《对数的运算》指数函数与对数函数PPT优秀课件

合集下载

《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

-1
2
2
1
化简可得 ≤x2≤2.
2
再由 x>0 可得 2≤x≤
2
2
答案:(1)A (2)
, 2
2
2
2
2
1
,
2,故函数 f(x)的定义域为
2
,
2
2 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
反思感悟 定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,
偶次根式被开方式大于或等于零等.
a>1
0<a<1
图象


定义域
值域
过定点
单调性
奇偶性
(0,+∞)
R
(1,0),即当 x=1 时,y=0
在(0,+∞)
在(0,+∞)
上是增函数
上是减函数
非奇非偶函数
课前篇
自主预习



3.做一做
(1)若函数y=logax的图象如图所示,则a的值可能是 (
)
A.0.5 B.2
C.e D.π
(2)下列函数中,在区间(0,+∞)内
.
2 -2-8 = 0,
解析:(1)由题意可知 + 1 > 0, 解得 a=4.
+ 1 ≠ 1,
(2)设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,
所以
a-3=8,即
1
3
-

指数函数和对数函数ppt课件

指数函数和对数函数ppt课件

解法 2:a-b=ln22-ln33=3ln2-6 2ln3 =16(ln8-ln9)<0. ∴a<b.同理可得 c<a,∴c<a<b.故选 C.
[答案]C
4.考查函数的定义域 函数的定义域是历年高考中均考查的知识点,其难度 不大,属中低档题,但在求解时易漏掉部分约束条件造成错 解,因而也是易错题. [例 4] 函数 f(x)= 31x-2 x+lg(3x+1)的定义域是
[例 1] (1)化简
3 ÷(1-2
ba)×3 ab;
(2)求值:12lg3429-43lg 8+lg 245.
(2)解法一 12lg3429-43lg 8+lg 245 =lg472-lg4+lg7 5 =lg(472×14×7 5) =lg 10=12lg10=12.
解法二 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5 =12(lg2+lg5) =12lg10=12.
[例7]求不等式x-1<log6(x+3)的所有整数解. [解析]设y1=x-1,y2=log6(x+3),在同一坐标系中作
出它们的图像如图所示,两图像有两个交点,一交点的横坐标
显然在-3和-2之间,另一个交点设为P.
因为x=1时,log6(1+3)-(1-1)>0,x=2时, log6(2+3)-(2-1)<0,所以1<xP<2.
2.指数函数的概念与性质 (1)指数函数的定义
一般地,函数y=ax(a>0,且a≠1)叫作指数函数. (2)y=ax(a>0,a≠1)的图像
0<a<1
a>1

《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)

《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)
4.3 对 数
第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2

《指数》指数函数与对数函数PPT

《指数》指数函数与对数函数PPT
1.(1)整数指数幂的运算性质有哪些?
提示:①am·an=am+n;②(am)n=am·n;
m-n
③ =a (m>n,a≠0);(4)(a·b)m=am·bm.
(2)零指数幂和负整数指数幂是如何规定的?
1
提示:规定:a0=1(a≠0);00 无意义,a-n=(a≠0).
课前篇
自主预习
在幂的运算中,对于形如 m0 的式子,要注意对底数 m 是否为零进
行讨论,因为只有在 m≠0 时,m 才有意义;而对于形如
0
们一般是先变形为


,再进行运算.
-

的式子,我
课堂篇
探究学习
探究一
解:(1)
探究二
2
3
125
27
探究三
探究四
2
3 -3
5
=
33
5-2
=
=
32
思想方法
随堂演练
9
= 25.
(1)a+a-1; (2)a2+a-2; (3)a2-a-2.
1
1
分析:解答本题可从整体上寻求各式与条件 2 + 2 = 5 的联
系,进而整体代入求值.
1
解:(1)将2
1
2
-
+ = 5的两边平方,
得a+a-1+2=5,即a+a-1=3.
(2)由a+a-1=3,两边平方,得a2+a-2+2=9,


