《对数的运算》指数函数与对数函数PPT优秀课件
合集下载
《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT
-1
2
2
1
化简可得 ≤x2≤2.
2
再由 x>0 可得 2≤x≤
2
2
答案:(1)A (2)
, 2
2
2
2
2
1
,
2,故函数 f(x)的定义域为
2
,
2
2 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
反思感悟 定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,
偶次根式被开方式大于或等于零等.
a>1
0<a<1
图象
性
质
定义域
值域
过定点
单调性
奇偶性
(0,+∞)
R
(1,0),即当 x=1 时,y=0
在(0,+∞)
在(0,+∞)
上是增函数
上是减函数
非奇非偶函数
课前篇
自主预习
一
二
三
3.做一做
(1)若函数y=logax的图象如图所示,则a的值可能是 (
)
A.0.5 B.2
C.e D.π
(2)下列函数中,在区间(0,+∞)内
.
2 -2-8 = 0,
解析:(1)由题意可知 + 1 > 0, 解得 a=4.
+ 1 ≠ 1,
(2)设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,
所以
a-3=8,即
1
3
-
指数函数和对数函数ppt课件
解法 2:a-b=ln22-ln33=3ln2-6 2ln3 =16(ln8-ln9)<0. ∴a<b.同理可得 c<a,∴c<a<b.故选 C.
[答案]C
4.考查函数的定义域 函数的定义域是历年高考中均考查的知识点,其难度 不大,属中低档题,但在求解时易漏掉部分约束条件造成错 解,因而也是易错题. [例 4] 函数 f(x)= 31x-2 x+lg(3x+1)的定义域是
[例 1] (1)化简
3 ÷(1-2
ba)×3 ab;
(2)求值:12lg3429-43lg 8+lg 245.
(2)解法一 12lg3429-43lg 8+lg 245 =lg472-lg4+lg7 5 =lg(472×14×7 5) =lg 10=12lg10=12.
解法二 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5 =12(lg2+lg5) =12lg10=12.
[例7]求不等式x-1<log6(x+3)的所有整数解. [解析]设y1=x-1,y2=log6(x+3),在同一坐标系中作
出它们的图像如图所示,两图像有两个交点,一交点的横坐标
显然在-3和-2之间,另一个交点设为P.
因为x=1时,log6(1+3)-(1-1)>0,x=2时, log6(2+3)-(2-1)<0,所以1<xP<2.
2.指数函数的概念与性质 (1)指数函数的定义
一般地,函数y=ax(a>0,且a≠1)叫作指数函数. (2)y=ax(a>0,a≠1)的图像
0<a<1
a>1
《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)
4.3 对 数
第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2
第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2
《指数》指数函数与对数函数PPT
1.(1)整数指数幂的运算性质有哪些?
提示:①am·an=am+n;②(am)n=am·n;
m-n
③ =a (m>n,a≠0);(4)(a·b)m=am·bm.
(2)零指数幂和负整数指数幂是如何规定的?
1
提示:规定:a0=1(a≠0);00 无意义,a-n=(a≠0).
课前篇
自主预习
在幂的运算中,对于形如 m0 的式子,要注意对底数 m 是否为零进
行讨论,因为只有在 m≠0 时,m 才有意义;而对于形如
0
们一般是先变形为
,再进行运算.
-
的式子,我
课堂篇
探究学习
探究一
解:(1)
探究二
2
3
125
27
探究三
探究四
2
3 -3
5
=
33
5-2
=
=
32
思想方法
随堂演练
9
= 25.
(1)a+a-1; (2)a2+a-2; (3)a2-a-2.
1
1
分析:解答本题可从整体上寻求各式与条件 2 + 2 = 5 的联
系,进而整体代入求值.
1
解:(1)将2
1
2
-
+ = 5的两边平方,
得a+a-1+2=5,即a+a-1=3.
(2)由a+a-1=3,两边平方,得a2+a-2+2=9,
数, =|a|=
-, < 0.
课前篇
自主预习
一
二
2.填空
三
四
提示:①am·an=am+n;②(am)n=am·n;
m-n
③ =a (m>n,a≠0);(4)(a·b)m=am·bm.
(2)零指数幂和负整数指数幂是如何规定的?
1
提示:规定:a0=1(a≠0);00 无意义,a-n=(a≠0).
课前篇
自主预习
在幂的运算中,对于形如 m0 的式子,要注意对底数 m 是否为零进
行讨论,因为只有在 m≠0 时,m 才有意义;而对于形如
0
们一般是先变形为
,再进行运算.
-
的式子,我
课堂篇
探究学习
探究一
解:(1)
探究二
2
3
125
27
探究三
探究四
2
3 -3
5
=
33
5-2
=
=
32
思想方法
随堂演练
9
= 25.
(1)a+a-1; (2)a2+a-2; (3)a2-a-2.
1
1
分析:解答本题可从整体上寻求各式与条件 2 + 2 = 5 的联
系,进而整体代入求值.
1
解:(1)将2
1
2
-
+ = 5的两边平方,
得a+a-1+2=5,即a+a-1=3.
(2)由a+a-1=3,两边平方,得a2+a-2+2=9,
数, =|a|=
-, < 0.
