H 作MN∥CD,分别交AD,BC 于点M,N,若正方形ABCD 的边长为10,点P 是MN 上一点,求△PDC 周长的最小值.5.(2019河北)已知:整式A=(n2-1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:答案与提示一、选择题1、B2、A3、C4、D5、B6、C7、C .8、B .9、C 10、C 11、A1、解:∵沿过点E 的直线折叠,使点B 与点A 重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E 为AB 中点,∴EF=12AB ,EF=32,∴AB=AC=3,∵∠BAC=90°,∴,故选:B .2、解:∵△ABC 为等边三角形,∴BA=BC ,可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,且延长BP ,作AF ⊥BP 于点F .如图, ∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE 为等边三角形,∴PE=PB=4,∠BPE=60°, 在△AEP 中,AE=5,AP=3,PE=4,∴AE 2=PE 2+PA 2,∴△APE 为直角三角形,且∠APE=90°, ∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF 中,AF=12AP=32,PF=2∴在直角△ABF 中,AB 2=BF 2+AF 2=(2+(32)2.则△ABC 的面积是4•AB 2=4•(=9+4.故选:A .2题图 3题图 4题图3、解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD ∥GF ,∴∠GFH=∠PAH ,又∵H 是AF 的中点,∴AH=FH ,在△APH 和△FGH 中,∵,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG ,∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=122,故选:C . 4、解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图, 则MP=MC ,NP=ND ,,∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+NC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,∵∠OCH=30°,∴OH=1232,∴CD=2CH=3.故选:D . 5、解:∵BE ⊥CE ,AD ⊥CE ,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA .在△CEB 和△ADC 中,,∴△CEB ≌△ADC (AAS ),∴BE=DC=1,CE=AD=3.∴DE=EC ﹣CD=3﹣1=2故选:B .6、解:∵在Rt △ABC 中,∠ACB=90°,CE 为AB 边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD 为AB 边上的高,∴在Rt △CDE 中,CD=, 故选:C .7、解:连接AO ,如图所示.∵△ABC 为等腰直角三角形,点O 为BC 的中点,∴OA =OC ,∠AOC =90°,∠BAO =∠ACO =45°. ∵∠EOA +∠AOF =∠EOF =90°,∠AOF +∠FOC =∠AOC =90°,∴∠EOA =∠FOC .∴△EOA ≌△FOC (ASA ),∴EA =FC ,∴AE +AF =AF +FC =AC ,选项A 正确;∵∠B +∠BEO +∠EOB =∠FOC +∠C +∠OFC =180°,∠B +∠C =90°,∠EOB +∠FOC =180°﹣∠EOF =90°,∴∠BEO +∠OFC =180°,选项B 正确;∵△EOA ≌△FOC ,∴S △EOA =S △FOC ,∴S 四边形AEOF =S △EOA +S △AOF =S △FOC +S △AOF =S △AOC =S △ABC , D 正确.7题图 8题图8、解:∵∠AOB =∠COD =40°,∴∠AOB +∠AOD =∠COD +∠AOD ,即∠AOC =∠BOD ,∴△AOC ≌△BOD (SAS ),∴∠OCA =∠ODB ,AC =BD ,①正确;∴∠OAC =∠OBD ,由三角形的外角性质得:∠AMB +∠OAC =∠AOB +∠OBD ,∴∠AMB =∠AOB =40°,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图所示:则∠OGC =∠OHD =90°,12∴△OCG ≌△ODH (AAS ),∴OG =OH ,∴MO 平分∠BMC ,④正确; 正确的个数有3个;二、填空题12、、130°或90°.4、20 5、6 6(34)n .78、9.10、92a .11、10512、22122nn n ++.13、4<BC ≤314、3或247 1、解:由折叠知,A'E=AE ,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt △A'CB 中,=8,设AE=x ,则A'E=x ,∴DE=10﹣x ,CE=A'C+A'E=8+x ,在Rt △CDE 中,根据勾股定理得,(10﹣x )2+36=(8+x )2, ∴x=2, ∴AE=2,在Rt △ABE 中,根据勾股定理得,∴sin ∠ABE=AE BE2、解:∵四边形ABCD 是平行四边形,[w ∴BC=AD=6,OB=D ,OA=OC ,∵AC ⊥BC ,∴,∴OC=4,∴3、解:∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,4题图8题图 9题图 5、解:在Rt △ADB 与Rt △ADC 中, ,∴Rt △ADB ≌Rt △ADC ,∴S △ABC =2S △ABD =2×21AB•DE=AB•DE=3AB, ∵S △ABC =21AC•BF,∴21AC•BF=3AB,∵AC=AB ,∴21BF=3,∴BF=6.故答案为6.6、解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=3,∴第一个等边三角形AB1C1的面积为3×(3)2=3()1;∵等边三角形AB1C1,AB2⊥B1C1,∴B1B2=2,AB1,根据勾股定理得:AB2=32,∴第二个等边三角形AB2C2的面积为4×(32)2(34)2;依此类推,第n个等边三角形ABnCn(34)n(34)n.7.解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=12BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴GH=12,8、解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=CD=∴△ABC的面积=2S△BCD=2××4×9、解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC AB=,BF=AF=2AB,∵两个同样大小的含45°角的三角尺,∴AD=BC=,在Rt△ADF中,根据勾股定理得,DF,∴CD=BF+DF﹣BC﹣﹣.10、解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC.∵DE是中位线,∴CE.在Rt△FEC中,利用勾股定理求出FE=a,12=∴∠FEC =30°.∴∠A =∠AEM =30°,∴EM =AM .△FMB 周长=BF +FE +EM +BM =BF +FE +AM +MB =BF +FE +AB =92a .故答案为92a . 11、解:作DE ⊥AB 于E ,CF ⊥AB 于F ,如图所示:则DE =CF ,∵CF ⊥AB ,∠ACB =90°,AC =BC ,∴CF =AF =BF =12AB , ∵AB =BD ,∴DE =CF =12AB =12BD ,∠BAD =∠BDA ,∴∠ABD =30°,∴∠BAD =∠BDA =75°, ∵AB ∥CD ,∴∠ADC +∠BAD =180°,∴∠ADC =105°;12、解:观察可知,正切值的分子是3,5,7,9,…,2n +1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n +1,2(21)12n +-,2(21)12n ++中的中间一个.∴tan αn =221(21)12n n ++-=22122n n n++. 三、解答题1、解:作BE ⊥AD 于点E ,∵∠CAB =30°,AB =4km ,∴∠ABE =60°,BE =2km ,∵∠ABD =105°,∴∠EBD =45°,∴∠EDB =45°,∴BE =DE =2km ,∴BD =km ,即BD 的长是km.1题图 3题图 4题图2、解:(1)∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.