微带传输
论微带天线传输宽频化设计
论微带天线传输宽频化设计摘要:本文基于微带天线宽频化技术的特点,首先对于微带天线进行了细致的阐述,包括其基本形式、分析方法和参数等;接着又对其工作辐射机理进行分析;然后有详细的介绍了微带天线宽频化处理的具体方法,主要有参数修改、等效多谐振点产生等方式;最后通过一种圆极化微带天线具体实例的宽频化处理来阐述这些方法的可行性,包括馈电方式展宽、多谐振展宽以及引入耗损展宽等,并得到了很好的展宽效果。
同时也提供了一种微带天线宽频化的方法。
关键词:微带天线宽频化设计方法随着无线通信技术的发展与无线产品的普及与应用,尤其是近年来超宽带无线通信技术的进步,促使人们对于宽带天线的研究更加的趋于大范围、小体积、高效率和便捷安装的要求,实际上,这就是提出了微带天线的发展与研究。
对于微带天线来说,具有诸多优点而得到人们的广泛关注。
在过去的50多年中,微带天线技术得到了长足的进展,也渐渐的成为一个理论成熟和实用的天线领域的学科:早在20世纪50年代,G.A.Decamps教授就提出可以利用微带线辐射效应来制造微带微波天线;到了70年代,随着单片机技术的发展,以及各种新型材料的出现,使得微带天线在全世界范围内的重视;到了80年代,微带天线在理论方面与应用方面都得到了进一步的提升……至此,微带天线技术已经形成了天线领域一支独立的学科,被广泛的应用于全球定位系统、直播卫星、个人通讯、无线局域网以及智能高速公路交通系统等方面。
尽管微带天线技术在今天发展迅速,应用广泛,然而其也有一定的缺陷,即阻抗带宽较窄。
一般来说,微带单贴片的带宽只在百分之零点几到百分之几。
因此可以说,微带天线的频带展宽技术意义重大。
1 微带天线概述1.1 概述自20世纪50年代Decamps教授提出微带天线以来,针对各种微带天线产品和各种优缺点的研究蓬勃发展起来,目前已广泛应用于航空航天、国防、通讯等方面。
与其他天线形式相比,微带天线主要有以下的优点:(1)体积小、重量轻、携带特别方便;(2)成本低廉,能够实现批量生产;(3)微带天线能够与一些受隐蔽性或空气动力学限制的载体达到共型的目的;(4)对微带天线贴片稍许加工,再加之合适的馈电系统,可以实现双频和双极化天线;(5)能够满足线性极化波与圆极化波的要求;(6)微带天线从本质上来讲,属于微波电路范畴,因此,可与亏点网络以及微波电路系统共同被制造出来,这样大大减少了制造成本,同时还可以提高效率。
带状线和微带线
E z(x,b)0
E z(x,0)0
理想导体表面, 电“立”
3. TM波(E波)[6]
物理意义:
Z向无限长的理想波导中,沿此方向的场有 e jz
的行波特征。 在z=常数的横截面内,导波场有驻波分布特征。 各场分量的幅度系数D取决于激励的强度。 任意一对m,n的值对应一个基本波函数,为一本
1. 带状线
带状线又称三板线, 它由两块相距为b的接 地板与中间宽度为w、 厚度为t的矩形截面 导体构成, 接地板之间填充均匀介质或空气。 由前面分析可知, 由于带状线由同轴线演化 而来, 因此与同轴线具有相似的特性, 这主 要体现在其传输主模也为TEM, 也存在高 次TE和TM模。带状线的传输特性参量主 要有:
(a, ) V0 (b, ) 0
(a,)V0 c1lnac2 (b,)0c1lnbc2
(r,) V0 ln(b/r)
ln(b/ a)
E 0 t(r,) t(r,) (r ˆ ( r r,) r ˆ (r ,))
rˆ V0 r ln(b / a)
因此电场为:
E ( r ,,z ) E 0 t( r ,) e jz r ln r ˆ ( V b 0 /a )e jz r ˆ E m e jz
z
Ez
E
圆波导是空心的 金属管
处理圆波导采用 圆柱坐标系比较 方便
我们仍然采用矩 形波导的思路并 从(24)式开始
0
Er
y
x
r
t2 F z(u ,v ) k c 2 F z(u ,v ) 0(24)
只不过 E z ( a ,) A 1 J n ( k B c a ) cn o 0 s ) 0 (
基本要求
对微波集成传输元件的基本要求之一就 是它必须具有平面型结构, 这样可以通过 调整单一平面尺寸来控制其传输特性, 从 而实现微波电路的集成化。
