初一数学上册必考的知识点及重难点

合集下载

七年级数学上册知识点难点

七年级数学上册知识点难点

七年级数学上册知识点难点在七年级学习数学是一件非常重要的事情,因为这是学生们数学知识体系的起点。

在学习过程中,难点学习是不可避免的。

下面将重点介绍七年级数学上册的知识点和难点。

1. 整数与小数整数和小数是七年级数学上册的重点。

在学习整数的过程中,需要了解整数的概念、大小比较、相反数、绝对值等基本概念。

在学习小数的过程中,需要了解小数、分数、百分数之间的转化关系。

2. 坐标系与平面图形在七年级数学上册中,学习了坐标系和平面图形的相关知识。

要熟练掌握如何用坐标表示一个点的位置,以及如何根据坐标系来推导平面图形的性质。

3. 数学式与方程数学式和方程是七年级数学上册必须掌握的知识点。

在学习数学式和方程的过程中,需要了解如何列方程、方程的解法以及方程应用题的解题思路。

4. 数据的分析与统计在七年级数学上册,学习了数据的分析与统计。

学生需要了解如何用图表表示数据,如何计算数据的中心趋势和离散程度,以及如何进行数据的比较和分析。

5. 图形的变换图形的变换是七年级数学上册的难点之一。

学生需要了解平移、旋转、对称等各种图形变换的概念、性质和应用。

6. 空间与几何体在七年级数学上册,学生需要了解三维空间和几何体的相关知识。

需要了解空间中的位置关系、立体图形的名称、性质及表达方式,以及用剖面图展示几何体的形状和结构。

7. 代数式和初步函数在七年级数学上册的学习中,学生需要对代数式和初步函数有更深刻的认识。

需要熟悉代数式的常见形式、展开公式和因式分解,了解函数的概念和一些常见函数的图像及性质。

总结通过学习,我们可以看到七年级数学上册的知识点有整数与小数、坐标系与平面图形、数学式与方程、数据的分析与统计、图形的变换、空间与几何体、代数式和初步函数等。

学生在学习时要注重理论知识的掌握,实践操作的提高,多思考多练习,不断巩固提高自己的数学水平。

七年级上数学重难点知识点

七年级上数学重难点知识点

七年级上数学重难点知识点数学是学生们必修的学科之一,对于初中七年级的学生来说,数学是他们学习的重点之一。

在初中七年级上学期的数学教学中,有一些知识点是很重要也很难掌握的。

下面就来详细讲解一下初中七年级上学期数学的重难点知识点。

1. 基本运算规则和计算方法数学学习的基础是掌握基本的运算规则和计算方法。

在初中七年级上学期的数学中,学生需要掌握四则运算、分数运算和小数运算等基本运算规则和计算方法。

其中,分数运算和小数运算是比较难掌握的,需要学生认真练习和巩固。

2. 代数式的认识和运算代数式是数学中最基本的概念之一,是解决复杂计算的重要方法。

在初中七年级上学期的数学中,学生需要学会如何列代数式以及如何运用代数式进行计算。

这些知识点需要学生进行大量的练习,才能真正掌握。

3. 数据统计与图形的应用数据统计和图形的应用是初中数学中比较难的部分之一。

在初中七年级上学期的数学中,学生需要学会如何收集数据、整理数据以及如何运用图表进行数据的展示。

这些知识点不仅需要学生对数学的理解能力,还需要学生具备分析问题和解决问题的能力。

4. 方程的应用和解法方程是数学中比较重要的一部分,也是比较复杂的一部分。

在初中七年级上学期的数学中,学生需要学习如何列方程和如何解方程。

这些知识点需要学生反复练习和巩固,才能真正掌握。

5. 几何图形的认识和运用几何图形是初中数学中比较重要的一部分。

在初中七年级上学期的数学中,学生需要学习识别几何图形、计算几何图形的面积和周长等知识点。

这些知识点需要学生认真学习和练习,才能够掌握。

6. 比例和百分数的应用比例和百分数是初中七年级上学期数学的重点难点之一。

学生需要学习如何计算比例和百分数的应用,这需要学生进行大量的练习和巩固。

7. 数据的处理和应用数据的处理和应用是初中七年级上学期数学的重点难点之一。

学生需要掌握数据的整理、分析和应用,这要求学生具备良好的数学思维能力和数据分析能力。

总之,在初中七年级上学期的数学中,以上这些知识点是非常重要的,也是比较难掌握的。

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点

初一数学上册必考知识
点及重难点
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
初一数学上册必考知识点及重难点第一章有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清。