数, =|a|=
-, < 0.
课前篇
自主预习


2.填空

对数函数PPT课件

对数函数PPT课件
第4章 指数函数与对数函数
4.4 对数函数
对数函数的概念、图象及性质
第4章 指数函数与对数函数
1.了解对数函数的概念. 2.会画对数函数的图象,记 住对数函数的性质. 3.掌握对数函数图象和性质的应用.
第4章 指数函数与对数函数
1.对数函数的概念 一般地,函数 y=logax(a>0,a≠1)叫做对数函数,对数函数 的定义域是___(0_,__+__∞__)___,值域为___(_-__∞_,__+__∞_)__.
a
栏目 导引
第4章 指数函数与对数函数
定义 趋势
y=logax(a>0 且 a≠1) a 值越大图象越靠近
a 值越小图象越靠近 x,y 轴 x,y 轴 x 趋于零,y 趋于-
x 趋于零,y 趋于+∞;x 趋 ∞;x 趋于+∞,y
于+∞,y 趋于-∞ 趋于+∞
栏目 导引
第4章 指数函数与对数函数
3.y=ax 称为 y=logax 的反函数,反之,y=logax 也称为 y= ax 的反函数,一般地,如果函数 y=f(x)存在反函数,那么它 的反函数记作 y=f-1(x).
栏目 导引
第4章 指数函数与对数函数
对数函数的图象和性质 (1)如图所示的曲线是对数函数 y= logax 的图象,已知 a 的取值可为35,110, 3, 43,则相应曲线 C1,C2,C3,C4 的底数 a 的值 依次为________. (2)若函数 y=loga(x+b)+c(a>0,a≠1)的图象恒过定点(3,2), 则实数 b,c 的值分别为________,________.
定义 共点性
函数值
对称性
y=logax(a>0 且 a≠1) 图象过点__(1_,___0_)_,即 loga1=0

高一数学《指数函数与对数函数》PPT课件

高一数学《指数函数与对数函数》PPT课件

(1)
1 x 2
1
x2
2
x2
x 1
5
1
1
x2 x 2 5
1
(2)(x 2
)3
1
(x 2
)3
1
(x 2
1
x 2 )[(x
x 1 ) 1]
x x 1 3 x 0
5(3 1)
6. 4
3
36 3
81 9 2
7. 2 3 3 1.5 6 12 6
8.设 mn>0,x= m n ,化简:A= 2 x2 4 .
⑵ y 3 5x1 ⑶ y 2 x 1
函数的定义域就是使函数表达式有意义的自变量 x的取值范围。
(1)定义域为{x|x≠1};
1
0 x 1
值域为{y|y>0且y≠1}
1
⑴ y 0.4 x1
⑵ y 3 5x1 ⑶ y 2 x 1
(2)
定义域为{x|
x
1 5
}
值域为{y|y≥1}
5x 1 ≥0
BC A
A’ B’ C’
f(a)=SAA’C’C-SAA’B-SB’C’C
(f2()af)(a)1 g(a) 1a(a2
2
2
ag(a2) 2 aa11)
1 [( a 2 a 1) ( a 1 a )] 2
1(
1
1
)0
2 a 2 a 1 a 1 a
7. (★★★★)当a≠0时,y=ax+b 和 y=bax
y 1 x 2
y 1 x
1
2
把 y 轴右边的图形翻折到 y 轴的左边
3. 作出函数 y= │ 2x -1│的图像
y= │ 2x -1│

《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.

指数函数与对数函数的关系指数函数对数函数与幂函数PPT精品推荐课件

指数函数与对数函数的关系指数函数对数函数与幂函数PPT精品推荐课件
致性吗?
提示:当0<a<1时,上述两个函数均是其定义域上的减函数;当a>1
时,上述两个函数均是其定义域上的增函数.因此单调性具有一致
性,但变化速度有差异.
课前篇自主预习


3.填空.
(1)关系
指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)互为反函数.
(2)图像特征
指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)的图像关于
与f-1(x)互为反函数,对此不能对自变量x随意变化拓展.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
正解:∵g(x)的图像过定点(1,2 018),
∴f(x+1)的图像过定点(2 018,1).
又∵f(x)的图像可以看作由f(x+1)的图像向右平移1个单位长度得
到的,∴f(x)过定点(2 019,1).
)
A.(0,0) B.(0,2) C.(1,1)
D.(2,0)
答案:B
解析:∵y=f(x)的图像过点(1,0),
∴其反函数y=f-1(x)的图像必过点(0,1),
即f-1(0)=1,∴y=f-1(x)+1的图像过点(0,2).
4.已知
1-3
4
f(x)= ,则 f-1 5
1+3
=
Hale Waihona Puke 答案:-21-3除D.故选B.
方法二:若0<a<1,则曲线y=ax下降且过点(0,1),而曲线y=loga(-x)
上升且过点(-1,0),所有选项均不符合这些条件.