微带传输线微带电容微带电感设计
在航空航天领域,对微带元件的高 可靠性、高稳定性和轻量化等要求 更高,因此该领域的发展潜力巨大。
THANKS FOR WATCHING
感谢您的观看
耦合器、振荡器等。
在通信系统、雷达系统、卫星通 信等领域,微带线电容被用于实 现信号的传输、处理和转换等功
能。
此外,微带线电容还可以用于制 作传感器、天线、功率放大器等 电子器件,具有小型化、集成化、
高性能等优点。
03
微带电感设计
微带线电感的基本原理
微带线电感是由微带线绕成一定 形状的电感器,其工作原理基于
薄膜工艺
发展薄膜工艺,降低微带 元件的介质厚度,提高元 件性能。
3D打印技术
利用3D打印技术制造微带 元件,实现个性化定制和 快速原型制作。
新应用领域的开发
物联网领域
随着物联网技术的快速发展,微 带元件在物联网设备中的应用将
更加广泛。
医疗电子领域
由于微带元件具有小型化、低功耗 和高集成度等特点,其在医疗电子 领域的应用前景广阔。
优化设计的应用实例
微带传输线
在无线通信系统中,通过优化微带传输线的设计,实现信号的高 效传输。
微带电容
在滤波器、振荡器等电路中,优化微带电容的设计可以提高电路的 性能。
微带电感
在射频识别(RFID)标签、无线传感器网络等领域,优化微带电 感的设பைடு நூலகம்有助于提高识别准确性和通信距离。
05
微带传输线、微带电容 、微带电感的未来发展 趋势
微带传输线、微带电 容、微带电感设计
目录
• 微带传输线基本理论 • 微带电容设计 • 微带电感设计 • 微带传输线、微带电容、微带电感的
优化设计 • 微带传输线、微带电容、微带电感的
第三章微波传输线平行双线与同轴线
各种微波集成传输线
① 准TEM波传输线, 主要包括微带传输线和共 面波导等(a)-(c);
② 非TEM波传输线, 主要包括槽线、 鳍线等 (d);
③开放式介质波导传输线, 主要包括介质波导、 镜像波导(e-f);
2 从同轴线到金属波导管
• 金属波导:和同轴线比较,波导管除去内 导体,不仅降低了内导体的损耗而且提高 了传输线的功率容量;
• 其缺点是比较笨重、高频下批量成本高、 频带较窄等。
3 微波集成传输线
• 随着航空、航天事业发展的需要, 对微波 设备提出了体积要小、重量要轻、 可靠性 要高、性能要优越、一致性要好、 成本要 低等要求, 这就促成了微波技术与半导体 器件及集成电路的结合, 产生了微波集成 电路。
1
1
c
vp
L0C0
r r
p
2
vp f
0 r r
当同轴线的截面尺寸与工作波长可比 拟时,同轴线内将出现高次模式。 要使同 轴线工作于TEM模式,则同轴线的内外半径 应满足以下条件:
min
1
2
D
d
3 损耗特性
通常同轴线介质损耗很小,其传输 损耗基本上决定于导体的欧姆损失。 同轴线的衰减常数仍可按下式估算
通频带:0~nGHz,语音信号
在实际中,广泛使用不同型号的电缆连 接接头(Cable Connector)以实现电缆的 连接, 尽管其功能相似, 但结构不同。 它们的共同点都是将电缆的内导体和外导 体分别连接起来, 使用时要注意连接头电 气和机械很好的匹配。
微带传输线概述解析
《射频电路》课程设计题目:微带传输线概述系部电子信息工程学院学科门类工学专业电子信息工程学号1108211042姓名杨越2012年06月30日微带传输线概述摘要本课程设计主要介绍了微带传输线在实际应用中比较基础且较重要的几个知识点,并没有详细的对微带线的各个参数及特性作细致的说明。
例如微带线的近似静态解法、微带线的谱域分析等在本设计中都未曾提及,这与此课程设计的制作人本身的理解能力有着千丝万缕的关系。
在后续的微带线设计中,此处所提到准TEM特性、微带线的特性阻抗以及有效介电常数等参数,对于整个微带线系统的确立与实现都有着很重要的关系。
例如在设计微带线低通滤波器的时候,当通过低通滤波器原型的电路多次变换计算得到最终的电路时,这时就需要面对将电路图实现微带线的问题,而此时需要的就是特性阻抗的知识。