∴ AD =AE ,AB =AC ,∠BAC ﹣∠EAF =∠EAD ﹣∠EAF ,即∠BAE =∠DAC ,∴△ABE ≌△ADC (SAS ),∴∠ABE =∠ACD ,∵∠ABE +∠AFB =∠ABE +∠CFP =90°,∴∠CPF =90°,∴BP ⊥CD ;(2)在△ABE 与△ACD 中,,∴△ABE ≌△ACD (SAS ),∴∠ABE =∠ACD ,BE =CD ,90AE AD EAB CAB AB AC =⎧⎪∠=∠=⎨⎪=⎩∵∠PDB=∠ADC,∴∠BPD=∠CAB=90°,∴∠EPD=90°,∵BC=,AD=3,∴DE=,AB=6,∴BD=6﹣3=3,CD∵△BDP∽△CDA,∴,∴PDPB∴PE==,∴△PDE的面积=.3、(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2)2,解得,DM=,∴AM=AD﹣DM﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,∴△BME≌△AMN(ASA),∴BE=AN,∴AB+AN=AB+BE=AE AM.4、解:(1)结论:CF=2DG.理由:∵四边形 ABCD 是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴12DG DECF DC==∴CF=2DG.(2)作点 C 关于 NM 的对称点 K,连接 DK 交 MN 于点 P,连接 PC,此时△PDC 的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.(3)由题意得:CD=AD=10, DE=AE=5, DG=52,DH=DE DGEG∙=∴∴HM=2DH EHDE∙=∴=1在Rt△DCK中=∴△PCD的周长的最小值为5、解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,=BD PD PBCD AD AC==36PD PB==551925510⨯⨯=33当2n=8时,n=4,∴n2+1=42+1=15;当n2-1=35时,n2+1=37.。
勾股定理测试题(含答案)初中数学
第14章《勾股定理》一、选择题1. 三角形三边长分别为6,8,10,那么它最短边上的高为……………()A. 4B. 5C. 6D. 82. 三角形各边(从小到大)长度的平方比如下,其中不是直角三角形的是………()A. 1:1:2B. 1:3:4C. 9:25:36D. 25:144:1693. 设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,则以c+h,a+b,h为边的三角形的形状是…………………………………()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定4. △ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB为……………………()A. 1:2:3B. 1:2:3C. 1:3:2D. 3:1:25. △ABC中,AB=15,AC=13。
高AD=12。
则△ABC的周长是……………()A. 42B. 32C. 42或32D. 37或33二、填空题1. 若有两条线段,长度分别为8 cm,17cm,第三条线段长满足__________条件时,这三条线段才能组成一个直角三角形。
2. 木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线长为68cm,这个桌面__________(填“合格”或“不合格”)。
3. 如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。
(π取3)4. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于________ 。
三、计算题1. 如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A 到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?2. 已知直角三角形的三边长分别为3,4,x,求x2。
勾股定理练习题及答案
勾股定理练习题及答案勾股定理练习题及答案勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
下面小编给大家带来勾股定理练习题及答案,欢迎大家阅读。
勾股定理练习题:1、在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为__________2、已知直角三角形两边的长为3和4,则此三角形的周长为__________.3、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要 __________元.4、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B 下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m5、将一根24cm的.筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm6、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1。
4m,BC=30米,请帮助小明计算出树高AB.(取1。
732,结果保留三个有效数字)◆典例分析如图1,一个梯子AB长2。
5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1。
5m,梯子滑动后停在DE的位置上,如图2,测得BD长为0。
5m,求梯子顶端A下落了多少米.解法指导:直角三角形中,已知一直角边和斜边是勾股定理的重要应用之一.勾股定理:a2+b2=c2的各种变式:a2=c2-b2,b2=c2-a2.应牢固掌握,灵活应用.分析:先利用勾股定理求出AC与CE的长,则梯子顶端A下落的距离为AE=AC-CF.解:在Rt△ABC中,AB2=AC2+BC2∴2.52=AC2+1。
中考数学 勾股定理综合练习(含答案)
2020中考数学 勾股定理综合练习(含答案)一、单选题(共有10道小题)1.和数轴上的点一一对应的 是()。
A. 整数B. 有理数C. 无理数D. 实数2.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切与E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A.133B.92D.3.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等 ②数据5,2,7,1,2,4的中位数是3,众数是2 ③等腰梯形既是中心对称图形,又是轴对称图形④Rt ABC △中,90C =o ∠,两直角边a 、b 分别是方程2770x x -+=的两个根,则AB正确命题有( )A .0个B .1个C .2个D .3个4.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 都是格点,则线段AB 的长度为( ) A. 5 B.6 C.7 D.255.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;以此类推,则平行四边形AO 4C 5B 的面积为( )A .54cm 2B .58cm 2C .516cm 2 D .532cm 26.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB=6,BC =9,则).FA CD E MN2A .4B.C .4.5D .57.如图,两个连接在一起的菱形的边长都是1 cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C8.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A .0B .1C .2D .39.下列图形都是由边长为1厘米的小正方形连接组成的.按照图形的变化规律,第2009个图形的周长是( )厘米. A 、4018 B 、4020 C 、8036 D 、602710.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。
(完整版)北师大版八年级上册数学第一章《勾股定理》单元测试卷(含答案),推荐文档
