2019-2020学年河北省秦皇岛市海港区九年级(上)期中数学试卷
河北省部分学校2019-2020学年九年级(上)期中数学试卷(含解析)
2019-2020学年河北省部分学校九年级(上)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.下列方程中是一元二次方程的是()A.2x+1=0B.x2+y=1C.x2+2=0D.=13.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.﹣4<x<1B.x<﹣3或x>1C.x<﹣4或x>1D.﹣3<x<15.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°7.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:4★5=42﹣3×4+5,若x★2=6,则实数x的值是()A.﹣4或﹣1B.4或﹣1C.4或﹣2D.﹣4或28.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=829.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.10.如图为函数y=ax2+bx+c与y=x的图象,下列结论:(1)b2﹣4ac>0;(2)3b+c+6=0;(3)当1<x<3时,x2+(b﹣1)x+c<0;(4).其中正确的个数为()A.1B.2C.3D.4二、填空题(每题3分,满分15分,将答案填在答题纸上)11.二次函数y=(x+2)2+3的顶点坐标是.12.关于x的方程x2﹣x﹣n=0没有实数根,则抛物线y=x2﹣x﹣n的顶点在第象限.13.AB是⊙O的直径,C,D在⊙O上且分布在AB两侧,C是直径AB所对弧的一个三等分点,则∠BDC=.14.如图,在平行四边形ABCD中,AB<AD,∠C=150°,CD=8,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.15.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为.三、解答题:共75.解答应写出文字说明、证明过程或演算步骤.16.解方程:(1)x2﹣6x+9=0(2)x2+x=2(x+1)17.关于x的一元二次方程x2﹣mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一根大于3,求m的取值范围.18.某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)测试成绩(分)2325262830人数(人)4181585 19.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过多少秒,四边形APQC的面积最小.20.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.21.如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.22.已知抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2.(1)请结合函数图象确定实数a的取值范围;(2)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.23.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.2019-2020学年河北省部分学校九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、是中心对称图形,也是轴对称图形,故本选项不符合题意;故选:A.【点评】本题考查了中心对称图形和轴对称图形的定义,能熟记定义的内容是解此题的关键.2.下列方程中是一元二次方程的是()A.2x+1=0B.x2+y=1C.x2+2=0D.=1【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选:C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣1【分析】利用一元二次方程的定义和根的判别式的意义得到k≠0且△=(﹣2)2﹣4×k ×(﹣1)≥0,然后求出两不等式的公共部分后找出非正整数即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4×k×(﹣1)≥0,解得k≥﹣1且k≠0,∵k为非正整数,∴k=﹣1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.﹣4<x<1B.x<﹣3或x>1C.x<﹣4或x>1D.﹣3<x<1【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线与x轴的交点;根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象,求出另一个交点是解决问题的关键.5.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选:C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°【分析】连接OC,由CE为圆O的切线,利用切线的性质得到OC垂直于CE,由OA =OC,利用等边对等角得到一对角相等,再利用外角性质求出∠COE的度数,即可求出∠E的度数.【解答】解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对,且∠CDB=25°,∴∠BAC=∠CDB=25°,∵OA=OC,∴∠OAC=∠OCA=25°,∵∠COE为△AOC的外角,∴∠COE=50°,则∠E=40°.故选:B.【点评】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.7.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:4★5=42﹣3×4+5,若x★2=6,则实数x的值是()A.﹣4或﹣1B.4或﹣1C.4或﹣2D.﹣4或2【分析】先根据新定义得到x2﹣3x+2=6,整理得x2﹣3x﹣4=0,再把方程左边分解,原方程化为x﹣4=0或x+1=0,然后解一次方程即可.【解答】解:∵x★2=6,∴x2﹣3x+2=6,整理得x2﹣3x﹣4=0,∴(x﹣4)(x+1)=0,∴x﹣4=0或x+1=0,∴x1=4,x2=﹣1.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=82【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【解答】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故选:C.【点评】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.【点评】本题考查了概率,熟练掌握概率公式是解题的关键.10.如图为函数y=ax2+bx+c与y=x的图象,下列结论:(1)b2﹣4ac>0;(2)3b+c+6=0;(3)当1<x<3时,x2+(b﹣1)x+c<0;(4).其中正确的个数为()A.1B.2C.3D.4【分析】由函数y=ax2+bx+c与x轴无交点,可得b2﹣4ac<0;当x=3时,y=9+3b+c =3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案,把b=﹣3,c=3代入代数式即可求得.【解答】解:由图象知,二次函数过(3,3)(0,3),(1,1),∴,解得:,∴y=x2+bx+c,∵函数y=ax2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;由图象知,抛物线y=x2+bx+c与直线y=x的交点坐标为(1,1)和(3,3),∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;故②正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故③正确;∵函数y=x2﹣3x+3,∴.故④正确;故选:C.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.二次函数y=(x+2)2+3的顶点坐标是(﹣2,3).【分析】根据顶点式直接解答即可.【解答】解:二次函数y=(x+2)2+3的图象的顶点坐标是(﹣2,3).故答案为(﹣2,3)【点评】本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(x﹣h)2+k (a≠0)的顶点坐标为(h,k),注意符号问题.12.关于x的方程x2﹣x﹣n=0没有实数根,则抛物线y=x2﹣x﹣n的顶点在第一象限.【分析】求出抛物线y=x2﹣x﹣n的对称轴x=,可知顶点在y轴的右侧,根据x2﹣x﹣n =0在实数范围内没有实数根,可知开口向上的y=x2﹣x﹣n与x轴没有交点,据此即可判断抛物线在第一象限.【解答】解:∵抛物线y=x2﹣x﹣n的对称轴x=﹣=,∴可知抛物线的顶点在y轴的右侧.又∵关于x的一元二次方程x2﹣x﹣n=0没有实数根,∴开口向上的y=x2﹣x﹣n与x轴没有交点.∴抛物线y=x2﹣x﹣n的顶点在第一象限.故答案为:一.【点评】本题考查了抛物线与x轴的交点个数与相应一元二次方程的解的个数的关系,熟练掌握二次函数的性质是解题的关键.13.AB是⊙O的直径,C,D在⊙O上且分布在AB两侧,C是直径AB所对弧的一个三等分点,则∠BDC=30°或60°.【分析】此题分两种情况进行计算,点C有两种位置,分别根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半进行计算即可.【解答】解:如图所示:连接CO,∵C是直径AB所对弧的一个三等分点,∴∠COB=120°,∴∠CDB=60°,连接C1O,∵C1是直径AB所对弧的一个三等分点,∴∠C1OB=60°,∴∠C1DB=30°,故答案为:30°或60°.【点评】此题主要考查了圆周角定理以及圆心角度数的计算,关键是分两种情况讨论.14.如图,在平行四边形ABCD中,AB<AD,∠C=150°,CD=8,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.【分析】连接OE,作OH⊥BE于H,根据平行四边形的性质得到AB=CD=8,∠ABC =180°﹣∠C=30°,根据扇形面积公式、三角形的面积公式计算即可.【解答】解:连接OE,作OH⊥BE于H,∵四边形ABCD是平行四边形,∴AB=CD=8,∠ABC=180°﹣∠C=30°,∵OE=OB=4,∴∠OEB=∠OBE=30°,∴OH=OB=2,∠BOE=120°,由勾股定理得,BH===2,∴阴影部分的面积=﹣=﹣4,故答案为:﹣4.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.15.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为(8076,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2020除以3,根据商为673余数为1,可知第20,20个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点评】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.三、解答题:共75.解答应写出文字说明、证明过程或演算步骤.16.解方程:(1)x2﹣6x+9=0(2)x2+x=2(x+1)【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵(x﹣3)2=0,∴x﹣3=0,即x1=x2=3(2)∵x(x+1)=2(x+1),∴(x+1)(x﹣2)=0∴x+1=0或x﹣2=0∴x1=﹣1,x2=2【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17.关于x的一元二次方程x2﹣mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一根大于3,求m的取值范围.【分析】(1)根据判别式△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0即可得;(2)因式分解法得出x1=1,x2=m﹣1,由方程有一个根大于3知m﹣1>3,解之可得.【解答】(1)证明:依题意,得△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0,∵(m﹣2)2≥0,∴方程总有两个实数根;(2)x2﹣mx+m﹣1=0,(x﹣1)(x﹣m+1)=0,∴x1=1,x2=m﹣1,∵方程有一个根大于3,∴m﹣1>3,∴m>4.∴m的取值范围是m>4.