首先,根据特性阻抗值与相对介电常数确定w/h的范围(假设t=0),再由范围选择w/h的具体计算公式,从而求得微带线的宽度。
由有效介电常数求出相速度,再求出波导波长,由此可算出微带传输线的长度,等等。
关键词:微带线准TEM特性特性阻抗有效介电常数相速度波导波长前 言微带线是(Microstrip Line )是20世纪50年代发展起来的一种微波传输线,是目前混合微波集成电路(hybird microwave integrated circuit ,缩写为HMIC )和单片微波集成电路(monolithic microwave integrated circuit ,缩写为MMIC )使用最多的一种平面传输线。
其优点是体积小、重量轻、频带宽、可集成化;缺点是损耗大,Q 值低,功率容量低。
由于微波系统正向小型化和固态化方向发展,因此微带线得到了广泛的应用。
一 微带线的结构微带线是在金属化厚度为h 的介质基片的一面制作宽度为W 、厚度为t 的导体带,另一面作接地金属平板而构成的,如图1-1所示。
其中,r ε为介质基片的相对介电常数。
微带天线的工作原理
微带天线的工作原理
微带天线的工作原理是基于一种被称为微带传输线的技术。
微带传输线是一块细长的金属带(称为微带)通过一块绝缘基板与地面之间连接。
当电流在微带上流动时,产生的电磁场会引发辐射,这种辐射效应使得微带传输线可以作为天线使用。
微带天线的主要原理包括以下几个方面:
1. 辐射模式:微带天线的辐射模式取决于微带的几何形状和尺寸。
通过调整微带的长度、宽度和形状,可以实现不同的辐射模式,例如方向性的、全向的或者扇形的辐射。
2. 地平面:微带天线的底部通常需要一个地平面(通常是金属板),以提供一个反射面来增强天线的辐射效果。
地平面的大小和形状对天线的性能有很大影响。
3. 驻波效应:微带天线在工作频率附近会形成驻波,即在天线上引起电流分布不均匀的现象。
通过调整微带的尺寸和结构,可以控制驻波的频率和幅度。
4. 互耦效应:在一些特殊的微带天线结构中,微带之间存在一定的电磁耦合效应。
这种互耦效应可以实现一些特殊的功能,例如宽带天线、多频段天线或者极化转换器。
总之,微带天线的工作原理是利用微带传输线的结构和辐射效
应来实现无线电频段的信号接收和辐射。
通过调整微带尺寸、形状和结构,可以实现不同的辐射模式和性能。
微带线的辐射损耗和导体损耗
微带线的辐射损耗和导体损耗
微带线是一种常用的微波传输线,广泛应用于各种微波、毫米波系统。
然而,微带线在传输信号时也会产生一些损耗,主要包括辐射损耗和导体损耗。
辐射损耗主要是由于微带线的电磁场与周围介质和空间发生相互作用而产生的能量散失。
当微带线中的电场和磁场向周围空间辐射时,会有一部分能量转化为周围介质或自由空间的能量,从而导致能量的损失。
辐射损耗的大小与微带线的几何尺寸、介质材料、工作频率等因素有关。
导体损耗主要是由于微带线中导体的电阻而引起的能量损失。
当电流在微带线中传输时,会有一部分电能转化为热能,从而产生能量损失。
导体损耗的大小与导体的电阻率、电流密度、工作频率等因素有关。
为了减小微带线的损耗,可以采用以下几种方法:
选择低电阻率的导体材料,如金、银等。
减小微带线的宽度和厚度,以减小电流密度和电阻。
使用低损耗的介质材料,如聚乙烯、聚四氟乙烯等。
优化微带线的结构和设计,以减小辐射损耗和导体损耗。
在实际应用中,需要根据具体的应用场景和性能要求来选择合适的微带线结构和材料,以获得最佳的传输效果和最小的能量损失。
同时,也需要综合考虑微带线的其他性能指标,如传输速度、带宽、阻抗匹配等,以确保整个系统的稳定性和可靠性。
传输线变压器
为了实现阻抗匹配, 要求:
D端输出(或输入)信号必须是对地对称的。如果D端信号由一端接地,就需要再加入一个1:1的传输线变压器来完成由不平衡到平衡的转换。
二、功率合成网络
第23页/共37页
由上式可得
因为:则:第24页/共 Nhomakorabea7页▲当反相激励时,即 Ea=Eb,uA=-uB
D
A
A
B
B
第34页/共37页
几种不同封装形式的射频模块
第35页/共37页
作业:
3.103.113.12
第36页/共37页
感谢您的观看!
