2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)
2021年高考数学真题试题(天津卷)(word版,含答案与解析)
2021年高考数学真题试卷(天津卷)一、选择题,在每小题给出的四个选项中,只有一项是符合题目要求的.(共9题;共45分)1.设集合A={−1,0,1},B={1,3,5},C={0,2,4},则(A∩B)∪C=()A. {0}B. {0,1,3,5}C. {0,1,2,4}D. {0,2,3,4}【答案】C【考点】并集及其运算,交集及其运算【解析】【解答】解:由题意得A∩B={1},则(A∩B)∪C={0,1,2,4}故答案为:C【分析】根据交集,并集的定义求解即可.2.已知a∈R,则“ a>6 ”是“ a2>36”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不允分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:当a>6时,a2>36,所以充分性成立;当a2>36时,a<-6或a>6,所以必要性不成立,故“a>6”是“a2>36”的充分不必要条件.故答案为:A【分析】根据充分必要条件的定义求解即可.3.函数y=ln|x|的图像大致为()x2+2A. B.C. D.【答案】B【考点】函数的值域,奇偶函数图象的对称性【解析】【解答】解:f(−x)=ln |−x|(−x)2+2=lnxx2+2=f(x),则函数f(x)=lnxx2+2是偶函数,排除A,C,当x∈(0,1)时,ln|x|<0,x2+2>0,则f(x)<0,排除D.故答案为:B【分析】由函数为偶函数可排除AC,再由x∈(0,1)时,f(x)<0,排除D,即可得解.4.从某网格平台推荐的影视作品中抽取400部,统计其评分分数据,将所得400个评分数据分为8组:[66,70),[70,74),⋯,[94,98],并整理得到如下的费率分布直方图,则评分在区间[82,86)内的影视作品数量是()A. 20B. 40C. 64D. 80【答案】 D【考点】频率分布直方图【解析】【解答】解:由频率分布直方图可知,评分在区间[82,86)内的影视作品数量是400×0.05×4=80.故答案为:D【分析】根据频率分布直方图的性质求解即可.5.设a=log20.3,b=log120.4,c=0.40.3,则a,b,c的大小关系为()A. a<b<cB. c<a<bC. b<c<aD. a<c<b【答案】 D【考点】指数函数的定义、解析式、定义域和值域,对数函数的值域与最值【解析】【解答】解:∵log20.3<log21=0,∴a<0∵log120.4=−log20.4=log252>log22=1,∴b>1∵0<0.403<0.40=1,∴0<c<1∴a<c<b故答案为:D【分析】根据指数函数和对数函数的性质求出a,c,b的范围即可求解.6.两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A. 3πB. 4πC. 9πD. 12π【答案】B【考点】旋转体(圆柱、圆锥、圆台),棱柱、棱锥、棱台的体积【解析】【解答】解:如下图所示,设两个圆锥的底面圆圆心为点D,设圆锥AD和圆锥BD的高之比为3:1,即AD=3BD,设球的半径为R,则4πR33=32π3,解得R=2,所以AB=AD+BD=4BD=4,所以BD=1,AD=3∵CD⊥AB,∴∠CAD+∠ACD=∠BCD+∠ACD=90°∴∠CAD=∠BCD又因为∠ADC=∠BDC所以△ACD∽△CBD所以ADCD =CDBD∴CD=√AD·BD=√3∴这两个圆锥的体积之和为13π×CD2×(AD+BD)=13π×3×4=4π故答案为:B【分析】作出图形,求得球的半径,进而求得两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再结合锥体的体积公式求解即可.7.若2a=5b=10,则1a +1b=()A. -1B. lg7C. 1D. log710【答案】 C【考点】指数式与对数式的互化,换底公式的应用【解析】【解答】解:由 2a =5b =10 得a=log 210,b=log 510, 则1a +1b =1log210+1log 510=lg2+lg5=lg10=1故答案为:C【分析】根据指数式与对数式的互化,结合换底公式求解即可. 8.已知双曲线x 2a 2−y 2b2=1(a >0,b >0) 的右焦点与抛物线 y 2=2px(p >0) 的焦点重合,抛物线的准线交双曲线于A , B 两点,交双曲钱的渐近线于C 、D 两点,若 |CD|=√2|AB| .则双曲线的离心率为( )A. √2B. √3C. 2D. 3 【答案】 A【考点】抛物线的简单性质,双曲线的简单性质 【解析】【解答】解:设双曲线x 2a 2−y 2b 2=1(a >0,b >0) 与抛物线 y 2=2px(p >0) 的公共焦点为(c,0), 则抛物线 y 2=2px(p >0) 的准线为x=-cy 2b 2=1 , 得c 2a 2−y 2b 2=1 , 解得y =±b 2a, 所以|AB |=2b 2a,又因为双曲线的渐近线为y =±bax , 所以|CD |=2bc a,所以2bc a=2√2b 2a, 则c =√2b所以a 2=c 2−b 2=12c 2所以双曲线的离心率为e =ca =√2 故答案为:A【分析】根据双曲线与抛物线的几何性质,结合离心率的定义求解即可.9.设 a ∈R ,函数 f(x)={cos(2πx −2πa).x <ax 2−2(a +1)x +a 2+5,x ≥a ,若 f(x) 在区间 (0,+∞) 内恰有6个专点,则a 的取值范围是( ) A. (2,94]∪(52,114] B. (74,2)∪(52,114)C. (2,94]∪[114,3)D. (74,2)∪[114,3) . 【答案】 A【考点】函数零点的判定定理【解析】【解答】解:∵x 2-2(a+1)x+a 2+5=0最多有2个根, ∴cos(2πx -2πa)=0至少有4个根,由2πx −2πa =π2+k π,k ∈Z , 得x =k2+14+a,k ∈Z由0<k 2+14+a <a 得−2a −12<k <−12(1)当x<a 时,当−5≤−2a −12<−4时,f(x)有4个零点,即74<a <94; 当−6≤−2a −12<−5时,f(x)有5个零点,即94<a <114;当−7≤−2a −12<−6时,f(x)有6个零点,即114<a <134;(2)当x≥a 时,f(x)=x 2-2(a+1)x+a 2+5 ∆=4(a+1)2-4(a 2+5)=8(a-2) 当a<2时,∆<0,f(x)无零点; 当a=2时,∆=0,f(x)有1个零点;当a>2时,令f(a)=a 2-2(a+1)a+a 2+5=-2a+5≥0,则2<a ≤52 , 此时f(x)有2个零点; 所以若a >52时,f(x)有1个零点;综上,要是f(x)在[0,+∞)上有6个零点,则应满足{74<a ≤942<a ≤52)或{94<a ≤114a =2或a >52)或{114<a ≤134a <2)则a 的取值范围是(2,94]∪(52,114]【分析】由x 2-2(a+1)x+a 2+5=0最多有2个根,可得cos(2πx -2πa)=0至少有4个根,再结合分类讨论思想,根据x<a 与x≥a 分类讨论两个函数零点个数情况,再综合考虑求解即可.二、填空题,本大题共6小题,每小题5分,共30分,试题中包含两个空的,答对1个的给3分,全部答对的给5分.(共6题;共30分)10.i 是虚数单位,复数 9+2i 2+i= ________.【答案】 4-i【考点】复数代数形式的混合运算 【解析】【解答】解:由题意得9+2i2+i =(9+2i )(2−i )(2+i )(2−i )=20−5i 5=4−i故答案为:4-i【分析】根据复数的运算法则求解即可.11.在 (2x 3+1x )6 的展开式中, x 6 的系数是________. 【答案】 160【考点】二项式定理,二项式定理的应用【解析】【解答】解: (2x 3+1x )6 的展开式的通项公式是Tr +1=C 6r (2x 3)6−r (1x )r=26−r ·C 6r ·x 18−4r令18-4r=6,得r=3所以 x 6 的系数是 23C 63=160【分析】根据二项式的展开式通项公式求解即可.12.若斜率为 √3 的直线与y 轴交于点A , 与圆 x 2+(y −1)2=1 相切于点B , 则 |AB|= ________. 【答案】 √3【考点】直线的斜截式方程,点到直线的距离公式,直线与圆的位置关系 【解析】【解答】解:设直线AB 的方程为y =√3x +b , 则点A(0,b) ∵直线AB 与圆 x 2+(y −1)2=1相切=1 , 解得b=-1或b=3所以|AC|=2 又∵|BC|=1∴|AB |=√|AC|2−|BC |2=√3 故答案为:√3【分析】根据直线的斜截式方程,结合直线与圆的位置关系以及点到直线的距离公式求解即可. 13.若 a >0 , b >0 ,则 1a +ab 2+b 的最小值为________. 【答案】 2√2【考点】基本不等式,基本不等式在最值问题中的应用 【解析】【解答】解:∵a>0,b>0 ∴1a+a b 2+b ≥2√1a·a b 2+b =2b+b ≥2√2b·b =2√2当且仅当1a =ab 2且2b =b , 即a =b =√2时等号成立 所以1a +ab 2+b 的最小值是2√2. 【分析】利用基本不等式求解即可.14.甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为 56 和 15 ,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为________,3次活动中,甲至少获胜2次的概率为________ . 【答案】 23;2027【考点】相互独立事件的概率乘法公式,n 次独立重复试验中恰好发生k 次的概率 【解析】【解答】解:由题意知在一次活动中,甲获胜的概率为56×45=23 ,则在3次活动中,甲至少获胜2次的概率为C 32×(23)2×13+(23)3=2027故答案为:23,2027【分析】根据甲猜对乙没猜对可求出一次活动中,甲获胜的概率,再根据n 次独立重复试验的概率求法求解即可.15.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点, DE ⊥AB 且交AB 于点E . DF //AB 且交AC 于点F ,则 |2BE ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ | 的值为________; (DE ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ )⋅DA ⃗⃗⃗⃗⃗ 的最小值为________. 【答案】 1;1120【考点】二次函数在闭区间上的最值,向量的模,平面向量数量积的运算 【解析】【解答】解:设BE=x ,x ∈(0,12) ∵△ABC 为边长为1的等边三角形,DE ⊥AB ∴∠BDE=30°,BD=2x ,DE=√3x , DC=1-2x ∵DF//AB∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1−2x )·cos0°+(1−2x )2=1 ∴|2BE →+DF →|=1∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(√3x)2+(1−2x )×(1−x )=5x 2−3x +1=5(x −310)2+1120则当x =310时,(DE →+DF →)·DA →取得最小值为1120 故答案为:1,1120【分析】根据向量的数量积及向量的求模公式,再结合二次函数的最值问题求解即可.三、解答题,本大题共5小题,共75分,解答应写出文字说明,证明过程成演算步骤.(共5题;共75分)16.在 △ABC ,角 A,B,C 所对的边分别为 a,b,c ,已知 sinA:sinB:sinC =2:1:√2 , b =√2 . (1)求a 的值; (2)求 cosC 的值; (3)求 sin(2C −π6) 的值.【答案】 (1)因为 sinA:sinB:sinC =2:1:√2 ,由正弦定理可得 a:b:c =2:1:√2 , ∵b =√2 , ∴a =2√2,c =2 ;(2)由余弦定理可得 cosC =a 2+b 2−c 22ab=2×2√2×√2=34;(3)∵cosC =34 , ∴sinC =√1−cos 2C =√74,∴sin2C =2sinCcosC =2×√74×34=3√78, cos2C =2cos 2C −1=2×916−1=18 ,所以 sin(2C −π6)=sin2Ccos π6−cos2Csin π6 =3√78×√32−18×12=3√21−116.【考点】两角和与差的正弦公式,二倍角的正弦公式,同角三角函数基本关系的运用,正弦定理,余弦定理【解析】【分析】(1)根据正弦定理直接求解即可; (2)根据余弦定理直接求解即可;(3)根据同角三角函数的基本关系,二倍角公式以及两角差的正弦公式求解即可.17.如图,在棱长为2的正方体 ABCD −A 1B 1C 1D 1 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证: D 1F// 平面 A 1EC 1 ;(2)求直线 AC 1 与平面 A 1EC 1 所成角的正正弦值. (3)求二面角 A −A 1C 1−E 的正弦值.