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)测试成绩(分)2325262830人数(人)4181585【分析】(1)用总人数乘以成绩为25分的学生人数所占的比例即可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得.【解答】解:(1)(人),答:该校九年级有450名学生,估计体育测试成绩为25分的学生人数为162人;(2)画树状图如下图:共有12个等可能的结果,甲和乙恰好分在同一组的结果有2个,∴甲和乙恰好分在同一组的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.19.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过多少秒,四边形APQC的面积最小.【分析】设经过x秒,四边形APQC的面积最小,根据题意列出△PBQ的面积关于x的解析式,根据二次函数的性质求出△PBQ的面积的最大值,得到答案.【解答】解:设经过x秒,四边形APQC的面积最小由题意得,AP=2x,BQ=4x,则PB=12﹣2x,△PBQ的面积=×BQ×PB=×(12﹣2x)×4x=﹣4(x﹣3)2+36,当x=3s时,△PBQ的面积的最大值是36mm2,此时四边形APQC的面积最小.【点评】本题考查的是二次函数的应用,掌握二次函数的性质是解题的关键.20.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.【分析】(1)连接OC,根据平行线的性质得到∠1=∠ACB,由圆周角定理得到∠1=∠ACB=90°,根据线段垂直平分线的性质得到DB=DC,求得∠DBE=∠DCE,根据切线的性质得到∠DBO=90°,求得OC⊥DC,于是得到结论;(2)解直角三角形即可得到结论.【解答】(1)证明:连接OC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.【点评】本题考查了切线的判定和性质,垂径定理,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.22.已知抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2.(1)请结合函数图象确定实数a的取值范围;(2)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.【分析】(1)根据题意,可以求得该抛物线与x轴的两个交点,然后即可画出该函数的图象,从而可以得到a的取值范围;(2)根据题意,可以得到关于k的方程,从而可以求得抛物线y=kx2+(2k+1)x+2所过的定点.【解答】解:(1)令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数.∴k=1∴该抛物线解析式为y=x2+3x+2由图象得到:当y1>y2时,a>1或a<﹣4;(2)依题意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,则解得或,所以该抛物线恒过定点(0,2)、(﹣2,0).【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上的点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.【分析】(1)C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,将点A的坐标代入C2的表达式,即可求解;(2)作点C关于C1对称轴的对称点C′(﹣1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小,即可求解;(3)S=MH×x C=(﹣x2+4x﹣x)=﹣x2+,即可求解.△MOC【解答】解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),=MH×x C=(﹣x2+4x﹣x)=﹣x2+x,则S△MOC∵﹣<0,故x=,最大值为.故当点M(,)时,S△MOC【点评】此题考查了待定系数法求解析式,还考查了三角形的面积,要注意将三角形分解成两个三角形求解;还要注意求最大值可以借助于二次函数.。
河北省秦皇岛市九年级上学期期中数学试卷
河北省秦皇岛市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、认真填一填 (共6题;共6分)1. (1分)(2019·新会模拟) 分解因式:4x2y3﹣4x2y2+x2y=________.2. (1分)(2017·赤壁模拟) 对于二次函数y=x2﹣2mx﹣3,有下列结论:①它的图象与x轴有两个交点;②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;③如果将它的图象向左平移3个单位后过原点,则m=1;④如果当x=2时的函数值与x=8时的函数值相等,则m=5.其中一定正确的结论是________.(把你认为正确结论的序号都填上)3. (1分)小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).4. (1分)如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=________度.5. (1分) (2017九上·温江期末) 小颖在二次函数y=2x2+4x+5的图象上,依横坐标找到三点(﹣1,y1),(2,y2),(﹣3,y3),则你认为y1 , y2 , y3的大小关系应为________.6. (1分) (2016七上·龙海期末) 已知2+ =22× ,3+ =32× ,4+ =42× …,若8+=82× (a,b为正整数),则a+b=________.二、仔细选一选 (共8题;共16分)7. (2分)-3的倒数是()A .B .C .D .8. (2分)(2014·成都) 正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为()A . 290×108元B . 290×109元C . 2.90×1010元D . 2.90×1011元9. (2分)(2019·百色) 方程的解是()A . 无解B .C .D .10. (2分)一个钢筋三角形框架三边长分别为20厘米,50厘米、60厘米,现要再做一个与其相似的钢筋三角形框架,而只有长是30厘米和50厘米的两根钢筋,要求以其中一根为边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有().A . 一种B . 二种C . 三种D . 四种11. (2分) (2019八下·淮安月考) 如图,在中,,将绕点顺时针旋转90°后得到(点的对应点是点,点的对应点是点),连接 .若,则的大小是()A . 77°B . 69°C . 67°D . 32°12. (2分)若一组数据1、2、3、x的极差是6,则x的值为().A . 7B . 8C . 9D . 7或-313. (2分)(2013·崇左) 若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限14. (2分)如图,在⊙O中,弦AB⊥AC,OD⊥AB于点D,OE⊥AC于点E,若AB=8cm,AC=6cm,则⊙O的半径OA的长为()A . 7cmB . 6cmC . 5cmD . 4cm三、全面答一答 (共8题;共73分)15. (10分)计算(1) +(1﹣)0+4sin30°﹣cos45°;(2).16. (5分) (2017七下·罗定期末) 已知方程组的解x为非正数,y为负数,求符合条件的整数a的值.17. (5分) (2016七上·新泰期末) 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB 的延长线于点E,若∠E=35°,求∠BAC的度数.18. (13分)(2017·峄城模拟) 国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖100.05二等奖200.10三等奖30b优胜奖a0.30鼓励奖800.40请根据所给信息,解答下列问题:(1) a=________,b=________,且补全频数分布直方图________;(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.19. (5分)你喜欢玩游戏吗?小明和小华在如图所示的两个转盘上玩一个游戏.两个转盘中指针落在每一个数字上的机会都均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,若指针停在等分线上,则重转一次,直至指针指向某一数字为止.用所指的两个数字作乘积.如果积为奇数,则小明赢;如果积为偶数,则小华赢,这个游戏公平吗?请说明理由.20. (10分)(2017·莱芜) 某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?21. (10分) (2018九上·邗江期中) 如图,△ABC的三边分别切⊙O于D,E,F.(1)若∠A=40°,求∠DEF的度数;(2) AB=AC=13,BC=10,求⊙O的半径.22. (15分) (2017九上·温江期末) 如图1,在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD上一动点.(1)求抛物线的解析式;(2)过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.参考答案一、认真填一填 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、仔细选一选 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、全面答一答 (共8题;共73分)15-1、15-2、16-1、17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。
2019-2020学年九年级数学上学期期中A卷(河北)(考试版)【测试范围:冀教版九上全册】
数学试题 第1页(共6页) 数学试题 第2页(共6页)2019-2020学年上学期期中A 卷九年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版九上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若一元二次方程20ax bx c ++=中的2a =,0b =,1c =-,则这个一元二次方程是 A .2 210x -= B .2210x +=C .2 20x x +=D .2 20x x -=2.已知23x y =,则xy等于A .2B .3C .23D .323.若2sin A,则锐角A 的度数为 A .30°B .45°C .60°D .75°4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是A .22°C ,26°CB .22°C ,20°C C .21°C ,26°CD .21°C ,20°C5.如图,在⊙O 中,=AB AC ,∠AOB =40°,则∠ADC 的度数是A .40°B .30°C .20°D .15°6.如图所示的两个三角形相似,则α与β的度数分别为A .α=30°,β=30°B .α=105°,β=30°C .α=30°,β=105°D .α=105°,β=45°7.一元二次方程2250x x --=的左边配成完全平方后所得方程为 A .2 (1)6x -= B .2 (1)6x +=C .2 (2)9x +=D .2 (2)9x -=8.圆锥底面圆半径与母线长之比为1:2,那么圆锥侧面展开图扇形的圆心角为 A .30° B .60°C .90°D .180°9.如图,在一块长为20m ,宽为15m 的矩形绿化带的四周扩建一条宽度相等的小路(图中阴影部分),建成后绿化带与小路的总面积为546m 2,如果设小路的宽度为x m ,那么下列方程正确的是A .()()2015546x x --=B .()()2015546x x ++=C .()()202152546x x --=D .()()202152546x x ++=10.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则OM和BC 的长分别为数学试题 第3页(共6页) 数学试题 第4页(共6页)A .2,π3 B.πC2π3D.4π311.如图,在△ABC 中,∠ADE =∠B ,DE :BC =2:3,则下列结论正确的是A .AD :AB =2:3 B .AE :AC =2:5C .AD :DB =2:3D .CE :AE =3:212.如图,已知圆心角∠AOB =118°,则圆周角∠ACB =A .59°B .118°C .121°D .125°13.若点A (a ,b )在反比例函数2y x=的图象上,则代数式ab –4的值为 A .0 B .2C .–2D .–614.已知12m n n -=,则mn 的值为 A .23B .13C .32D .1215.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1AC 的长是A .10米 B.米C .15米D.16.