第37页/共37页
u2
1:1传输线变压器具有最大的功率输出。但实际上,在各种放大电路中RL正好等于信号源内阻的情况是很少的。因此,1:1传输线变压器很少用作阻抗匹配元件,而更多的是用来作为倒相器,或进行不平衡-平衡以及平衡-不平衡转换。
第9页/共37页
传输线变压器的功能
第10页/共37页
(2)平衡与不平衡电路的转换
不平衡的输入信号源,得到两个大小相等,对地反相的电压输出。
对地平衡的双端输入信号,得到两个大小相等,对地不平衡的电压输出。
第11页/共37页
u1
u1
u2
u2
i2
i1
i1+ i2
(3) 1:4和4:1传输线变压器
1:4传输线变压器是把负载阻抗降为1/4倍以便和信号源相匹配。在负载匹配的条件下,有 u1=u2=u和,i1=i2=i
第4页/共37页
1 宽带高频功率放大器
以LC谐振回路为输出电路的功率放大器,由于其相对通频带B/ fo只有百分之几甚至千分之几,所以又称为窄带高频功率放大器。由于调谐系统复杂,窄带功率放大器的运用就受到了很大的限制。
行波电极微带线的传输abcd矩阵
一、概述行波电极微带线是一种常用的电磁波传输线路结构,广泛应用于微波集成电路、天线阵列、射频系统等领域。
行波电极微带线的传输abcd 矩阵是描述其传输特性的重要参数,对于设计和分析微带线电路具有重要的意义。
二、行波电极微带线的基本原理行波电极微带线是由微带线和两根电极组成的,电极分布沿微带线的方向呈周期性分布,利用电磁波在微带线和电极之间的耦合传输信号。
微带线部分起到传输电磁波的作用,而电极部分起到了调制电波和传输电波的作用。
行波电极微带线的传输abcd矩阵描述了其在不同频率下对电磁波的传输特性。
三、行波电极微带线的传输abcd矩阵计算方法行波电极微带线的传输abcd矩阵可以利用多种方法来进行计算,主要包括理论分析、仿真计算和实验测试。
其中理论分析是基于电磁场方程和原理进行推导和计算,仿真计算是利用电磁场仿真软件进行数值模拟和计算,实验测试是通过实际的电路板搭建和测试获得。
四、行波电极微带线的传输abcd矩阵的影响因素行波电极微带线的传输abcd矩阵是受到多种因素影响的,主要包括微带线的几何结构、材料特性、电极的设计参数等。
其中微带线的介质常数、电导率和电极结构的尺寸是影响传输abcd矩阵的重要因素。
五、行波电极微带线的传输abcd矩阵在电路设计中的应用行波电极微带线的传输abcd矩阵在电路设计中具有重要的应用价值,可以用于分析电磁波在微带线中的传输特性、设计微带线的匹配网络、优化电路性能等方面。
通过对传输abcd矩阵的分析和计算,可以指导实际电路设计中的优化和改进。
六、结论行波电极微带线的传输abcd矩阵是描述其传输特性的重要参数,对于设计和分析微带线电路具有重要的意义。
通过深入研究行波电极微带线的传输abcd矩阵,可以指导微带线的设计和优化,推动微波集成电路、天线阵列、射频系统等领域的发展。
希望通过本文的介绍,读者对行波电极微带线的传输abcd矩阵有更深入的理解,为相关领域的研究和应用提供参考和指导。
第三章 微波传输线 4微带线
第3章 微波传输线
微带线可由双导体系统演化而来, 但由于在中心导带和接 地板之间加入了介质, 因此在介质基底存在的微带线所传 输的波已非标准的TEM波, 而是纵向分量Ez和Hz必然存在。
下面我们首先从麦克斯韦尔方程出发加以证明纵向分量的 存在。
第3章 微波传输线
为微带线建立如图 3 - 5 所示的坐标。介质边界两边电磁 场均满足无源麦克斯韦方程组:
t )](w / h h
2)
h
2h
2h
第3章 微波传输线
式中, we为t不为零时导带的等效宽度; RS为导体表面电阻。
为了降低导体的损耗, 除了选择表面电阻率很小的导体材 料(金、 银、 铜)之外, 对微带线的加工工艺也有严格的要求。 一方面加大导体带厚度, 这是由于趋肤效应的影响, 导体带越厚, 则导体损耗越小, 故一般取导体厚度为 5~8 倍的趋肤深度; 另一 方面, 导体带表面的粗糙度要尽可能小, 一般应在微米量级以下。
(2) 介质衰减常数αd
对均匀介质传输线, 其介质衰减常数由下式决定:
ad
1 2
GZ0
27.3
0
tan
第3章 微波传输线
式中, tanδ为介质材料的损耗角正切。由于实际微带只有 部分介质填充, 因此必须使用以下修正公式
式中,
q
ad
e
27.3
(q e ) tan
0
r
为介质损耗角的填充系数。
r
一般情况下, 微带线的导体衰减远大于介质衰减, 因此一般
第3章 微波传输线
同理可得
EZ1 y
r
Ez 2 y
j
(1
1
r
)
E
y
微带天线传输线模型等效电路
微带天线传输线模型等效电路微带天线是一种常用于无线通信系统中的天线设计,其结构简单、易于制作和安装。