课前篇
自主预习
一
二
2.填空
三
四
对数函数PPT课件
第4章 指数函数与对数函数
4.4 对数函数
对数函数的概念、图象及性质
第4章 指数函数与对数函数
1.了解对数函数的概念. 2.会画对数函数的图象,记 住对数函数的性质. 3.掌握对数函数图象和性质的应用.
第4章 指数函数与对数函数
1.对数函数的概念 一般地,函数 y=logax(a>0,a≠1)叫做对数函数,对数函数 的定义域是___(0_,__+__∞__)___,值域为___(_-__∞_,__+__∞_)__.
a
栏目 导引
第4章 指数函数与对数函数
定义 趋势
y=logax(a>0 且 a≠1) a 值越大图象越靠近
a 值越小图象越靠近 x,y 轴 x,y 轴 x 趋于零,y 趋于-
x 趋于零,y 趋于+∞;x 趋 ∞;x 趋于+∞,y
于+∞,y 趋于-∞ 趋于+∞
栏目 导引
第4章 指数函数与对数函数
3.y=ax 称为 y=logax 的反函数,反之,y=logax 也称为 y= ax 的反函数,一般地,如果函数 y=f(x)存在反函数,那么它 的反函数记作 y=f-1(x).
栏目 导引
第4章 指数函数与对数函数
对数函数的图象和性质 (1)如图所示的曲线是对数函数 y= logax 的图象,已知 a 的取值可为35,110, 3, 43,则相应曲线 C1,C2,C3,C4 的底数 a 的值 依次为________. (2)若函数 y=loga(x+b)+c(a>0,a≠1)的图象恒过定点(3,2), 则实数 b,c 的值分别为________,________.
定义 共点性
函数值
对称性
y=logax(a>0 且 a≠1) 图象过点__(1_,___0_)_,即 loga1=0
4.4 对数函数
对数函数的概念、图象及性质
第4章 指数函数与对数函数
1.了解对数函数的概念. 2.会画对数函数的图象,记 住对数函数的性质. 3.掌握对数函数图象和性质的应用.
第4章 指数函数与对数函数
1.对数函数的概念 一般地,函数 y=logax(a>0,a≠1)叫做对数函数,对数函数 的定义域是___(0_,__+__∞__)___,值域为___(_-__∞_,__+__∞_)__.
a
栏目 导引
第4章 指数函数与对数函数
定义 趋势
y=logax(a>0 且 a≠1) a 值越大图象越靠近
a 值越小图象越靠近 x,y 轴 x,y 轴 x 趋于零,y 趋于-
x 趋于零,y 趋于+∞;x 趋 ∞;x 趋于+∞,y
于+∞,y 趋于-∞ 趋于+∞
栏目 导引
第4章 指数函数与对数函数
3.y=ax 称为 y=logax 的反函数,反之,y=logax 也称为 y= ax 的反函数,一般地,如果函数 y=f(x)存在反函数,那么它 的反函数记作 y=f-1(x).
栏目 导引
第4章 指数函数与对数函数
对数函数的图象和性质 (1)如图所示的曲线是对数函数 y= logax 的图象,已知 a 的取值可为35,110, 3, 43,则相应曲线 C1,C2,C3,C4 的底数 a 的值 依次为________. (2)若函数 y=loga(x+b)+c(a>0,a≠1)的图象恒过定点(3,2), 则实数 b,c 的值分别为________,________.
定义 共点性
函数值
对称性
y=logax(a>0 且 a≠1) 图象过点__(1_,___0_)_,即 loga1=0
高一数学《指数函数与对数函数》PPT课件
(1)
1 x 2
1
x2
2
x2
x 1
5
1
1
x2 x 2 5
1
(2)(x 2
)3
1
(x 2
)3
1
(x 2
1
x 2 )[(x
x 1 ) 1]
x x 1 3 x 0
5(3 1)
6. 4
3
36 3
81 9 2
7. 2 3 3 1.5 6 12 6
8.设 mn>0,x= m n ,化简:A= 2 x2 4 .
⑵ y 3 5x1 ⑶ y 2 x 1
函数的定义域就是使函数表达式有意义的自变量 x的取值范围。
(1)定义域为{x|x≠1};
1
0 x 1
值域为{y|y>0且y≠1}
1
⑴ y 0.4 x1
⑵ y 3 5x1 ⑶ y 2 x 1
(2)
定义域为{x|
x
1 5
}
值域为{y|y≥1}
5x 1 ≥0
BC A
A’ B’ C’
f(a)=SAA’C’C-SAA’B-SB’C’C
(f2()af)(a)1 g(a) 1a(a2
2
2
ag(a2) 2 aa11)
1 [( a 2 a 1) ( a 1 a )] 2
1(
1
1
)0
2 a 2 a 1 a 1 a
7. (★★★★)当a≠0时,y=ax+b 和 y=bax
y 1 x 2
y 1 x
1
2
把 y 轴右边的图形翻折到 y 轴的左边
3. 作出函数 y= │ 2x -1│的图像
y= │ 2x -1│
《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)
解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.
指数函数与对数函数的关系指数函数对数函数与幂函数PPT精品推荐课件
致性吗?
提示:当0<a<1时,上述两个函数均是其定义域上的减函数;当a>1
时,上述两个函数均是其定义域上的增函数.因此单调性具有一致
性,但变化速度有差异.