如图,已知⊙O 的半径是4,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为A.83π- B.163π-C.163π-D.83π-第Ⅱ卷二、填空题(本大题共3小题,共11分.17小题3分;18~19小题各有2个空,每空2分)19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________. 三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8+3tan30°–(π–1)0. 21.(本小题满分9分)解下列一元二次方程:(1)2340x x +-=;(2)()()315x x -+=;(3)229(2)4(1)x x -=+.数学试题 第5页(共6页) 数学试题 第6页(共6页)22.(本小题满分9分)已知0654a b c==≠,且223a b c +-=,求a 的值. 23.(本小题满分9分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,–4),B (3,–2),C (6,–3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以M 点为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2:1.24.(本小题满分10分)关于x 的方程()21220k x kx -++=.(1)求证:无论k 为何值,方程总有实数根; (2)设12,x x 是该方程的两个根,记121221x x S x x x x =+++,S 的值能为2吗?若能求出此时k 的值. 25.(本小题满分10分)如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2)当∠ODB =30°时,求证:BC =OD .26.(本小题满分12分)如图,已知直线y =kx (k >0)与双曲线8y x=交于A 、B 两点,且点A 的纵坐标为4,第一象限的双曲线上有一点()1,P a ,过点P 作PQ //y 轴交直线AB 于点Q . (1)直接写出k 的值及点B 的坐标:(2)求线段PQ 的长;(3)如果在直线y =kx 上有一点M ,且满足△BPM 的面积等于12,求点M 的坐标.。
河北省秦皇岛市九年级(五四学制)上学期数学期中考试试卷
河北省秦皇岛市九年级(五四学制)上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列方程中,关于的一元二次方程是()A .B .C .D .2. (2分) (2019九上·钦州港期末) 用配方法方程x2+6x﹣5=0时,变形正确的方程为()A . (x+3)2=14B . (x﹣3)2=14C . (x+6)2=4D . (x﹣6)2=43. (2分) (2018九下·市中区模拟) 下列所示的图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)已知抛物线y=3(x+1)2+4是由抛物线y=3x2()得到的.A . 先向右平移1个单位,再向上平移4个单位B . 先向右平移1个单位,再向下平移4个单位C . 先向左平移1个单位,再向上平移4个单位D . 先向左平移1个单位,再向下平移4个单位5. (2分)如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’ ,若AC⊥A’B’ ,则∠BAC 等于()A . 50°B . 60°C . 70°D . 80°6. (2分) (2019八下·福田期末) 下列图案中,是中心对称图形的是()A .B .C .D .7. (2分)某商店今年10月份的销售额是3万元,12月份的销售额是6.75万元,从10月份到12月份,该店销售额平均每月的增长率是()A . 25%B . 30%C . 40%D . 50%8. (2分)小王结婚时,在小区门口的平地上放置了一个充气婚庆拱门,其形状如图所示,若将该拱门(拱门的宽度忽略不计)放在平面直角坐标系中,点A的坐标为(1,0).若将该拱门看作是抛物线y=﹣+bx﹣的一部分,则点A与点B的距离为()A . 4B . 5C . 6D . 79. (2分)(2017·东莞模拟) 已知二次函数y=ax2+bx+c的图象如图,则一次函数y=ax+c的图象大致是()A .B .C .D .10. (2分)已知一元二次方程ax2+bx+c=0(a≠0)的一根是另一个根的,则a、b、c的关系正确的是()A . 5ac=4b2B . 25b2=25acC . 4b2=25acD . 4b2=﹣25ac二、填空题 (共5题;共5分)11. (1分) (2019九上·天台月考) 在平面直角坐标系中,点P(7,-4)关于原点对称的点的坐标为________。
河北省秦皇岛市九年级上学期期中数学试卷
河北省秦皇岛市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共10题;共20分)1. (2分) (2020八下·曹县月考) 已知x:y=3:2,那么的值为()A .B .C .D .2. (2分) (2018九上·卢龙期中) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②当x>2时,y>0;③3a+c>0;④3a+b>0.其中正确的结论有()A .B .C .D .3. (2分)小明、小亮、小梅、小花四人共同探究代数式x2-4x+5的值的情况,他们作了如下分工:小明负责找值为1时的x值,小亮负责找值为0时的x值,小梅负责找最小值,小花负责找最大值。
几分钟后,各自通报探究的结论,其中错误的是()A . 小明认为只有当x=2时,x2-4x+5的值为1;B . 小亮认为找不到实数x,使x2-4x+5的值为0;C . 小花发现当取大于2的实数时,x2-4x+5的值随x的增大而增大,因此认为没有最大值;D . 小梅发现x2-4x+5的值随x的变化而变化,因此认为没有最小值;4. (2分)如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE 的长为()A . 3B . 6C . 9D . 125. (2分)(2017·邵阳模拟) 如图,AB是⊙O的直径,若∠BAC=25°,则∠ADC的大小是()A . 55°B . 65°C . 75°D . 85°6. (2分)已知二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=﹣1,给出下列结论:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.其中正确的结论有()A . 2个B . 3个C . 4个D . 5个7. (2分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A .B .C .D .8. (2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,已知,CD=8,AE=2,则⊙O的半径长是()A . 10B . 6C . 5D . 39. (2分) (2018九上·天河期末) 如图,已知CD为圆O的直径,过点D的弦DE平行于半径OA,若角D=50º,则角C的度数是()A . 50ºB . 25ºC . 30ºD . 40º10. (2分)(2016·沈阳) 在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1 , y1),B(x2 , y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A . y1<y2B . y1>y2C . y的最小值是﹣3D . y的最小值是﹣4二、认真填一填 (共6题;共6分)11. (1分) (2016九上·海原期中) 若相似三角形的对应边的比为1:3,则它们的面积比为________.12. (1分) (2017九上·钦南开学考) 如图,在⊙O中, = ,∠AOB=40°,则∠ADC的度数是________.13. (1分) (2019九上·江阴期中) 如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为5,△D′PH的面积为20,则矩形ABCD的面积等于________.14. (1分) (2016九下·临泽开学考) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;② ;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的序号是________.15. (1分)(2019·平房模拟) 在正方形ABCD中,AB=4,AC、BD交于点O,点E在射线AB上,过点O作OF⊥OE,交射线BC于点F,连接AF.若BE=1,则AF的长为________.16. (1分)若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为________.三、全面答一答 (共7题;共76分)17. (10分)如图,抛物线的顶点坐标为(2,1),且经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式和B点的坐标.(2) M是x轴上一点,且△MAB是以AB为腰的等腰三角形,试求M点坐标.18. (10分) (2020八下·江都期中) 如图,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且∠PAE=∠E,PE交CD于点F.(1)求证:PC=PE;(2)求∠CPE的度数.19. (10分)(2013·湛江) 把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.20. (10分) (2018九上·濮阳月考) 如图所示,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度)(1)请画出△A1B1C1 ,使△A1B1C1与△ABC关于原点对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2 ,并直接写出线段OB旋转到OB2扫过图形的面积.21. (15分) (2015九上·莱阳期末) 如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.(1)判断BC、MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)若MD恰好经过圆心O,求∠D的度数.22. (10分)(2020·孝感模拟) 如图,已知Rt△EBC中,∠B=90°,A为BE边上一点,以边AC上的点O 为圆心、OA为半径的圆O与EC相切,D为切点,AD∥BC.(1)求证:∠E=∠ACB.(2)若AD=1,,求BC的长.23. (11分)问题探究:(1)如图①,点M、N分别为四边形ABCD边AD、BC的中点,则四边形BNDM的面积与四边形ABCD的面积关系是________.(2)如图②,在四边形ABCD中,点M、N分别为AD、BC的中点,MB交AN于点P,MC交DN于点Q,若S△四边形MPNQ=10,则S△ABP+S△DCQ的值为多少?(3)问题解决在矩形ABCD中,AD=2,DC=4,点M、N为AB上两点,且满足BN=2AM=2MN,连接MC、MD.若点P为CD上任意一点,连接AP、NP,使得AP与DM交于点E,NP与MC交于点F,则四边形MEPF的面积是否存最大值?若存在,请求出最大面积;若不存在,请说明理由.参考答案一、仔细选一选 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、认真填一填 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、全面答一答 (共7题;共76分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
河北省秦皇岛市九年级上学期数学期中考试试卷