7 7第一章《勾股定理》单元测试卷班别:姓名:一、选择题(本题共10 小题,每小题3 分,满分30 分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.已知a=3,b=4,若a,b,c 能组成直角三角形,则c=()A.5B.C.5 或D.5 或63.如图中字母A 所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC 中,直角三角形的个数为()①a= ,b=,c= ②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2 个B.3 个C.4 个D.5 个7.在△ABC 中,若a=n2﹣1,b=2n,c=n2+1,则△ABC 是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3 8. 直角三角形斜边的平方等于两条直角边乘积的2 倍,这个三角形有一个锐角是 ( ) A .15°B .30°C .45°D .60°9. 已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点 D 重合,折痕为 EF ,则△ABE 的面积为( ) A .3cm 2B .4cm 2C .6cm 2 D.12cm 210. 已知,如图,一轮船以 16 海里/时的速度从港口 A 出发向东北方向航行,另一轮船以 12 海里/时的速度同时从港 口 A 出发向东南方向航行,离开港口 2 小时后,则两船相距( ) A .25 海里B .30 海里C .35 海里D . 40 海里二、填空题(本题共 8 小题,每小题 3 分,满分 24 分)11. 一个三角形三边长度之比为 1∶2∶ ,则这个三角形的最大角为度.12. 如图,等腰△ABC 的底边 BC 为 16,底边上的高 AD 为 6,则腰长 AB 的长为. 13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B200m ,结果他在水中实际游了 520m ,求该河流的宽度为m .14.小华和小红都从同一点O 出发,小华向北走了9 米到A 点,小红向东走到B 点时,当两人相距为15 米,则小红向东走了米.15.一个三角形三边满足(a +b)2 -c2 = 2ab ,则这个三角形是三角形.16.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是.三、解答题(共46 分)19.在RtΔABC 中,∠A CB=90°,AB=5,AC=3,CD⊥AB 于D,求CD 的长.CA BD21.(7 分)如图,在△ABC 中,AD⊥BC 于D,AB=3,BD=2,DC=1,求AC 的值.22.(8 分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河北牧童A东B 小屋23.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么 A 城遭受这次台风影响有多长时间?《勾股定理》单元测试卷答案一、选择题(共10 小题,每小题3 分,满分30 分)1.C.2.C.3.D.4.C.5.D.6.A.7.D.8.C.9.C.10.D.二、填空题(共8 小题,每小题3 分,满分24 分)11.900 .12.10 .13.480 m.14.12 米.15.直角.16.合格.17.30 cm2.18.25 .三、解答题(共46 分)19.略20.解:∵∠ACB=90°,AB=5,AC=3,∴BC2 = AB2 -AC2=42,∴BC=4,∵CD⊥AB,1 1 12∴AB·CD= AC·BC,∴5CD=12,∴CD=.2 2 5.21.解:∵AD⊥BC 于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.∴AC=22.解:设矩形的长是a,宽是b,根据题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,所以矩形的周长是14×2=28m.23.如图,作出A 点关于MN 的对称点A′,则A′A=8 km,连接A′B 交MN 于点P,则A′B 就是最短路线.在Rt△A′DB 中,A′D=15 km,BD=8 km由勾股定理得A′B2= A′D 2+BD2=289∴A′D =17kmA′M P NAD B24.解:(1)由A 点向BF 作垂线,垂足为C,在Rt△ABC 中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A 城要受台风影响;(2)设BF 上点D,DA=200 千米,则还有一点G,“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
勾股定理练习题及答案(共6套)
勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。
第一章 勾股定理 分类提升训练(含答案) 2024--2025学年 北师大版 八年级数学上册
第一章 勾股定理 分类提升训练 2024--2025学年 北师大版 八年级数学上册一、单选题1.学了“勾股定理”后,甲、乙两位同学的观点如下:甲:如果是直角三角形,那么一定成立;乙:在中,如果,那么不是直角三角形.对于两人的观点,下列说法正确的是( )A .甲对,乙错B .甲错,乙对C .两人都错D .两人都对2.如图,在中,,分别以,为边向外作正方形,面积分别为,,若,,则的长为( )A .4B .2CD .33.为预防新冠疫情,民生大院入口的正上方处装有红外线激光测温仪(如图所示),测温仪离地面的距离米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为米的市民正对门缓慢走到离门米的地方时(即米),测温仪自动显示体温,则人头顶离测温仪的距离等于( )A .米B .米C .米D .米4.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠ABO =60°,若矩形的对角线长为6.则线段AD 的长是( )ABC V 222a b c +=ABC V 222a b c +≠ABC V ABC V 90ACB ∠=︒AC AB 1S 2S 13S =27S =BC A 3AB = 1.8CD 1.6 1.6BC =AD 2.0 2.2 2.25 2.5A .3B .4C .2D .35.如图是一圆柱玻璃杯,从内部测得底面半径为,高为,现有一根长为的吸管任意放入杯中,则吸管露在杯口外的长度最少是( )A .B .C .D .6.如图,已知矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的长为( )A.B .C .D .7. 如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .B .C .D .28.如图,有一个水池,水面是一个边长为尺的正方形,在水池正中央有一根芦苇,它高出水面6cm 16cm 25cm 6cm 5cm 9cm (25cm -ABCD 4AB =3BC =P BC CDP V DP C E PE DE AB O F OP OF =DF 3911451317557173276256101尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面、求这根芦苇的长度是多少尺?设芦苇的长度是尺,根据题意,可列方程为( )A .B .C .D .9.如图,过矩形对角线的交点,作对角线的垂线,交于点,交于点,若,,则的长等于( )A .B .CD .10.在Rt 中,.以为圆心,AM 的长为半径作弧,分别交AC ,AB 于点M ,N.再分别以M ,N 为圆心,适当长度为半径画弧,两弧交于点.连接AP ,并延长AP 交BC 于点.过点作于点,垂足为,则DE 的长度为( )A .B .C .2D .1二、填空题11.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,则旗杆高度为 米.12.下图是公园的一角,有人为了抄近道而避开横平竖直的路的拐角 ,而走“捷径 ”,于是在草坪内走出了一条不该有的“路 ”.已知 米, 米,只为少走 米的路. x 222510x +=()2221015x -+=()22215x x -+=()22251x x +=-ABCD O BD AD E BC F 3AE =5BF =EF 48ABC V B ∠=90,8,10AB AC ︒==A P D D DE AC ⊥E E 8345ABC ∠AC AC 40AB =30BC =13.若的三边,,满足,则的面积是 .14.如图,矩形ABCD 中, , ,CB 在数轴上,点C 表示的数是 ,若以点C 为圆心,对角线CA 的长为半径作弧交数轴的正半轴于点P ,则点P 表示的数是 .15.有一根长7cm 的木棒,要放进长、宽、高分别为5cm 、4cm 、3cm 的木箱, (填“能”或“不能”)放进去。
中考数学《勾股定理》复习练习题及答案