【答案】 (1)以 A 为原点, AB,AD,AA 1 分别为 x,y,z 轴,建立如图空间直角坐标系,则 A(0,0,0) , A 1(0,0,2) , B(2,0,0) , C(2,2,0) , D(0,2,0) , C 1(2,2,2) , D 1(0,2,2) , 因为E 为棱BC 的中点,F 为棱CD 的中点,所以 E(2,1,0) , F(1,2,0) , 所以 D 1F ⃗⃗⃗⃗⃗⃗⃗ =(1,0,−2) , A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0) , A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,1,−2) ,设平面 A 1EC 1 的一个法向量为 m⃗⃗ =(x 1,y 1,z 1) , 则 {m ⃗⃗ ⋅A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2x 1+2y 1=0m ⃗⃗ ⋅A 1E ⃗⃗⃗⃗⃗⃗⃗ =2x 1+y 1−2z 1=0 ,令 x 1=2 ,则 m ⃗⃗ =(2,−2,1) , 因为 D 1F ⃗⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =2−2=0 ,所以 D 1F ⃗⃗⃗⃗⃗⃗⃗ ⊥m ⃗⃗ , 因为 D 1F ⊄ 平面 A 1EC 1 ,所以 D 1F// 平面 A 1EC 1 ;(2)由(1)得, AC 1⃗⃗⃗⃗⃗⃗⃗ =(2,2,2) , 设直线 AC 1 与平面 A 1EC 1 所成角为 θ , 则 sinθ=|cos〈m ⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ 〉|=|m ⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||=3×2√3=√39;(3)由正方体的特征可得,平面 AA 1C 1 的一个法向量为 DB⃗⃗⃗⃗⃗⃗ =(2,−2,0) , 则 cos〈DB ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗ 〉=DB ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗ |DB ⃗⃗⃗⃗⃗⃗ |⋅|m ⃗⃗⃗ |=3×2√2=2√23,所以二面角 A −A 1C 1−E 的正弦值为 √1−cos 2〈DB ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗ 〉=13.【考点】直线与平面平行的判定,用空间向量求直线与平面的夹角,二面角的平面角及求法 【解析】【分析】(1)根据向量垂直的充要条件求得 平面 A 1EC 1 的一个法向量m →, 再利用向量法直接求证即可;(2)先求出AC 1→ , 再由sinθ=|cos <m →,AC 1→>|求解即可; (3)先求出平面 AA 1C 1 的一个法向量 DB →, 再由cos <m →,DB →>=m →·DB→|m →|·|DB|→结合同角三角函数的平方关系求解即可.18.已知椭圆 x 2a 2+y 2b 2=1 (a >b >0) 的右焦点为F ,上顶点为B ,离心率为 2√55 ,且 |BF|=√5 .(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M , 与y 轴的正半轴交于点N , 过N 与BF 垂直的直线交x 轴于点P . 若 MP //BF ,求直线l 的方程.【答案】 (1)易知点 F(c,0) 、 B(0,b) ,故 |BF|=√c 2+b 2=a =√5 , 因为椭圆的离心率为 e =c a=2√55,故 c =2 , b =√a 2−c 2=1 ,因此,椭圆的方程为 x 25+y 2=1 ;(2)设点 M(x 0,y 0) 为椭圆 x 25+y 2=1 上一点,先证明直线 MN 的方程为x 0x5+y 0y =1 ,联立 {x 0x 5+y 0y =1x 25+y 2=1,消去 y 并整理得 x 2−2x 0x +x 02=0 , Δ=4x 02−4x 02=0 ,因此,椭圆x 25+y 2=1 在点 M(x 0,y 0) 处的切线方程为x 0x 5+y 0y =1 .在直线 MN 的方程中,令 x =0 ,可得 y =1y 0,由题意可知 y 0>0 ,即点 N(0,1y 0) ,直线 BF 的斜率为 k BF =−b c =−12 ,所以,直线 PN 的方程为 y =2x +1y 0,在直线 PN 的方程中,令 y =0 ,可得 x =−12y 0,即点 P(−12y 0,0) ,因为 MP //BF ,则 k MP =k BF ,即 y 0x 0+12y=2y 022x 0y 0+1=−12,整理可得 (x 0+5y 0)2=0 ,所以, x 0=−5y 0 ,因为x 025+y 02=6y 02=1 , ∴y 0>0 ,故 y 0=√66, x 0=−5√66,所以,直线 l 的方程为 −√66x +√66y =1 ,即 x −y +√6=0 . 【考点】椭圆的标准方程,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题 【解析】【分析】(1)先求出a 值,结合a,b,c 的关系求得b ,从而求得椭圆的方程; (2)设M(x 0,y 0),可得直线l 的方程x 0x 5+y 0y =1 , 求出点P 的坐标,再根据MP//BF 得K MP =K BF , 求得x 0,y 0的值,即可得出直线l 的方程19.已知 {a n } 是公差为2的等差数列,其前8项和为64. {b n } 是公比大于0的等比数列, b 1=4,b 3−b 2=48 .(1)求 {a n } 和 {b n } 的通项公式; (2)记 c n =b 2n +1b n,n ∈N ∗ .(i )证明 {c n 2−c 2n } 是等比数列;(ii )证明 ∑√a k ak+1c k2−c 2k nk=1<2√2(n ∈N ∗) 【答案】 (1)因为 {a n } 是公差为2的等差数列,其前8项和为64. 所以 a 1+a 2+⋅⋅⋅+a 8=8a 1+8×72×2=64 ,所以 a 1=1 ,所以 a n =a 1+2(n −1)=2n −1,n ∈N ∗ ; 设等比数列 {b n } 的公比为 q,(q >0) ,所以 b 3−b 2=b 1q 2−b 1q =4(q 2−q)=48 ,解得 q =4 (负值舍去), 所以 b n =b 1q n−1=4n ,n ∈N ∗ ;(2)(i )由题意, c n =b 2n +1b n =42n +14n , 所以 c n2−c 2n =(42n +14n )2−(44n +142n )=2⋅4n , 所以 c n 2−c 2n ≠0 ,且 c n+12−c 2n+2c n 2−c 2n =2⋅4n+12⋅4n =4 ,所以数列 {c n 2−c 2n } 是等比数列;(ii )由题意知,a n a n+1c n 2−c 2n =(2n−1)(2n+1)2⋅4n =4n 2−12⋅22n <4n 22⋅22n , 所以 √a n a n+1c n 2−c 2n <√4n 22⋅22n =√2⋅2n =√2n 2n−1 , 所以 ∑√a k a k+1c k 2−c 2k n k=1<√2k 2k−1n k=1 , 设 T n =∑k 2k−1n k=1=120+221+322+⋅⋅⋅+n 2n−1 , 则 12T n =121+222+323+⋅⋅⋅+n 2n ,两式相减得 12T n =1+12+122+⋅⋅⋅+12n−1−n 2n =1⋅(1−12n )1−12−n 2n =2−n+22n ,所以 T n =4−n+22n−1 ,所以 ∑√a k a k+1c k 2−c 2k n k=1<√2k 2k−1n k=1=√2−n+22n−1)<2√2 . 【考点】等差数列的通项公式,等差数列的前n 项和,等比数列的通项公式,等比数列的前n 项和,数列的求和【解析】【分析】(1)根据等差数列、等比数列的通项公式及前n 项和公式求解即可;(2)(ⅰ)运算可得C n 2−C 2n =2·4n , 结合等比数列的定义即可得证;(ⅱ)利用放缩法得a n a n+1C n 2−C 2n <4n 22·22n , 进而可得∑n k=1√a k a k+1C k 2−C 2k <√2n k=1k 2k−1 , 结合错位相减法即可得证.20.已知 a >0 , 函数 f(x)=ax −xe x .(1)求曲线 y =f(x) 在点 (0,f(0)) 处的切线方程:(2)证明 f(x) 存在唯一的极值点(3)若存在a , 使得 f(x)≤a +b 对任意 x ∈R 成立,求实数b 的取值范围.【答案】 (1)f ′(x)=a −(x +1)e x ,则 f ′(0)=a −1 ,又 f(0)=0 ,则切线方程为 y =(a −1)x,(a >0) ;(2)令 f ′(x)=a −(x +1)e x =0 ,则 a =(x +1)e x ,令 g(x)=(x +1)e x ,则 g ′(x)=(x +2)e x ,当x∈(−∞,−2)时,g′(x)<0,g(x)单调递减;当x∈(−2,+∞)时,g′(x)>0,g(x)单调递增,当x→−∞时,g(x)<0,g(−1)=0,当x→+∞时,g(x)>0,画出g(x)大致图像如下:所以当a>0时,y=a与y=g(x)仅有一个交点,令g(m)=a,则m>−1,且f′(m)=a−g(m)=0,当x∈(−∞,m)时,a>g(x),则f′(x)>0,f(x)单调递增,当x∈(m,+∞)时,a<g(x),则f′(x)<0,f(x)单调递减,x=m为f(x)的极大值点,故f(x)存在唯一的极值点;(3)由(II)知f(x)max=f(m),此时a=(1+m)e m,m>−1,所以{f(x)−a}max=f(m)−a=(m2−m−1)e m,(m>−1),令ℎ(x)=(x2−x−1)e x,(x>−1),若存在a,使得f(x)≤a+b对任意x∈R成立,等价于存在x∈(−1,+∞),使得ℎ(x)≤b,即b≥ℎ(x)min,ℎ′(x)=(x2+x−2)e x=(x−1)(x+2)e x,x>−1,当x∈(−1,1)时,ℎ′(x)<0,ℎ(x)单调递减,当x∈(1,+∞)时,ℎ′(x)>0,ℎ(x)单调递增,所以ℎ(x)min=ℎ(1)=−e,故b≥−e,所以实数b的取值范围[−e,+∞).【考点】导数的几何意义,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数求闭区间上函数的最值【解析】【分析】(1)根据导数的几何意义求解即可;(2)令f'(x)=0,可得a=(x+1)e x,则可化为证明y=a与y=g(x)仅有一个交点,利用导数研究y=g(x)的变化情况,数形结合求解即可;(3)令h(x)=(x2-x-1)e x,(x>-1),则将问题等价转化为存在x∈(-1,+∞),使得h(x)≤b,即b≥h(x)min,利用导数求出h(x)的最小值即可.。
2021年全国新高考Ⅰ卷数学试题变式题13-17题-(解析版)
2021年全国新高考Ⅰ卷数学试题变式题13-17题原题131.已知函数()()322x xx a f x -=⋅-是偶函数,则=a ______.变式题1基础2.已知()0,x x xe mxm f x e m +≠=-为偶函数,则m =___________.变式题2基础3.已知函数53()31x x a f x x ⎛⎫+= ⎪+⎝⎭是偶函数,则(1)f =___________.变式题3巩固4.若函数()(ln f x x ax =(其中0a <)为偶函数,则=a _____________.变式题4巩固5.若函数()()2log 4xf x a x =+-为偶函数,则=a ___________.变式题5提升6.若函数()()()3f x x ax b =-⋅-为偶函数,且在()0,∞+上单调递增,则()20f x ->地解集为___________.变式题6提升7.对于函数22(1)sin ()1a x x f x x ++=+,若(5)(5)4f f +-=,则=a __________.原题148.已知O 为坐标原点,抛物线C :22y px =(0p >)地焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 地准线方程为______.变式题1基础9.设抛物线22(0)y px p =>地焦点为F ,点(0,2)A .若线段FA 地中点B 在抛物线上,则B 到该抛物线准线地距离为_____________.变式题2基础10.已知抛物线()2:,0C y mx m R m =∈≠过点()14P -,,则抛物线C 地准线方程为______.变式题3巩固11.抛物线C :()220y px p =>地焦点为F ,其准线与x 轴地交点为A ,假如在直线40x y ++=上存在点M ,使得90FMA ∠=︒,则实数p 地取值范围是___________.变式题4巩固12.直线20x y --=与抛物线()220y px p =>交于A ,B 两点,若线段AB 被点()4,2M 平分,则抛物线地准线方程为__________.变式题5提升13.已知点(A ,抛物线C :()220y px p =>地焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N .若:1:2FM MN =,则p 地值等于________.变式题6提升14.已知抛物线2:2(0)E y px p =>地焦点为F ,O 为坐标原点,点A 在E 上,且则p =______.原题1515.函数()212ln f x x x =--地最小值为______.变式题1基础16.函数21()2ln 2f x x x x =+-地最小值为__________.变式题2基础17.函数2(1)x y x e =+地最小值是_____.变式题3巩固18.函数()2x x f x e =在[]0,3x ∈地最大值为________.变式题4巩固19.函数()ln x f x x=在(20,e ⎤⎦上地最大值是____.变式题5提升20.函数()2|ln |2f x x x =--+地最大值为___________.变式题6提升21.已知函数f (x )=22(1)23(1)x xe x x x x x ⎧--≤⎨->⎩,当x ∈(-∞,m ]时,f (x )∈1,1e ⎛⎤-∞- ⎥⎝⎦,则实数m 地取值范围是________.原题1622.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸地某款对称轴把纸对折,规格为20dm 12dm ⨯地长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格地图形,它们地面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格地图形,它们地面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形地种数为______。