河北省秦皇岛市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2016九下·大庆期末) 若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2 ,则M与N的大小关系正确的为()A . M>NB . M=NC . M<ND . 不确定2. (2分) (2015九上·新泰竞赛) 下列说法中,①方程x(x-2)=x-2的解是x=1;②小明沿着坡度为1:2的山坡向上走了1000m,则他升高了 m;③若直角三角形的两边长为3和4,则第三边的长为 5;④将抛物线向左平移2个单位后,得到的抛物线的解析式是,正确的命题有().A . 0个B . 1个C . 2个D . 3个3. (2分) (2016九上·江海月考) 抛物线的顶点坐标是()A . (3, -5)B . (-3, 5)C . (3, 5)D . (-3, -5)4. (2分) 4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A . 第一张B . 第二张C . 第三张D . 第四张5. (2分)已知4个数据:−,2 ,a , b ,其中a、b是方程x2-2x-1=0的两个根,则这4个数据的中位数是()A . 1B .C . 2D .6. (2分)已知△ABC绕点C按顺时针方向旋转49º后得到△A1B1C,如果A1C⊥BC,那么∠A+∠B等于()A . 41ºB . 149ºC . 139ºD . 139º或41º7. (2分)若关于x的方程有实数根,则a的值可以是()A . 0.25B . 0.5C . 1D . 28. (2分)以下列各组线段为边,能组成三角形的是()A . 2cm,3cm,5cmB . 3cm,3cm,6cmC . 5cm,8cm,2cmD . 4cm,5cm,6cm9. (2分)如图,在直角坐标平面内,点P与原点O的距离OP=3,线段OP与X轴正半轴的夹角为a,且cosα=,则点P的坐标是().A . (2,3)B . (2,)C . (, 2)D . (2,)10. (2分)(2018·铁西模拟) 二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B (﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 ,且x1<x2 ,则x1<﹣1<5<x2 .其中正确的结论有()A . 2个B . 3个C . 4个D . 5个二、填空题 (共6题;共6分)11. (1分) (2016九上·临河期中) 若是关于x的一元二次方程(m﹣1)x2+x+|m|﹣1=0有的一个根为0,则m的值是________12. (1分) (2017九上·台江期中) 坐标平面内的点P(m,﹣2)与点Q(3,n)关于原点对称,则m+n=________.13. (1分)若方程(a﹣3)x2+4x+3﹣|a|=0的一根为0,则a=________ ,另一根是________ .14. (1分) (2015九上·宜春期末) 请写出一个开口向上,并且与x轴只有一个公共点的抛物线的解析式________.15. (1分) (2017九上·下城期中) 二次函数与直线的交点为、,则线段________;若抛物线的图像经过点、,则 ________.16. (1分)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形是图________(填①、②、③、④)三、解答题(一) (共3题;共12分)17. (2分)(1)解方程:x2+2x=3;(2)解方程组:18. (5分)(2017·蜀山模拟) 已知函数y=0.5x2+x﹣2.5.请用配方法写出这个函数的对称轴和顶点坐标.19. (5分)已知关于x的方程有一个根是0,求另一个根和的值.四、解答题(二) (共3题;共22分)20. (10分) (2012八下·建平竞赛) 如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D 在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请说明:AH=DH.21. (2分)写出下列函数中自变量x的取值范围:(1) y=2x﹣3(2)(3)(4).22. (10分) (2016九上·和平期中) 某公司今年销售一种产品,1月份获得利润20万元.由于产品畅销.禾悯逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.设这个增长率为x(1)填空:(用含x的代数式表示)①2月份的利润为:________②3月份的利润为:________(2)列出方程,并求出问题的解.五、解答题(三) (共3题;共10分)23. (2分)某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m)另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m2吗?(2)鸡场的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.24. (6分) (2019·乐山) 如图,已知抛物线与轴相交于、两点,与轴交于点,且tan .设抛物线的顶点为,对称轴交轴于点 .(1)求抛物线的解析式;(2)为抛物线的对称轴上一点,为轴上一点,且 .①当点在线段 (含端点)上运动时,求的变化范围;②当取最大值时,求点到线段的距离;③当取最大值时,将线段向上平移个单位长度,使得线段与抛物线有两个交点,求的取值范围.25. (2分)如图,用20m的篱笆围成一个矩形的花圃.设连墙的一边为x(m),矩形的面积为y(m2).(1)写出y关于x的函数解析式;(2)当x=3时,矩形的面积为多少?参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一) (共3题;共12分)17-1、18-1、19-1、四、解答题(二) (共3题;共22分) 20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、五、解答题(三) (共3题;共10分) 23-1、24-1、25-1、25-2、。
秦皇岛市九年级上学期数学期中考试试卷
秦皇岛市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题3分,共30分) (共10题;共30分)1. (3分)若y=(m﹣3)x+1是一次函数,则()A . m=3B . m=﹣3C . m≠3D . m≠﹣32. (3分)(2018·宁晋模拟) 在一个透明的口袋中装着大小、外形一模一样的5个黄球,2个红球和2个白球,这些球在口袋中被搅匀了,下列事件必然发生的是()( 1 )从口袋中任意摸出一个球是一个黄球或是一个白球(2)从口袋中一次任意摸出5个球,全是黄球(3)从口袋中一次任意摸出8个球,三种颜色都有(4)从口袋中一次任意摸出6个球,有黄球和红球,或有黄球和白球,或三种颜色都有.A . (1)(2)B . (2)(3)C . (3)(4)D . (1)(2)(3)(4)3. (3分) (2019九上·萧山月考) 若 ,则 = ()A . 3:2B . 2:3C . 2:1D . 1:24. (3分)(2019·常德模拟) 一个钢管放在V形架内,如图是其截面图,测得P点与钢管的最短距离PB=25cm,最长距离PA=75cm.若钢管的厚度忽略不计,则劣弧的长为()A . πcmB . 50πcmC . πcmD . 50 πcm5. (3分)对任意实数x,多项式- +6x-10的值是一个()A . 正数B . 负数C . 非负数D . 无法确定6. (3分)如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠BCD等于()A . 65°B . 115°C . 120°D . 125°7. (3分) (2017九上·汉阳期中) 如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B(﹣1,2)两点,若点C在该抛物线上,则C点的坐标可能是()A . (﹣2,0)B . (0.5,6.5)C . (3,2)D . (2,2)8. (3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()A . 点P在⊙O内B . 点P在⊙O上C . 点P在⊙O外D . 无法确定9. (3分)(2017·武汉模拟) 二次函数y=2x2﹣2x+m(0<m<),如果当x=a时,y<0,那么当x=a﹣1时,函数值y的取值范围为()A . y<0B . 0<y<mC . m<y<m+4D . y>m10. (3分) (2019九下·温州竞赛) 如图,在△ABC中,∠ACB=Rt∠,AC=2,点D是边AB上的一个动点,以CD为直径作⊙O交AB的另一点于F,交AC的另一点于E,将点E绕点F按逆时针方向旋转120°得到点E',当点D 在线段BF上时,点E'始终在⊙O上,则点D由B出发,运动到与点F重合停止,点E'所经过的路径的长是()A .B .C .D .二、填空题(本大题共6小题,每小题4分,共24分) (共6题;共22分)11. (4分) (2018九上·太原期中) 经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为________.12. (4分) (2017八上·南京期末) 已知一个函数,当时,函数值随着的增大而减小,请写出这个函数关系式________(写出一个即可).13. (2分)如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为________cm.14. (4分)人体下半身与身高的比例越接近0.618,越给人美感.遗憾的是,即使芭蕾舞演员也达不到如此的完美.某女士身高1.68m,下半身1.02m,她应该选择穿________(精确到0.1cm)的高跟鞋看起来更美.15. (4分) (2019九上·道外期末) 扇形的圆心角为80°,弧长为4πcm,则此扇形的面积等于________cm2 .16. (4分)(2017·黑龙江模拟) 如图,已知抛物线y=﹣x2+bx+c与x轴交于A,B与y轴交于C,过C作x 轴的平行线交抛物线于点D,过点D作x轴的垂线交x轴于E,点D的坐标为(2,3)(1)求抛物线的解析式;(2)点P为第一象限直线DE右侧抛物线上一点,连接AP交y轴于点F,连接PD、DF,设点P的横坐标为t,△PFD的面积为S,求S与t的函数关系式;(3)在(2)的条件下,点P向下平移3个单位得到点Q,连接AQ、EQ,若∠AQE=45°,求点P的横坐标.三、解答题(本大题共8小题,第17~19小题每小题6分,第20~ (共8题;共60分)17. (6分) (2019九上·诸暨月考) 如图,已知△ABO中A(-1,3)、B(-4,0).(1)画出△ABO绕着原点O按顺时针方向旋转90°后的图形,记为△ ;(2)求△A BO外接圆圆心坐标;18. (6分) (2019九上·沙河口期末) 如图,抛物线y=﹣ x2+mx+4与x轴交于A、B两点,点B在x轴的右侧且点A在点B的左侧,与y轴交于点C,OB=OC;(1)求m的值;(2)点A绕点C逆时针旋转90°得到点A′,直线A′C交抛物线的另一个交点为P,求点P的坐标.19. (6分)(2019·朝阳模拟) 在平面直角坐标系xOy中,反比例函数y=的图象经过点P(3,4).(1)求k的值;(2)求OP的长;(3)直线y=mx(m≠0)与反比例函数的图象有两个交点A,B,若AB>10,直接写出m的取值范围.20. (2分)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B表示“去敬老院服务”;用C 表示“法制宣传”)21. (8分)(2019·郑州模拟) 已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.22. (10.0分) (2019九上·浙江期中) 如图,校园空地上有一面墙,长度为4米.为了创建“美丽校园”,学校决定借用这面墙和20米的围栏围成一个矩形花园ABCD.设AD长为x米,矩形花园ABCD的面积为s平方米.(1)如图1,若所围成的矩形花园AD边的长不得超出这面墙,求s关于x的关系式(写出自变量范围) (2)在(1)的条件下,当AD为何值时,矩形花园ABCD的面积最大,最大值是多少?(3)如图2,若围成的矩形花园ABCD的AD边的长可超出这面墙,求围成的矩形ABCD的最大面积23. (10.0分) (2017九上·云南月考) 如图,在平面直角坐标系中,已知抛物线与x轴相交于,C两点与y轴相交于点B .(1) a________0, ________ 填“ ”或“ ” ;(2)若该抛物线关于直线对称,求抛物线的函数表达式;(3)在的条件下,若点M为第三象限内抛物线上一动点,点M的横坐标为的面积为求S关于m的函数关系式,并求出S的最大值;(4)在的条件下,若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.24. (12分)(2016·成都) 如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本大题共6小题,每小题4分,共24分) (共6题;共22分) 11-1、12-1、13-1、14-1、15-1、16-1、16-2、16-3、三、解答题(本大题共8小题,第17~19小题每小题6分,第20~ (共8题;共60分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、24-2、。
2019-2020学年九年级的数学上学期期中原创卷A卷(河北)(考试版)
绝密★启用前|1 试题命制中心2019-2020 学年上学期期中原创卷【河北 A 卷】九年级数学(考试时间: 120 分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。
2.回答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版九上全册。