中考数学复习专题练习勾股定理一、选择题:1、以下列各组数为边长,能组成直角三角形的是()A.,, B.6,8,10 C.5,12,17 D.9,40,422、下列命题中是假命题的是( )A.△ABC中,若∠B=∠C﹣∠A,则△ABC是直角三角形B.△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形C.△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形D.△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形3、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()4、已知△ABC的三边长分别为5,13,12,则△ABC的面积为()A.30 B.60 C.78 D.不能确定5、等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.36、如图,有两棵树,一棵高9米,另一棵高4米,两树相距12米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?( )A.11B.12C.13D.147、.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.-1 B.+1 C.﹣1 D.+1 8、如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则等于()A.75;B.100;C.120;D.125;9、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A.cmB.4cmC.cmD.3cm10、在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.11、如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C个数()A.6 B.7 C.8 D.9 12、如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒 B.16秒 C.20秒 D.30秒.二、填空题:13、在△ABC中,如果(a+b)(a﹣b)=c2,那么∠ =90°.14、有四个三角形,分别满足下列条件:(1)一个内角等于另外两个内角之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为7、24、25.其中直角三角形有个.15、如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积= .16、如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为米.17、如图,△AOB是等腰三角形,OA=OB,点B在x轴的正半轴上,点A的坐标是(1,1),则点B的坐标是.18、某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为.19、如果的三边长a,b,c满足关系式,则形状是20、如图一只蚂蚁从长、宽都是3厘米,高是8厘米的长方体的纸箱外表面的A点爬到B 点,那么她爬行的最短路线的长为.21、如图,长方体中,AB=12m,BC=2m,BB′=3m,一只蚂蚁从点A出发,以4cm/秒的速度沿长方体表面爬行到点C′,至少需要分钟.22、如图,△ABC是边长6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V p=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当t= s时,△PBQ为直角三角形.23、如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为______24、如图,左图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若两直角边AC=6,BC=4,现将四个直角三角形中边长为4的直角边分别向外延长一倍,延长后得到右图所示的“数学风车”,则该“数学风车”所围成的总面积是_______ .三、简答题:25、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.26、有一块土地形状如图8-44所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.27、如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯子的顶端A到墙底端C的距离为2.4米,如果梯子的底端B沿CB向外平移0.8米至B1,求梯子顶端A沿墙下滑的距离AA1的长度.28、在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB 段是否有危险而需要暂时封锁?请通过计算进行说明.29、如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图(1),当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图(2),当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG.②求AF的长.30、在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.参考答案1、B.2、C.3、C.4、A.5、C.6、C.7、D.8、B.9、A.10、A.11、C.12、B.13、答案为:90°.14、答案为:3.15、答案为:24.16、答案为:7 17、答案为:(,0).18、答案为:10.19、答案为:直角三角形 20、答案为:10cm 21、答案为:3.25 22、答案为:或23、答案为:30 24、答案为:8425、【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,∴∠ACB=90°,由勾股定理得:AC=BC==,∴∠ABC=∠BAC=45°.26、234米2.提示:连结AC,将四边形分割成两个三角形,其面积为两个三角形的面积之和,根据勾股定理求出AC,进而求出AD.AC==25,AD==24,面积为AB×BC+AD×CD=234米2.27、【解答】解:根据题意,在Rt△ABC中,AB=2.5,AC=2.4,由勾股定理得:BC==0.7,∵BB1=0.8,∴B1C=B1B+BC=1.5.∵在Rt△A1B1C中,A1B1=2.5,B1C=1.5,∴A1C==2,∴A1A=2.4﹣2=0.4.答:那么梯子顶端沿墙下滑的距离为0.4米.28、解:公路AB需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米.因为S△ABC=AB•CD=BC•AC所以CD=240米.由于240米<250米,故有危险,因此AB段公路需要暂时封锁.29、【解答】(1)解:如图1,∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)如图2,①证明:∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;②解:∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,在Rt△EFH中,FH===6,∴AF=FH=6.30、【解答】解:(1)根据格子的数可以知道面积为S=3×3﹣×3×2﹣×1×2×1×3=;故答案是:;(2)画图为计算出正确结果S△DEF=2×4﹣(1×2+1×4+2×2)=3;(3)①如图3,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=,两边平方得,13﹣h2+10﹣h2+2•=17,整理得•=2+h2,两边平方得,(13﹣h2)(10﹣h2)=4+4h2+h4,解得h=,∴S△PQR=PQ•RH=,同理,S△BCR=S△DEQ=S△AFP=,∴△PQR、△BCR、△DEQ、△AFP的面积相等;②利用构图法计算出S△PQR=,△PQR、△BCR、△DEQ、△AFP的面积相等,计算出六边形花坛ABCDEF的面积为S正方形PRBA+S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4×=62.。
勾股定理练习题及答案(共6套)
For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222ACBC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ), CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。
2022年精品解析沪科版八年级数学下册第18章 勾股定理综合练习试题(含答案及详细解析)