(Word版)2021年全国乙卷(理科)高考数学试题真卷(含答案和详细解析)
绝密★启用前2021年普通高等学校招生全国统一考试全国乙卷/理科数学注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应答案的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设2(z+z̅)+3(z-z̅)=4+6i,则z=( ).A.1-2iB.1+2iC.1+iD.1-i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( )A.∅B.SC.TD.Z3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A.p∧qB.¬p∧qC.p∧¬qD.¬(pVq)4.设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+15.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种7.把函数y=f(x)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x-π4)的图像,则f(x)=()A.sin(x2−7π12)B. sin(x2+π12)C. sin(2x−7π12)D. sin(2x+π12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.74B.2332C.932D.299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海盗的高。
2021年高考数学真题试题(天津卷)(word版,含答案与解析)
2021年高考数学真题试卷(天津卷)一、选择题,在每小题给出的四个选项中,只有一项是符合题目要求的.(共9题;共45分)1.设集合A={−1,0,1},B={1,3,5},C={0,2,4},则(A∩B)∪C=()A. {0}B. {0,1,3,5}C. {0,1,2,4}D. {0,2,3,4}【答案】C【考点】并集及其运算,交集及其运算【解析】【解答】解:由题意得A∩B={1},则(A∩B)∪C={0,1,2,4}故答案为:C【分析】根据交集,并集的定义求解即可.2.已知a∈R,则“ a>6 ”是“ a2>36”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不允分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:当a>6时,a2>36,所以充分性成立;当a2>36时,a<-6或a>6,所以必要性不成立,故“a>6”是“a2>36”的充分不必要条件.故答案为:A【分析】根据充分必要条件的定义求解即可.3.函数y=ln|x|的图像大致为()x2+2A. B.C. D.【答案】B【考点】函数的值域,奇偶函数图象的对称性【解析】【解答】解:f(−x)=ln |−x|(−x)2+2=lnxx2+2=f(x),则函数f(x)=lnxx2+2是偶函数,排除A,C,当x∈(0,1)时,ln|x|<0,x2+2>0,则f(x)<0,排除D.故答案为:B【分析】由函数为偶函数可排除AC,再由x∈(0,1)时,f(x)<0,排除D,即可得解.4.从某网格平台推荐的影视作品中抽取400部,统计其评分分数据,将所得400个评分数据分为8组:[66,70),[70,74),⋯,[94,98],并整理得到如下的费率分布直方图,则评分在区间[82,86)内的影视作品数量是()A. 20B. 40C. 64D. 80【答案】 D【考点】频率分布直方图【解析】【解答】解:由频率分布直方图可知,评分在区间[82,86)内的影视作品数量是400×0.05×4=80.故答案为:D【分析】根据频率分布直方图的性质求解即可.5.设a=log20.3,b=log120.4,c=0.40.3,则a,b,c的大小关系为()A. a<b<cB. c<a<bC. b<c<aD. a<c<b【答案】 D【考点】指数函数的定义、解析式、定义域和值域,对数函数的值域与最值【解析】【解答】解:∵log20.3<log21=0,∴a<0∵log120.4=−log20.4=log252>log22=1,∴b>1∵0<0.403<0.40=1,∴0<c<1∴a<c<b故答案为:D【分析】根据指数函数和对数函数的性质求出a,c,b的范围即可求解.6.两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A. 3πB. 4πC. 9πD. 12π【答案】B【考点】旋转体(圆柱、圆锥、圆台),棱柱、棱锥、棱台的体积【解析】【解答】解:如下图所示,设两个圆锥的底面圆圆心为点D,设圆锥AD和圆锥BD的高之比为3:1,即AD=3BD,设球的半径为R,则4πR33=32π3,解得R=2,所以AB=AD+BD=4BD=4,所以BD=1,AD=3∵CD⊥AB,∴∠CAD+∠ACD=∠BCD+∠ACD=90°∴∠CAD=∠BCD又因为∠ADC=∠BDC所以△ACD∽△CBD所以ADCD =CDBD∴CD=√AD·BD=√3∴这两个圆锥的体积之和为13π×CD2×(AD+BD)=13π×3×4=4π故答案为:B【分析】作出图形,求得球的半径,进而求得两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再结合锥体的体积公式求解即可.7.若2a=5b=10,则1a +1b=()A. -1B. lg7C. 1D. log710【答案】 C【考点】指数式与对数式的互化,换底公式的应用【解析】【解答】解:由 2a =5b =10 得a=log 210,b=log 510, 则1a +1b =1log210+1log 510=lg2+lg5=lg10=1故答案为:C【分析】根据指数式与对数式的互化,结合换底公式求解即可. 8.已知双曲线x 2a 2−y 2b2=1(a >0,b >0) 的右焦点与抛物线 y 2=2px(p >0) 的焦点重合,抛物线的准线交双曲线于A , B 两点,交双曲钱的渐近线于C 、D 两点,若 |CD|=√2|AB| .则双曲线的离心率为( )A. √2B. √3C. 2D. 3 【答案】 A【考点】抛物线的简单性质,双曲线的简单性质 【解析】【解答】解:设双曲线x 2a 2−y 2b 2=1(a >0,b >0) 与抛物线 y 2=2px(p >0) 的公共焦点为(c,0), 则抛物线 y 2=2px(p >0) 的准线为x=-cy 2b 2=1 , 得c 2a 2−y 2b 2=1 , 解得y =±b 2a, 所以|AB |=2b 2a,又因为双曲线的渐近线为y =±bax , 所以|CD |=2bc a,所以2bc a=2√2b 2a, 则c =√2b所以a 2=c 2−b 2=12c 2所以双曲线的离心率为e =ca =√2 故答案为:A【分析】根据双曲线与抛物线的几何性质,结合离心率的定义求解即可.9.设 a ∈R ,函数 f(x)={cos(2πx −2πa).x <ax 2−2(a +1)x +a 2+5,x ≥a ,若 f(x) 在区间 (0,+∞) 内恰有6个专点,则a 的取值范围是( ) A. (2,94]∪(52,114] B. (74,2)∪(52,114)C. (2,94]∪[114,3)D. (74,2)∪[114,3) . 【答案】 A【考点】函数零点的判定定理【解析】【解答】解:∵x 2-2(a+1)x+a 2+5=0最多有2个根, ∴cos(2πx -2πa)=0至少有4个根,由2πx −2πa =π2+k π,k ∈Z , 得x =k2+14+a,k ∈Z由0<k 2+14+a <a 得−2a −12<k <−12(1)当x<a 时,当−5≤−2a −12<−4时,f(x)有4个零点,即74<a <94; 当−6≤−2a −12<−5时,f(x)有5个零点,即94<a <114;当−7≤−2a −12<−6时,f(x)有6个零点,即114<a <134;(2)当x≥a 时,f(x)=x 2-2(a+1)x+a 2+5 ∆=4(a+1)2-4(a 2+5)=8(a-2) 当a<2时,∆<0,f(x)无零点; 当a=2时,∆=0,f(x)有1个零点;当a>2时,令f(a)=a 2-2(a+1)a+a 2+5=-2a+5≥0,则2<a ≤52 , 此时f(x)有2个零点; 所以若a >52时,f(x)有1个零点;综上,要是f(x)在[0,+∞)上有6个零点,则应满足{74<a ≤942<a ≤52)或{94<a ≤114a =2或a >52)或{114<a ≤134a <2)则a 的取值范围是(2,94]∪(52,114]【分析】由x 2-2(a+1)x+a 2+5=0最多有2个根,可得cos(2πx -2πa)=0至少有4个根,再结合分类讨论思想,根据x<a 与x≥a 分类讨论两个函数零点个数情况,再综合考虑求解即可.二、填空题,本大题共6小题,每小题5分,共30分,试题中包含两个空的,答对1个的给3分,全部答对的给5分.(共6题;共30分)10.i 是虚数单位,复数 9+2i 2+i= ________.【答案】 4-i【考点】复数代数形式的混合运算 【解析】【解答】解:由题意得9+2i2+i =(9+2i )(2−i )(2+i )(2−i )=20−5i 5=4−i故答案为:4-i【分析】根据复数的运算法则求解即可.11.在 (2x 3+1x )6 的展开式中, x 6 的系数是________. 【答案】 160【考点】二项式定理,二项式定理的应用【解析】【解答】解: (2x 3+1x )6 的展开式的通项公式是Tr +1=C 6r (2x 3)6−r (1x )r=26−r ·C 6r ·x 18−4r令18-4r=6,得r=3所以 x 6 的系数是 23C 63=160【分析】根据二项式的展开式通项公式求解即可.12.若斜率为 √3 的直线与y 轴交于点A , 与圆 x 2+(y −1)2=1 相切于点B , 则 |AB|= ________. 【答案】 √3【考点】直线的斜截式方程,点到直线的距离公式,直线与圆的位置关系 【解析】【解答】解:设直线AB 的方程为y =√3x +b , 则点A(0,b) ∵直线AB 与圆 x 2+(y −1)2=1相切=1 , 解得b=-1或b=3所以|AC|=2 又∵|BC|=1∴|AB |=√|AC|2−|BC |2=√3 故答案为:√3【分析】根据直线的斜截式方程,结合直线与圆的位置关系以及点到直线的距离公式求解即可. 13.若 a >0 , b >0 ,则 1a +ab 2+b 的最小值为________. 【答案】 2√2【考点】基本不等式,基本不等式在最值问题中的应用 【解析】【解答】解:∵a>0,b>0 ∴1a+a b 2+b ≥2√1a·a b 2+b =2b+b ≥2√2b·b =2√2当且仅当1a =ab 2且2b =b , 即a =b =√2时等号成立 所以1a +ab 2+b 的最小值是2√2. 【分析】利用基本不等式求解即可.14.甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为 56 和 15 ,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为________,3次活动中,甲至少获胜2次的概率为________ . 【答案】 23;2027【考点】相互独立事件的概率乘法公式,n 次独立重复试验中恰好发生k 次的概率 【解析】【解答】解:由题意知在一次活动中,甲获胜的概率为56×45=23 ,则在3次活动中,甲至少获胜2次的概率为C 32×(23)2×13+(23)3=2027故答案为:23,2027【分析】根据甲猜对乙没猜对可求出一次活动中,甲获胜的概率,再根据n 次独立重复试验的概率求法求解即可.15.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点, DE ⊥AB 且交AB 于点E . DF //AB 且交AC 于点F ,则 |2BE ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ | 的值为________; (DE ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ )⋅DA ⃗⃗⃗⃗⃗ 的最小值为________. 【答案】 1;1120【考点】二次函数在闭区间上的最值,向量的模,平面向量数量积的运算 【解析】【解答】解:设BE=x ,x ∈(0,12) ∵△ABC 为边长为1的等边三角形,DE ⊥AB ∴∠BDE=30°,BD=2x ,DE=√3x , DC=1-2x ∵DF//AB∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1−2x )·cos0°+(1−2x )2=1 ∴|2BE →+DF →|=1∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(√3x)2+(1−2x )×(1−x )=5x 2−3x +1=5(x −310)2+1120则当x =310时,(DE →+DF →)·DA →取得最小值为1120 故答案为:1,1120【分析】根据向量的数量积及向量的求模公式,再结合二次函数的最值问题求解即可.三、解答题,本大题共5小题,共75分,解答应写出文字说明,证明过程成演算步骤.(共5题;共75分)16.在 △ABC ,角 A,B,C 所对的边分别为 a,b,c ,已知 sinA:sinB:sinC =2:1:√2 , b =√2 . (1)求a 的值; (2)求 cosC 的值; (3)求 sin(2C −π6) 的值.