课前篇自主预习
一
二
3.填空.
(1)关系
指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)互为反函数.
(2)图像特征
指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)的图像关于
与f-1(x)互为反函数,对此不能对自变量x随意变化拓展.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
正解:∵g(x)的图像过定点(1,2 018),
∴f(x+1)的图像过定点(2 018,1).
又∵f(x)的图像可以看作由f(x+1)的图像向右平移1个单位长度得
到的,∴f(x)过定点(2 019,1).
)
A.(0,0) B.(0,2) C.(1,1)
D.(2,0)
答案:B
解析:∵y=f(x)的图像过点(1,0),
∴其反函数y=f-1(x)的图像必过点(0,1),
即f-1(0)=1,∴y=f-1(x)+1的图像过点(0,2).
4.已知
1-3
4
f(x)= ,则 f-1 5
1+3
=
Hale Waihona Puke 答案:-21-3除D.故选B.
方法二:若0<a<1,则曲线y=ax下降且过点(0,1),而曲线y=loga(-x)
上升且过点(-1,0),所有选项均不符合这些条件.
提示:当0<a<1时,上述两个函数均是其定义域上的减函数;当a>1
时,上述两个函数均是其定义域上的增函数.因此单调性具有一致
性,但变化速度有差异.
课前篇自主预习
一
二
3.填空.
(1)关系
指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)互为反函数.
(2)图像特征
指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)的图像关于
与f-1(x)互为反函数,对此不能对自变量x随意变化拓展.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
正解:∵g(x)的图像过定点(1,2 018),
∴f(x+1)的图像过定点(2 018,1).
又∵f(x)的图像可以看作由f(x+1)的图像向右平移1个单位长度得
到的,∴f(x)过定点(2 019,1).
)
A.(0,0) B.(0,2) C.(1,1)
D.(2,0)
答案:B
解析:∵y=f(x)的图像过点(1,0),
∴其反函数y=f-1(x)的图像必过点(0,1),
即f-1(0)=1,∴y=f-1(x)+1的图像过点(0,2).
4.已知
1-3
4
f(x)= ,则 f-1 5
1+3
=
Hale Waihona Puke 答案:-21-3除D.故选B.
方法二:若0<a<1,则曲线y=ax下降且过点(0,1),而曲线y=loga(-x)
上升且过点(-1,0),所有选项均不符合这些条件.
对数与对数运算(共22张PPT)
②自然对数:以无理数 为底的对数
解:
解:(1)
例3:计算: log 9 27
解:设 则
(1) log5 25
(3) lg1000
(2)
log
2
1 16
(4) lg 0.001
想一想:
(1) loga 1 (2) loga a (3) aloga N
(1)负数和零没有对数。 (2)1的对数是0: (3)底数的对数是1: (4)对数恒等式:
(2)计算:
(1) 71log7 5
(2) 412(log2 9log2 5)
提高训练
4、求 log12x (3x 2) 中 x 的
取值范围。
2
5、已知:a 3
4
(a > 0)
9
则 log2 a
3
①对数的定义;
②两种特殊的对数:lg N ln N
③指数式与对数式的互换 ④求对数式的值 ⑤对数的性质
对数与对数运算
创设情景,引入新课
情景1:
情景2: 设2014年我国的国民生产总值为 亿元, 如果每年平均增长8%,那么经过多少年国 民生产总值是2014年的2倍?
解:设经过x年国民生产总值是2014年的 2倍,则有
x?
问题1:2 = 26
问题2:
=? =?
共同特征:
已知底数和幂的值,求指数的问题。
作业
课本:P74 1,2
同在一个环境中生活,强者与弱者的分界就在于谁能改变它。顽强的毅力改变可以征服世界上任何一座高峰。望远镜可以望见远的目标, 伟大的成就,来自为远大的目标所花费的巨大心思和付诸的最大努力。我不能说只要坚持就能怎样,但是只要放弃就什么都没有了。有压 茫,但永不绝望。沉湎于希望的人和守株待兔的樵夫没有什么两样。你花时间做什么事,你就会成为什么样的人!人生没有彩排,每一天 大的成就是从失败中站起来要做一件事,成功之前,没有必要告诉其他人。成功之后不用你说,其他人都会知道的。这就是信息时代所带 的,莫如时日;天下最能奢侈的,莫如浪费时不论你在什么时候开始,重要的是开始之后就不要停止。面对困境,悲观的人因为往往只看 的路,说长也很长,说短也很短。偶遇不幸或挫败只能证明某一时候某一方面的不足或做得不够。如果把才华比作剑,那么勤奋就是磨刀 配,它就一无可为。很多时候,人并不是因为失败而烦恼;而是因为失败后找不到任何借口而烦恼。假如樵夫害怕荆棘,船只避忌风浪, 世界就会变成另一副模样。每一个人都多多少少有点惰性。一个人的意志力量不够推动他自己,他就失败,谁最能推动自己,谁就最先得 性格中最必要的力量源泉之一,也是成功的利器之一。