第Ⅰ卷一、选择题(本大题共16 小题,共 42 分, 1~10 小题各 3 分, 11~16 小题各 2 分.在每题给出的四个选项中,只有一个选项是切合题目要求的)1.已知对于x 的方程x2 3x a 0 有一个根为 2 ,则另一个根为A .5B. 1C. 2D. 52.在同一平面直角坐标系中,反比率函数y= k与一次函数y=kx- k 的图象可能是xA.B.C.D.3.对于一元二次方程x22x 10 根的状况,以下说法正确的选项是A .有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根4.某校为认识学生的课外阅读状况,随机抽取了一个班级的学生,对他们一周计数据以下表所示:念书时间(小时)7 8 9学生人数 6 10 9 则该班学生一周念书时间的中位数和众数分别是A .9, 8B.9, 9C. 9.5, 9D. 9.5, 82- 20** x+10092=0 的两个根为2 2 5.已知一元二次方程 x α,β,则求得αβ+αβ=A .1009 3B . 2×10093C. - 2×10093D. 3×100936.有一组数据x1, x2,, x n的均匀数是2,方差是 1,则 3x1+2, 3x2+2, +别是A .2, 1B.8, 1C. 8, 5D. 8, 97.如图,已知直线l 1,l2,l3分别交直线l 4于点 A,B,C,交直线 l5于点 D ,E AC=6, DF =9,则 DE =A .5B .6C.7D.88.如图,平行四边形ABCD 中,点 A 在反比率函数y=k(k≠0)的图象上,x在 x 轴上.若平行四边形ABCD 的面积为10,则 k 的值是A .- 10B.-5C.5D.109.如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,A′B′∶ AB 为A .2∶ 3B.3∶ 2C. 1∶ 2D.2∶ 110.如图,在矩形ABCD 中,点 E 是边 BC 的中点, AE⊥ BD ,垂足为 F ,则A .2B . 14 412C .D .3311.已知对于x的方程(x 1)2(x b) 22 有独一实数解, 且反比率函数 y1 b的图象在每个象限内yx随 x 的增大而增大,那么反比率函数的关系式为A . y3 1 x B . yx C . y2 2 D . yxx12.把球放在长方体纸盒内,球的一部分露出盒外,其截面以下图,已知EF= CD =4cm ,则球的半径长是A . 2cmB . 2.5cmC .3cmD . 4cm13.如图,在小山的东侧A 点有一个热气球,因为受风的影响,以30 米 /分的速度沿与地面成75°角的方向飞翔, 25 分钟后抵达 C 处,此时热气球上的人测得小山西侧B 点的俯角为 30°,则小山东西双侧 A ,B 两点间的距离为A .7502 米 B .375 2 米C .375 6 米D . 750 6 米14.如图,AB 是⊙ O 的直径, CD 是弦,AB ⊥ CD ,垂足为 E ,点 P 在⊙ O 上,连结 BP 、PD 、BC .若 CD= 24 ,3,则⊙ O 的直径为 5sinP=516A .8B .6C .5D .515.如图,在△ ABC 中,点 D , E 分别是边 AC , AB 的中点, BD 与 CE 交于点 O ,连结 DE .以下结论:① OEOD DE 1 S △ DOE1 ;④ S△ DOE1 .此中正确的个数有 OBOC;②BC2;③S △BOC2S △DBE3A .1 个B .2 个C .3 个D .4 个16.如图, AB 是半圆直径,半径OC ⊥AB 于点 O , AD 均分∠ CAB 交弧 BC 于点 D ,连结 CD 、 OD ,给出以下四个结论:① AC ∥ OD ;② CE=OE ;③△ ODE ∽△ ADO ;④ 2CD 2CE AB .此中正确结论的序号是A .1 个B .2 个C .3 个D .4 个第Ⅱ卷二、填空题(本大题共3 小题,共 12 分. 17~18 小题各 3 分; 19 小题有两个空,每空3 分)17.计算:1tan45 +°2cos45 °+sin60 ·°cos30 °=__________ .4218.如图,在矩形 ABCD 中, AB=4, AD= 42 , E 是线段 AB 的中点, F 是线段 BC 上的动点着直线 EF 翻折到△ B'EF ,连结 DB' 、 B'C ,当 DB '最短时,则sin ∠ B'CF =__________ .19.某校在“爱惜地球,绿化祖国”的创立活动中,组织学生展开植树造林活动.为认识全校学生的植状况,学校随机抽查了100 名学生的植树状况,将检查数据整理以下表:植树数目(单位:棵) 4 5 6 8人数 28 20 25 16则这 100 名同学均匀每人植树 __________ 棵;若该校共有 1000 名学生, 请依据以上检查结学生的植树总数是 __________ 棵.三、解答题(本大题共7 小题,共 66 分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分 8 分)解以下方程:( 1)x 2 - 4x+1=0 ;( 2)4( x- 1) 2=x (x- 1).21.(本小题满分 9 分)如图, BE 是△ ABC 的角均分线,延伸BE 至 D ,使得 BC=CD .( 1)求证:△ AEB ∽△ CED ;( 2)若 AB=2, BC=4,AE=1,求 CE 长.22.(本小题满分 9 分)某中学展开“唱红歌”竞赛活动,八年级(1)( 2)班依据初赛成绩名选手参加复赛,两个班各选出的5 名选手参加复赛,两个班各选出的 5 名选手的复赛成100 分)以下图.( 1)依据统计图所给的信息填写下表;班级 均匀数(分) 中位数(分) 众数(八( 1)85 ___________ 85八( 2)___________ 80 ___________( 2)若八( 1 )班复赛成绩的方差s12 =70,请计算八(2)班复赛成绩的方差s2 2,并说明哪个班级 5 名选手的复赛成绩更安稳一些.23.(本小题满分 9 分)如图,在平面直角坐标系中,一次函数k y=ax+b( a≠0)的图象与反比率函数 y=分别交AD ,AC 于点F,G.( 1)求证:FA=FG ;( 2)若BD=DO =2,求弧EC 的长度.25.(本小题满分10 分)如图 1 是一种折叠式可调理的鱼竿支架的表示图,AE 是地插,用来将支架固定在地面上,支架AB 可绕 A 点前后转动,用来调理AB 与地面的夹角,支架CD 可绕AB 上定点 C 前后转动,用来调理CD 与AB 的夹角,支架CD 带有伸缩调理长度的伸缩功能,已知BC=60cm .( 1)若支架AB 与地面的夹角∠BAF=35°,支架CD 与垂钓竿DB 垂直,垂钓竿DB 与地面AF 平行,求支架CD 的长度(精准到0.1cm);(参照数据:sin35 °≈ 0.,57cos35°≈0.82,tan35 °≈ 0.)70.( 2)如图2,保持( 1)中支架AB 与地面的夹角不变,调理支架CD 与 AB 的夹角,使得∠DCB =85°,若要使垂钓竿DB 与地面AF 仍旧保持平行,则支架CD 的长度应当调理为多少?(结果保存根号)26.(本小题满分11 分)如图,AB、 CD 是O 的直径,BE CD 于E,连结BD.( 1)如图 1,求证:AOC 2 DBE;( 2)如图 2, F 是 OC 上一点,CAFABE ,求证: CF 2OE ;( 3)在( 2)的条件下,连结BC, AF 的延伸线交 BC 于 H,若EF 2,BE 2 6,求HF的长.。
2019-2020学年九年级数学上学期期中B卷(河北)(考试版)【测试范围:冀教版九上全册】
数学试题 第1页(共6页) 数学试题 第2页(共6页)2019-2020学年上学期期中B 卷九年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版九上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.已知方程22(2)(2)30mm x m x --+++=是关于x 的一元二次方程,则m =A .2±B .2C .–2D .02.四边形ABCD 内接于⊙O ,则∠A ∶∠B ∶∠C ∶∠D 的值可以是 A .2∶3∶4∶5B .2∶4∶3∶5C .2∶5∶3∶4D .2∶3∶5∶43.已知两个相似三角形的周长比为4:9,则它们的面积比为 A .4:9B .2:3C .8:18D .16:814.方程2230x x +-=的解是 A .1或–3B .3C .–3D .15.如图,在⊙O 中,弧AB =弧AC ,∠A =36°,则∠C 的度数为A .44°B .72°C .62°D .54° 6.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别是 A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.707.如图,⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm ,则⊙O 的半径长为A .3cmB .4cmC .5cmD .6cm8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,此刻与他相邻的一棵树的影长为3.6米,则这棵树的高度为 A .4.8米B .4米C .4.2米D .2.7米9.若方程x 2+9x –a =0有两个相等的实数根,则 A .81a =B .81a =-C .814a =D .814a =-10.如图,已知第一象限内的点A 在反比例函数2x 上,第二象限的点B 在反比例函数y =kx上,且OA ⊥OB ,sin Bk 的值为A .12-B .1-C .3-D .4-11.在反比例函数2y x=-图象上有两个点A 11(,)x y ,B 22(,)x y ,若120x x <<,则下列结论正确的是 A .120y y <<B .120y y <<C .210y y <<D .210y y <<12.在Rt △ABC 中,∠C =90°,sin A =45,则cos B 的值等于数学试题 第3页(共6页) 数学试题 第4页(共6页)A .35B .45C .34D13.如图,O 是ABC △的外接圆,连接OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠=,则ACB ∠的度数为A .50B .45C .40D .3014.ABC △与A'B'C'△是位似图形,且ABC △与A'B'C'△的位似比是1:2,已知ABC △的面积是3,则A'B'C'△的面积是 A .3 B .6C .9D .1215.在方差的计算公式222212101[(20)(20)(20)]10s x x x =-+-+⋅⋅⋅+-中,数字10和20分别表示的意义可以是A .数据的个数和方差B .平均数和数据个数C .数据的个数和平均数D .数据的方差和平均数16.已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tan α的值等于A .23B .34C .43D .32第Ⅱ卷二、填空题(本大题共3小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.如图,梯形ABCD 中,AD ∥BC ∥EF ,AE ∶EB =2∶3,AD =12,则BC =18,则EF =__________.18.已知方程x 2+2x +a –2=0的两根为x 1,x 2,且x 1=1,则a =__________,x 2=__________. 19.如图,点A ,B 是反比例函数y =k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA 、BC ,已知点C (2,0),BD =3,S △BCD =3,则k 的值为__________,S △AOC 为__________.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)解方程:(1)240x x -=;(2)x 2+3x +1=0.21.(本小题满分9分)如图,AB 是圆O 的直径,CD 为弦,AB ⊥CD ,垂足为H ,连接BC 、BD .(1)求证:BC =BD ;(2)已知CD =6,OH =2,求圆O 的半径长.22.(本小题满分9分)如图,在Rt ABC △中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =. (1)求AC 和AB 的长;(2)求sin BAD ∠的值.23.(本小题满分9分)东台市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程,已知2017年投资1000万元,预计2019年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(3)若OE=BE,求∠AGC的度数.Array(2)按此增长率,计算2020年投资额能否达到1360万?24.(本小题满分10分)为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨)并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计市直机关500户家庭中平均用水量不超过12吨的约有多少户?26.(本小题满分12分)如图,AB为⊙O的直径,弦CD⊥AB于点E,点G是AD上一点,连接AG,CG.(1)在不添加辅助线的前提下直接写出图中与∠AGC相等的角,不用证明;(2)求证:当AB∥DG时,△ACG与△EAC相似;数学试题第5页(共6页)数学试题第6页(共6页)。
秦皇岛市九年级(上)期中数学试卷