【答案】 (1)因为 sinA:sinB:sinC =2:1:√2 ,由正弦定理可得 a:b:c =2:1:√2 , ∵b =√2 , ∴a =2√2,c =2 ;(2)由余弦定理可得 cosC =a 2+b 2−c 22ab=2×2√2×√2=34;(3)∵cosC =34 , ∴sinC =√1−cos 2C =√74,∴sin2C =2sinCcosC =2×√74×34=3√78, cos2C =2cos 2C −1=2×916−1=18 ,所以 sin(2C −π6)=sin2Ccos π6−cos2Csin π6 =3√78×√32−18×12=3√21−116.【考点】两角和与差的正弦公式,二倍角的正弦公式,同角三角函数基本关系的运用,正弦定理,余弦定理【解析】【分析】(1)根据正弦定理直接求解即可; (2)根据余弦定理直接求解即可;(3)根据同角三角函数的基本关系,二倍角公式以及两角差的正弦公式求解即可.17.如图,在棱长为2的正方体 ABCD −A 1B 1C 1D 1 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证: D 1F// 平面 A 1EC 1 ;(2)求直线 AC 1 与平面 A 1EC 1 所成角的正正弦值. (3)求二面角 A −A 1C 1−E 的正弦值.【答案】 (1)以 A 为原点, AB,AD,AA 1 分别为 x,y,z 轴,建立如图空间直角坐标系,则 A(0,0,0) , A 1(0,0,2) , B(2,0,0) , C(2,2,0) , D(0,2,0) , C 1(2,2,2) , D 1(0,2,2) , 因为E 为棱BC 的中点,F 为棱CD 的中点,所以 E(2,1,0) , F(1,2,0) , 所以 D 1F ⃗⃗⃗⃗⃗⃗⃗ =(1,0,−2) , A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0) , A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,1,−2) ,设平面 A 1EC 1 的一个法向量为 m⃗⃗ =(x 1,y 1,z 1) , 则 {m ⃗⃗ ⋅A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2x 1+2y 1=0m ⃗⃗ ⋅A 1E ⃗⃗⃗⃗⃗⃗⃗ =2x 1+y 1−2z 1=0 ,令 x 1=2 ,则 m ⃗⃗ =(2,−2,1) , 因为 D 1F ⃗⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =2−2=0 ,所以 D 1F ⃗⃗⃗⃗⃗⃗⃗ ⊥m ⃗⃗ , 因为 D 1F ⊄ 平面 A 1EC 1 ,所以 D 1F// 平面 A 1EC 1 ;(2)由(1)得, AC 1⃗⃗⃗⃗⃗⃗⃗ =(2,2,2) , 设直线 AC 1 与平面 A 1EC 1 所成角为 θ , 则 sinθ=|cos〈m ⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ 〉|=|m ⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||=3×2√3=√39;(3)由正方体的特征可得,平面 AA 1C 1 的一个法向量为 DB⃗⃗⃗⃗⃗⃗ =(2,−2,0) , 则 cos〈DB ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗ 〉=DB ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗ |DB ⃗⃗⃗⃗⃗⃗ |⋅|m ⃗⃗⃗ |=3×2√2=2√23,所以二面角 A −A 1C 1−E 的正弦值为 √1−cos 2〈DB ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗ 〉=13.【考点】直线与平面平行的判定,用空间向量求直线与平面的夹角,二面角的平面角及求法 【解析】【分析】(1)根据向量垂直的充要条件求得 平面 A 1EC 1 的一个法向量m →, 再利用向量法直接求证即可;(2)先求出AC 1→ , 再由sinθ=|cos <m →,AC 1→>|求解即可; (3)先求出平面 AA 1C 1 的一个法向量 DB →, 再由cos <m →,DB →>=m →·DB→|m →|·|DB|→结合同角三角函数的平方关系求解即可.18.已知椭圆 x 2a 2+y 2b 2=1 (a >b >0) 的右焦点为F ,上顶点为B ,离心率为 2√55 ,且 |BF|=√5 .(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M , 与y 轴的正半轴交于点N , 过N 与BF 垂直的直线交x 轴于点P . 若 MP //BF ,求直线l 的方程.【答案】 (1)易知点 F(c,0) 、 B(0,b) ,故 |BF|=√c 2+b 2=a =√5 , 因为椭圆的离心率为 e =c a=2√55,故 c =2 , b =√a 2−c 2=1 ,因此,椭圆的方程为 x 25+y 2=1 ;(2)设点 M(x 0,y 0) 为椭圆 x 25+y 2=1 上一点,先证明直线 MN 的方程为x 0x5+y 0y =1 ,联立 {x 0x 5+y 0y =1x 25+y 2=1,消去 y 并整理得 x 2−2x 0x +x 02=0 , Δ=4x 02−4x 02=0 ,因此,椭圆x 25+y 2=1 在点 M(x 0,y 0) 处的切线方程为x 0x 5+y 0y =1 .在直线 MN 的方程中,令 x =0 ,可得 y =1y 0,由题意可知 y 0>0 ,即点 N(0,1y 0) ,直线 BF 的斜率为 k BF =−b c =−12 ,所以,直线 PN 的方程为 y =2x +1y 0,在直线 PN 的方程中,令 y =0 ,可得 x =−12y 0,即点 P(−12y 0,0) ,因为 MP //BF ,则 k MP =k BF ,即 y 0x 0+12y=2y 022x 0y 0+1=−12,整理可得 (x 0+5y 0)2=0 ,所以, x 0=−5y 0 ,因为x 025+y 02=6y 02=1 , ∴y 0>0 ,故 y 0=√66, x 0=−5√66,所以,直线 l 的方程为 −√66x +√66y =1 ,即 x −y +√6=0 . 【考点】椭圆的标准方程,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题 【解析】【分析】(1)先求出a 值,结合a,b,c 的关系求得b ,从而求得椭圆的方程; (2)设M(x 0,y 0),可得直线l 的方程x 0x 5+y 0y =1 , 求出点P 的坐标,再根据MP//BF 得K MP =K BF , 求得x 0,y 0的值,即可得出直线l 的方程19.已知 {a n } 是公差为2的等差数列,其前8项和为64. {b n } 是公比大于0的等比数列, b 1=4,b 3−b 2=48 .(1)求 {a n } 和 {b n } 的通项公式; (2)记 c n =b 2n +1b n,n ∈N ∗ .(i )证明 {c n 2−c 2n } 是等比数列;(ii )证明 ∑√a k ak+1c k2−c 2k nk=1<2√2(n ∈N ∗) 【答案】 (1)因为 {a n } 是公差为2的等差数列,其前8项和为64. 所以 a 1+a 2+⋅⋅⋅+a 8=8a 1+8×72×2=64 ,所以 a 1=1 ,所以 a n =a 1+2(n −1)=2n −1,n ∈N ∗ ; 设等比数列 {b n } 的公比为 q,(q >0) ,所以 b 3−b 2=b 1q 2−b 1q =4(q 2−q)=48 ,解得 q =4 (负值舍去), 所以 b n =b 1q n−1=4n ,n ∈N ∗ ;(2)(i )由题意, c n =b 2n +1b n =42n +14n , 所以 c n2−c 2n =(42n +14n )2−(44n +142n )=2⋅4n , 所以 c n 2−c 2n ≠0 ,且 c n+12−c 2n+2c n 2−c 2n =2⋅4n+12⋅4n =4 ,所以数列 {c n 2−c 2n } 是等比数列;(ii )由题意知,a n a n+1c n 2−c 2n =(2n−1)(2n+1)2⋅4n =4n 2−12⋅22n <4n 22⋅22n , 所以 √a n a n+1c n 2−c 2n <√4n 22⋅22n =√2⋅2n =√2n 2n−1 , 所以 ∑√a k a k+1c k 2−c 2k n k=1<√2k 2k−1n k=1 , 设 T n =∑k 2k−1n k=1=120+221+322+⋅⋅⋅+n 2n−1 , 则 12T n =121+222+323+⋅⋅⋅+n 2n ,两式相减得 12T n =1+12+122+⋅⋅⋅+12n−1−n 2n =1⋅(1−12n )1−12−n 2n =2−n+22n ,所以 T n =4−n+22n−1 ,所以 ∑√a k a k+1c k 2−c 2k n k=1<√2k 2k−1n k=1=√2−n+22n−1)<2√2 . 【考点】等差数列的通项公式,等差数列的前n 项和,等比数列的通项公式,等比数列的前n 项和,数列的求和【解析】【分析】(1)根据等差数列、等比数列的通项公式及前n 项和公式求解即可;(2)(ⅰ)运算可得C n 2−C 2n =2·4n , 结合等比数列的定义即可得证;(ⅱ)利用放缩法得a n a n+1C n 2−C 2n <4n 22·22n , 进而可得∑n k=1√a k a k+1C k 2−C 2k <√2n k=1k 2k−1 , 结合错位相减法即可得证.20.已知 a >0 , 函数 f(x)=ax −xe x .(1)求曲线 y =f(x) 在点 (0,f(0)) 处的切线方程:(2)证明 f(x) 存在唯一的极值点(3)若存在a , 使得 f(x)≤a +b 对任意 x ∈R 成立,求实数b 的取值范围.【答案】 (1)f ′(x)=a −(x +1)e x ,则 f ′(0)=a −1 ,又 f(0)=0 ,则切线方程为 y =(a −1)x,(a >0) ;(2)令 f ′(x)=a −(x +1)e x =0 ,则 a =(x +1)e x ,令 g(x)=(x +1)e x ,则 g ′(x)=(x +2)e x ,当x∈(−∞,−2)时,g′(x)<0,g(x)单调递减;当x∈(−2,+∞)时,g′(x)>0,g(x)单调递增,当x→−∞时,g(x)<0,g(−1)=0,当x→+∞时,g(x)>0,画出g(x)大致图像如下:所以当a>0时,y=a与y=g(x)仅有一个交点,令g(m)=a,则m>−1,且f′(m)=a−g(m)=0,当x∈(−∞,m)时,a>g(x),则f′(x)>0,f(x)单调递增,当x∈(m,+∞)时,a<g(x),则f′(x)<0,f(x)单调递减,x=m为f(x)的极大值点,故f(x)存在唯一的极值点;(3)由(II)知f(x)max=f(m),此时a=(1+m)e m,m>−1,所以{f(x)−a}max=f(m)−a=(m2−m−1)e m,(m>−1),令ℎ(x)=(x2−x−1)e x,(x>−1),若存在a,使得f(x)≤a+b对任意x∈R成立,等价于存在x∈(−1,+∞),使得ℎ(x)≤b,即b≥ℎ(x)min,ℎ′(x)=(x2+x−2)e x=(x−1)(x+2)e x,x>−1,当x∈(−1,1)时,ℎ′(x)<0,ℎ(x)单调递减,当x∈(1,+∞)时,ℎ′(x)>0,ℎ(x)单调递增,所以ℎ(x)min=ℎ(1)=−e,故b≥−e,所以实数b的取值范围[−e,+∞).【考点】导数的几何意义,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数求闭区间上函数的最值【解析】【分析】(1)根据导数的几何意义求解即可;(2)令f'(x)=0,可得a=(x+1)e x,则可化为证明y=a与y=g(x)仅有一个交点,利用导数研究y=g(x)的变化情况,数形结合求解即可;(3)令h(x)=(x2-x-1)e x,(x>-1),则将问题等价转化为存在x∈(-1,+∞),使得h(x)≤b,即b≥h(x)min,利用导数求出h(x)的最小值即可.。
2021年全国新高考II卷数学试题(解析版)
A. {3}
B. {1, 6}
C. {5,6}
D. {1,3}
【答案】B 【解析】
【分析】根据交集、补集的定义可求 A ðU B . 【详解】由题设可得 ðU B 1,5, 6 ,故 A ðUB 1, 6 ,
故选:B.
3. 抛物线 y2 2 px( p 0) 的焦点到直线 y x 1的距离为 2 ,则 p ( )
10. 如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M,N 为正方体的顶点.则满足 MN OP
的是( )
A.
B.
C.
D.
【答案】BC
【解析】
【分析】根据线面垂直的判定定理可得 BC 的正误,平移直线 MN 构造所考虑的线线角后可判断 AD 的正
误.
【详解】设正方体的棱长为 2 , 对于 A,如图(1)所示,连接 AC ,则 MN //AC , 故 POC (或其补角)为异面直线 OP, MN 所成的角,
D. 第四象限
【答案】A
【解析】
2i
【分析】利用复数的除法可化简
,从而可求对应的点的位置.
1 3i
【详解】 2 i 1 3i
2
i1
10
3i
5 5i 10
1 2
i
,所以该复数对应的点为
1 2
,
1 2
,
该点在第一象限,
故选:A
2. 设集合U {1, 2, 3, 4,5, 6}, A {1, 3, 6}, B {2, 3, 4},则 A ∩ ðU B ( )
故选:B. 二、选择题目:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要
求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.
2021年全国高考乙卷数学(理)试题(解析版)
【解析】
【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.