人的肉体可以随着时间的推移而衰老,而赋予人的生命的思想却可以青春永驻,与 有的人走了一辈子也没有走出命运画出的圆圈,其实,圆上的每一个点都有一条腾飞的切线。人生是伟大的宝藏,我晓得从这个宝藏里选 明日,明日何其多?我生待明日,万事成蹉跎。只要是辛勤的蜜蜂,在生活的广阔原野里,到处都可以找到蜜源。不要对挫折叹气,姑且 大事之前,必须经受的准备工作。不要为已消逝之年华叹息,须正视欲匆匆溜走的时光。不要在这个努力拼搏的年纪去选择安逸。不做准 在任何苦难中能发现好的一面!成功就是你坚持不住的时候,在坚持一下。成功是一种观念,成功是一种思想,成功是一心态,成功是一 日,败事多因得意时。大道理人人都懂,小情绪却是难以自控。当你的能力还驾驭不了你的目标时,那你就应该沉下心来历练。当你停下 记别人还在奔跑。第二名意味着你是头号输家。钢钎与顽石的碰撞声,是一首力的歌曲。格局被理想撑大,事业由梦想激发。光说不干, 马到成功。过去的时间会永远流入无边的黑洞,永不再回来,所以要珍惜当下的每一秒。海浪的品格,就是无数次被礁石击碎又无数闪地 恐惧的良药,而犹豫、拖延将不断滋养恐惧。积极者相信只有推动自己才能推动世界,只要推动自己就能推动世界。即使脚步下是一片岩 只要你拿起铁锤钢钎。假如生活欺骗了你,不要心焦,也不要烦恼。阴郁的日子里要心平气和,相信吧,那快乐的日子就来到。——普希 不抱有一丝幻想,不放弃一点机会,不停止一日努力。坚持把简单的事情做好就是不简单,坚持把平凡的事情做好就是不平凡。所谓成功 平凡的坚持。今天有许多人不是不愿接受新观念,而是不愿抛弃旧观念。拒绝严峻的冶炼,矿石并不比被发掘前更有价值。59.只有经历地 创造天堂的力量。怕吃苦的人苦一辈子,不怕吃苦的人苦一阵子。抛掉过去,不一定有好的开始,但一定不会比过去坏。如果你坚信自己 明。如果你真心选择去做一件事,那么全世界都是帮助你的。如果缺少破土面出并与风雪拚搏的勇气,种子的前途并不比落叶美妙一分。 但不会一直辜负努力的人。失败的历程也是成功的历程。时间会告诉你一切真相。有些事情,要等到你渐渐清醒了,才明白它是个错误; 正放下了,才知道它的沉重。实现自己既定的目标,必须能耐得住寂寞单干输在犹豫,赢在行动。树苗如果因为怕痛而拒绝修剪,那就永 用品,而不是装饰品。忠告:人在生气、烦恼、情绪不稳定是最好不要去作出任何的选择、决定。种一棵树最好的时间是十年之前,其次 己走,无论是苦是累,甚至是失败,都要去承担,只要是自己的选择,就无怨无悔。最困难的时候,就是距离成功不远了。人生四然:来 其当然,顺其自然。人生舞台的大幕随时都可能拉开,关键是你愿意表演,还是选择躲避。人生最精彩的不是实现梦想的一瞬间,而是坚 痛苦与挫折,它是我们的功课,我们要从中训练,然后突破,这样才能真正解脱。要纠正别人之前,先反省自己有没有犯错。 也许终点 绝不是停止前行的理由。一个人的快乐,不是因为他拥有的多,而是因为他计较的少。一个人只有亲眼看到自己伤疤的时候才知道什么是 个一味沉溺于往事的人,是不能张开双臂去拥抱今天的。51.人生就像爬坡,要一步一步来。人生没有彩排,每天都在现场直播。目标的坚 量源泉之一,也是成功的利器之一。没有它,天才也会在矛盾无定的迷径中徒劳无功。0.瀑布对悬崖无可畏惧,所以唱出气势磅礴的生命 什么假如,每个人的人生都不可重新设计。勤奋的含义是今天的热血,而不是明天的决心,后天的保证。用放大镜去看人生,人生则是一 看人生,人生则是一场喜剧。有了梦想,就应该迅速有力地实施。坐在原地等待机遇,无异盼天上掉馅饼。毫不犹豫尽快拿出行动,为梦 是梦想成真的必经之路。有无目标是成功者与平庸者的根本差别。有些人因为贪婪,想得更多的东西,却把现在所有的也失掉了。有志者 尤人,无能者长吁短叹,儒弱者颓然放弃。与其相信依靠别人,不如相信依靠自己。预测未来的最好方法,就是创造未来。再烦,也别忘微 再苦,也别忘坚持;再累,也要爱自己。把人生一分为二,前半生不犹豫,后半生不后悔。如果你觉得现在走的辛苦,那就证明你在走上 再加上一点点运气,你就会成功。弱者才会诉苦,强者永远找方法!成功的人永远只有办法,失败的人永远只有理由。成功和失败最大的 不放弃,放弃永不成功。成功者说:虽然这个很困难,但它是可能的;失败者说:那是可能的,但它太困难。当你不能成就伟业,请你把 不能让自己辉煌灿烂,请保持恒久的微笑。当你的才华还撑不起你的野心时,那你就应该静下心来学习。当你决定不再在乎的时候,生�
解:
解:(1)
例3:计算: log 9 27
解:设 则
(1) log5 25
(3) lg1000
(2)
log
2
1 16
(4) lg 0.001
想一想:
(1) loga 1 (2) loga a (3) aloga N
(1)负数和零没有对数。 (2)1的对数是0: (3)底数的对数是1: (4)对数恒等式:
(2)计算:
(1) 71log7 5
(2) 412(log2 9log2 5)
提高训练
4、求 log12x (3x 2) 中 x 的
取值范围。
2
5、已知:a 3
4
(a > 0)
9
则 log2 a
3
①对数的定义;
②两种特殊的对数:lg N ln N
③指数式与对数式的互换 ④求对数式的值 ⑤对数的性质
对数与对数运算
创设情景,引入新课
情景1:
情景2: 设2014年我国的国民生产总值为 亿元, 如果每年平均增长8%,那么经过多少年国 民生产总值是2014年的2倍?