九年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共14小题,共42.0分)1.已知一组数据2,x ,4,6的众数为4,则这组数据的平均数为( )A. 3B. 4C. 5D. 62.一组数据4,5,7,7,8,6的中位数和众数分别是( )A. 7,7B. 7,C. ,7D. ,76.5 6.5 5.53.若关于的x 方程有一个根为,则a 的值为 x 2+3x +a =0―1()A. B. C. 2 D. 4―4―24.从全市5000份数学试卷中随机抽取400份试卷,其中360份成绩合格,那么可以估计全市数学成绩合格的学生大约有多少人?( )A. 4500B. 4000C. 3600D. 48005.和相似,且相似比为,那么它们的周长比是△ABC △DEF 23( )A. B. C. D. 233249946.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 分C. 分D. 分84.585.586.57.如果一个等腰三角形的两边长分别为方程的两根,则这个等腰三角x 2−5x +4=0形的周长为( )A. 6B. 9C. 6或9D. 以上都不正确8.若的三边长是a ,b ,c ,且满足,则是△ABC |a−b|+|a−c|=0△ABC ( )A. 钝角三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形9.若一元二次方程有实数解,则m 的取值范围是x 2+2x +m =0( )A. B. C. D.m≤−1m≤1m≤4m≤1224.210.某公司年前缴税20万元,今年缴税万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程( )A. B.20(1+x)3=24.220(1−x)2=24.2C. D.20+20(1+x)2=24.220(1+x)2=24.21.5m11.已知一棵树的影长是30m,同一时刻一根长的标杆的影长为3m,则这棵树的高度是( )A. 15mB. 60mC. 20mD. 103m△ABC DF//EG//BC AD=DE=EB12.如图,在中,,且,△ABC S1被DF、EG分成三部分,且三部分面积分别为,S2S3S l S2S3=( ),,则::A. 1;1:1B. 1:2:3C. 1:3:5D. 1:4:913.有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为( )A. B.1+x+x(1+x)=100x(1+x)=100C. D.1+x+x2=100x2=100△ABC14.如图,DE是的中位线,M是DE的中点,CM的延长线交AB于点N,则NM:MC等于( )A. 1:2B. 1:3C. 1:4D. 1:5二、填空题(本大题共6小题,共18.0分)15.为了了解金东初中九年级480名学生的体重情况,从中抽取了200名学生的体重进行分析,在这个问题中,样本容量是______.4x−5y=016.已知,则x:y的值为______.a=4b=917.已知线段,线段,则a,b的比例中项是________x1x2x3x4x5m+x1m+x2 18.一组数据,,,,的平均数是a,方差是b,则数据,,m+x3m+x4m+x5,,的平均数是______,方差是______.△ABC19.如图,在中,D、E分别是AC、AB边上的点,∠AED=∠C AB=6AD=4AC=5AE=,,,,则______ .△ABC△A′B′C′OA=3AA′S△ABC 20.如图,与是位似图形,点O是位似中心,若,=9S△A′B′C′=,则______.三、解答题(本大题共6小题,共60.0分)21.按要求解方程(1)x2−3−2x=0.()方法自选(2)2x2−4x−1=0()配方法△ABC22.如图,在边长均为l的小正方形网格纸中,的顶点A、B、C均在格点上,OA(−1,0)为直角坐标系的原点,点在x轴上.(1)△ABC△A1B1C1△ABC以O为位似中心,将放大,使得放大后的与的相似比为2:1,要求所画与在原点两侧;△A1B1C1△ABC(2)B1C1分别写出、的坐标.23.某中学开展“头脑风暴”知识竞赛活动,八年级1班和2班各选出5名选手参加初()赛,两个班的选手的初赛成绩单位:分分别是:1班 85 80 75 85 1002班 80 100 85 80 80(1)根据所给信息将下面的表格补充完整;平均数中位数众数方差1班初赛成绩85702班初赛成绩8580(2)(1)根据问题中的数据,判断哪个班的初赛成绩较为稳定,并说明理由.24.如图,在宽为20m,长为32m的矩形地面上,修筑同()样宽的道路即图中阴影部分,余下的部分种上草坪,540m2要使草坪的面积为,求道路的宽.x2−2(a+b)x+c2+2ab=025.已知关于x的方程有两个相等△ABC的实数根,其中a、b、c为的三边长.(1)△ABC试判断的形状,并说明理由;(2)AC=2AD=1若CD是AB边上的高,,,求BD的长.△ABC BC>AC DC=AC∠ACB26.如图所示,在中,,点D在BC上,且,的平分线CFF.交AD于点点E是AB的中点,连接EF.(1)EF//BC求证:;(2)△ABD若的面积是6,求四边形BDFE的面积.答案和解析1.【答案】B【解析】解:数据2,x ,4,6的众数为4,即的4次数最多;即.x =4则其平均数为:.(2+4+4+6)÷4=4故选B .先根据众数的定义求出x 的值,然后再求这组数据的平均数.本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.2.【答案】C【解析】解:把这些数从小到大排列为4,5,6,7,7,8,中位数是;6+72=6.57出现了2次,出现的次数最多,则众数是7;故选:C .根据中位数和众数的定义分别进行解答即可.本题考查众数与中位数的意义,中位数是将一组数据从小到大或从大到小重新排列后,()最中间的那个数最中间两个数的平均数,叫做这组数据的中位数,如果中位数的概念()掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数;众数是一组数据中出现次数最多的数.3.【答案】C【解析】解:把代入方程得,x =−1x 2+3x +a =01−3+a =0解得.a =2故选:C .根据一元二次方程的解的定义,把代入方程得到关于a 的一次方程,然后解此x =−1一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4.【答案】A【解析】解:人.5000×360400=4500()故选:A .由题意可知:抽取400份试卷中合格率为,则估计全市5000份试卷360400×100%=90%成绩合格的人数约为份.5000×90%=4500本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.5.【答案】A【解析】解:∽,它们的相似比为2:3,∵△ABC△A′B′C′它们的周长比是2:3.∴故选:A.根据相似三角形性质,相似三角形周长的比等于相似比可求.本题考查对相似三角形性质的理解.相似三角形周长的比等于相似比;(1)相似三角形面积的比等于相似比的平方;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.(3)6.【答案】D【解析】解:2+3+5=10根据题意得:80×210+85×310+90×510 =16+25.5+45分=86.5()答:小王的成绩是分.86.5故选:D.根据加权平均数的计算公式列出算式,再进行计算即可.此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.7.【答案】B【解析】解:解方程得:x2−5x+4=0,,x1=4x2=1根据三角形的三边关系定理等腰三角形的三边只能为4、4、1,等腰三角形的周长是,∴4+4+1=9即等腰三角形的周长是9,故选B.求出方程的解,根据三角形的三边关系定理等腰三角形的三边只能是4、4、1,求出周长即可.本题主要考查对解一元二次方程因式分解法,三角形的三边关系定理,等腰三角形的−性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.8.【答案】D【解析】解:,∵|a−b|+|a−c|=0,且,∴a−b=0a−c=0,∴a=b=c是等边三角形;∴△ABC故选:D.由绝对值的非负性质得出,且,得出,即可得出结论.a−b=0a−c=0a=b=c本题考查了等边三角形的判定、绝对值的非负性质;熟练掌握等边三角形的判定,证出是解题的关键.a =b =c 9.【答案】B【解析】解:一元二次方程有实数解,∵x 2+2x +m =0,∴b 2−4ac =22−4m ≥0解得:,m ≤1则m 的取值范围是.m ≤1故选:B .由一元二次方程有实数根,得到根的判别式大于等于0,列出关于m 的不等式,求出不等式的解集即可得到m 的取值范围.此题考查了一元二次方程解的判断方法,一元二次方程的解与ax 2+bx +c =0(a ≠0)有关,当时,方程有两个不相等的实数根;当时,方程b 2−4ac b 2−4ac >0b 2−4ac =0有两个相等的实数根;当时,方程无解.b 2−4ac <010.【答案】D【解析】解:设这个增长率为x ,由题意得,.20(1+x )2=24.2故选D .设这个增长率为x ,根据题意可得,前年缴税今年缴税,据此列出方程.×(1+x )2=本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.【答案】A【解析】解:设这棵树的高度为xm ,根据在同一时刻同一地点任何物体的高与其影子的比值是相同的得:,1.53=x30∴x =1.5×303=15这棵树的高度是15m .∴故选:A .在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.解题关键是知道在同一时刻同一地点任何物体的高与其影长的比值是相同的.12.【答案】C【解析】解:,∵DF//EG//BC ∽∽,∴△ADF △AEG △ABC 又,∵AD =DE =EB 三个三角形的相似比是1:2:3,∴面积的比是1:4:9,∴设的面积是a ,则与的面积分别是4a ,9a ,△ADF △AEG △ABC ,,则:::3:故选C .∴S 2=3a S 3=5a S l S 2S 3=1 5.先判断出∽∽,再根据相似三角形的面积比等于相似比的平方解答△ADF △AEG △ABC 即可.本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.13.【答案】A【解析】解:依题意得.(1+x)+x(1+x)=100故选A .由于每轮传染中平均一个人传染的人数是x 人,那么经过第一轮后有人患了流感,(1+x)经过第二轮后有人患了流感,再根据经过两轮传染后共有100人患[(1+x)+x(1+x)]了流感即可列出方程.本题考查了一元二次方程的运用,解此类题关键是根据题意分别列出不同阶段患了流感的人数.14.【答案】B【解析】【分析】本题考查了三角形中位线定理及相似三角形的判定与性质.本题关键是找准相似三角形,利用相似三角形的性质求解.根据中位线定理证明∽后求解.△NDM △NBC 【解答】解:是的中位线,M 是DE 的中点,∵DE △ABC ,.∴DM//BC DM =ME =14BC ∽,.∴△NDM △NBC DMBC =NMCN =14.∴NMMC =13故选:B .15.【答案】200【解析】解:从中抽取了200名学生的体重进行分析,∵在这个问题中,样本容量是200,∴故答案为:200.根据样本容量则是指样本中个体的数目填空即可.本题考查了样本容量,解题要分清具体问题中的样本,关键是明确考查的对象.样本容量是样本中包含的个体的数目,不能带单位.16.【答案】54【解析】解:,∵4x−5y =0,∴4x =5y ;∴xy =54故答案为:.54由已知得出,即可得出答案.4x =5y 本题考查了比例的性质;由题意得出是解题的关键.4x =5y 17.【答案】6【解析】【分析】此题主要考查比例线段问题,关键是利用两内项之积等于两外项之积解答.根据已知线段,,设线段x 是a ,b 的比例中项,列出等式,利用两内项之积等于两外a =4b =9项之积即可得出答案.【解答】解:,,设线段x 是a ,b 的比例中项,∵a =4b =9,∴ax =xb ,∴x 2=ab =4×9=36,舍去.∴x =6x =−6()故答案为6.18.【答案】 ba +m 【解析】解:现在的平均数,−x ′=15(x 1+m +x 2+m +x 3+m +x 4+m +x 5+m)=−x +3现在的方差s′2=15[(x 1+3−−x −3)2+(x 2+3−−x −3)2+…+(x 5+3−−x −3)2]=15[(x 1−−x )2+(x 2−−x )2+…+(x 5−−x )2],方差不变.=s 2故答案为:,b .a +m 方差是用来衡量一组数据波动大小的量,每个数都加了m ,数据波动不会变,所以方差不变.此题主要考查了方差有关性质,本题说明了当数据都加上一个数或减去一个数时,方()差不变,即数据的波动情况不变.19.【答案】103【解析】解:在和中,△AED △ACB ,,∵∠A =∠A ∠AED =∠C∽.∴△AED △ACB ,∴AE AC =AD AB ,∴AE 5=46.