【详解】由题意可得 ,
对于A, 不是奇函数;
对于B, 是奇函数;
对于C, ,定义域不关于原点对称,不是奇函数;
对于D, ,定义域不关于原点对称,不是奇函数.
故选:B
5.在正方体 中,P为 的中点,则直线 与 所成的角为()
A. B. C. D.
故答案为:4.
【点睛】本题为基础题,考查由渐近线求解双曲线中参数,焦距,正确计算并联立关系式求解是关键.
14.已知向量 ,若 ,则 __________.
【答案】
【解析】
【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.
【详解】因为 ,所以由 可得,
,解得 .
故答案为: .
【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设 ,
二、填空题:本题共4小题,每小题5分,共20分.
13.已知双曲线 的一条渐近线为 ,则C的焦距为_________.
【答案】4
【解析】
【分析】将渐近线方程化成斜截式,得出 的关系,再结合双曲线中 对应关系,联立求解 ,再由关系式求得 ,即可求解.
【详解】由渐近线方程 化简得 ,即 ,同时平方得 ,又双曲线中 ,故 ,解得 (舍去), ,故焦距 .
18.如图,四棱锥 的底面是矩形, 底面 , , 为 的中点,且 .
(1)求 ;
(2)求二面角 的正弦值.
【答案】(1) ;(2)
【解析】
【分析】(1)以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系,设 ,由已知条件得出 ,求出 的值,即可得出 的长;
(2)求出平面 、 法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.
2021年全国高考真题乙卷数学试卷真题(文科)(word版,含答案)
2021年普通高等学校招生全国统一考试试题数学(乙卷·文科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则 U (M ∪N)=( ) A .{5}B .{1,2}C .{3,4}D .{1,2,3,4}2.设iz =4+3i ,则z =( ) A .−3−4iB .−3+4iC .3−4iD .3+4i3.已知命题p :∃x ∈R ,sinx <1;命题q :∀x ∈R ,e |x|⩾1,则下列命题中为真命题的是( ) A .p ∧qB .¬p ∧qC .p ∧¬qD .¬(p ∨q)4.函数f(x)=sin x 3+cos x 3的最小正周期和最大值分别是( ) A .3π和√2B .3π和2C .6π和√2D .6π和25.若x ,y 满足约束条件{x +y ⩾4,x −y ⩽2,则z =3x +y 的最小值为y ⩽3,( )A .18B .10C .6D .46.cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√327.在区间(0,12)随机取1个数,则取到的数小于12的概率为( ) A .34B .23C .13D .168.下列函数中最小值为4的是( ) A .y =x 2+2x +4 B .y =|sinx|+4|sinx|C .y =2x +22xD .y =lnx +4lnx9.设函数f(x)=1−x 1+x,则下列函数中为奇函数的是( ) A .f(x −1)−1B .f(x −1)+1C .f(x +1)−1D .f(x +1)+110.在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2B .π3C .π4D .π611.设B 是尼圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A .52B .√6C .√5D .212.设a ≠0,若x =a 为函数f(x)=a(x −a)2(x −b)的极大值点,则( )A.a<b B.a>b C.ab<a2D.ab>a2二、填空题:本题共4小题,每小题5分,共20分。
2021年高考数学真题试题(北京卷)(word版,含答案与解析)
2021年高考数学真题试卷(北京卷)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.(共10题;共40分)1.已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A. (−1,2)B. (−1,2]C. [0,1)D. [0,1]【答案】B【考点】并集及其运算【解析】【解答】解:根据并集的定义易得A∪B={x|−1<x≤2},故答案为:B【分析】根据并集的定义直接求解即可.2.在复平面内,复数z满足(1−i)z=2,则z=()A. 2+iB. 2−iC. 1−iD. 1+i【答案】 D【考点】复数代数形式的混合运算【解析】【解答】解:z=21−i =2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.3.已知f(x)是定义在上[0,1]的函数,那么“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:①【充分性】若函数f(x)在[0, 1]上单调递增,根据函数的单调性可知:函数f(x)在[0, 1]的最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”为“函数f(x)在[0, 1]的最大值为f(1)“的充分条件;②【必要性】若函数f(x)在[0, 1]的最大值为f(1),函数f(x)在[0, 1]上可能先递减再递增,且最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”不是“函数f(x)在[0, 1]的最大值为f(1)“的必要条件,所以“函数f(x)在[0, 1]上单调递增”是“函数f(x)在[0, 1]的最大值为f(1)“的充分而不必要条件.故答案为:A【分析】根据充分条件与必要条件的判定直接求解即可.4.某四面体的三视图如图所示,该四面体的表面积为()A. 3+√32B. 4C. 3+√3D. 2【答案】A【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的侧面积和表面积【解析】【解答】解:由三视图可知该四面体如下图所示:该四面体为直三棱锥,其中SA⊥平面ABC,SA=AB=AC=1,则SB=SC=BC=√2,则所求表面积为S=3×(12×1×1)+12×√2×√2×sin60°=3+√32故答案为:A【分析】根据三视图还原几何体,结合棱锥的表面积公式求解即可.5.双曲线C:x2a2−y2b2=1过点(√2,√3),且离心率为2,则该双曲线的标准方程为()A. x 2−y 23=1 B. x 23−y 2=1 C. x 2−√3y 23=1 D.√3x 23−y 2=1【答案】 A【考点】双曲线的标准方程,双曲线的简单性质 【解析】【解答】解:由e =ca =2得c=2a ,则b 2=c 2-a 2=3a 2 则可设双曲线方程为:x 2a 2−y 23a 2=1 ,将点(√2,√3) 代入上式,得(√2)2a 2−(√3)23a 2=1解得a 2=1,b 2=3 故所求方程为: x 2−y 23=1故答案为:A【分析】根据双曲线的离心率的定义,结合双曲线的几何性质和标准方程求解即可.6.{a n } 和 {b n } 是两个等差数列,其中 akb k(1≤k ≤5) 为常值, a 1=288 , a 5=96 , b 1=192 ,则b 3= ( )A. 64B. 128C. 256D. 512 【答案】 B【考点】等差数列的性质【解析】【解答】解:由题意得a k b k=a 1b 1=288192=32 , 则a 5b 5=32 , 则b 5=23a 5=64 , 所以b 3=b 1+b 52=192+642=128.故答案为:B【分析】根据题设条件,结合等差数列的性质求解即可.7.函数 f(x)=cosx −cos2x ,试判断函数的奇偶性及最大值( ) A. 奇函数,最大值为2 B. 偶函数,最大值为2 C. 奇函数,最大值为 98 D. 偶函数,最大值为 98 【答案】 D【考点】偶函数,二次函数在闭区间上的最值【解析】【解答】解:∵f(-x)=cos(-x)-cos(-2x)=cosx-cos2x=f(x) ∴f(x)为偶函数又f(x)=cosx-cos2x=-2cos 2x+cosx+1 令t=cosx ,则y=-2t 2+t+1,t ∈[-1,1],则当t =−12×(−2)=14时,y 取得最大值y max =(−2)×(14)2+14+1=98.故答案为:D【分析】根据偶函数的定义,利用换元法,结合二次函数的最值求解即可.8.定义:24小时内降水在平地上积水厚度(mm)来判断降雨程度.其中小雨(<10mm),中雨(10mm−25mm),大雨(25mm−50mm),暴雨(50mm−100mm),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A. 小雨B. 中雨C. 大雨D. 暴雨【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:如图所示,由题意得r100=150300,则r=50则雨水的体积为V=13πr2h=13π×502×150,则降雨的厚度(高度)为H=Vπ×1002=13π×502×150π×1002=12.5(mm)故答案为:B【分析】根据圆锥的体积公式,及圆柱的体积公式求解即可.9.已知圆C:x2+y2=4,直线l:y=kx+m,当k变化时,l截得圆C弦长的最小值为2,则m=()A. ±2B. ±√2C. ±√3D. ±√5【答案】C【考点】点到直线的距离公式,直线与圆的位置关系【解析】【解答】解:由题意可设弦长为n,圆心到直线l的距离为d,则d2=r2−(n2)2=4−n24,则当n取最小值2时,d取得最大值为√3,则d=√1+k2≤√3当k=0时,d取得最大值为√3,则|m|=√3解得m=±√3故答案为:C【分析】根据直线与圆的位置,以及相交弦的性质,结合点到直线的距离公式求解即可.10.数列{a n}是递增的整数数列,且a1≥3,a1+a2+⋅⋅⋅+a n=100,则n的最大值为()A. 9B. 10C. 11D. 12【答案】C【考点】等差数列的通项公式,等差数列的前n项和【解析】【解答】解:∵数列{a n}是递增的整数数列,∴n要取最大,d尽可能为小的整数,故可假设d=1∵a1=3,d=1∴a n=n+2∴S n=(3+n+2)n2=n2+5n2则S11=88<100,S12=102>100,故n的最大值为11.故答案为:C【分析】根据等差数列的通项公式及前n项和公式求解即可.二、填空题5小题,每小题5分,共25分.(共5题;共25分)11.(x3−1x)4展开式中常数项为________.【答案】-4【考点】二项式定理,二项式系数的性质,二项式定理的应用【解析】【解答】解:由题意得二项展开式的通项公式为T k+1=C4k(x3)4−k(−1x )k=C4k(−1)k x12−4k令12-4k=0,得k=3故常数项为T4=T3+1=C43(−1)3=−4故答案为:-4【分析】根据二项展开式的通项公式直接求解即可.12.已知抛物线C:y2=4x,焦点为F,点M为抛物线C上的点,且|FM|=6,则M的横坐标是________;作MN⊥x轴于N,则S△FMN=________.【答案】5;4√5【考点】抛物线的简单性质,抛物线的应用【解析】【解答】解:由题意知焦点F为(1,0),准线为x=-1,设点M为(x0,y0),则有|FM|=x0+1=6,解得x0=5,则y0=2√5,不妨取点M为(5,2√5)则点N为(5,0)则|FN|=5-1=4则S△FMN=12×|FN|×|MN|=12×4×2√5=4√5故答案为:5,4√5【分析】根据抛物线的几何性质,结合三角形的面积公式求解即可.13.若点P(cosθ,sinθ)与点Q(cos(θ+π6),sin(θ+π6))关于y轴对称,写出一个符合题意的θ=________.【答案】5π12(满足θ=5π12+kπ,k∈Z即可)【考点】诱导公式【解析】【解答】解:由题意得{sinθ=sin(θ+π6)cosθ=−cos(θ+π6)),对比诱导公式sinα=sin(π-α),cosα=-cos(π-α)得θ+π6=π−θ+2kπ,解得θ=5π12+kπ,k∈Z当k=0时,θ=5π12故答案为:5π12【分析】根据点的对称性,结合诱导公式求解即可.14.已知函数f(x)=|lgx|−kx−2,给出下列四个结论:①若k=0,则f(x)有两个零点;② ∃k<0,使得f(x)有一个零点;③ ∃k<0,使得f(x)有三个零点;④ ∃k>0,使得f(x)有三个零点.以上正确结论得序号是________.【答案】①②④【考点】函数的零点【解析】【解答】解:令|lgx|- kx-2=0,即y= |lgx|与y= kx+ 2有几个交点,原函数就有几个零点, ①当k= 0时,如图1画出函数图像,f(x)=|lgx|-2,解得x=100或x =1100 , 所以有两个零点,故①项正确;②当k<0时,y= kx+2过点(0,2),如图2画出两个函数的图像,∃k <0 , 使得两函数存在两个交点,故②项正确;③当k<0时,y= kx+2过点(0,2),如图3画出两个函数的图像,不存在k<0时,使得两函数存在三个交点,故③项错误;④当k>0时,y= kx+2过点(0,2),如图4画出两个函数的图像,∃k >0 , 使得两函数存在三个交点,故④项正确. 故答案为:①②④【分析】根据函数的零点的几何性质,运用数形结合思想求解即可.15.a ⃗=(2,1) , b ⃗⃗=(2,−1) , c ⃗=(0,1) ,则 (a ⃗+b ⃗⃗)⋅c ⃗= ________; a ⃗⋅b ⃗⃗= ________. 【答案】 0;3【考点】平面向量的坐标运算,平面向量数量积的坐标表示、模、夹角【解析】【解答】解:由题意得a →+b →=(4,0) , 则(a →+b →)·c →=4×0+0×1=0 , a →·b →=2×2+1×(−1)=3 故答案为:0,3【分析】根据向量的坐标运算,及向量的数量积运算求解即可.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.(共6题;共85分)16.已知在 △ABC 中, c =2bcosB , C =2π3.(1)求 B 的大小;(2)在下列三个条件中选择一个作为已知,使 △ABC 存在且唯一确定,并求出 BC 边上的中线的长度. ① c =√2b ;②周长为 4+2√3 ;③面积为 S ΔABC =3√34;【答案】 (1)∵c =2bcosB ,则由正弦定理可得 sinC =2sinBcosB , ∴sin2B =sin2π3=√32, ∵C =2π3, ∴B ∈(0,π3) , 2B ∈(0,2π3) ,∴2B =π3 ,解得 B =π6 ;(2)若选择①:由正弦定理结合(1)可得 cb =sinCsinB =√3212=√3 ,与 c =√2b 矛盾,故这样的 △ABC 不存在; 若选择②:由(1)可得 A =π6 , 设 △ABC 的外接圆半径为 R ,则由正弦定理可得a=b=2Rsinπ6=R,c=2Rsin2π3=√3R,则周长a+b+c=2R+√3R=4+2√3,解得R=2,则a=2,c=2√3,由余弦定理可得BC边上的中线的长度为:√(2√3)2+12−2×2√3×1×cosπ6=√7;若选择③:由(1)可得A=π6,即a=b,则S△ABC=12absinC=12a2×√32=3√34,解得a=√3,则由余弦定理可得BC边上的中线的长度为:√b2+(a2)2−2×b×a2×cos2π3=√3+34+√3×√32=√212.