解:设经过x年国民生产总值是2014年的 2倍,则有
x?
问题1:2 = 26
问题2:
=? =?
共同特征:
已知底数和幂的值,求指数的问题。
作业
课本:P74 1,2
同在一个环境中生活,强者与弱者的分界就在于谁能改变它。顽强的毅力改变可以征服世界上任何一座高峰。望远镜可以望见远的目标, 伟大的成就,来自为远大的目标所花费的巨大心思和付诸的最大努力。我不能说只要坚持就能怎样,但是只要放弃就什么都没有了。有压 茫,但永不绝望。沉湎于希望的人和守株待兔的樵夫没有什么两样。你花时间做什么事,你就会成为什么样的人!人生没有彩排,每一天 大的成就是从失败中站起来要做一件事,成功之前,没有必要告诉其他人。成功之后不用你说,其他人都会知道的。这就是信息时代所带 的,莫如时日;天下最能奢侈的,莫如浪费时不论你在什么时候开始,重要的是开始之后就不要停止。面对困境,悲观的人因为往往只看 的路,说长也很长,说短也很短。偶遇不幸或挫败只能证明某一时候某一方面的不足或做得不够。如果把才华比作剑,那么勤奋就是磨刀 配,它就一无可为。很多时候,人并不是因为失败而烦恼;而是因为失败后找不到任何借口而烦恼。假如樵夫害怕荆棘,船只避忌风浪, 世界就会变成另一副模样。每一个人都多多少少有点惰性。一个人的意志力量不够推动他自己,他就失败,谁最能推动自己,谁就最先得 性格中最必要的力量源泉之一,也是成功的利器之一。人的肉体可以随着时间的推移而衰老,而赋予人的生命的思想却可以青春永驻,与 有的人走了一辈子也没有走出命运画出的圆圈,其实,圆上的每一个点都有一条腾飞的切线。人生是伟大的宝藏,我晓得从这个宝藏里选 明日,明日何其多?我生待明日,万事成蹉跎。只要是辛勤的蜜蜂,在生活的广阔原野里,到处都可以找到蜜源。不要对挫折叹气,姑且 大事之前,必须经受的准备工作。不要为已消逝之年华叹息,须正视欲匆匆溜走的时光。不要在这个努力拼搏的年纪去选择安逸。不做准 在任何苦难中能发现好的一面!成功就是你坚持不住的时候,在坚持一下。成功是一种观念,成功是一种思想,成功是一心态,成功是一 日,败事多因得意时。大道理人人都懂,小情绪却是难以自控。当你的能力还驾驭不了你的目标时,那你就应该沉下心来历练。当你停下 记别人还在奔跑。第二名意味着你是头号输家。钢钎与顽石的碰撞声,是一首力的歌曲。格局被理想撑大,事业由梦想激发。光说不干, 马到成功。过去的时间会永远流入无边的黑洞,永不再回来,所以要珍惜当下的每一秒。海浪的品格,就是无数次被礁石击碎又无数闪地 恐惧的良药,而犹豫、拖延将不断滋养恐惧。积极者相信只有推动自己才能推动世界,只要推动自己就能推动世界。即使脚步下是一片岩 只要你拿起铁锤钢钎。假如生活欺骗了你,不要心焦,也不要烦恼。阴郁的日子里要心平气和,相信吧,那快乐的日子就来到。——普希 不抱有一丝幻想,不放弃一点机会,不停止一日努力。坚持把简单的事情做好就是不简单,坚持把平凡的事情做好就是不平凡。所谓成功 平凡的坚持。今天有许多人不是不愿接受新观念,而是不愿抛弃旧观念。拒绝严峻的冶炼,矿石并不比被发掘前更有价值。59.只有经历地 创造天堂的力量。怕吃苦的人苦一辈子,不怕吃苦的人苦一阵子。抛掉过去,不一定有好的开始,但一定不会比过去坏。如果你坚信自己 明。如果你真心选择去做一件事,那么全世界都是帮助你的。如果缺少破土面出并与风雪拚搏的勇气,种子的前途并不比落叶美妙一分。 但不会一直辜负努力的人。失败的历程也是成功的历程。时间会告诉你一切真相。有些事情,要等到你渐渐清醒了,才明白它是个错误; 正放下了,才知道它的沉重。实现自己既定的目标,必须能耐得住寂寞单干输在犹豫,赢在行动。树苗如果因为怕痛而拒绝修剪,那就永 用品,而不是装饰品。忠告:人在生气、烦恼、情绪不稳定是最好不要去作出任何的选择、决定。种一棵树最好的时间是十年之前,其次 己走,无论是苦是累,甚至是失败,都要去承担,只要是自己的选择,就无怨无悔。最困难的时候,就是距离成功不远了。人生四然:来 其当然,顺其自然。人生舞台的大幕随时都可能拉开,关键是你愿意表演,还是选择躲避。人生最精彩的不是实现梦想的一瞬间,而是坚 痛苦与挫折,它是我们的功课,我们要从中训练,然后突破,这样才能真正解脱。要纠正别人之前,先反省自己有没有犯错。 也许终点 绝不是停止前行的理由。一个人的快乐,不是因为他拥有的多,而是因为他计较的少。一个人只有亲眼看到自己伤疤的时候才知道什么是 个一味沉溺于往事的人,是不能张开双臂去拥抱今天的。51.人生就像爬坡,要一步一步来。人生没有彩排,每天都在现场直播。目标的坚 量源泉之一,也是成功的利器之一。没有它,天才也会在矛盾无定的迷径中徒劳无功。0.瀑布对悬崖无可畏惧,所以唱出气势磅礴的生命 什么假如,每个人的人生都不可重新设计。勤奋的含义是今天的热血,而不是明天的决心,后天的保证。