∴AE =103故答案为:.103由在和中,,,即可证得∽,然后由△AED △ACB ∠A =∠A ∠AED =∠C △AED △ACB 相似三角形的对应边成比例,求得AE 的长.此题考查了相似三角形的判定与性质.注意与相似的判定是关键.△AED △ACB 20.【答案】16【解析】解:与是位似图形且由.△ABC △A′B′C′OA =3AA′可得两位似图形的位似比为3:4,所以两位似图形的面积比为:9:16,又,∵S △ABC =9,故答案为:16.根据与是位似图形,由可得两个图形的位似比,面积的比等△ABC △A′B′C′OA =3AA′于位似比的平方.本题考查了位似图形的性质:面积的比等于位似比的平方,根据已知得出两位似图形的位似比为3:4是解题关键.21.【答案】解:原方程可化为:(1)(x +1)(x−3)=0或∴(x +1)=0(x−3)=0,;∴x 1=−1x 2=3原方程可化为:(2)x 2−2x =12∴x 2−2x +1=32∴(x−1)2=32∴x−1=±32=62,.∴x 1=1+62x 2=1−62【解析】可用十字相乘法因式分解解方程;(1)先将二次项系数化为1,再利用配方法求解即可.(2)本题考查了利用因式分解法或其他方法和配方法解一元二次方程,属于基础知识的考()查.22.【答案】解:所画图形如下所示:(1)、的坐标分别为:,.(2)B 1C 1(4,−4)(6,−2)【解析】本题考查了画位似图形及画三角形的知识画位似图形的一般步骤为:确定.①位似中心,分别连接并延长位似中心和能代表原图的关键点;根据相似比,确定能②③代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.连接OA 并延长,使,同法得到其余各点,顺次连接即可;(1)O A 1=2OA 根据所得图形及网格图即可得出答案.(2)23.【答案】解:班,(1)∵185 80 75 85 1002班,80 100 85 80 80,∴.x 1=15(85+80+75+85+100)=852班成绩按从小到大排列为:80,80,80,85,100,最中间的是:80,故中位数是:80;1班,85出现的次数最多,故众数为85,85 80 75 85 1002班方差; =15[(80−85)2+(100−85)2+(85−85)2+(80−85)2+(80−85)2]=60平均数中位数众数方差1班初赛成绩85 85 2班初赛成绩 80 60答:2班的初赛成绩较为稳定.因为1班与2班初赛的平均成绩相同,而2班初赛成(2)绩的方差较小,所以2班的初赛成绩较为稳定.【解析】利用平均数的定义以及中位数、众数、方差的定义分别求出即可;(1)利用中所求得出2班初赛成绩的方差较小,比较稳定的班级是2班.(2)(1)此题主要考查了平均数、众数、中位数及方差的求法;正确理解方差的意义是解决本题的关键.24.【答案】解:设道路的宽x 米,则,(32−x)(20−x)=540解得:,舍去,x =2x =50()答:道路的宽是2米.【解析】设道路的宽x米,然后根据矩形的面积公式列方程即可.此题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.25.【答案】解:两根相等,(1)∵∴4(a+b)2−4(c2+2ab)=0可得:,∴a2+b2=c2,∴△ABC是直角三角形;(2)(1)AC2=AD×AB由可得:,∵AC=2AD=1,,∴AB=4,∴BD=AB−AD=3.(1)【解析】根据判别式等于0可得出三边的关系,继而可判断出三角形的形状;(2)(1)结合的结论,利用射影定理即可直接解答.本题考查一元二次方程的根与判别式的关系,综合性较强,注意掌握射影定理的运用.26.【答案】证明:在中,,CF平分;(1)∵△ACD DC=AC∠ACD∴AF=FD,即F是AD的中点;∵E又是AB的中点,∴EF△ABD是的中位线;∴EF//BC;(2)(1)△AEF△ABD解:由易证得:∽;∴S△AEF S△ABD=(AE AB)2=1:::4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD−S△AEF=6−1.5=4.5.(1)△ACD∠ACD【解析】在等腰中,CF是顶角的平分线,根据等腰三角形三线合一的△ABD EF//BC性质知F是底边AD的中点,由此可证得EF是的中位线,即可得到的结论;(2)△AEF△ABD()易证得∽,根据两个相似三角形的面积比即相似比的平方,可求出△ABD△ABD△AEF的面积,而四边形BDFE的面积为和的面积差,由此得解.此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.。
河北省秦皇岛市九年级上学期数学期中试卷
河北省秦皇岛市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2019·北京模拟) 甲骨文是我国古代的一种文字,是汉字的早期形式,反映了我国悠久的历史文化,体现了我国古代劳动人民的智慧,下列甲骨文中,不是轴对称图形的是()A .B .C .D .2. (2分) (2018九上·宁波期中) 已知的⨀O半径为3cm, 点P到圆心O的距离OP=2cm, 则点P()A . 在⨀O外B . 在⨀O 上C . 在⨀O 内D . 无法确定3. (2分)(2018·菏泽) 已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A .B .C .D .4. (2分) (2019九上·丰南期中) 有人患了流感,经过两轮传染后共有人患了流感,设每轮传染中平均一个人传染了人,则的为()A . 5B . 6C . 7D . 85. (2分) (2018九上·浙江期中) 下列命题中,正确的是()①平面内三个点确定一个圆;②平分弦的直径平分弦所对的弧;③半圆所对的圆周角是直角;④圆的内接菱形是正方形;⑤相等的弧所对的圆周角相等.A . ①②③B . ②④⑤C . ①②⑤D . ③④6. (2分)在同一平面直角坐标系中,函数和的图象大致是()A .B .C .D .二、填空题 (共6题;共8分)7. (1分) (2017九上·宁县期中) 方程x2+4x+k=0的一个根是2,那么k的值是________8. (2分)(2018·潮南模拟) 如图,△ABC中,AB=6,DE∥AC,将△BDE绕点B顺时针旋转得到△BD′E′,点D的对应点D′落在边BC上.已知BE′=5,D′C=4,则BC的长为________.9. (2分)(2020·宽城模拟) 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千。
河北省秦皇岛市2020版九年级上学期数学期中考试试卷(I)卷
河北省秦皇岛市2020版九年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2019九上·下陆月考) 一元二次方程x2+kx﹣3=0的一个根是x=1,则k的值为()A . 2B . ﹣2C . 3D . ﹣32. (2分)方程3x2-5x-2=0的两个根是()A . 1,B . 2,C .D . -2,3. (2分)已知x=1是方程x2+x﹣2a=0的一个根,则方程的另一个根是()A . 1B . 2C . ﹣2D . ﹣14. (2分)(2020·河池) 某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A . 6B . 7C . 8D . 95. (2分)(2019·黄埔模拟) 下列对二次函数的图象的描述,正确是()A . 对称轴是y轴B . 开口向下C . 经过原点D . 顶点在y轴右侧6. (2分)若点A(1,y1),B(2,y2),C(﹣4,y3)都在二次函数y=ax2(a>0)的图象上,则下列结论正确的是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y1<y3<y27. (2分)将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A . y=(x-1)2+2B . y=(x+1)2+2C . y=(x-1)2-2D . y=(x+1)2-28. (2分)如图1,用一根吸管吸吮烧杯中的豆浆,图2是其截面图,纸杯的上底面a与下底面b平行,c表示吸管,若∠1的度数为104°,则∠2的度数为()A . 104°B . 84°C . 76°D . 74°9. (2分) (2020九上·清涧期末) 下列语句中,正确的是()①相等的圆周角所对的弧相等;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A . ①②B . ②③C . ②④D . ④二、填空题 (共5题;共5分)10. (1分) (2019九上·大同期中) 已知关于的方程的一个根为0,则 ________.11. (1分) (2020九上·长葛期中) 如图抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;② ;③ ;④当y<0时,x的取值范围是-1<x<3;⑤当x<0时,y随x增大而增大;⑥方程ax2+bx+c=2有两个不等的实数根,其中结论正确的结论的序号是________.12. (1分) (2020九上·嘉陵期末) 如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上。
河北省秦皇岛市2020版九年级上学期数学期中考试试卷C卷
河北省秦皇岛市2020版九年级上学期数学期中考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列图形相似的是()(1)放大镜下的图片与原来的图片;(2)幻灯的底片与投影在屏幕上的图象;(3)天空中两朵白云的照片;(4)卫星上拍摄的长城照片与相机拍摄的长城照片.A . 4组B . 3组C . 2组D . 1组2. (2分)如图,菱形的顶点的坐标为,顶点在轴的正半轴上.反比例函数的图象经过顶点,则K的值为()A . 12B . 20C . 24D . 323. (2分)把方程x2-3=-3x转化为一般形式后,二次项系数、一次项系数、常数项分别为()A . 0,-3,-3B . 1,-3,-3C . 1,3,-3D . 1,-3,34. (2分)(2018·贵港) 笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A .B .C .D .5. (2分)(2020·武汉模拟) 方程4x2=81的一次项系数为()A . 4B . 0C . 81D . ﹣816. (2分)如图,矩形ABCD中,AB=8cm,AD=6cm,EF是对角线BD的垂直平分线,则EF的长为()A . cmB . cmC . cmD . 8cm7. (2分)在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是()米2.A .B .C .D .8. (2分)设是三个互不相同的正数,如果,那么()A .B .C .D .9. (2分)(2016·苏州) 一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A . 0.1B . 0.2C . 0.3D . 0.410. (2分)下面是小明按照语句画出的四个图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B.他所画图形中,正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分)方程(x﹣1)2=4的根是________;方程x2=x的根是________.12. (1分) (2018九上·番禺期末) 方程的解为________.13. (1分)两个相似三角形________ 的比值叫做相似比.14. (1分)如图,直线l1∥l2∥l3 ,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,且AH=1,HB=2,BC=5,则=________15. (1分)(2017·老河口模拟) 如图,以正方形ABCD的对角线BD为边作菱形BDEF,当点A,E,F在同一直线上时,∠F的正切值为________.16. (1分)若一元二次方程(a≠0)有一个根为1,则 ________;若有一个根是-1,则b与、c之间的关系为________;若有一个根为0,则c=________.三、解答题(一) (共3题;共15分)17. (5分)解方程:x2-3x+2=018. (5分)(2017·巨野模拟) 如图所示,正方形ABCD的边长是3,E是正方形ABCD的边AB上的点,且AE=1,EF⊥DE交BC于点F,求线段CF的长.19. (5分)如图所示,有一张“太阳”和两张“月亮”共三张精美卡片,它们除花形外,其余都一样.(1)从三张卡片中一次抽出两张卡片,请通过列表或画树状图的方法,求出两张卡片都是“月亮”的概率;(2)若再添加几张“太阳”卡片后,任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.四、解答题(二) (共3题;共15分)20. (5分) (2017八下·怀柔期末) 解方程:.21. (5分) (2018八下·上蔡期中) 如图,在平行四边形中,、的平分线分别交对角线于点、 .求证: .22. (5分)解下列方程:(1)(x﹣3)2=9;(2)2m2+3m﹣1=0.