【考点】正弦定理,余弦定理,正弦定理的应用,余弦定理的应用,三角形中的几何计算【解析】【分析】(1)根据正弦定理,结合三角形内角和的性质求解即可;(2)选择①:根据正弦定理,结合(1)进行判断即可;选择②:根据正弦定理,及余弦定理求解即可;选择③:根据三角形的面积公式,结合余弦定理求解即可.17.已知正方体ABCD−A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE于点F.(1)证明:点F为B1C1的中点;(2)若点M为棱A1B1上一点,且二面角M−CF−E的余弦值为√53,求A1MA1B1的值.【答案】(1)如图所示,取B1C1的中点F′,连结DE,EF′,F′C,由于 ABCD −A 1B 1C 1D 1 为正方体, E,F ′ 为中点,故 EF ′∥CD , 从而 E,F ′,C,D 四点共面,即平面CDE 即平面 CDEF ′ , 据此可得:直线 B 1C 1 交平面 CDE 于点 F ′ ,当直线与平面相交时只有唯一的交点,故点 F 与点 F ′ 重合, 即点 F 为 B 1C 1 中点.(2)以点 D 为坐标原点, DA,DC,DD 1 方向分别为 x 轴, y 轴, z 轴正方形,建立空间直角坐标系 D −xyz ,不妨设正方体的棱长为2,设 A 1MA1B 1=λ(0≤λ≤1) ,则: M(2,2λ,2),C(0,2,0),F(1,2,2),E(1,0,2) ,从而: MC ⃗⃗⃗⃗⃗⃗⃗=(−2,2−2λ,−2),CF ⃗⃗⃗⃗⃗⃗=(1,0,2),FE ⃗⃗⃗⃗⃗⃗=(0,−2,0) , 设平面 MCF 的法向量为: m⃗⃗⃗=(x 1,y 1,z 1) ,则: {m ⇀⋅MC⇀=−2x 1+(2−2λ)y 1−2z 1=0m ⇀⋅CF ⇀=x 1+2z 1=0 , 令 z 1=−1 可得: m ⃗⃗⃗=(2,11−λ,−1) , 设平面 CFE 的法向量为: n⃗⃗=(x 2,y 2,z 2) ,则: {n ⇀⋅FE⇀=−2y 2=0n ⇀⋅CF ⇀=x 2+2z 2=0, 令 z 1=−1 可得: n⃗⃗=(2,0,−1) , 从而: m ⃗⃗⃗⋅n ⃗⃗=5,|m ⃗⃗⃗|=√5+(11−λ)2,|n ⃗⃗|=√5 ,则:cos〈m⃗⃗⃗,n⃗⃗〉=m⃗⃗⃗⃗⋅n⃗⃗|m⃗⃗⃗⃗|×|n⃗⃗|=√5+(11−λ)2×√5=√53,整理可得:(λ−1)2=14,故λ=12(λ=32舍去).【考点】空间中直线与平面之间的位置关系,与二面角有关的立体几何综合题,用空间向量求平面间的夹角【解析】【分析】(1)根据正方体的性质,结合直线与平面相交的性质定理求证即可;(2)根据向量法求二面角,结合方程的思想求解即可.18.为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).【答案】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X可以取20,30,P(X=20)=111,P(X=30)=1−111=1011,则X的分布列:所以E(X)=20×111+30×1011=32011;(2)由题意,Y可以取25,30,设两名感染者在同一组的概率为p,P(Y=25)=p,P(Y=30)=1−p,则E(Y)=25p+30(1−p)=30−5p,若p=211时,E(X)=E(Y);若p>211时,E(X)>E(Y);若p<211时,E(X)<E(Y).【考点】简单随机抽样,互斥事件与对立事件,离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(1)①根据“k合1检测法”,结合随机抽样的定义求解即可;②根据“k合1检测法”,以及对立事件的概率,结合离散型随机变量的分布列和期望求解即可;(2)根据“k合1检测法”,以及对立事件的概率,结合离散型随机变量的期望求解即可.19.已知函数f(x)=3−2xx2+a.(1)若a=0,求y=f(x)在(1,f(1))处切线方程;(2)若函数f(x)在x=−1处取得极值,求f(x)的单调区间,以及最大值和最小值.【答案】(1)当a=0时,f(x)=3−2xx2,则f′(x)=2(x−3)x3,∴f(1)=1,f′(1)=−4,此时,曲线y=f(x)在点(1,f(1))处的切线方程为y−1=−4(x−1),即4x+y−5=0;(2)因为f(x)=3−2xx2+a ,则f′(x)=−2(x2+a)−2x(3−2x)(x2+a)2=2(x2−3x−a)(x2+a)2,由题意可得f′(−1)=2(4−a)(a+1)2=0,解得a=4,故f(x)=3−2xx2+4,f′(x)=2(x+1)(x−4)(x2+4)2,列表如下:所以,函数f(x)的增区间为(−∞,−1)、(4,+∞),单调递减区间为(−1,4).当x<32时,f(x)>0;当x>32时,f(x)<0.所以,f(x)max=f(−1)=1,f(x)min=f(4)=−14.【考点】导数的几何意义,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数求闭区间上函数的最值【解析】【分析】(1)根据导数的几何意义求解即可;(2)根据导数研究函数的极值求得a值,再利用导数研究函数的单调性以及最值即可.20.已知椭圆E:x2a2+y2b2=1(a>b>0)过点A(0,−2),以四个顶点围成的四边形面积为4√5.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M、N,直线AC交y=-3于点N,若|PM|+|PN|≤15,求k的取值范围.【答案】(1)因为椭圆过A(0,−2),故b=2,因为四个顶点围成的四边形的面积为4√5,故12×2a×2b=4√5,即a=√5,故椭圆的标准方程为:x25+y24=1.(2)设B(x1,y1),C(x2,y2),因为直线BC的斜率存在,故x1x2≠0,故直线AB:y=y1+2x1x−2,令y=−3,则x M=−x1y1+2,同理x N=−x2y2+2.直线BC:y=kx−3,由{y=kx−34x2+5y2=20可得(4+5k2)x2−30kx+25=0,故Δ=900k2−100(4+5k2)>0,解得k<−1或k>1.又x1+x2=30k4+5k2,x1x2=254+5k2,故x1x2>0,所以x M x N>0又|PM|+|PN|=|x M+x N|=|x1y1+2+x2y2+2|=|x1kx1−1+x2kx2−1|=|2kx1x2−(x1+x2)k2x1x2−k(x1+x2)+1|=|50k4+5k2−30k4+5k225k24+5k2−30k24+5k2+1|=5|k|故5|k|≤15即|k|≤3,综上,−3≤k<−1或1<k≤3.【考点】椭圆的标准方程,椭圆的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【分析】(1)根据椭圆的几何性质求解即可;(2)根据直线与椭圆的位置关系,利用根与系数的关系,结合弦长公式求解即可.21.定义R p数列{a n}:对实数p,满足:① a1+p≥0,a2+p=0;② ∀n∈N∗,a4n−1<a4n;③ a m+n∈{a m+a n+p,a m+a n+p+1},m,n∈N∗.(1)对于前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{a n}是R0数列,求a5的值;(3)是否存在p,使得存在R p数列{a n},对∀n∈N∗,S n≥S10?若存在,求出所有这样的p;若不存在,说明理由.【答案】(1)由性质③结合题意可知0=a3∈{a1+a2+2,a1+a2+2+1}={2,3},矛盾,故前4项2,−2,0,1的数列,不可能是R2数列.(2)性质① a1≥0,a2=0,由性质③ a m+2∈{a m,a m+1},因此a3=a1或a3=a1+1,a4=0或a4=1,若a4=0,由性质②可知a3<a4,即a1<0或a1+1<0,矛盾;若a4=1,a3=a1+1,由a3<a4有a1+1<1,矛盾.因此只能是a4=1,a3=a1.或a1=0.又因为a4=a1+a3或a4=a1+a3+1,所以a1=12若a1=1,则a2=a1+1∈{a1+a1+0,a1+a1+0+1}={2a1,2a1+1}={1,2},2不满足a2=0,舍去.当a1=0,则{a n}前四项为:0,0,0,1,下面用纳法证明a4n+i=n(i=1,2,3),a4n+4=n+1(n∈N):当n=0时,经验证命题成立,假设当n≤k(k≥0)时命题成立,当n=k+1时:若i=1,则a4(k+1)+1=a4k+5=a j+(4k+5−j),利用性质③:{a j+a4k+5−j∣j∈N∗,1≤j≤4k+4}={k,k+1},此时可得:a4k+5=k+1;否则,若a4k+5=k,取k=0可得:a5=0,而由性质②可得:a5=a1+a4∈{1,2},与a5=0矛盾.同理可得:{a j+a4k+6−j∣j∈N∗,1≤j≤4k+5}={k,k+1},有a4k+6=k+1;{a j+a4k+8−j∣j∈N∗,2≤j≤4k+6}={k+1,k+2},有a4k+8=k+2;{a j+a4k+7−j∣j∈N∗,1≤j≤4k+6}={k+1},又因为a4k+7<a4k+8,有a4k+7=k+1.即当n=k+1时命题成立,证毕.综上可得:a1=0,a5=a4×1+1=1.(3)令b n=a n+p,由性质③可知:∀m,n∈N∗,b m+n=a m+n+p∈{a m+p+a n+p,a m+p+a n+p+1}={b m+b n,b m+b n+1},由于b1=a1+p≥0,b2=a2+p=0,b4n−1=a4n−1+p<a4n+p=b4n,因此数列{b n}为R0数列.由(2)可知:若∀n∈N,a4n+i=n−p(i=1,2,3),a4n+4=n+1−p;S11−S10=a11=a4×2+3=2−p≥0,S9−S10=−a10=−a4×2+2=−(2−p)≥0,因此p=2,此时a1,a2,…,a10≤0,a j≥0(j≥11),满足题意.【考点】数列的概念及简单表示法,数学归纳法,数学归纳法的证明步骤【解析】【分析】(1)根据新数列R p数列的定义进行判断即可;(2)根据新数列R p数列的定义,结合数学归纳法求解即可;(3)根据新数列R p数列的定义,结合a n与s n的关系进行判断即可.。
2021年全国乙卷高考理数真题试卷(Word版+答案+解析)
2021年高考理数真题试卷(全国乙卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共60分)1.设2(z+ )+3(z- )=4+6i,则z=().A. 1-2iB. 1+2iC. 1+iD. 1-i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A. B. S C. T D. Z3.已知命题p:x∈R,sinx<1;命题q:x∈R,e|x|≥1,则下列命题中为真命题的是()A. p qB. p qC. p qD. (pVq)4.设函数f(x)= ,则下列函数中为奇函数的是()A. f(x-1)-1B. f(x-1)+1C. f(x+1)-1D. f(x+1)+15.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. B. C. D.6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A. 60种B. 120种C. 240种D. 480种7.把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin(x- )的图像,则f(x)=()A. sin( )B. sin( )C. sin( )D. sin( )8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于的概率为()A. B. C. D.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海盗的高。
如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”。
则海岛的高AB=().A.B.C.D.10.设a≠0,若x=a为函数的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a211.设B是椭圆C:(a>b>0)的上顶点,若C上的任意一点P都满足,则C的离心率的取值范围是()A. B. C. D.12.设,,,则()A. a<b<cB. b<c<aC. b<a<cD. c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2021年全国高考真题乙卷数学试卷真题(文科)(word版,含答案)
2021年普通高等学校招生全国统一考试试题数学(乙卷·文科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则 U (M ∪N)=( ) A .{5}B .{1,2}C .{3,4}D .{1,2,3,4}2.设iz =4+3i ,则z =( ) A .−3−4iB .−3+4iC .3−4iD .3+4i3.已知命题p :∃x ∈R ,sinx <1;命题q :∀x ∈R ,e |x|⩾1,则下列命题中为真命题的是( ) A .p ∧qB .¬p ∧qC .p ∧¬qD .¬(p ∨q)4.函数f(x)=sin x 3+cos x 3的最小正周期和最大值分别是( ) A .3π和√2B .3π和2C .6π和√2D .6π和25.若x ,y 满足约束条件{x +y ⩾4,x −y ⩽2,则z =3x +y 的最小值为y ⩽3,( )A .18B .10C .6D .46.cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√327.在区间(0,12)随机取1个数,则取到的数小于12的概率为( ) A .34B .23C .13D .168.下列函数中最小值为4的是( ) A .y =x 2+2x +4 B .y =|sinx|+4|sinx|C .y =2x +22xD .y =lnx +4lnx9.设函数f(x)=1−x 1+x,则下列函数中为奇函数的是( ) A .f(x −1)−1B .f(x −1)+1C .f(x +1)−1D .f(x +1)+110.在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2B .π3C .π4D .π611.设B 是尼圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A .52B .√6C .√5D .212.设a ≠0,若x =a 为函数f(x)=a(x −a)2(x −b)的极大值点,则( )A.a<b B.a>b C.ab<a2D.ab>a2二、填空题:本题共4小题,每小题5分,共20分。
2021年高考数学真题评析(新高考全国1卷带解析)
二、试卷总评
2021 年高考数学全国卷命题,试题突出数学本质,重视理性思维,坚持素养导向、能力为重的命题原则; 倡导理论联系实际、学以致用,关注我国社会主义建设和科学技术发展的重要成果,通过设计真实问题情境, 体现数学的应用价值;科学把握必备知识与关键能力的关系,科学把握数学题型的开放性与数学思维的开放 性,稳中求新,体现了基础性、综合性、应用性和创新性的考查要求.