对数与对数运算(共22张PPT)

对数与对数运算(共22张PPT)
②自然对数:以无理数 为底的对数
解:
解:(1)
例3:计算: log 9 27
解:设 则
(1) log5 25
(3) lg1000
(2)
log
2
1 16
(4) lg 0.001
想一想:
(1) loga 1 (2) loga a (3) aloga N
(1)负数和零没有对数。 (2)1的对数是0: (3)底数的对数是1: (4)对数恒等式:
(2)计算:
(1) 71log7 5
(2) 412(log2 9log2 5)
提高训练
4、求 log12x (3x 2) 中 x 的
取值范围。
2
5、已知:a 3
4
(a > 0)
9
则 log2 a
3
①对数的定义;
②两种特殊的对数:lg N ln N
③指数式与对数式的互换 ④求对数式的值 ⑤对数的性质
对数与对数运算
创设情景,引入新课
情景1:
情景2: 设2014年我国的国民生产总值为 亿元, 如果每年平均增长8%,那么经过多少年国 民生产总值是2014年的2倍?
解:设经过x年国民生产总值是2014年的 2倍,则有
x?
问题1:2 = 26
问题2:
=? =?
共同特征:
已知底数和幂的值,求指数的问题。
作业
课本:P74 1,2
同在一个环境中生活,强者与弱者的分界就在于谁能改变它。顽强的毅力改变可以征服世界上任何一座高峰。望远镜可以望见远的目标, 伟大的成就,来自为远大的目标所花费的巨大心思和付诸的最大努力。我不能说只要坚持就能怎样,但是只要放弃就什么都没有了。有压 茫,但永不绝望。沉湎于希望的人和守株待兔的樵夫没有什么两样。你花时间做什么事,你就会成为什么样的人!人生没有彩排,每一天 大的成就是从失败中站起来要做一件事,成功之前,没有必要告诉其他人。成功之后不用你说,其他人都会知道的。这就是信息时代所带 的,莫如时日;天下最能奢侈的,莫如浪费时不论你在什么时候开始,重要的是开始之后就不要停止。面对困境,悲观的人因为往往只看 的路,说长也很长,说短也很短。偶遇不幸或挫败只能证明某一时候某一方面的不足或做得不够。如果把才华比作剑,那么勤奋就是磨刀 配,它就一无可为。很多时候,人并不是因为失败而烦恼;而是因为失败后找不到任何借口而烦恼。假如樵夫害怕荆棘,船只避忌风浪, 世界就会变成另一副模样。每一个人都多多少少有点惰性。一个人的意志力量不够推动他自己,他就失败,谁最能推动自己,谁就最先得 性格中最必要的力量源泉之一,也是成功的利器之一。人的肉体可以随着时间的推移而衰老,而赋予人的生命的思想却可以青春永驻,与 有的人走了一辈子也没有走出命运画出的圆圈,其实,圆上的每一个点都有一条腾飞的切线。人生是伟大的宝藏,我晓得从这个宝藏里选 明日,明日何其多?我生待明日,万事成蹉跎。只要是辛勤的蜜蜂,在生活的广阔原野里,到处都可以找到蜜源。不要对挫折叹气,姑且 大事之前,必须经受的准备工作。不要为已消逝之年华叹息,须正视欲匆匆溜走的时光。不要在这个努力拼搏的年纪去选择安逸。不做准 在任何苦难中能发现好的一面!成功就是你坚持不住的时候,在坚持一下。成功是一种观念,成功是一种思想,成功是一心态,成功是一 日,败事多因得意时。大道理人人都懂,小情绪却是难以自控。当你的能力还驾驭不了你的目标时,那你就应该沉下心来历练。当你停下 记别人还在奔跑。第二名意味着你是头号输家。钢钎与顽石的碰撞声,是一首力的歌曲。格局被理想撑大,事业由梦想激发。