为了更好地理解微带天线的工作原理和性能,我们可以使用等效电路模型来描述和分析微带天线的传输线特性。
在微带天线的等效电路模型中,通常包含以下几个主要元素:1. 传输线部分:微带天线的传输线主要由一根导体和一片介质组成。
传输线的宽度和长度决定了天线的频率响应和辐射特性。
通过调整传输线的尺寸,可以实现对天线的谐振频率和辐射方向的控制。
2. 辐射元件:微带天线的传输线的末端通常会连接一个辐射元件,用于将电磁能量转化为电磁辐射。
常见的辐射元件包括微带贴片、微带环形和微带缝隙等。
这些辐射元件的选择和设计将直接影响天线的辐射效率和方向性。
3. 匹配网络:为了实现微带天线的最佳性能,通常需要在传输线和辐射元件之间添加匹配网络。
匹配网络的作用是调整天线的输入阻抗,以便与无线电设备的输出阻抗匹配,从而实现最大功率传输。
在微带天线的等效电路模型中,我们可以通过参数化建模的方法来表示上述元素的特性。
例如,可以使用电感和电容来表示传输线的电感和电容,使用电阻来表示辐射元件的电阻损耗,使用变压器来表示匹配网络的阻抗变换等。
通过建立微带天线的等效电路模型,我们可以使用电路仿真工具进行分析和优化。
例如,可以通过改变传输线宽度、长度和辐射元件的尺寸来调整天线的工作频率和辐射特性。
还可以利用仿真工具来优化匹配网络的设计,以实现最佳的功率传输效果。
总之,微带天线的等效电路模型为我们理解和设计微带天线提供了一个有力的工具。
通过建立和分析该模型,我们可以更好地理解微带天线的工作原理,优化其性能,并满足不同无线通信系统对天线的需求。
微带传输线《微波技术与天线》课件典型实例
• 微带传输线概述 • 微带传输线的分类 • 微带传输线的性能参数 • 微带传输线的应用实例 • 微带传输线的未来发展
01
微带传输线概述
定义与特点
定义
微带传输线是一种在介质基片上 制作的一维传输线结构,通常由 金属导带和接地板组成。
特点
具有较小的体积和重量,易于集 成到微波集成电路中,成本较低 ,适用于高频信号传输。
工作原理
电磁波在微带导带和接地板之间传播,通过导带和接地板之间的电容效应实现信号 的传输。
导带和接地板之间的电场主要集中在导带与接地板之间的狭缝中,磁场则主要集中 在导带附近。
随着频率的升高,电磁波的传播常数增大,导致相位速度减小,从而产生相位失真。
应用场景
01
02
03
微波集成电路
微带传输线广泛应用于微 波集成电路中,作为信号 传输线、元件间连接线等。
传播常数
总结词
传播常数是描述微带传输线中电磁波传播特性的参数,它由相位常数和衰减常数组成。
详细描述
传播常数是描述微带传输线中电磁波传播行为的参数,它由相位常数和衰减常数组成。 相位常数决定了电磁波在传输线中的相速度和相位移,而衰减常数则表示电磁波在传输 过程中的能量损失。传播常数是微带传输线设计中的关键参数,它影响着信号的传输距
离和信号质量。
损耗
总结词
损耗是微带传输线中信号能量损失的参数,主要包括 导体损耗、介质损耗和辐射损耗。
详细描述
损耗是微带传输线设计中必须考虑的重要参数。在信 号传输过程中,由于导体电阻、电介质损耗以及辐射 等因素,信号能量会逐渐损失。导体损耗主要是由于 传输线中导体的电阻引起的能量损失;介质损耗是由 于电介质材料的损耗引起的能量损失;而辐射损耗则 是由于传输线中电磁波向空间辐射引起的能量损失。 了解和减小这些损耗是提高微波传输系统性能的关键 。
微带传输线微带电容微带电感设计
微带传输线微带电容微带电感设计微带传输线是一种常见的高频电路元件,常用于微波和射频电路中。
在设计微带传输线时,需要考虑微带电容和微带电感对电路性能的影响。
在本文中,将介绍微带传输线、微带电容和微带电感的基本原理,并讨论如何设计微带传输线的电容和电感。
1.微带传输线的基本原理微带传输线是一种平面传输线,在板上制成,由导体铜箔和绝缘基板组成。
它通常由一层导体(称为信号层)和一层绝缘层(称为介质层)构成。
微带传输线的信号层上的导体用来传输电信号,绝缘层用来隔离导体和其他层。
微带传输线通常用来传输高频信号,因此需要考虑其高频特性,如阻抗匹配、耦合和传输损耗等。
2.微带电容的设计一种常用的微带电容设计方法是通过改变绝缘层的介电常数来调节。
介电常数较大的材料可以减小微带电容,增大信号速度和带宽。
常用的介电材料包括FR4和PTFE等。
使用FR4材料时,微带电容约为0.009pF/mm²,使用PTFE材料时,微带电容约为0.0009 pF/mm²。
另一种方法是通过改变微带的宽度来调节微带电容。
微带的宽度与微带电容成反比,宽度越小,电容越大。
设计时可以根据需求调整微带的宽度。
3.微带电感的设计微带电感可以通过改变导体的长度和宽度来调节。
导体的长度越大,电感越大。
通常,微带传输线的长度为电磁波波长的1/4或者1/2、导体的宽度越大,电感越小。