对于
A,当
x
0,
π 2
时
π 6
x
π 6
π 3
,
f
x
0
恒成立,A
满足条件;
对于
B,当
x
π 2
,
π
时,由
f
5π 6
cos
2π 3
1 2
0
,可得
B
不满足条件;
对于
C,当
x
π,
3π 2
时,由
f
7π 6
cos π
1
0
,可得
C
不满足条件;
对于
D,当
x
3π 2
,
2π
时,由
f
19π 12
5
椭圆与基本不等式
6
三角变换及求值
7
曲线的切线条数
8
相互独立事件的概率
9
样本的数字特征
10
平面向量的数量积
11
圆的方程与性质
12
三棱柱与空间向量
13
函数的奇偶性
14
抛物线的方程及几何性质
15
导数及函数最值
16
实际问题中的数列求和
17
数列的通项与求和
18
2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)
2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)2021年全国统一高考数学试卷(新高考Ⅰ卷)注意事项:在答卷前,考生务必在答题卡上填写自己的姓名和准考证号。
回答选择题时,选出每小题的答案后,用铅笔在答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
1.(5分) 设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A。
{2} B。
{2,3} C。
{3,4} D。
{2,3,4}2.(5分) 已知z=2-i,则|z-3i|=()A。
6-2i B。
4-2i C。
6+2i D。
4+2i3.(5分) 已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2 B。
4 C。
4√2 D。
2√24.(5分) 下列区间中,函数f(x)=7sin(x)单调递增的区间是()A。
(0,π/2) B。
(π/2,π) C。
(π,3π/2) D。
(3π/2,2π)5.(5分) 已知F1,F2是椭圆C的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为()A。
13 B。
12 C。
9 D。
66.(5分) 若tanθ=-2,则cos2θ=()A。
-3/5 B。
-4/5 C。
-24/25 D。
-7/257.(5分) 若过点(a,b)可以作曲线y=ex的两条切线,则()XXX<a B。
ea<b C。
0<a<eb D。
0<b<ea8.(5分) 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,甲表示事件“两次取到的数字和为偶数”,乙表示事件“两次取到的数字都是奇数”,则P(甲∪乙)=()A。
2/3 B。
5/9 C。
7/9 D。
(Word版)2021年浙江省新高考数学试卷真题(含答案和详细解析)
2021年浙江省高考数学试题卷一、选择题1. 设集合A = {x|x≥1},B = {x| - 1 < x < 2},则A∩B()A. {x|x >- 1}B. {x|x≥1}C. {x| - 1 < x < 1}D. {x|≤x < 2}2. 已知a∈R,(1 + ai)i = 3 + i,(i为虚数单位),则a = ()A. - 1B. 1C. - 3D. 33. 已知非零向量(,则()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件4. 某几何体的三视图如图所示,则该几何体的体积是()A. 32B. 3C.3√22D. 3√25. 若实数xy满足约束条件,则z = x- 12 y,的最小值是()A. - 2B. - 32C. -12D.1106. 如图已知正方体ABCD- ABCD,M,N分别是A1D,D1B的中点,则()A. 直线A1D与直线D1B垂直,直线MN//平面ABCDB. 直线. A1D与直线. D1B平行,直线MN⊥平面BD. D1B 1.C. 直线. A 1D与直线. D1B相交,直线MN//平面ABCDD. 直线. A1D与直线. D 1B异面,直线MN⊥平面BDD1B 1.7. 已知函数f (x ) = x 2 + 14 ,g (x ) = sinx ,则图象为如图的函数可能是( )A . y = f (x ) + g (x ) - 14 B . y = f (x ) - g (x ) - 14C . y = f (x )g (x )D . y =g (x )f (x )8. 已知α,β,γ是互不相同的锐角,则在sin αcos β,sin βcos γ,sin γcos α三个值中,大于 12 的个数的最大值是( )A . 0B . 1C . 2D . 39. 已知a ,b ∈R ,ab > 0,函数f (x ) = ax 2 + b (x ∈R ). 若f (s - t ),f (s ),f (s + t )成等比数列,则平面上点(s ,t )的轨迹是( ) A 直线和圆 B . 直线和椭圆C . 直线和双曲线D . 直线和抛物线10. 已知数列﹛a n ﹜、满足a 1=1,a n1 = a n1+√a n(n ∈N *). 记数列﹛a n ﹜的前n项和为S n ,则( )A . 1 2 < S 100 < 3B . 3 < S 100 < 4C . 4 < S 100 < 9 2D . 9 2 < S 100 < 5二、填空题11. 我国古代数学家赵爽用弦图给出了勾股定理的证明. 弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示). 若直角三角形直角边的长分别是3,4,记大正方形的面积为S 1,小正方形的面积为S 2, 则 s 2s 1= ( )12. 已知a ∈r ,函数f (x )={x 2−4,x>2,|x −3|+a,x<2若f [f √6]=3,则a=( )13. 已知多项式(x-1)3 + (x+1)4 = x 4 + a 1x 3 + a 2 x 2 + a 3x + a 4 ,则 a 1 =_________ ,a 2 + a 3+ a 4 = _________ .14. 在△ABC 中,∠B = 60°,AB = 2,M 是BC 中点,AM = 2√3,则AC = _________ ,cos ∠MAC = _________ .15. 袋中有4个红球m 个黄球,n 个绿球. 现从中任取两个球,记取出的红球数为 ,若取出的两个球都是红球的概率为 1 6 ,一红一黄的概率为 13 ,则m - n =_________ ,E ( ) = _________ 。
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析2021年普通高等学校招生全国统一考试数学试卷,共22小题,满分150分,考试用时120分钟。
请考生注意以下事项:1.在答题卡上填写姓名、考生号、考场号和座位号,并用2B铅笔填涂试卷类型(A)。
2.选择题答案用2B铅笔在答题卡上涂黑,如需改动,用橡皮擦干净后再涂其他答案。
非选择题必须用黑色字迹的钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液。
3.考试结束后,请将试卷和答题卡一并交回。
一、选择题:共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合$A=x-2<x<4$,$B=\{2,3,4,5\}$,则$A$为()A。
$\{2\}$。
B。
$\{2,3\}$。
C。
$\varnothing$。
D。
$\{3,4\}$2.已知$z=2-i$,则$z(z+i)$为()A。
$6-2i$。
B。
$4-2i$。
C。
$6+2i$。
D。
$4+2i$3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2.B。
2$\sqrt{2}$。
C。
4.D。
4$\sqrt{2}$4.下列区间中,函数$f(x)=7\sin\left(x-\dfrac{\pi}{6}\right)$单调递增的区间是()A。
$\left(0,\dfrac{\pi}{2}\right)$。
B。
$\left(\dfrac{\pi}{2},\pi\right)$。
C。
$\left(\dfrac{3\pi}{2},2\pi\right)$。
D。
$\left(\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)$5.已知$F_1,F_2$是椭圆$C:x^2+y^2=1$的两个焦点,点$M$在$C$上,则$MF_1\cdot MF_2$的最大值为()A。
2021年全国高考理数真题试卷(全国甲卷)(Word版,含答案解析)
2021年高考理数真题试卷(全国甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共60分)1.设集合M={x|0<x<4},N={x| 13≤x≤5},则M∩N=()A. {x|0<x≤ 13} B. {x| 13≤x<4} C. {x|4≤x<5} D. {x|0<x≤5}【答案】B【考点】交集及其运算【解析】【解答】解:M∩N即求集合M,N的公共元素,所以M∩N={x|13≤x﹤4},故答案为:B【分析】根据交集的定义求解即可.2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%C. 估计该地农户家庭年收入的平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【考点】频率分布直方图【解析】【解答】解:对于A,由频率分布直方图得该地农户家庭年收入低于4.5万元的农户比率估计为0.02+0.04=6%,故A正确;对于B,由频率分布直方图得该地农户家庭年收入不低于10.5万元的农户比率估计为0.02×3+0.04=10%,故B正确;对于D,由频率分布直方图得该地农户家庭年收入介于4.5万元至8.5万元之间比率估计为0.10+0.14+0.20×2=0.64>0.5,故D正确故不正确的是C故答案为:C【分析】根据频率分布直方图直接求解即可.3.已知 (1−i )2z =3+2i,则z=( ) A. -1- 32 i B. -1+ 32 i C. - 32 +i D. - 32 -i【答案】 B【考点】复数代数形式的混合运算【解析】【解答】解:z =3+2i (1−i )2=3+2i −2i =(3+2i )i (−2i )i =−2+3i 2=−1+32i 故答案为:B【分析】根据复数的运算法则直接求解即可.4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记数法的数据V 满足L=5+lgV 。
2021年高考真题——理科数学(安徽卷)Word版含答案
2021年一般高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生留意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否全都。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦洁净后,再选涂其他答案标号。
3. 答第II 卷时,必需使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清楚。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必需在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、草稿纸上答题无效...........................。
4. 考试结束,务必将试卷和答题卡一并上交。
参考公式:第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。
(1)设i 是虚数单位,则复数21ii-在复平面内所对应的点位于(A )第一象限 (B )其次象限(C )第三象限(D )第四象限 (2)下列函数中,既是偶函数又存在零点的是(A )y cos x = (B )y sin x = (C )y n l x = (D )21y x =+ (3)设 ,则p 是q 成立的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4、下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= 5、已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不行能垂直于同一平面6、若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( ) (A )8 (B )15 (C )16 (D )327、一个四周体的三视图如图所示,则该四周体的表面积是( ) (A )13+ (B )23+(C )122+ (D )228、C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b -⊥B9、函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c < 10、已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<-(C )()()()202f f f -<< (D )()()()202f f f <<- 其次卷 二.填空题11.371()x x+的开放式中3x 的系数是 (用数字填写答案) 12.在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是13.执行如图所示的程序框图(算法流程图),输出的a 为14.已知数列{}n a 是递增的等比数列,24239,8a a a a +==,则数列{}n a 的前n 项和等于15. 设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出全部正确条件的编号)(1)3,3a b =-=-;(2)3,2a b =-=;(3)3,2a b =->;(4)0,2a b ==;(5)1,2a b ==. 三.解答题16.在ABC ∆中,,6,324A AB AC π===,点D 在BC 边上,AD BD =,求AD 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学真题试卷(新高考Ⅰ卷)一、选择题:本题共8小题,每小题5分,共40分。