用放大镜去看人生,人生则是一 看人生,人生则是一场喜剧。有了梦想,就应该迅速有力地实施。坐在原地等待机遇,无异盼天上掉馅饼。毫不犹豫尽快拿出行动,为梦 是梦想成真的必经之路。有无目标是成功者与平庸者的根本差别。有些人因为贪婪,想得更多的东西,却把现在所有的也失掉了。有志者 尤人,无能者长吁短叹,儒弱者颓然放弃。与其相信依靠别人,不如相信依靠自己。预测未来的最好方法,就是创造未来。再烦,也别忘微 再苦,也别忘坚持;再累,也要爱自己。把人生一分为二,前半生不犹豫,后半生不后悔。如果你觉得现在走的辛苦,那就证明你在走上 再加上一点点运气,你就会成功。弱者才会诉苦,强者永远找方法!成功的人永远只有办法,失败的人永远只有理由。成功和失败最大的 不放弃,放弃永不成功。成功者说:虽然这个很困难,但它是可能的;失败者说:那是可能的,但它太困难。当你不能成就伟业,请你把 不能让自己辉煌灿烂,请保持恒久的微笑。当你的才华还撑不起你的野心时,那你就应该静下心来学习。当你决定不再在乎的时候,生�
对数课件(共18张PPT)
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.2.1 对数
人民教育出版社
第四章 指数函数与对数函数 4.2.1 对数
学习目标
知识目标 能力目标
理解对数的概念,熟练进行指数式与对数式的互化,掌握对数的性质与运算 法则,能够使用计算器求解对数值
学生运用分组探讨、合作学习,掌握对数与对数函数图象和性质,学会利用 计算器求对数的值,提高学生的数学运算能力
设经过b次分裂,可以列出等式: 2b=4096.
这是个已知底数和幂的值求指数的问题. 一般地,若ab=N(a>0,且a≠1,N>0),则称幂指
数b是以a为底N的对数.例如: 因为42=16,所以2是以4为底16的对数; 因为43=64,所以3是以4为底64的对数;
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
实质上,上述对数式,不过是指数式的另一种表达 形式而已.
例如:
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
34=81 与4=log381 这两个式子表达的是同一关系.
拓展延伸 对数恒等式
我们来推导对数恒等式。 因为ab=N,根据对数的定义得b=logaN,于是得到 下面的对数恒等式:
aloga N N . 例如,2log2 32 32,10log10100 100 .
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
基础模块(上册)
第四章 指数函数 与对数函数
4.2.1 对数
人民教育出版社
第四章 指数函数与对数函数 4.2.1 对数
学习目标
知识目标 能力目标
理解对数的概念,熟练进行指数式与对数式的互化,掌握对数的性质与运算 法则,能够使用计算器求解对数值
学生运用分组探讨、合作学习,掌握对数与对数函数图象和性质,学会利用 计算器求对数的值,提高学生的数学运算能力
设经过b次分裂,可以列出等式: 2b=4096.
这是个已知底数和幂的值求指数的问题. 一般地,若ab=N(a>0,且a≠1,N>0),则称幂指
数b是以a为底N的对数.例如: 因为42=16,所以2是以4为底16的对数; 因为43=64,所以3是以4为底64的对数;
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
实质上,上述对数式,不过是指数式的另一种表达 形式而已.
例如:
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
34=81 与4=log381 这两个式子表达的是同一关系.
拓展延伸 对数恒等式
我们来推导对数恒等式。 因为ab=N,根据对数的定义得b=logaN,于是得到 下面的对数恒等式:
aloga N N . 例如,2log2 32 32,10log10100 100 .
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
《对数的概念》指数函数与对数函数PPT优秀课件
思维脉络
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
课前篇
自主预习
一
二
三
一、对数的概念
1.(1)某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…依次类
推,那么1个这样的细胞分裂x次后,得到的细胞个数N是多少?
提示:N=2x.
(2)上述问题中,若已知分裂后得到的细胞的个数分别为8个,16个,
首页
课标阐释
1.理解对数的概念,掌握对数的
基本性质.