五、解答题(三) (共3题;共15分)23. (5分) (2020九上·常州期末) 如图,用长6m的铝合金条制成“日”字形窗框,窗框的宽和高各是多少时,窗户的透光面积为1.5m2 (铝合金条的宽度不计) ?24. (5分)将三角形各边向外平移1个单位并适当延长,得到如图(1)所示的图形,变化前后的两个三角形相似吗?如果把三角形改为正方形、长方形呢?(如图(2)(3))25. (5分)(2018·崇仁模拟) 市政府为了解决市民看病贵的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一) (共3题;共15分)17-1、18-1、19-1、四、解答题(二) (共3题;共15分)20-1、21-1、22-1、五、解答题(三) (共3题;共15分)23-1、24-1、25-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年河北省秦皇岛市海港区九年级(上)期中数学试卷一.选择题(每小题3分,共45分)1.(3分)方程x2﹣5x﹣6=0的两根为()A.6和﹣1B.﹣6和1C.﹣2和﹣3D.2和32.(3分)如图,已知BC∥DE,则下列说法不正确的是()A.两个三角形是位似图形B.点A是两个三角形的位似中心C.AE:AD是相似比D.点B与点E,点C与点D是对应位似点3.(3分)如图,身高为1.6m的吴格霆想测量学校旗杆的高度,当她站在C处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0m,BC=8.0m,则旗杆的高度是()A.6.4m B.7.0m C.8.0m D.9.0m4.(3分)已知一个样本﹣1,0,2,x,3,它们的平均数是2,则这个样本的方差s2为()A.5B.3C.4D.65.(3分)在△ABC中,若|cos A﹣|+(1﹣tan B)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°6.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.7.(3分)如图,点E是▱ABCD的边BC延长线上的一点,AE和CD交于点G,AC是▱ABCD的对角线,则图中相似三角形共有()A.2对B.3对C.4对D.5对8.(3分)某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是()A.12,13B.12,14C.13,14D.13,169.(3分)已知2y2+y﹣2的值为3,则4y2+2y+1的值为()A.10B.11C.10或11D.3或1110.(3分)如图,△ABC∽△ADE,S△ABC:S四边形BDEC=1:2其中CB=,DE的长为()A.6B.C.D.511.(3分)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sin B的()A.B.C.D.12.(3分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>1C.k≠0D.k>﹣1且k≠013.(3分)如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm214.(3分)如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,则CF等于()A.2B.2.4C.2.5D.2.2515.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.x(x﹣1)=1035C.x(x+1)=1035D.x(x﹣1)=1035二.填空题(每小题3分,共12分)16.(3分)用配方法解方程2x2+x﹣2=0,配方后得到方程为.17.(3分)线段AB为80cm,点C为线段AB的黄金分割点,线段AC的长度为.18.(3分)胜利中学会议室内的会议桌是一个长方形,长1.6米,宽1米,学校准备制作一块桌布,面积是桌面的2倍,且使桌面四周垂下的边等宽.若设四周垂下的边为x米,则应列得的方程为.19.(3分)在平面直角坐标系中,A(﹣2,﹣1),B(2,3),P为坐标轴上一点且△ABP为直角三角形,则P的坐标有个.三、解答题20.(12分)用适当的方法解下列方程.(1)3x2+2x﹣5=0;(2)(x+2)2=2x+4;(3)x2+8x﹣9=0(4)3(2y+1)2=2721.(5分)某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出)(1)实验所用的2号果树幼苗的数量是株;(2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种品种进行推广?请通过计算说明理由.22.(8分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B 两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)23.(8分)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.24.(10分)如图,平面直角坐标系中,A(0,8)、B(6,0).动点P从A点出发,沿y轴负半轴方向运动,速度每秒2个单位长度,动点Q从B点出发,沿BA方向向A点运动,速度每秒1个单位长度.两点同时出发,Q 点到达A点时,两点同时停止运动,运动时间为t秒.(1)当△APQ面积为12,求t的值.(2)当△APQ的外心(三角形的外心是三角形三边垂直平分线的交点)在△APQ的边上时,求t值.(3)若Q点在直线AB上运动,过Q点作QH⊥x轴,垂足为H,当△QBH与△ABO的相似比为1:2时,直接写出Q点坐标.2019-2020学年河北省秦皇岛市海港区九年级(上)期中数学试卷参考答案与试题解析一.选择题(每小题3分,共45分)1.【解答】解:x2﹣5x﹣6=0(x﹣6)(x+1)=0解得x=6或﹣1.故选:A.2.【解答】解:∵BC∥DE,且CD与BF相交于点A,∴A、两个三角形是位似图形,正确,不合题意;B、点A是两个三角形的位似中心,正确,不合题意;C、AE:AB是相似比,故此选项错误,符合题意;D、点B与点E,点C与点D是对应位似点,正确,不合题意;故选:C.3.【解答】解:设旗杆高度为h,由题意得:=,解得:h=8.故选:C.4.【解答】解:∵平均数=(﹣1+0+2+x+3)÷5=2,解得:x=6,∴方差s2=[(﹣1﹣2)2+(0﹣2)2+(2﹣2)2+(6﹣2)2+(3﹣2)2]÷5=6.故选:D.5.【解答】解:由题意,得cos A=,tan B=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.6.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:C.7.【解答】解:∵AD∥BC,∴△ADG∽△ECG①,又∵AB∥CD,∴△ECG∽△EBA②,∴△ADG∽△EBA③,由平行四边形的性质可得:△ABC∽△CDA④;所以共有四对相似三角形.故选:C.8.【解答】解:在这组数据14,12,13,12,17,18,16中,12出现了2次,出现的次数最多,则这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,则这组数据的中位数是14;故选:B.9.【解答】解:∵2y2+y﹣2的值为3,∴2y2+y﹣2=3,∴2y2+y=5,∴2(2y2+y)=4y2+2y=10,∴4y2+2y+1=11.故选:B.10.【解答】解:∵△ABC∽△ADE,S△ABC:S四边形BDEC=1:2,∴S△ABC:S△ADE=1:3,∴,∵CB=,∴DE=,故选:B.11.【解答】解:∵在△ABC中,∠ACB=90°,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠B=∠ACD,∴sin B===,故不能表示sin B的是.故选:B.12.【解答】解:由题意知k≠0,△=4+4k>0解得k>﹣1且k≠0.故选:D.13.【解答】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则设DF=xcm,得到:解得:x=4.5,则剩下的矩形面积是:4.5×6=27cm2.14.【解答】解:∵AD∥BC,∴∠AEB=∠CBF,∵∠A=90°,∠CFB=90°,∴△ABE∽△FCB,∴,∵AB=2,BC=3,E是AD的中点,∴BE=2.5,∴=,解得:FC=2.4.故选:B.15.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:B.二.填空题(每小题3分,共12分)16.【解答】解:2x2+x﹣2=0,2x2+x=2,x2+x=1,x2+x+()2=1+()2,(x+)2=,故答案为:(x+)2=.17.【解答】解:根据黄金分割定义,得如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项.设AC的长为xcm,则BC=(80﹣x)cm.∴AC2=AB•BC即x2=80(80﹣x)整理,得x2+80x=6400解得x1=40(﹣1),x2=﹣40﹣40(不符合题意,舍去)所以线段AC的长为40(﹣1)cm.若AC<BC,则AC=80﹣(40﹣40)=40(3﹣)故答案为40(﹣1)cm或40(3﹣)cm.18.【解答】解:设四周垂下的边为x米,则桌布的长为(1.6+2x)米,宽为(1+2x)米,依题意,得:(1.6+2x)(1+2x)=2×1.6×1.故答案为:(1.6+2x)(1+2x)=2×1.6×1.19.【解答】解:如图所示:∵P是坐标轴上的一点,过点A作AB的垂线,交x轴和y轴于2个点;过点B作AB的垂线,交x轴和y轴于2个点;以AB为直径作圆可与坐标轴交于4个点.∴P为坐标轴上一点且△ABP为直角三角形,则P的坐标有8个;故答案为:8.三、解答题20.【解答】解:(1)∵3x2+2x﹣5=0,∴(x﹣1)(3x+5)=0,∴x=1或x=;(2)∵(x+2)2=2x+4,∴x2+4x+4=2x+4,∴x2﹣2x=0,∴x=2或x=0;(3)∵x2+8x﹣9=0,∴(x﹣1)(x+9)=0,∴x=1或x=9;(4)∵3(2y+1)2=27,∴2y+1=±3,∴y=﹣2或y=121.【解答】解:(1)500×(1﹣25%×2﹣30%)=100(株);(2)500×25%×89.6%=112(株),补全统计图如图;(3)1号果树幼苗成活率为:×100%=90%,2号果树幼苗成活率为×100%=85%,4号果树幼苗成活率为×100%=93.6%,∵93.6%>90%>89.6%>85%,∴应选择4号品种进行推广.22.【解答】解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈126.3海里,∵126.3>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.23.【解答】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.∵∠P AD=∠CAB=60°,∴∠CAP=∠BAD,∵CA=BA,P A=DA,∴△CAP≌△BAD(SAS),∴PC=BD,∠ACP=∠ABD,∵∠AOC=∠BOE,∴∠BEO=∠CAO=60°,∴=1,线BD与直线CP相交所成的较小角的度数是60°,故答案为1,60°.(2)如图2中,设BD交AC于点O,BD交PC于点E.∵∠P AD=∠CAB=45°,∴∠P AC=∠DAB,∵==,∴△DAB∽△P AC,∴∠PCA=∠DBA,==,∵∠EOC=∠AOB,∴∠CEO=∠OAB=45°,∴直线BD与直线CP相交所成的小角的度数为45°.(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠P AO=45°,∴∠P AO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EP A=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,设AD=a,则DC=AD=a,PD=a,∴==2﹣.如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD=AD=a,PD=a,∴PC=a﹣a,∴==2+.24.【解答】解:(1)如图1,过点Q作QE∥OB交AO于点E,∵A(0,8)、B(6,0).∴AO=8,BO=6,∴AB===10,由题意可得BQ=t,AP=2t,则AQ=10﹣t,∵QE∥OB,∴∴,∴EQ=(10﹣t),∴S△APQ=AP×EQ=×2t×(10﹣t)=12,∴t1=5+,t2=5﹣;(2)∵当△APQ的外心在△APQ的边上,∴△APQ是直角三角形,若∠APQ=90°=∠AOB,且∠P AQ=∠BAO,∴△P AQ∽△OAB,∴,∴∴t=,若∠AQP=∠AOB=90°,且∠P AQ=∠BAO,∴△P AQ∽△BAO,∴∴∴t=(3)如图2,∵A(0,8)、B(6,0),∴直线AB解析式为:y=﹣x+8,∵△QBH与△ABO的相似比为1:2,∴,∴QH=4,当点Q纵坐标为4,则4=﹣x+8,∴x=3,∴点Q(3,4),当点Q纵坐标为﹣4,则﹣4=﹣x+8,∴x=9,∴点Q(9,﹣4),综上所述:Q(3,4)或(9,﹣4)。