1.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4,}D. {2,3,4}【答案】B【考点】交集及其运算【解析】【解答】解:根据交集的定义易知A∩B是求集合A与集合B的公共元素,即{2,3},故答案为:B【分析】根据交集的定义直接求解即可.2.已知z=2-i,则( z(z⃗+i)=()A. 6-2iB. 4-2iC. 6+2iD. 4+2i【答案】C【考点】复数的基本概念,复数代数形式的混合运算【解析】【解答】解:z(z+i)=(2−i)(2+2i)=4+4i−2i−2i2=6+2i故答案为:C【分析】根据复数的运算,结合共轭复数的定义求解即可.3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2 √2C. 4D. 4 √2【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:根据底面周长等于侧面展开图弧长,设母线为l,底面半径为r,则有2πr=180°360°×2πl,解得l=2r=2√2故答案为:B【分析】根据底面周长等于侧面展开图弧长,结合圆的周长公式与扇形的弧长公式求解即可.4.下列区间中,函数f(x)=7sin( x−π6)单调递增的区间是()A. (0, π2) B. ( π2, π) C. ( π, 3π2) D. ( 3π2, 2π)【答案】A【考点】正弦函数的单调性【解析】【解答】解:由−π2+2kπ≤x−π6≤π2+2kπ得−π3+2kπ≤x≤2π3+2kπ,k∈Z,当k=0时,[−π3,2π3]是函数的一个增区间,显然(0,π2)⊂[−π3,2π3],故答案为:A【分析】根据正弦函数的单调性求解即可.5.已知F 1,F 2是椭圆C :x 29+y 24=1 的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A. 13 B. 12 C. 9 D. 6 【答案】 C【考点】基本不等式在最值问题中的应用,椭圆的定义【解析】【解答】解:由椭圆的定义可知a 2=9,b 2=4,|MF 1|+|MF 2|=2a=6, 则由基本不等式可得|MF 1||MF 2|≤|MF1||MF2|≤(|MF1|+|MF2|2)2=9 ,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故答案为:C【分析】根据椭圆的定义,结合基本不等式求解即可. 6.若tan θ =-2,则sin θ(1+sin2θ)sin θ+cos θ=( )A. −65 B. −25 C. 25 D. 65 【答案】 C【考点】二倍角的正弦公式,同角三角函数间的基本关系,同角三角函数基本关系的运用 【解析】【解答】解:原式=sinθ(sin 2θ+2sinθcosθ+cos 2θ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ)=sin 2θ+sinθcosθsin 2θ+cos 2θ=tan 2θ+tanθtan 2θ+1=25故答案为:C【分析】根据同角三角函数的基本关系,结合二倍角公式求解即可. 7.若过点(a,b)可以作曲线y=e x 的两条切线,则( ) A. e b <a B. e a <b C. 0<a<e b D. 0<b<e a 【答案】 D【考点】极限及其运算,利用导数研究曲线上某点切线方程【解析】【解答】解:由题意易知,当x 趋近于-∞时,切线为x=0,当x 趋近于+∞时,切线为y=+∞,因此切线的交点必位于第一象限,且在曲线y=e x 的下方. 故答案为:D【分析】利用极限,结合图象求解即可.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立 【答案】 B【考点】相互独立事件,相互独立事件的概率乘法公式,古典概型及其概率计算公式 【解析】【解答】解:设甲乙丙丁事件发生的概率分别为P(A),P(B),P(C),P(D), 则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16 ,对于A ,P(AC)=0;对于B ,P(AD)=16×6=136; 对于C ,P(BC)=16×6=136; 对于D ,P(CD)=0.若两事件X,Y 相互独立,则P(XY)=P(X)P(Y), 故B 正确. 故答案为:B【分析】根据古典概型,以及独立事件的概率求解即可二、选择题:本题共4小题。
每小题5分,共20分。
在每小题给出的选项中,有多项符合 题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.有一组样本数据x 1 , x 2,…,x n ,由这组数据得到新样本数据y 1 , y 2,…,y n ,其中y i =x i +c(i=1,2,…,n),c 为非零常数,则( )A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样本数据的样本极差相同 【答案】 C,D【考点】众数、中位数、平均数,极差、方差与标准差 【解析】【解答】解:对于A ,x =x 1+x 2+⋯+x nn,y =y 1+y 2+⋯+y nn=x 1+x 2+⋯+x nn+c =x +c , 因为c≠0,所以x ≠y , 故A 错误;对于B ,若x 1,x 2,……,x n 的中位数为x k , 因为y i =x i +c ,因为c≠0,所以y 1,y 2,……,y n 的中位数为y k =x k +c≠x k , 故B 错误;对于C ,y 1,y 2,……,y n 的标准差为S y =1n √(y 1−y )2+(y 2−y )2+⋯(y n −y )2=1n√[(x +c )−(x +c )]2+[(x +c )−(x +c )]2+⋯[(x +c )−(x +c )]2=1n √(x 1−y )2+(x 2−y )2+⋯(x n −y )2=S x , 故C 正确;对于D ,设样本数据x 1,x 2,……,x n 中的最大为x n , 最小为x 1,因为y i =x i +c ,所以y 1,y 2,……,y n 中的最大为y n , 最小为y 1,极差为y n -y 1=(x n +c)-(x 1+c)=x n -x 1 , 故D 正确. 故答案为:CD【分析】根据平均数,中位数,标准差的定义求解即可.10.已知O 为坐标原点,点P 1(cosα,sinα),P 2(cosβ,-sinβ),P 3(cos(α+β),sin(α+β)),A(1,0),则( ) A. | OP 1⃗⃗⃗⃗⃗⃗⃗| = |OP 2⃗⃗⃗⃗⃗⃗⃗⃗⃗| B. |AP 1⃗⃗⃗⃗⃗⃗⃗| = |AP 2⃗⃗⃗⃗⃗⃗⃗| C. OA ⃗⃗⃗⃗⃗⃗·OP 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = OP 1⃗⃗⃗⃗⃗⃗⃗·OP 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ D. OA ⃗⃗⃗⃗⃗⃗·OP 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=OP 2⃗⃗⃗⃗⃗⃗⃗·OP 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 【答案】 A,C【考点】平面向量数量积的坐标表示、模、夹角,平面向量数量积的运算,两角和与差的余弦公式,两角和与差的正弦公式【解析】【解答】解:|OP 1→|=√cos 2α+sin 2α=1,|OP 2→|=√cos 2β+sin 2β=1 , 故A 正确; 因为|AP 1→|=√(cosα−1)2+sin 2α=√2−2cosα,|AP 2→|=√(cosβ−1)2+sin 2β=√2−2cosβ , 故B 错误;因为OA →·OP 3→=1×cos (α+β)+0×sin (α+β)=cos (α+β) , OP 1→·OP 2→=cosαcosβ−sinαsinβ=cos (α+β) , 所以OA →·OP 3→=OP 1→·OP 2→故C 正确;因为OA →·OP 1→=1×cosα+0×sinα=cosα ,OP 2→·OP 3→=(cosβ,−sinβ)·(cos (α+β),sin (α+β))=cosβ×cos (α+β)+(−sinβ)×sin (α+β)=cos (α+2β) , 所以D 错误 故答案为:AC.【分析】根据向量的数量积,及向量的求模直接求解即可.11.已知点P 在圆 (x −5)2 + (y −5)2 =16上,点A (4,0),B (0,2),则( ) A. 点P 到直线AB 的距离小于10 B. 点P 到直线AB 的距离大于2 C. 当∠PBA 最小时,|PB|=3 √2 D. 当∠PBA 最大时,|PB|=3 √2 【答案】 A,C,D【考点】直线的截距式方程,点到直线的距离公式,直线与圆的位置关系 【解析】【解答】解:直线AB 为:x4+y2=1 , 即x+2y-4=0, 设点P (5+4cosθ,5+4sinθ),则点P 到直线AB 的距离为d =√12+22=√5sin √5, 则d max =√5√5<10,d min =√5√5<2所以A 正确B 错误;又圆心O 为(5,5),半径为4,则|OB |=√(5−0)2+(5−2)2=√34 ,所以当直线PB 与圆相切时,∠PBA 取得最值,此时,|PB |=√|OB|2−r 2=√34−16=3√2 所以CD 正确 故答案为:ACD.【分析】根据直线的截距式,利用点到直线的距离公式,以及直线与圆的位置关系求解即可.12.在正三棱柱ABC- A 1B 1C 1 中,AB=AA 1=1,点P 满足 BP →=λBC →+μBB 1→,其中λ∈[0,1], μ ∈[0,1],则( )A. 当λ=1时,△ AB 1 P 的周长为定值B. 当 μ =1时,三棱锥P-A 1BC 的体积为定值C. 当λ= 12 时,有且仅有一个点P ,使得 A 1P ⊥BPD. 当 μ = 12 时,有且仅有一个点P ,使得 A 1 B ⊥平面A B 1 P 【答案】 B,D【考点】棱柱、棱锥、棱台的体积,直线与平面垂直的判定【解析】【解答】解:由 点P 满足 BP →=λBC →+μBB 1→可知点P 在正方形BCC 1B 1内,对于A ,当λ=1时,可知点P 在CC 1(包括端点)上运动,如下图所示,△AB 1P 中,AB 1=√2,AP =√1+μ2,B 1P =√1+(1−μ)2 , 因此周长L=AB+AP+B 1P 不为定值,故A 错误.对于B ,当μ=1时,可知点P 在B 1C 1(包括端点)上运动,如下图所示, 易知B 1C 1//平面A 1BC ,即点P 到平面A 1BC 的距离处处相等,△A 1BC 的面积是定值,所以三棱锥P-A 1BC 的体积为定值,故B 正确;对于C,当λ=1时,分别取线段BB1,CC1的中点M,N,可知点P在线段DD1(包括端点)上运动,如2下图所示,很显然若点P与D,D1重合,均满足题意,故C错误;对于D,当μ=1时,分别取线段BB1,CC1的中点D,D1,可知点P在线段DD1(包括端点)上运动,2如下图所示,此时,有且只有点P与点N重合时,满足题意,故D正确.故答案为:BD【分析】根据三角形的周长,棱锥的体积的求法,利用特殊点进行判断AB即可,根据线线垂直及线面垂直的判定定理,利用特殊点进行判断CD即可.三、选择题:本题共4小题,每小题5分,共20分13.已知函数f(x)= x3(a·2x−2−x)是偶函数,则a=________【答案】1【考点】函数奇偶性的判断,函数奇偶性的性质【解析】【解答】解:设g(x)=a·2x−2−x,则题意可知函数g(x)为奇函数,则g(0)=a·20-2-0=a-1=0,故a=1故答案为:1【分析】根据函数的奇偶性的判定,结合奇函数的性质求解即可.14.已知O为坐标原点,抛物线C: y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP,若|FQ|=6,则C的准线方程为________【答案】x=−32【考点】直线的点斜式方程,抛物线的定义【解析】【解答】解:由题意可设P(p2,p),则K OP=2,K QP=−12,因此直线PQ的方程为:y−p=−12(x−p2)令y=0,得x=52p因此|FQ|=52P−P2=2P=6则p=3因此抛物线C的准线方程为:x=−p2=−32【分析】根据抛物线的定义及几何性质,结合直线的方程求解即可.15.函数f(x) =|2x-l|-2lnx的最小值为________【答案】1【考点】利用导数研究函数的单调性,利用导数求闭区间上函数的最值,分段函数的应用 【解析】【解答】解:①当x >12时,f (x )=2x-1-2lnx ,则f ′(x )=2−2x =2(x−1)x,当x>1时,f'(x)>0,当12<x <1时,f'(x)<0,所以f (x )min =f (1)=1; ②当0<x ≤12时,f (x )=1-2x-2lnx ,则f ′(x )=−2−2x=−2(x+1)x <0 ,此时函数f (x )=1-2x-2lnx 在(0,12]上为减函数,则f (x )min =f (12)=2ln2>1 ,综上,f (x )min =1 故答案为:1【分析】根据分段函数的定义,分别利用导数研究函数的单调性与最值,并比较即可求解16.某校学生在研究民间剪纸艺术时,发现此纸时经常会沿纸的某条对称轴把纸对折。