光说不干, 马到成功。过去的时间会永远流入无边的黑洞,永不再回来,所以要珍惜当下的每一秒。海浪的品格,就是无数次被礁石击碎又无数闪地 恐惧的良药,而犹豫、拖延将不断滋养恐惧。积极者相信只有推动自己才能推动世界,只要推动自己就能推动世界。即使脚步下是一片岩 只要你拿起铁锤钢钎。假如生活欺骗了你,不要心焦,也不要烦恼。阴郁的日子里要心平气和,相信吧,那快乐的日子就来到。——普希 不抱有一丝幻想,不放弃一点机会,不停止一日努力。坚持把简单的事情做好就是不简单,坚持把平凡的事情做好就是不平凡。所谓成功 平凡的坚持。今天有许多人不是不愿接受新观念,而是不愿抛弃旧观念。拒绝严峻的冶炼,矿石并不比被发掘前更有价值。59.只有经历地 创造天堂的力量。怕吃苦的人苦一辈子,不怕吃苦的人苦一阵子。抛掉过去,不一定有好的开始,但一定不会比过去坏。如果你坚信自己 明。如果你真心选择去做一件事,那么全世界都是帮助你的。如果缺少破土面出并与风雪拚搏的勇气,种子的前途并不比落叶美妙一分。 但不会一直辜负努力的人。失败的历程也是成功的历程。时间会告诉你一切真相。有些事情,要等到你渐渐清醒了,才明白它是个错误; 正放下了,才知道它的沉重。实现自己既定的目标,必须能耐得住寂寞单干输在犹豫,赢在行动。树苗如果因为怕痛而拒绝修剪,那就永 用品,而不是装饰品。忠告:人在生气、烦恼、情绪不稳定是最好不要去作出任何的选择、决定。种一棵树最好的时间是十年之前,其次 己走,无论是苦是累,甚至是失败,都要去承担,只要是自己的选择,就无怨无悔。最困难的时候,就是距离成功不远了。人生四然:来 其当然,顺其自然。人生舞台的大幕随时都可能拉开,关键是你愿意表演,还是选择躲避。人生最精彩的不是实现梦想的一瞬间,而是坚 痛苦与挫折,它是我们的功课,我们要从中训练,然后突破,这样才能真正解脱。要纠正别人之前,先反省自己有没有犯错。 也许终点 绝不是停止前行的理由。一个人的快乐,不是因为他拥有的多,而是因为他计较的少。一个人只有亲眼看到自己伤疤的时候才知道什么是 个一味沉溺于往事的人,是不能张开双臂去拥抱今天的。51.人生就像爬坡,要一步一步来。人生没有彩排,每天都在现场直播。目标的坚 量源泉之一,也是成功的利器之一。没有它,天才也会在矛盾无定的迷径中徒劳无功。0.瀑布对悬崖无可畏惧,所以唱出气势磅礴的生命 什么假如,每个人的人生都不可重新设计。勤奋的含义是今天的热血,而不是明天的决心,后天的保证。用放大镜去看人生,人生则是一 看人生,人生则是一场喜剧。有了梦想,就应该迅速有力地实施。坐在原地等待机遇,无异盼天上掉馅饼。毫不犹豫尽快拿出行动,为梦 是梦想成真的必经之路。有无目标是成功者与平庸者的根本差别。有些人因为贪婪,想得更多的东西,却把现在所有的也失掉了。有志者 尤人,无能者长吁短叹,儒弱者颓然放弃。与其相信依靠别人,不如相信依靠自己。预测未来的最好方法,就是创造未来。再烦,也别忘微 再苦,也别忘坚持;再累,也要爱自己。把人生一分为二,前半生不犹豫,后半生不后悔。如果你觉得现在走的辛苦,那就证明你在走上 再加上一点点运气,你就会成功。弱者才会诉苦,强者永远找方法!成功的人永远只有办法,失败的人永远只有理由。成功和失败最大的 不放弃,放弃永不成功。成功者说:虽然这个很困难,但它是可能的;失败者说:那是可能的,但它太困难。当你不能成就伟业,请你把 不能让自己辉煌灿烂,请保持恒久的微笑。当你的才华还撑不起你的野心时,那你就应该静下心来学习。当你决定不再在乎的时候,生�

对数课件(共18张PPT)

对数课件(共18张PPT)
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.2.1 对数
人民教育出版社
第四章 指数函数与对数函数 4.2.1 对数
学习目标
知识目标 能力目标
理解对数的概念,熟练进行指数式与对数式的互化,掌握对数的性质与运算 法则,能够使用计算器求解对数值
学生运用分组探讨、合作学习,掌握对数与对数函数图象和性质,学会利用 计算器求对数的值,提高学生的数学运算能力
设经过b次分裂,可以列出等式: 2b=4096.
这是个已知底数和幂的值求指数的问题. 一般地,若ab=N(a>0,且a≠1,N>0),则称幂指
数b是以a为底N的对数.例如: 因为42=16,所以2是以4为底16的对数; 因为43=64,所以3是以4为底64的对数;
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
实质上,上述对数式,不过是指数式的另一种表达 形式而已.
例如:
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
34=81 与4=log381 这两个式子表达的是同一关系.
拓展延伸 对数恒等式
我们来推导对数恒等式。 因为ab=N,根据对数的定义得b=logaN,于是得到 下面的对数恒等式:
aloga N N . 例如,2log2 32 32,10log10100 100 .
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?

《对数的概念》指数函数与对数函数PPT优秀课件

《对数的概念》指数函数与对数函数PPT优秀课件

思维脉络
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
课前篇
自主预习



一、对数的概念
1.(1)某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…依次类
推,那么1个这样的细胞分裂x次后,得到的细胞个数N是多少?
提示:N=2x.
(2)上述问题中,若已知分裂后得到的细胞的个数分别为8个,16个,
首页
课标阐释
1.理解对数的概念,掌握对数的
基本性质.
2.掌握指数式与对数式的互化,
能应用对数的定义和性质解方
程.
3.理解常用对数和自然对数的
定义形式以及在科学实践中的
应用.
4.了解对数的发展历史,了解数
学文化.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
(3)ln M=n用指数式如何表示?
提示:en=M.
2.填空
常用对数 以 10 为底数,记作 lg N
自然对数 以 e 为底数,记作 ln N,其中 e=2.718 28…
3.做一做
(1)lg 105=
答案:(1)5 (2)1
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
(1)负数和零没有对数.
(2)loga1=0(a>0,a≠1).
(3)logaa=1(a>0,a≠1).
(4)对数恒等式log =N(a>0,且 a≠1,N>0).
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT

《对数与对数函数》指数函数、对数函数与幂函数PPT课件(对数函数的性质与图像)【品质课件PPT】

《对数与对数函数》指数函数、对数函数与幂函数PPT课件(对数函数的性质与图像)【品质课件PPT】

y= loga x PPT模板:/moban/
P P T背景:www.1ppt.c om /be ij ing/ P P T下载:www.1ppt.c om /xia za i/
资料下载:www.1ppt.c om /zilia o/
一般地,函数____________称为对数函数,其中 试卷下载:/shiti/
PPT教程: /powerpoint/
资料下载:www.1ppt.c om /zilia o/
个人简历:www.1ppt.c om /j ia nli/
试卷下载:www.1ppt.c om /shiti/
教案下载:www.1ppt.c om /j ia oa n/
手抄报:www.1ppt.c om /shouc ha oba o/
4.2 对数与对数函数 4.2.3 对数函数的性质与图像 第1课时 对数函数的性质与图像
第四章 指数函数、对数函数与幂函数
考点
学习目标
核心素养
理解对数函数的概念,会 对数函数的概念
判断对数函数
数学抽象
初步掌握对数函数的图
对数函数的图像
直观想象、数学运算
像与性质
对数函数的简单 能利用对数函数的性质
数学建模、数学运算
历史课件:www.1ppt.c om /ke j ia n/lishi/
问题导学
预习教材 P24-P27 的内容,思考以下问题: 1.对数函数的概念是什么?它的解析式具有什么特点? 2.对数函数的图像是什么,通过图像可观察到对数函数具有哪 些性质?
栏目 导引
第四章 指数函数、对数函数与幂函数
对数函数
历史课件:www.1ppt.c om /ke j ia n/lishi/