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点,附考试重难点知识点一:整数的加减运算包括带符号整数的相加、相减,掌握正负数的加减法规则,注意进位借位等概念。

知识点二:小数的加减运算掌握小数点的对齐,小数的进位和退位规则,注意小数的加减运算要多注意精度。

知识点三:分数的加减运算掌握分数的相加、相减运算方法,注意通分和约分的规则。

知识点四:平方数与平方根了解平方数的概念和性质,掌握求平方数和平方根的方法。

知识点五:计算器的使用了解计算器的基本功能和使用方法,能够使用计算器进行简单的四则运算。

知识点六:倍数和公约数了解倍数和公约数的概念,能够求一个数的倍数和公约数。

知识点七:分数的乘除运算掌握分数的乘法和除法运算方法,注意化简分数和约分的规则。

知识点八:比例与比例关系了解比例和比例关系的概念,能够根据已知的比例关系求解未知量。

知识点九:几何图形的认识了解常见的几何图形,如直线、尖角、直角、钝角、平行线等,并能够辨认不同的几何图形。

知识点十:面积与周长的计算掌握常见几何图形的面积和周长的计算方法,如矩形、正方形、三角形等。

知识点十一:三角形的性质了解三角形的性质,包括三角形的内角和为180度等。

知识点十二:百分数的计算掌握百分数的转化和计算方法,能够将百分数转化为小数和分数,并进行相关运算。

知识点十三:二次根式的运算了解二次根式的概念和运算方法,包括二次根式的加减运算和化简。

知识点十四:代数式的计算能够进行代数式的加减乘除运算,了解代数式的计算规则。

知识点十五:一元一次方程掌握一元一次方程的基本概念和解法,能够根据题意列方程并求解。

知识点十六:数据的收集与整理了解数据的收集方法和整理方法,能够根据已有的数据绘制图表。

知识点十七:统计与概率了解统计与概率的基本概念,能够进行简单的统计和概率计算。

知识点十八:商与余数的计算掌握除法的基本概念和计算方法,能够计算商和余数。

知识点十九:直角坐标系与图形了解直角坐标系的概念和特点,能够根据已知的坐标绘制图形。

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点第一章有理数1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数运算、科学计数法、有效数字难点:绝对值易错点:绝对值、有理数运算中考必考:科学计数法、相反数(选择题)第二章整式的加减1.整式2.整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、运算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程1.从算式到方程2.解一元一次方程----合并同类项与移项3.解一元一次方程----去括号去分母4.实际问题与一元一次方程重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不明白如何找等量关系第四章图形认识实步1.多姿多彩的图形2.直线、射线、线段3.角4.课题实习----设计制作长方形形状的包装纸盒要练说,得练听。

听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。

我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我专门重视教师的语言,我对幼儿说话,注意声音清晰,高低起伏,抑扬有致,富有吸引力,如此能引起幼儿的注意。

当我发觉有的幼儿不用心听别人发言时,就随时夸奖那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们用心听,用心记。

平常我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,如此幼儿学得生动爽朗,轻松愉快,既训练了听的能力,强化了经历,又进展了思维,为说打下了基础。

重点:直线、射线、线段、角的认识、中点和角平分线的相关运算、余角和补角,方位角等难点:中点和角平分线的相关运算、余角和补角的应用我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点1.整数的概念:正整数、负整数和零。

2.数轴的概念和使用。

3.整数的比较和大小关系。

4.整数的相反数和绝对值。

5.整数的加法与减法。

6.整数的加减法性质。

7.整数的乘法与除法。

8.乘积的正负性。

9.除法的性质。

10.乘方的概念和运算。

11.乘方的特例:0、1和负整数指数。

12.平方根的概念和运算。

13.数的正负的乘方。

14.有理数的概念和表示。

15.有理数的四则运算。

16.有理数的加减乘除法性质。

17.加减乘除法的混合运算。

18.小数的概念和表示。

19.有限小数和循环小数的概念。

20.小数的相加与相减。

21.有理数的乘法和除法。

22.有理数乘除运算的性质。

23.百分数的概念和表示。

24.百分数与小数的相互转换。

25.百分数的增减。

26.百分数的倍数和倍数的百分数。

27.分数的概念和表示。

28.真分数、假分数和带分数的概念。

29.分数的大小比较和性质。

30.分数的相加和相减。

31.分数的相乘和相除。

32.倒数的概念和运算。

33.分数化简与约分。

34.分数的混合运算。

35.分数方程的解法。

36.分数不等式的解法。

37.分数的小数表示。

38.循环小数与无理数的概念。

39.循环小数与分数的相互转换。

40.循环小数的加减乘除法。

41.百分数的小数表示。

42.百分数的应用。

43.有理数的运算问题的解法。

以上是七年级数学上册必考的43个知识点,学生可以通过对这些知识点的理解和掌握,提高自己的数学水平,更好地应对考试和日常学习中的数学问题。

初一数学知识点上册(重点讲解)