设计时可以根据需求调整导体的长度和宽度,以达到所需的电感值。
4.微带传输线微带电容和微带电感的综合设计微带传输线的微带电容和微带电感是相互独立的,但在实际设计中需要综合考虑它们的影响。
例如,当微带电容增大时,信号速度和带宽增大,但串扰也可能增加。
因此,在设计微带传输线时,需要根据具体应用要求,综合考虑微带电容和微带电感的影响。
在微带传输线的设计中,使用计算机辅助设计(CAD)工具可以帮助自动计算微带电容和微带电感的值,并快速优化设计参数,以满足特定的电路性能要求。
微带传输线
w w w = 2π = ω0 wL PLT PL
1 1 1 1 1 1 = + = + + Q Q0 Qr Qc Qd Qr
品质因数随基片厚度的变化情况
对一个给定频率,存在一个 使Q值最大的最佳基片厚度hopt f↑,εr↓→hopt↓
f↑,εr↑,h↓→αT↑
f↑,εr↑,h↓→αT↑
功率容量
功率容量
平均功率容量
主要受限于导体损耗和介质损耗引起的热效应
峰值功率容量
主要受限于基片介质击穿效应
波导和同轴线可用于高功率,微带一般只能用 于中小功率电路
品质因数
Q值是描述谐振系统的频率选择性和能量损耗 程度的物理量
Q 2π
w为谐振时的储能,wL为一个周期内的损耗能量, PL为一个周期内的平均损耗功率
准静态法将准TEM模按TEM模考虑,忽略了色 散模,即TE和TM模,要求w,h<<λ,因此只 在较低频率时适用 在毫米波频段,类微带线传输的是TE+TM混 合模,色散影响较为显著,采用准静态法的误 差很大,但可以在准静态分析结果的基础上作 修正
特性阻抗和有效相对介电常数 随w/h的变化情况
εr↑,w↑,h↓→εre↑,Zc↓
泛函的概念将准tem模按tem模考虑将特性阻抗的求解转化为静电容的求解建立gr对电容的变分表示式求泛函极值得到导体条带上的电荷分布从而得出电容值准静态分析步骤小结对奇偶模分别考虑对称耦合微带结构的准静态分析准静态法将准tem模按tem模考虑忽略了色散模即te和tm模要求wh因此只在较低频率时适用在毫米波频段类微带线传输的是tetm混合模色散影响较为显著采用准静态法的误差很大但可以在准静态分析结果的基础上作修正准静态法的限制特性阻抗和有效相对介电常数特性阻抗和有效相对介电常数随频率的变化情况近似公式通过与全波分析的结果比较确定近似公式的适用范围导体条带厚度的影响边缘电容33类微带线的特性阻抗和有效介电常数屏蔽外壳的作用实现电磁屏蔽增加机械强度便于密封安装接头屏蔽外壳影响可忽略的条件5时顶盖的影响可忽略屏蔽外壳的影响色散的程度微带的色散效应可忽略的频率上限频率对有效介电常数和特性阻抗的影响在准静态分析结果基础上作修正色散的影响损耗导体损耗很小可近似忽略34微带线的损耗功率容量和品质因数功率容量平均功率容量主要受限于导体损耗和介质损耗引起的热效应峰值功率容量主要受限于基片介质击穿效应波导和同轴线可用于高功率微带一般只能用于中小功率电路功率容量q值是描述谐振系统的频率选择性和能量损耗程度的物理量为一个周期内的平均损耗功率品质因数品质因数随基片厚度的变化情况与波导同轴线相比微带的q值通常要低一至二个数量级对一个给定频率存在一个使q值最大的最佳基片厚度hopt不连续性问题准静态分析全波分析基片的选择毫米波混合集成常选用较薄的低介电常数基片如rtduroid5880单片集成常选用高介电常数基片以便集成有源器件如ga或si35有关微带电路设计的其它问题毫米波电路尺寸小制造公差问题比较突出公差的影响低介电常数的薄基片允许的公差相对大一些最高工作频率受限于寄生模的激励过高的损耗严格的制造公差加工安装损坏严重的不连续效应辐射引起的q值降低制造工艺的限制频率上限频率上限的主要障碍是微带中准tem模与最低的最低次表面波寄生模之间的耦合二者不出现强耦合的最高工作频率为vendelin寄生模决定的频率上限150
微波实验二微带传输线
实验二微带传输线实验一实验目的1.了解微带传输线的基本理论和特性。
2.掌握用网络分析仪测量微带传输线接不同负载时工作参量的值。
3.通过测量认知1/4波长传输线阻抗变换特性。
二实验原理1.微带传输线的基本原理微带线目前是混合微波集成电路和单片微波集成电路使用最多的一种平面型传输线。
它可用作光刻程序制作,且容易与其它无源微波电路和有源微波电路器件集成,实现微波部件和系统的集成化。
微带线可以看作是由双导线传输线演变而成的,如图2—1所示。
在两根导线之间插入极薄的理想导体平板,它并不影响原来的场分布,而去掉板下的一根导线,并将留下的另一根导线“压扁”,即构成了微带传输线。
实际的微带线结构如图2-1所示。
导体带(其宽度为的厚度为力和接地板均由导电良好的金属材料(如银,铜,金)构成,导体带与接地板之间填充以介质基片,导体带与接地板的间距为h o有时为了能使导体带,接地板与介质基片牢固地结合在一起,还要使用一些黏附性较好的铭,铝等材料。