高中数学对数及对数的运算优秀课件

高中数学对数及对数的运算优秀课件

添加幻灯片小标题
[尝试解答] (1)∵3-2=19,∴log319=-2.
(2)∵14-2=16,∴log
1 4
16=-2.
(3)∵log
1 3
27=-3,∴13-3=27.
(4)∵log 64=-6,∴( x)-6=64. x
2
3.指数与对数的互化 添加幻灯片小标题
当 a>0,a≠1 时,ax=N⇔x=
. 如:
∵23=8,∴log28= ;∵25=32,∴log232= .
4.对数的性质
(1)loga1= ;
(2)logaa= ;
(3)
和 没有对数.
5.对数恒等式
alogaN=N(a>0,且 a≠1,N>0).
[典例精析]
添加幻灯片小标题
求下列各式中 x 的值.
(1)logx27=32; (3)x=log2719;
2.2对数函数
对数与对数的运算
01 对数的概念
03 对数的运算性质
CATALOG
02 对数的性质及应用 04 换底公式
1
添加幻灯片小标题
ax b 已知a, x,求b 幂运算 已知b, x,求a 开方运算 已知a,b,求x ??运算
添加幻灯片小标题
1.定义
一般的,如果 aa 0, a 1
3
添加幻灯片小标题
6 .
[典例精析]
添加幻灯片小标题
求下列各式的值:
(1)log2(47×25);
5
(2)lg
100;
(3)lg 14-2 lg 73+lg 7-lg 18;
(4)lg 52+23 lg 8+lg 5·lg 20+(lg 2)2.

4.2.1对数运算 课件(68张)

4.2.1对数运算 课件(68张)

核心素养形成
随堂水平达标
课后课时精练
③∵log( 2-1)
1 3+2
=x, 2
∴(
2-1)x=
1 3+2
= 2
21+12=
21+1=
2-1,
∴x=1.
④33+log3x=33×3 log3x=27x=2,∴x=227.
[答案] (2)见解析
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
金版点睛 对数性质在计算中的应用
[解](1)log216=4;log2312=-5;log381=4;log21 n=m.
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
(2)将下列对数式改写成指数式:log5125=3;log1 16=-4;ln a=b;lg 2
1000=3.
[解] (2)53=125;12-4=16;eb=a;103=1000.
第四章 指数函数、对数函数与幂函数
4.2 对数与对数函数
4.2.1 对数运算
(教师独具内容) 课程标准:1.理解对数的概念,能进行指数式与对数式的互化.2.理解对 数的底数和真数的范围.3.掌握对数的基本性质,并能运用基本性质解决相关 问题.4.了解常用对数和自然对数的概念. 教学重点:对数的概念及对数的基本性质. 教学难点:对数概念的理解及对数基本性质的运用.
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
(2)已知 log2[log3(log4x)]=0,求 x 的值; 答案 (2)见解析 解析 (2)∵log2[log3(log4x)]=0,∴log3(log4x)=1, ∴log4x=3.∴x=43=64.

对数与对数运算PPT课件

对数与对数运算PPT课件

loga a?1
(4) lne ___1
思考:你发现了什么?如何用对数式表示?
3、求下列各式的值:
2 (1) log23 _3__
a ? (2) 5log50.6 _0._6_
logaN
N
(3) 0.8log0.8100 1_0_0_
思考:你发现了什么?如何用式子表示?
对数恒等式
ax = N
x = loga N
一、对数的定义:
一般地,如果 axN ,(a0且 a1),那
么数 x 叫做以 a 为底 N的对数
记作: x loga N
其中 a 叫做对数的底数,N 叫做真数
二、两种特殊对数:
1.常用对数:我们将以10为底的对数 log10 N 叫 做常用对数,并记做 lg N .
2.自然对数:无理数e=2.71828…,以e为底的对
1
(4)(
)m =5.73
3
4=log5625 -6=log2(1/64)
a =log327 m=log(1/3) 5.73
2.将下列对数式写成指数式
(1)log1 16=4
16= ( 1 ) 4
2
2
(2)log2128=7
128=27
(3)log100.01= -2
0.01=10-2
(4)loge10=2.303
10=e 2.303
P84《课时跟踪十六》9 (利用对数式和指数式的互化)
理论迁移
例2.求下列各式中x 的值:
(1)log 64 x
2 3
(2)logx 8 4
(3)lg1000 x
(4) lne3 x
例3 计算下列各式:
(1) log 5 25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂篇
探究学习
探究一
探究二
探究三
探究四
思想方法
随堂演练
对数运算性质的应用
例1 计算下列各式的值:
7
1
(1)log2 96+log224-2log284;
2
(2)lg 52+3lg 8+lg 5·lg 20+(lg 2)2.
分析:利用对数的运算性质进行计算.
解:(1)(方法一)原式=log2
(方法二)
课前篇
自主预习