初一数学知识点上册(重点讲解)

初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式; (6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 . 有理数1.有理数:(1)凡能写成)0p q ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

初一数学上册必考知识点及 重难点

初一数学上册必考知识点及    重难点

初一数学上册必考知识点及重难点
第一章 有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章 整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项
易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章 一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章 图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用
易错点:等量关系不会转化、审题不清。

人教初一数学上册知识点

人教初一数学上册知识点

人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。

比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。

②重要程度:在初一数学里超级重要。

它是学习后面各种计算、方程的基础。

很多数学概念和实际问题的解决都是基于有理数的运算。

③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。

④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。

2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。

单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。

②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。

③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。

④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。

二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。

②关联知识:和后面要学的无理数合起来就是实数了。

有理数的运算规则对整式运算也有启发意义。

③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。

关键点就是得牢记运算规则,多做练习。

④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。

考查方式从单纯的计算,到在应用题中的运算都有。

2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。

②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。

③重难点分析:整式的系数、次数概念容易混淆,这是难点。

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点

初一数学上册必考知识点
及重难点
The latest revision on November 22, 2020
初一数学上册必考知识点及重难点
第一章有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减
第三章一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清。

七年级上册数学必备重难点知识总结大全

七年级上册数学必备重难点知识总结大全

七年级上册数学必备重难点知识总结大全七年级上册数学重难点知识1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。

3、相反数只有符号不同的两个数互为相反数。

(如2的相反数是-2,0的相反数是0)4、绝对值(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律。

有理数减法法则:减去一个数等于加上这个数的倒数。

1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律、结合律、分配律。

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

初一数学必考的23个知识点,考试必掌握的重难点

初一数学必考的23个知识点,考试必掌握的重难点

初一数学必考的23个知识点,考试必掌握的重难点初中数学是数学学科的一个重要阶段,是学生数学学习的关键时期。

在初一数学中,有很多重要的知识点必须掌握,这些知识点不仅是考试中必考的内容,而且也为学生未来的学习奠定基础。

本文将介绍初一数学必考的23个知识点,考试必掌握的重难点。

一、整数的运算整数是数学中的基本概念之一,初一数学中,整数的加减乘除、绝对值、相反数、自然数等多个概念与运算规律都需要掌握。

二、分数的加减乘除初一数学中,分数的加减乘除是一个非常重要的知识点。

首先,要会化简分数和将分数转化为小数的方法,然后再学习分数的加减乘除,要注意前两者的先后顺序和分子分母的运算法则。

三、小数的加减乘除小数是生活中非常常见的数学概念,初一数学中,小数的加减乘除同样也是一个重要的知识点,需要重点掌握小数位数的处理方法。

四、代数式的写法及运算代数式是初中数学中最重要的概念之一,代数式的写法及运算是一个非常重要的知识点。

初一数学中主要学习代数式的基本概念、如何拆分代数式、如何化简算式以及如何代入数值等。

五、乘法公式乘法是数学运算中最重要的运算之一,对于初一数学学生来说,需要重点学习乘法公式,尤其是平方公式、差平方公式和和差平方公式。

六、两点间的距离公式初一数学中,两点之间的距离公式是一个非常实用的知识点,需要学习如何计算两点之间的距离。

七、勾股定理勾股定理是初中数学中的重要定理之一,是初中数学中必学的知识点,需要重点学习勾股定理的概念、证明和应用。

八、比例与比例应用比例是生活中常见的概念之一,初一数学中主要学习比例的定义、比例的性质以及比例应用的方法和技巧。

九、百分数及其应用百分数是初一数学中一个重要的知识点,学生需要学习百分比的含义、基本的计算方法、应用技巧以及百分数与分数和小数的关系等。

十、平均数的概念及计算方法平均数是初中数学中一个重要的概念,初一数学中主要学习平均数的定义、计算方法以及平均数在生活中的应用。

初一数学必考的23个知识点,考试必掌握的重难点

初一数学必考的23个知识点,考试必掌握的重难点

初一数学必考的23个知识点,考试必掌握的重难点初一数学必考的23个知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。