2.掌握指数式与对数式的互化,
能应用对数的定义和性质解方
程.
3.理解常用对数和自然对数的
定义形式以及在科学实践中的
应用.
4.了解对数的发展历史,了解数
学文化.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
(3)ln M=n用指数式如何表示?
提示:en=M.
2.填空
常用对数 以 10 为底数,记作 lg N
自然对数 以 e 为底数,记作 ln N,其中 e=2.718 28…
3.做一做
(1)lg 105=
答案:(1)5 (2)1
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
(1)负数和零没有对数.
(2)loga1=0(a>0,a≠1).
(3)logaa=1(a>0,a≠1).
(4)对数恒等式log =N(a>0,且 a≠1,N>0).
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
《对数与对数函数》指数函数、对数函数与幂函数PPT课件(对数函数的性质与图像)【品质课件PPT】
y= loga x PPT模板:/moban/
P P T背景:www.1ppt.c om /be ij ing/ P P T下载:www.1ppt.c om /xia za i/
资料下载:www.1ppt.c om /zilia o/
一般地,函数____________称为对数函数,其中 试卷下载:/shiti/
PPT教程: /powerpoint/
资料下载:www.1ppt.c om /zilia o/
个人简历:www.1ppt.c om /j ia nli/
试卷下载:www.1ppt.c om /shiti/
教案下载:www.1ppt.c om /j ia oa n/
手抄报:www.1ppt.c om /shouc ha oba o/
4.2 对数与对数函数 4.2.3 对数函数的性质与图像 第1课时 对数函数的性质与图像
第四章 指数函数、对数函数与幂函数
考点
学习目标
核心素养
理解对数函数的概念,会 对数函数的概念
判断对数函数
数学抽象
初步掌握对数函数的图
对数函数的图像
直观想象、数学运算
像与性质
对数函数的简单 能利用对数函数的性质
数学建模、数学运算
历史课件:www.1ppt.c om /ke j ia n/lishi/
问题导学
预习教材 P24-P27 的内容,思考以下问题: 1.对数函数的概念是什么?它的解析式具有什么特点? 2.对数函数的图像是什么,通过图像可观察到对数函数具有哪 些性质?
栏目 导引
第四章 指数函数、对数函数与幂函数
对数函数
历史课件:www.1ppt.c om /ke j ia n/lishi/
高中数学对数及对数的运算优秀课件
添加幻灯片小标题
[尝试解答] (1)∵3-2=19,∴log319=-2.
(2)∵14-2=16,∴log
1 4
16=-2.
(3)∵log
1 3
27=-3,∴13-3=27.
(4)∵log 64=-6,∴( x)-6=64. x
2
3.指数与对数的互化 添加幻灯片小标题
当 a>0,a≠1 时,ax=N⇔x=
. 如:
∵23=8,∴log28= ;∵25=32,∴log232= .
4.对数的性质
(1)loga1= ;
(2)logaa= ;
(3)
和 没有对数.
5.对数恒等式
alogaN=N(a>0,且 a≠1,N>0).
[典例精析]
添加幻灯片小标题
求下列各式中 x 的值.
(1)logx27=32; (3)x=log2719;
2.2对数函数
对数与对数的运算
01 对数的概念
03 对数的运算性质
CATALOG
02 对数的性质及应用 04 换底公式
1
添加幻灯片小标题
ax b 已知a, x,求b 幂运算 已知b, x,求a 开方运算 已知a,b,求x ??运算
添加幻灯片小标题
1.定义
一般的,如果 aa 0, a 1
3
添加幻灯片小标题
6 .
[典例精析]
添加幻灯片小标题
求下列各式的值:
(1)log2(47×25);
5
(2)lg
100;
(3)lg 14-2 lg 73+lg 7-lg 18;
(4)lg 52+23 lg 8+lg 5·lg 20+(lg 2)2.
4.2.1对数运算 课件(68张)
核心素养形成
随堂水平达标
课后课时精练
③∵log( 2-1)
1 3+2
=x, 2
∴(
2-1)x=
1 3+2
= 2
21+12=
21+1=
2-1,
∴x=1.
④33+log3x=33×3 log3x=27x=2,∴x=227.
[答案] (2)见解析
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
金版点睛 对数性质在计算中的应用
[解](1)log216=4;log2312=-5;log381=4;log21 n=m.
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
(2)将下列对数式改写成指数式:log5125=3;log1 16=-4;ln a=b;lg 2
1000=3.
[解] (2)53=125;12-4=16;eb=a;103=1000.
第四章 指数函数、对数函数与幂函数
4.2 对数与对数函数
4.2.1 对数运算
(教师独具内容) 课程标准:1.理解对数的概念,能进行指数式与对数式的互化.2.理解对 数的底数和真数的范围.3.掌握对数的基本性质,并能运用基本性质解决相关 问题.4.了解常用对数和自然对数的概念. 教学重点:对数的概念及对数的基本性质. 教学难点:对数概念的理解及对数基本性质的运用.
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
(2)已知 log2[log3(log4x)]=0,求 x 的值; 答案 (2)见解析 解析 (2)∵log2[log3(log4x)]=0,∴log3(log4x)=1, ∴log4x=3.∴x=43=64.
对数与对数运算PPT课件
loga a?1
(4) lne ___1
思考:你发现了什么?如何用对数式表示?