八年级数学下册第18章 勾股定理综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( ) A .4个 B .3个 C .2个 D .1个2、如图,以Rt △ABC (AC ⊥BC )的三边为边,分别向外作正方形,它们的面积分别为S 1﹑S 2﹑S 3,若S 1+S 2+S 3=12,则S 1的值是( )A .4B .5C .6D .73、一个直角三角形有两边长为3cm ,4cm ,则这个三角形的另一边为( )A .5cmB cmC .7cmD .5cm cm4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、如图,有一个长、宽、高分別为2m 、3m 、1m 的长方体,现一只蚂蚁沿长方体表面从A 点爬到B 点,那么最短的路径是( )A .3√2mB .√3mC .√2mD .2√5m6、以下列各组数为三边的三角形中不是直角三角形的是( )A .1 2B .6、10、8C .3、4、5D .6、5、47、下列各组线段中,能构成直角三角形的一组是( )A .5,9,12B .7,12,13C .30,40,50D .3,4,68、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 29、如图,已知钓鱼竿AC 的长为10m ,露在水面上的鱼线BC 长为6m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转动到AC '的位置,此时露在水面上的鱼线B C ''为8m ,则BB '的长为( )A .1mB .2mC .3mD .4m10、下列条件:(1)∠A =90°﹣∠B ,②∠A :∠B :∠C =3:4:5,③∠A =2∠B =3∠C ,④AB :BC :AC =3:4:5,能确定△ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,90C ∠=︒,AB 的垂直平分线交AB 、AC 于点D ,E ,若8AC =,5BD =,则ADE 的面积是______.2、如图,在一次夏令营活动中,小明从营地A 出发,沿北偏东60︒方向走了到达B 地,然后再沿北偏西30方向走了50m 到达目的地C ,则A 、C 两地之间的距离为_______m .3、如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 、点E 在直线BC 上,点F 为AE 上一点,连接BF ,分别交AD 、AC 于点G 、点H ,若∠BAD =∠CAE ,∠AGH =∠E ,AF +AD =BF ,AC =,则AE 的长为 _____.4、如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是 _____.5、如图,将两个含30°角的全等的三角尺摆放在一起,可以证得△ABD是等边三角形,于是我们得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半如果BC=2,那么点C到AB的距离为________.三、解答题(5小题,每小题10分,共计50分)1、已知a,b,c满足|a+(c2=0(1)求a,b,c的值;并求出以a,b,c为三边的三角形周长;(2)试问以a,b,c为边能否构成直角三角形?请说明理由.2、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.3、如图,在△ABC 中,AB =7cm ,AC =25cm ,BC =24cm ,动点P 从点A 出发沿AB 方向以1cm/s 的速度运动至点B ,动点Q 从点B 出发沿BC 方向以6cm/s 的速度运动至点C ,P 、Q 两点同时出发.(1)求∠B 的度数;(2)连接PQ ,若运动2s 时,求P 、Q 两点之间的距离.4、如图,在ABC 中,90BAC ∠=︒,15AB =,20AC =,AD BC ⊥,垂足为D .求AD ,BD 的长.5、思维启迪:(1)如(图1),Rt ABC 中,90C ∠=︒,4BC =,5AB =,点D 是AB 的中点,点E 在AC 上,过B 点作AC 的平行线,交直线ED 于点F ,当1CE =时,BF =______.思维探索:(2)如(图2),Rt ABC 中,90C ∠=︒,点D 是AB 的中点,点E 在AC 上,DF DE ⊥交BC 于F ,连接EF ,请直接写出AE ,EF ,BF 的数量关系,并说明理由;(3)Rt ABC 中,90C ∠=︒,点D 是AB 的中点,点E 在直线AC 上,DF DE ⊥交直线BC 于F ,若3AC =,AB =1EC =,请直接写出线段BF 长.-参考答案-一、单选题1、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意; ③∵111::::345a b c =,设a =3k,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,故选:C .【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.2、C【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【详解】解:∵由勾股定理得:AC 2+BC 2=AB 2,∴S 3+S 2=S 1,∵S1+S2+S3=12,∴2S1=12,∴S1=6,故选:C.【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.3、D【分析】根据勾股定理解答即可.【详解】解:设这个三角形的另一边为x cm,若x为斜边时,由勾股定理得:5x=,若x为直角边时,由勾股定理得:x=综上,这个三角形的另一边为5cm,故选:D.【点睛】本题考查勾股定理,利用分类讨论思想是解答的关键.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、A【分析】将图形分三种情况展开,利用勾股定理求出两种情况下斜边的长进行比较,其值最小者即为正确答案..【详解】解:如图(1),AB =√(2+3)2+12=√26(m );如图(2),AB =√22+(1+3)2=√20=2√5(m );如图(3),AB =√32+(2+1)2=3√2(m ),∵3√2<2√5<√26,∴最短的路径是3√2m .故选:A .【点睛】本题主要考查了勾股定理的应用,两点之间线段最短,解题的关键在于能够把长方体展开,利用勾股定理求解.6、D【分析】利用勾股定理的逆定理逐一分析各选项即可得到答案.【详解】解:A 、因为222214+== ,所以是直角三角形,故本选项不符合题意;B 、因为2226810+= ,所以是直角三角形,故本选项不符合题意;C 、因为222345+= ,所以是直角三角形,故本选项不符合题意;D 、因为222456+≠,所以不是直角三角形,故本选项符合题意;故选:D【点睛】本题考查的是勾股定理的逆定理的应用,掌握“勾股定理的逆定理:若222,a b c += 则以,,a b c 为边的三角形是直角三角形”是解本题的关键.7、C【分析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.【详解】解:A、∵52+92≠122,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;B、∵72+122≠132,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;C、∵302+402=502,∴该组线段符合勾股定理的逆定理,故是直角三角形,故符合题意;D、∵32+42≠62,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;故选:C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.9、B【分析】根据勾股定理分别求出AB和AB′,再根据BB′=AB-AB′即可得出答案.【详解】解:∵AC=10m,BC=6m,∠ABC=90°,∴AB8m,∵AC′=10m,B′C′=8m,∠AB′C′=90°,∴AB6=m,∴BB′=AB-A B′=2m;故选:B.【点睛】此题考查了勾股定理的应用,根据已知条件求出AB和AB′是解题的关键.10、B【分析】利用三角形内角和定理和勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【详解】解:①∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=3:4:5,设∠A=3x,则∠B=4x,∠C=5x,∴3x+4x+5x=180,解得:x=15°,∴∠C=15°×5=75°,∴△ABC不是直角三角形;③∵∠A=2∠B=3∠C,∴11,23B AC A ∠=∠∠=∠∴1118023A B C A A A︒∠+∠+∠=∠+∠+∠=,∴∠A=(108011)°,∴△ABC为钝角三角形;④∵AB:BC:AC=3:4:5,设AB=3k,则BC=4k,AC=5k,∴AB2+BC2=AC2,∴△ABC是直角三角形;∴能确定△ABC是直角三角形的条件有①④共2个,故选:B.【点睛】此题主要考查了勾股定理逆定理以及三角形内角和定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.二、填空题1、758【分析】根据勾股定理求出BC,根据线段垂直平分线的性质得到EA=EB,根据勾股定理列式计算得到答案.【详解】解:连接BE,∵DE是AB的垂直平分线,∴EA=EB,AD=DB=5,∵∠C=90°,AC=8,BD=5,∴AB=2BD=10,由勾股定理得,BC,则CE=8-AE=8-EB,在Rt△CBE中,BE2=CE2+BC2,即BE2=(8-BE)2+36,解得,BE=254,则AE=254,∴S△ABE=12AE×BC=12×254×6=754,∴△ADE的面积是12S△ABE=758.