介质基片应采用损耗小,黏附性,均匀性和热传导性较好的材料,并要求其介电常数随频率和温度的变化也较小。
图2—1双导线演变成微带线图2—2微带线的结构及其场分布2.微带线的技术参数2.1特性阻抗若微带线是被一种相对介电常数为名的均匀介质所完全包围着,并把准TEM模当作纯TEM模看待,并设£和C分别为微带线单位长度上的电感和电容,则特性阻抗为相速以为_1_Vovp"√Zc-X但实际上的微带线是含有介质和空气的混合介质系统,因此不能直接套用上面的公式求特性阻抗。
为了求出实际的微带线的特性阻抗Zc和相速度),而引入了等效相对介电常数的概念。
如果微带线的结构现状和尺寸不变,当它被单一的空气介质所包围着时,其分布电容为C。
实际微带线是由空气和相对介电常数为益的介质所填充,它的电容为G,那么,等效相对介电常数册的定义为这样,实际微带线的特性阻抗即可表示为Z :为在同样形状和结构尺寸的情况下,填充介质全部是空气时微带线的特性阻抗我们假定已成形的导体的厚度t 与基片厚度h 相比可以忽略h(t/h<0.005)0这种情况下,我们能够利用只与线路尺寸(w 和h)和介电常数名有关的经验公式。
第三章微带传输线
t h x
微带线及其坐标
二 微带线的传输模式
1 分布参数 和平行双线同轴线一样,只要微带线工组 模式是TEM波,可以定义微带线的分布参数 单位长度的电阻和电感、电导和电容。 可是由于微带线结构的特殊性很难得到其 简单的表达式。
2 TEM波传输线传输特性 根据平行双线和同轴线的传输特性,当 传输线周围填充同一种介质传输TEM波时, 传输线的传输特性可以概括为:
λmin > 2ω ε r λmin > 2h ε r λmin > 4h ε r 1
五 微带线的工程应用
微带线作为一种导行电磁波的机构, 由于其自身结构特点不能用于大功率传输 系统,而且也不适合用于长距离作为传输 线。前面已经说到,它更适合于构造成各 种微波电路元件,并与其它微波器件、元 件组合,作为小型平面化和集成微波电路 单元。这对于微波电路和设备的小型化、 集成化具有重要的意义。 通频带5GHz~15GHz。
微带线Z0和相对等效介电常数与尺寸的关系
5 微带线的工程计算 微带线的工程计算,通常是由给定的高 度、和波阻抗的要求,设计导带宽度。
6 微带线的传输模式 需要明确的是微带线中真正传输的是TE波 与TM波的混合波,称作EH波,其纵向分量 主要是介质与空气界面上的边缘场所引起。 但是由于微带线导行的电磁波,场量主要 集中于介质基片,波的纵向分量比之横向 分量要小的多,因此微带线中的电磁波与 TEM波相差很小,所以称之为准TEM波。 上述采用方法是一种非常好的近似方法。
导体损耗
αd =
Rs
Z 0W
=
π f
1
σ
Z 0W
介质损耗
εr G0 α c ≈ q tgδ , tg δ = 2 ε rc ωC0
微带线初学入门
射频/微波传输线微波传输线是用来传输微波信号和微波能量的传输线。
微波传输线种类很多,按其传输电磁波的性质可分为三类:TEM模传输线(包括准TEM模传输线),如图3―1―1(1)所示的平行双线、同轴线、带状线及微带线等双导线传输线;TE模和TM模传输线,如图3―1―1(2)所示的矩形波导,圆波导、椭圆波导、脊波导等金属波导传输线;表面波传输线,其传输模式一般为混合模,如图3―1―1(3)所示的介质波导,介质镜像线等。
在射频/微波的低频段,可以用平行双线来传输微波能量和信号;而当频率提高到其波长和两根导线间的距离可以相比时,电磁能量会通过导线向空间辐射出去,损耗随之增加,频率愈高,损耗愈大,因此在微波的高频段,平行双线不能用来作为传输线。
为了避免辐射损耗,可以将传输线做成封闭形式,像同轴线那样电磁能量被限制在内外导体之间,从而消除了辐射损耗。
因此,同轴线传输线所传输的电磁波频率范围可以提高,是目前常用的微波传输线。
但随频率的继续提高,同轴线的横截面尺寸必须相应减小,才能保证它只传输TEM模,这样会导致同轴线的导体损耗增加,尤其内导体引起损耗更大,传输功率容量降低。
因此同轴线又不能传输更高频率的电磁波,一般只适用于厘米波段。
一微带传输线结构微带传输线应用于低电平射频微波技术中。
它的优点是制造费用省,尺寸特别小,重量特别轻,工作频带宽,以及具有与固体器件的良好配合性;其主要缺点是损耗较大,不能在高电平的情况下使用。
由于微带线结构简单,便于器件的安装和电路调试,产品化程度高,使得微带线已成为射频/微波电路中首选的电路结构。
微带线的结构如图3―3―1所示。
它是由介质基片的一边为中心导带,另一边为接地板所构成,其基片厚度为h,中心导带的宽度为w。