一、对数的运算性质
1.(1)指数的运算法则有哪些?
提示:①aras=ar+s(a>0,r,s∈Q);
r-s
② =a (a>0,r,s∈Q);
③(ar)s=ars(a>0,r,s∈Q);
④(ab)r=arbr(a>0,b>0,r∈Q).
(2)计算log24,log28及log232的值,你能分析一下三者存在怎样的
7
7
lg5
1-lg2
1-
(3)log125=lg12 = lg3+2lg2 = 2+.
1-
答案:(1)D (2)1 (3)
2+
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
1
25
.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
1
7
7×24
1
1
=log2 =-2.
96× 84
2
1
原式=2log296+log2(23×3)-2log2(22×3×7)
1
1
1
2
2
2
1
1
1
5
1
=- ×5- log23+2+ log23=- +2=- .
2
2
2
2
2
1
2
= log27- log2(25×3)+3+log23-1- log23- log27
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
(2)判断正误:
log3[(-4)×(-5)]=log3(-4)+log3(-5). (
)
答案:×
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
10n=nlg 10=n.
2.填表
对数的运算性质
条件 a>0,且 a≠1,M>0,N>0
loga(M·N)=logaM+logaN
M
性质 loga N =logaM-logaN
logaMn=nlogaM(n∈R)
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
运算关系吗?
提示:∵log24=2,log28=3,log232=5,
∴log24+log28=log2(4×8)=log232;
32
log232-log28=log2 =log24;
8
32
log232-log24=log2 4 =log28.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
课前篇
自主预习


2.做一做
1
(1)若 log53·log36·log6x=2,则 x 等于(
首页
课标阐释
思维脉络
1.掌握对数的运算性质,并能运用运算性质
化简、求值.
2.了解对数的换底公式及其变形的应用.
3.初步掌握对数在生活中的应用.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
)
A.9
D.
1
9
B.
C.25
(2)化简log47·log74=
.
(3)已知lg 2=a,lg 3=b,用a,b表示log125=
-lg3 lg6 lg
解析:(1)由换底公式,得 lg5 ·lg3 ·lg6=2.
-2 1
lg x=-2lg 5,x=5 =25.
log7 7
1
(2)log47·log74=log 4·log74=log 4·log74=1.
(2)由问题(1)你能猜测出
与哪个对数相等吗?如何证明这个结
log
所以得出 log35=
论?
log
提示:结论为log=logab.

log
证明如下:令log =x⇒logcb=xlogca⇒logcb=logcax⇒b=ax⇒x=loga

log
b⇒
=logab.
log
课前篇
自主预习


二、换底公式
log2 5
1.(1)假设log 3=x,则
2
log25=xlog23,即 log25=log23x,从而有 3x=5,进
一步可得到什么结论?
log 5
提示:把 3x=5 化为对数式为 log35=x,又因为 x= 2 ,
log2 3
log2 5
的结论.
log2 3
log
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
指数函数与对数函数
4.3.2 对数的运算
-1公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
课前篇
自主预习


3.做一做
(1)化简2lg 5+lg 4- 55 2的结果为(
)
A.0 B.2
CБайду номын сангаас4 D.6
解析:原式=2lg 5+2lg 2-2=2(lg 5+lg 2)-2=0.
答案:A
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 运算》 指数函 数与对 数函数P PT
课前篇
自主预习


(3)计算lg 10,lg 100,lg 1 000及lg 104的值,你能发现什么规律?
提示:lg 10=1,lg 100=lg 102=2,lg 1 000=lg 103=3,lg 104=4,可见lg
相关文档
最新文档