故答案为:758.【点睛】本题考查的是勾股定理以及线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、100【分析】根据题意点C位于点B的西偏北60゜方向,再根据平行线的性质可得点A位于点B的西偏南30゜方向,从而可得AB⊥BC,由勾股定理即可求得AC的长.【详解】如图所示,∠CBH=30゜,∠DAB=60゜∴∠BAE=90゜-∠DAB=30゜,∠CBF=90゜-∠CBH=60゜∵FB∥AE∴∠FBA=∠BAE=30゜∴∠ABC=∠CBF+∠FBA=60゜+30゜=90゜在Rt△ABC中,AB=,50mBC=由勾股定理得:100(m)AC=故答案为:100【点睛】本题主要考查了勾股定理的应用,关键是知道方位角的含义并得出△ABC是直角三角形.3、【分析】过点C作CI⊥BE交AE于I,即可证明△ABD≌△ACI得到AI=AD,∠ADB=∠AIC,BD=CI;延长FA到K 使得AK=AD=AI,连接KB,KD,DI,可证△ADK和△ADI都是等腰直角三角形,从而推出∠DIC=∠KDB;证明△KDB≌△DIC得到∠KBD=∠DCI=90°,得到∠BKE+∠E=90°,∠KBF+∠EBF=90°,由BF=AF+AD,得到BF=AF+AK=KF,可推出∠E=∠EBF,由三角形外角的性质得到∠BFA=∠E+∠EBF=2∠E,再由∠AGH=∠E,∠GAF=90°,可得∠E=30°,过点A作AM⊥BE于M,然后利用勾股定理求解即可.【详解】解:如图所示,过点C作CI⊥BE交AE于I,∴∠ICD=90°,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ACI=45°,∴∠ABD=∠ACI,在△ABD 和△ACI 中,BAD CAI AB ACABD ACI ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△ACI (ASA ),∴AI =AD ,∠ADB =∠AIC ,BD =CI ,延长FA 到K 使得AK =AD =AI ,连接KB ,KD ,DI ,∴∠AKD =∠ADK ,∠ADI =∠AID ,∵∠AKD +∠KDI +∠AID =180°,∴∠ADK +∠ADI =90°,即∠KDI =90°,∵∠BAD =∠CAE ,∠BAC =90°,∴∠BAD +∠CAD =∠CAE +∠CAD =90°,即∠DAI =90°,∴△ADK 和△ADI 都是等腰直角三角形,∴∠DKI =∠DIK =∠ADK =45°,∴KD =ID ,∠BDK +∠ADK =∠DIK +∠DIC ,∴∠DIC =∠KDB ,在△KDB 和△DIC 中,BD CI KDB DIC KD DI =⎧⎪∠=∠⎨⎪=⎩, ∴△KDB ≌△DIC (SAS ),∴∠KBD =∠DCI =90°,∴∠BKE +∠E =90°,∠KBF +∠EBF =90°,∵BF=AF+AD,∴BF=AF+AK=KF,∴∠BKF=∠KBF,∴∠E=∠EBF,∴∠BFA=∠E+∠EBF=2∠E,∵∠AGH=∠E,∠GAF=90°,∴3∠E=90°,∴∠E=30°,过点A作AM⊥BE于M,∵∠ACM=45°,∴∠MAC=45°,∴∠ACM=∠MAC,∴AM=CM,∵222=+,AC AM CM∴2==,AM AC254∴AM=∴2==AE AM故答案为:【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,三角形外角的性质,直角三角形两锐角互余,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.4、101寸【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到答案.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,CD=1寸,则AB=2r(寸),DE=10寸,OE=12∴AE=OA﹣OE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴AB =2r =101(寸),故答案为:101寸.【点睛】本题考查了勾股定理,添加辅助线构造出直角三角形再用勾股定理求解是解题的关键.5【分析】根据题干所给结论和勾股定理可求得AB 和AC ,再根据等面积法即可求得h .【详解】解:依据题意可得24AB BC ==,根据勾股定理可得AC ==设点C 到AB 的距离为h , 则1122ABC S BC AC AB h ∆=⋅=⋅,即112422h ⨯⨯=⨯⋅,解得h =C 到AB【点睛】本题考查等边三角形的性质,勾股定理,含30°角的直角三角形,掌握等面积法是解题关键.三、解答题1、(1)a =b =5,c ==5+(2)不能构成直角三角形,理由见解答.【分析】(1)由非数的性质可分别求得a 、b 、c 的值,进而解答即可;(2)利用勾股定理的逆定理可进行判断即可.【详解】解:(1)∵|a c 2=0.∴a ,b -5=0,c ,∴a b =5,c ,∴以a ,b ,c 为三边的三角形周长(2)不能构成直角三角形,∵a 2+c 2=8+18=26,b 2=25,∴a 2+c 2≠b 2,∴不能构成直角三角形.【点睛】本题主要考查非负数的性质及勾股定理的逆定理,利用非负数的性质求得a 、b 、c 的值是解题的关键.2、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.3、(1)∠B =90°;(2)P 、Q 两点之间的距离为13cm【分析】(1)如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可;(2)依据运动时间和运动速度,即可得到BP 和BQ 的长,再根据勾股定理进行计算,即可得到PQ 的长.【详解】解:(1)∵AB =7cm ,AC =25cm ,BC =24cm ,∴AB 2+BC 2=625=AC 2,∴△ABC 是直角三角形且∠B =90°;(2)运动2s 时,AP =1×2=2(cm ),BQ =2×6=12(cm ),∴BP =AB ﹣AP =7﹣2=5(cm ),Rt △BPQ 中,13cm PQ ===,∴P 、Q 两点之间的距离为13cm .【点睛】本题主要考查了勾股定理的逆定理和勾股定理,解题的关键在于能够根据题意求出∠B =90°.4、AD ,BD 的长分别为12、9【分析】先根据勾股定理求出BC ,再根据三角形面积公式得出1122AB AC BC AD ⋅=⋅,代入求出AD ;再根据勾股定理求出BD 即可.【详解】解:在Rt ABC 中,90BAC ∠=︒,15AB =,20AC =,根据勾股定理得:25BC ==, ∵12ABC SAB AC =⋅,12ABC AD S BC ⋅=, ∴1122AB AC BC AD ⋅=⋅. ∴15201225AB AC AD BC ⋅⨯===; ∵AD BC ⊥,∴90ADB ∠=︒.在Rt ADB 中,根据勾股定理得:9BD ==,因此,AD ,BD 的长分别为12,9.【点睛】此题考查三角形面积和勾股定理的应用,解题关键在于掌握在直角三角形中,两直角边的平方和等于斜边的平方.5、(1)2;(2)BF 2+AE 2=EF 2,理由见解析;(3)线段BF 长为1或2.2.【分析】(1)先利用勾股定理求得AC 的长,再证明△ADE ≌△BDF ,即可求解;(2)过B 点作AC 的平行线,交直线ED 于点G ,连接FG ,证明△ADE ≌△BDG ,得到BG =AE ,∠A =∠GBD ,再证明EF =FG ,在Rt △BFG 中利用勾股定理即可求解;(3)分点E 在线段AC 上和点E 在AC 延长线上时,两种情况讨论,利用勾股定理构建方程求解即可,【详解】解:(1)Rt △ABC 中,∠C =90°,BC =4,AB =5,∴AC 3==,∵CE=1,∴AE=AC-CE=2,∵BF∥AC,∴∠A=∠FBD,∠AED=∠F,又点D是AB的中点,则AD=BD,∴△ADE≌△BDF,∴BF=AE=2,故答案为:2;(2)BF2+AE2=EF2,理由如下:过B点作AC的平行线,交直线ED于点G,连接FG,同理可证明△ADE≌△BDF,∴BF=AE,ED=DG,∠A=∠GBD,∵DF⊥DE,∴DF是线段EG的垂直平分线,∴EF=FG,∵∠C=90°,∴∠A+∠ABC=∠GBD+∠ABC=90°,即∠GBF=90°,∴BF2+BG2=FG2,∴BF2+AE2=EF2;(3)Rt△ABC中,∠C=90°,AC=3,AB∴BC5,当点E在线段AC上时,∵EC=1,∴AE=AC-CE=2,设BF=x,则CF=5-x,由(2)得EF2= BF2+AE2,在Rt△ECF中,EF2= CF2+CE2,∴x2+22= (5-x)2+12,解得:x=2.2;当点E在AC延长线上时,∵EC=1,∴AE=AC+CE=4,设BF=x,则CF=5-x,过B点作AC的平行线,交直线ED于点H,连接FH,同理可证明△ADE≌△BDH,∴BH=AE=4,ED=DH,∠A=∠HBD,∵DF⊥DE,∴DF是线段EH的垂直平分线,∴EF=FH,∵∠ACB=90°,∴∠A+∠ABC=∠HBD+∠ABC=90°,即∠HBF=90°,∴FH2= BF2+BH2,在Rt△ECF中,EF2= CF2+CE2,∴x2+42= (5-x)2+12,解得:x=1;综上,线段BF长为1或2.2.【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,勾股定理,解题的关键是学会利用参数构建方程解决问题,。