3、求下列各式的值:
2 (1) log23 _3__
a ? (2) 5log50.6 _0._6_
logaN
N
(3) 0.8log0.8100 1_0_0_
思考:你发现了什么?如何用式子表示?
对数恒等式
ax = N
x = loga N
一、对数的定义:
一般地,如果 axN ,(a0且 a1),那
么数 x 叫做以 a 为底 N的对数
记作: x loga N
其中 a 叫做对数的底数,N 叫做真数
二、两种特殊对数:
1.常用对数:我们将以10为底的对数 log10 N 叫 做常用对数,并记做 lg N .
2.自然对数:无理数e=2.71828…,以e为底的对
1
(4)(
)m =5.73
3
4=log5625 -6=log2(1/64)
a =log327 m=log(1/3) 5.73
2.将下列对数式写成指数式
(1)log1 16=4
16= ( 1 ) 4
2
2
(2)log2128=7
128=27
(3)log100.01= -2
0.01=10-2
(4)loge10=2.303
10=e 2.303
P84《课时跟踪十六》9 (利用对数式和指数式的互化)
理论迁移
例2.求下列各式中x 的值:
(1)log 64 x
2 3
(2)logx 8 4
(3)lg1000 x
(4) lne3 x
例3 计算下列各式:
(1) log 5 25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂篇
探究学习
探究一
探究二
探究三
探究四
思想方法
随堂演练
对数运算性质的应用
例1 计算下列各式的值:
7
1
(1)log2 96+log224-2log284;
2
(2)lg 52+3lg 8+lg 5·lg 20+(lg 2)2.
分析:利用对数的运算性质进行计算.
解:(1)(方法一)原式=log2
(方法二)
课前篇
自主预习
一
二
一、对数的运算性质
1.(1)指数的运算法则有哪些?
提示:①aras=ar+s(a>0,r,s∈Q);
r-s
② =a (a>0,r,s∈Q);
③(ar)s=ars(a>0,r,s∈Q);
④(ab)r=arbr(a>0,b>0,r∈Q).
(2)计算log24,log28及log232的值,你能分析一下三者存在怎样的
7
7
lg5
1-lg2
1-
(3)log125=lg12 = lg3+2lg2 = 2+.
1-
答案:(1)D (2)1 (3)
2+
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
1
25
.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
1
7
7×24
1
1
=log2 =-2.
96× 84
2
1
原式=2log296+log2(23×3)-2log2(22×3×7)
1
1
1
2
2
2
1
1
1
5
1
=- ×5- log23+2+ log23=- +2=- .
2
2
2
2
2
1
2
= log27- log2(25×3)+3+log23-1- log23- log27
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
(2)判断正误:
log3[(-4)×(-5)]=log3(-4)+log3(-5). (
)
答案:×
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
10n=nlg 10=n.
2.填表
对数的运算性质
条件 a>0,且 a≠1,M>0,N>0
loga(M·N)=logaM+logaN
M
性质 loga N =logaM-logaN
logaMn=nlogaM(n∈R)
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
运算关系吗?
提示:∵log24=2,log28=3,log232=5,
∴log24+log28=log2(4×8)=log232;
32
log232-log28=log2 =log24;
8
32
log232-log24=log2 4 =log28.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
课前篇
自主预习
一
二
2.做一做
1
(1)若 log53·log36·log6x=2,则 x 等于(
首页
课标阐释
思维脉络
1.掌握对数的运算性质,并能运用运算性质
化简、求值.
2.了解对数的换底公式及其变形的应用.
3.初步掌握对数在生活中的应用.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
)
A.9
D.
1
9
B.
C.25
(2)化简log47·log74=
.
(3)已知lg 2=a,lg 3=b,用a,b表示log125=
-lg3 lg6 lg
解析:(1)由换底公式,得 lg5 ·lg3 ·lg6=2.
-2 1
lg x=-2lg 5,x=5 =25.
log7 7
1
(2)log47·log74=log 4·log74=log 4·log74=1.
(2)由问题(1)你能猜测出
与哪个对数相等吗?如何证明这个结
log
所以得出 log35=
论?
log
提示:结论为log=logab.
log
证明如下:令log =x⇒logcb=xlogca⇒logcb=logcax⇒b=ax⇒x=loga
log
b⇒
=logab.
log
课前篇
自主预习
一
二
二、换底公式
log2 5
1.(1)假设log 3=x,则
2
log25=xlog23,即 log25=log23x,从而有 3x=5,进
一步可得到什么结论?
log 5
提示:把 3x=5 化为对数式为 log35=x,又因为 x= 2 ,
log2 3
log2 5
的结论.
log2 3
log
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
指数函数与对数函数
4.3.2 对数的运算
-1公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
课前篇
自主预习
一
二
3.做一做
(1)化简2lg 5+lg 4- 55 2的结果为(
)
A.0 B.2
CБайду номын сангаас4 D.6
解析:原式=2lg 5+2lg 2-2=2(lg 5+lg 2)-2=0.
答案:A
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
课前篇
自主预习
一
二
(3)计算lg 10,lg 100,lg 1 000及lg 104的值,你能发现什么规律?
提示:lg 10=1,lg 100=lg 102=2,lg 1 000=lg 103=3,lg 104=4,可见lg