其制作工艺是先将基片(最常用的是氧化铝)研磨、抛光和清洗,然后放在真空镀膜机中形成一层铬-金层,再利用光刻技术制成所需要的电路,最后采用电镀的办法加厚金属层的厚度,并装接上所需要的有源器件和其它元件,形成微带电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 微波集成传输线
• 为了适应微波电路小型化、平面化和集成 化的趋势,有许多平面集成传输线,如带 线、微带线、耦合微带线、槽线和共面波 导等。 • 它们都具有平面结构,体积小、重量轻、 可靠性高和成本低等优点。 • 这类传输线传输模式为TEM模式或准TEM 模式,因而传输频带宽。该类传输线的缺 点是传输损耗较大,功率容量小。
The transmission characteristics
(1) The effective dielectric constant e=C/C0 Where C=capacitance per unit length of the Microstrip line with a dielectric substrate (r1) C0=capacitance per unit length of the Microstrip line with an air dielectric (r=1) (2) Phase velocity
3.2.1 微带传输线的传输模式 由于微带线是由双导线传输线演变而来的,属双导体系统,所 以,若导体带与接地板之间没有填充介质基片,或者说介质就 是空气,或者整个微带线被另一种均匀的介质全部包围着,那 么,它可以传输TEM模,而且是最低模式(主模),截止频率为 零。 然而,实际的微带线是在导体带与接地板之间填充有相对介电 常数>1的介质基片,而其余部分是空气,所以,微带传输线 是部分填充介质的双导体传输系统。在微带线的横截面上存在 着介质与空气的交界面;也存在介质与理想导体的交界面。可 见,在微带传输线中传输的任何模式的场除了应满足介质与理 想导体的边界条件之外,还应满足两种不同介质(空气与介质) 的边界条件。由TEM模场特征和电磁场边界条件可知,纯TEM 模的场不满足这个边界条件,微带线中传输的模式(主模)并非 完全是TEM模,而是由TE摸和TM模组合而成的混合模式,是 具有色散特性的模式,这种模式通常称为准TEM模。
vp=c/ (e)1/2
(3)Phase constCharacteristic impedance
Z0 L / C LC 1 C v pC
or
Z0
1 (c / e )C
1 (c / e )C0 e
1 c e C0
1 cC0 e
3.2.2 微带传输线的传输特性
• 描述微带线传输特性的主要参数有:特性阻抗、波的传播速度(相速),波导波 长、衰减和功率容量等。
Z
0 0
Z00 is the Characteristic impedance of the
microstrip line with an air dielectric (r =1).
e
• The effective dielectric constant of a microstrip line is given approximately by
3.2 微带传输线
• 结构与有缺点: • 微带传输线简称微带线,结构如图3-2-1所 示。它由介质基片上的导带、介质基片和 介质基片底面的金属板共同构成。
• 体积小、重量轻、稳定性好、频带宽、便于与微波集成电 路相连接等,易于实现微波系统小型化和集成化。但是, 微带传输线与同轴线和金属波导相比,也有某些缺点,主 要是损耗大,Q值低和难以承受较大的功率,目前只适用 于中小功率范围。 • 微带传输线可以看成由平行双导线演变而成 :
• 本章主要介绍几种常见的平面集成传输线, 重点讨论带状线和微带线的一些主要工作 特性,主要内容是分析其工作模式和一些 重要传输参量等。 • 微带传输线(简称微带线)是应用比较广泛的 一种微波集成传输线,特别是应用于微波 集成电路中。微带线的基本结构形式有对 称微带和不对称微带,其中对称微带又称 带状线,不对称的称标准微带或简称微带。
e
r 1
2 2 1 q( r 1)
r 1
1 1 12d / w
Where q is the ratio of the dielectric region to the air region: the filling coefficient. When q=0 can show the fact that the Microstrip line with an air dielectric (r=1) substrate, namely, e=1. When q=1 can show the fact that the Microstrip line with an dielectric e=r