八年级数学下册同步拔高(综合 强化)人教版 勾股定理应用-折叠专题(含答案)
八年级数学下册同步拔高(综合+强化)人教版勾股定理应用-折叠专题一、单选题(共5道,每道20分)1.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.B.C.4D.3答案:A解题思路:因为BC=4,AD为BC边的中线,所以BD=CD=2,因为△ADC沿AD折叠,使C 点落在C′的位置,所以C′D=CD=2,∠ADC=∠ADC′=30°,∠BDC′=120°,所以在等腰三角形BDC′中,通过作高线可以得到BC′=试题难度:三颗星知识点:勾股定理的应用2.如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则整个阴影部分图形的周长为()A.18cmB.36cmC.40cmD.72cm答案:B解题思路:如图,点G和点H关于EF对称,则可以得到FG=FH,GD1=DH,AE=A1E,AD=A1D1,所以阴影部分的周长刚好等于矩形的周长,等于36cm试题难度:三颗星知识点:勾股定理的应用3.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A′处,已知OA=2,AB=1,则点A′的坐标是()A.B.C.D.答案:A解题思路:如图,因为矩形OABC沿OB对折,使点A落在A′处,所以OA=OA′=2,AB=A′B=1,在直角△OCE 中,设OE=EB=x,则CE=2-x,由勾股定理得,x=,在直角△EBA′中,由等积变换可以得到A′F==,则A′D=,由OA′=2,可以得到OD=,所以点A′的坐标为试题难度:三颗星知识点:勾股定理的应用4.如图,将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕,AB=8,AD=4,则四边形ECGF的面积为()A.6B.10C.12D.16答案:D解题思路:因为将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕,所以CE=AE,DF=FG,AD=CG=4,∠AEF=∠CEF,又因为∠CFE=∠FEA,所以CF=CE,在直角△CEB中,设AE=CE=x,则BE=8-x,根据勾股定理得,,解得x=5,即CE=CF=5,DF=FG=3,梯形ECGF的面积就是(3+5)×4÷2=16试题难度:三颗星知识点:勾股定理的应用5.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1B.2C.3D.4答案:C解题思路:因为△ADE沿AE对折至△AFE,所以AD=AF=AB,∠D=∠AFE=90°=∠B,所以在直角△ABG和直角△AFG中,AG=AG,AB=AF,所以△ABG≌△AFG,①正确;因为正方形的边长为6且CD=3DE,可以得到CE=4,DE=2;设BG=GF=x,则CG=6-x,GE=2+x,在直角△CGE中应用勾股定理,可以得到,则x=3,即BG=GC=3,②正确;因为GF=GC,所以∠GCF=∠GFC,即∠FGC+2∠FCG=180°,又因为∠FGC+2∠AGB=180°,所以∠GCF=∠BGA,即AG∥CF,③正确;因为△ECG的面积为6,而△FCG和△FCE的高一样,底之比为3:2,所以△FCG的面积为6÷5×3=3.6,④错误,正确的结论共有3个试题难度:三颗星知识点:勾股定理的应用。
(完整版)勾股定理拔高题
勾股定理拔高题一.选择题1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B.C.17 D.17或2.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.183.Rt△ABC中∠A=90°,∠A,∠B,∠C的对边分别为a,b,c,则()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.无法确定4.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:35.同一平面内有A、B、C三点,A、B两点相距5cm,点C到直线AB的距离为2cm,且△ABC为直角三角形,则满足上述条件的点C有()A.2个B.4个C.6个D.8个6.在四边形ABCD中,AB=1,BC=,CD=,DA=2,S△ABD=1,S△BCD=,则∠ABC+∠CDA等于()A.150°B.180°C.200°D.210°7.已知△ABC中,∠A=60°,BC=a,AC=b,AB=c,AP是BC边上的中线,则AP的长是()A.B.C.D.8.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或849.如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=4,AD=7,则AB的长为()A.10 B.5 C.2D.210.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为()A.B.C.D.二.填空题11.如图,△ABC中,CB=CA,∠A﹣∠B=90°,则∠C=.12.如图,矩形ABCD中,AB=4,BC=7,过顶点A作∠BAD的平分线交BC于E,过E作EF⊥ED交AB于F,则EF的长等于.13.在△ABC中,a、b、c分别是∠A、∠B、∠C所对的边长.如果∠A=105°,∠B=45°,,那么c=.14.如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=.15.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.16.如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD=9,AE⊥BC于E,AE=8,则CD的长为.17.如图,已知四边形ABCD中,AC和BD相交于点O,且∠AOD=90°,若BC=2AD,AB=12,CD=9,四边形ABCD的周长是.18.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.19.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,则AC=.20.如图,在一张长方形ABCD纸张中,一边BC折叠后落在对角线BD上,点E为折痕与边CD的交点,若AB=5,BC=12,求图中阴影部分的面积.21.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3cm,AB=8cm,求图中阴影部分的面积.三.解答题22.已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.(1)求证:GE=GF;(2)若BD=1,求DF的长.23.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.24.细心观察下图,认真分析各式,然后解答问题.()2+1=2,S1=()2+1=3,S2=()2+1=4,S 3=(1)请用含n (n 是正整数)的等式表示上述变化规律;(2)推算出OA 10的长;(3)求出S 12+S 22+S 22+…+S 102的值.25.长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.27.如图,ADC ∆和BCE ∆都是等边ο30=∠ABC ,试说明:222BC AB BD +=D C BA。
(完整版)《勾股定理》练习题及答案
《勾股定理》练习题及答案测试1 勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C 所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个 (C)3 (D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形,探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.测试2 勾股定理(二)学习要求掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km . 3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m . 二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ). (A)5m(B)7m(C)8m(D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ). (A)212 (B)310 (C)56(D)58三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?9 10 11 12拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD =3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,则AC=______,AB边上的高CD=______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ).(A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41(C)24(D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10-及13的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形. 7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______. 二、选择题9.下列线段不能组成直角三角形的是( ). (A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2(B)1∶3∶4 (C)9∶25∶26(D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形(D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案 第十八章 勾股定理 测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2.3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..310 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF中(8-x )2=x 2+42,解得x =3.13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB 15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论. 15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学勾股定理拔高综合训练
一.选择题(共15 小题)
1.如图,在4×4 方格中作以AB 为一边的Rt△ABC,要求点C 也在格点上,这样的Rt△ABC 能作出()
A.2 个B.3 个C.4 个D.6 个
2.如图,以直角三角形a、b、c 为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()
A.1 B.2 C.3 D.4
3.如图是由5 个正方形和5 个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()
A.4 B.8 C.16 D.32
4.分别以下列四组数为一个三角形的边长①6,8,10②5,12,13
③8,15,16④4,5,6,其中能构成直角三角形的有()
A.①④B.②③C.①②D.②④
5.如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a,b,则a+b 和的平方的值()
A.13 B.19 C.25 D.169
6.如图,一架25 米的梯子AB 靠在一座建筑物AO 上,梯子的底部B 距离建筑物AO 的底部O 有7 米(即BO=7 米),如果梯子顶部A 下滑4 米至A1,则梯子底部B 滑开的距离BB1是()
A.4 米B.大于4 米C.小于4 米D.无法计算
7.工人师傅从一根长90cm 的钢条上截取一段后恰好与两根长分别为
60cm、100cm 的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应
为()
A.80cm B.
C.80cm 或D.60cm
8.如图,A、B 是4×5 网格中的格点,网格中的每个小正方形的边长都是1,
图中使以A、B、C 为顶点的三角形是等腰三角形的格点C 有()
A.2 个B.3 个C.4 个D.5 个
9.如图所示:数轴上点A 所表示的数为a,则a 的值是()
A.+1 B.﹣1 C.﹣+1 D.﹣﹣1
10.如图,在2×2 的网格中,有一个格点三角形△ABC,若每个小正方形的边长为1,则△ABC 的边长BC 边上的高为()
A.B.2 C.D.2
11.下列说法中正确的是()
A.已知a、b、c 是三角形的三边,则a2+b2=c2
B.在直角三角形中两边和的平方等于第三边的平方
C.在Rt△ABC 中,∠C=90°,所以AB2+AC2=BC2
D.在Rt△ABC 中,∠C=90°,所以AC2+BC2=AB2
12.图1 是边长为1 的六个小正方形组成的图形,它可以围成图2 的正方体,则图1 中正方形顶点A、B 在围成的正方体中的距离是()
A.0 B.1 C.D.
13.如图:一个长、宽、高分别为4cm、3cm、12cm 的长方体盒子能容下的最长木棒长为()
A.11cm B.12cm C.13cm D.14cm
14.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为(
)
A.2 B.4 C.8 D.16
15.请你在如图所示的12×12 的网格图形中,到A 点的距离为5 的格点的个数是()
A.4 B.8 C.12 D.16
二.解答题(共8 小题)16.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l 的距离为100 米的P 处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B 处所用的时间为3 秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80 千米的限制速度?(参考数据:=1.41,=1.73)
17.如图:四边形ABCD 中,AB=CB=,CD=,DA=1,且AB⊥CB 于
B.试求:(1)∠BAD 的度数;
(2)四边形ABCD 的面积.
18.如图,已知△ABC 中,∠B=90°,AB=8cm,BC=6cm,P、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A→B方向运动,且速度为每秒1cm,点Q 从点B 开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t 秒.
(1)当t=2 秒时,求PQ 的长;
(2)求出发时间为几秒时,△PQB 是等腰三角形?
(3)若Q 沿B→C→A方向运动,则当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.
19.如图1,△ABC 中,CD⊥AB 于D,且BD:AD:CD=2:3:4,
(1)试说明△ABC 是等腰三角形;
(2)已知S△ABC=40cm2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t(秒),
①若△DMN 的边与BC 平行,求t 的值;
②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.
20.如图,有两只猴子在一棵树CD 高5m 的点B 处,它们都要到A 处的池塘去喝水,其中一只猴子沿树爬下走到离树10m 处的池塘A 处,另一只猴子爬到树顶D 后直线越向池塘的A 处.如果两只猴子所经过的路程相等,这棵树高有多少米?
21.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B′处,点A 落在点A′处;
(1)求证:B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a,b,c 之间的一种关系,并给予证明.
22.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200 元,问要多少投入?
23.如图,D、E 分别是△ABC 的边BC 和AB 上的点,△ABD 与△ACD 的周长相等,△CAE 与△CBE 的周长相等.设BC=a,AC=b,AB=c.
(1)求AE 和BD 的长;
(2)若∠BAC=90°,△ABC 的面积为S,求证:S=AE•BD.
初中数学勾股定理拔高综合训练
参考答案
一.选择题(共15 小题)
1.D;2.D;3.C;4.C;5.C;6.B;7.A;8.B;9.B;10.C;11.D ;12.C;13.C;14.B;15.C;
二.解答题(共8 小题)
16.;17.;18.;19.;20.;21.
;22.;23.;
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。