(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。

)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较1.有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

初一数学上册必考知识点

初一数学上册必考知识点

初一数学上册必考知识点一、代数初步知识。

1.代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。

二、几个重要的代数式(m、n表示整数)。

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2。

三、有理数。

1.有理数:(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0。

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点数学是一门重要的学科,也是初中阶段必备的知识点之一。

初一数学的学习内容比较广泛,下面就是21个初一数学必考的知识点。

一、小数小数是数学中的重要知识点,常见的有小数的加减乘除,小数的比较大小等。

二、分数分数也是数学中一个重要的知识点,考试中经常考察分数的简单加减乘除,以及分数的化简等。

三、整数运算整数是初中数学的基础知识,整数的加减乘除是初一数学必考的知识点之一。

四、比例比例是初一数学中比较基础的知识点,重点在于比例的解法和应用题的解决。

五、百分数百分数是初一数学中重要的知识点之一,常常与小数和分数有关,并且与实际生活中的百分比计算密切相关。

六、图形的认识和构造图形的认识与构造是初一数学必考的知识点之一,涉及面积、周长和角度的计算等问题。

七、正比例函数正比例函数作为初一数学中的高阶知识点,重在掌握函数的表达式、图象以及应用题的解决方法。

八、平面向量平面向量是初一数学中的重要知识点之一,与图形的几何性质相关,在几何中有广泛的应用。

九、三角形的性质三角形是初中阶段几何学的重要知识点之一,需要学生掌握三角形内角和等于180度等性质以及三角形的分类和计算,此为初一数学必考的知识点之一。

十、勾股定理勾股定理是初中数学中经典的定理之一,重在计算直角三角形的各边长,并进行应用题的解决。

十一、圆的基本性质圆是初中数学中常见的图形之一,在计算圆的周长和面积,解决应用题时重在掌握各种公式的使用和推导方法。

十二、立体几何立体几何是初中数学中的高级知识点,对于初一学生而言,主要是掌握基本的体积、表面积计算以及各种立体图形的构造和空间位置关系等知识。

十三、一元一次方程一元一次方程是初中学习数学的重要知识点之一,需要学生掌握方程的解法和应用题的解决方法。

十四、平面直角坐标系平面直角坐标系是数学中常见的图形之一,需要学生掌握坐标系的建立和使用,以及各种坐标计算。

十五、函数的概念与性质函数的概念与性质是初中数学中难度比较大的知识点之一,需要学生掌握函数的定义,函数的图象,以及函数的分类等知识点。

七年级数学上册必考知识点

七年级数学上册必考知识点

七年级数学上册必考知识点数学是一门需要长期积累的学科,在初中阶段,各个年级的数学知识点都非常重要,因为它们会作为基础知识累积进入高中和大学。

在七年级数学上册中,有些知识点被认为是必考的,这篇文章将会详细介绍这些知识点。

一、数的性质在数学运算中,数的性质是非常重要的,因此七年级学生需要掌握以下数的性质:1. 零的性质:任何数和零相加,其结果仍为该数本身。

该知识点常用于简化运算。

2. 整数的比较大小:掌握整数之间的大小比较,这有助于解决大小关系的问题。

3. 分数的大小比较:掌握分数之间的大小比较,有助于解决比例和容积问题。

4. 负数的性质:了解负数的性质和运算规律,这有助于解决负数的乘除问题。

5. 小数的性质:掌握小数的大小比较和四则混合运算,这有助于解决小数和分数之间的转换问题。

二、正比例与反比例正比例和反比例是数学中的重要概念,这两个概念在七年级数学上册中也非常重要。

1. 正比例:两个数成正比例意味着它们的比值始终保持不变。

例如,如果三个苹果的价格是$2,那么六个苹果的价格就是$4。

2. 反比例:两个数成反比例意味着它们的乘积始终保持不变。

例如,如果三个人需要五天时间完成一项任务,那么六个人就只需要2.5天时间了。

三、图形的基本性质图形是数学中的重要概念,每个七年级的学生都应该掌握以下图形的基本性质:1. 三角形:掌握三角形的种类和性质,如等边三角形、等腰三角形、直角三角形等。

2. 四边形:掌握四边形的种类和性质,如平行四边形、矩形、正方形、菱形和梯形等。

3. 圆:掌握圆的基本概念和重要性质,如半径、直径、周长和面积等。

四、方程的解法方程是数学中的一种重要表示形式,七年级的学生需要掌握方程的基本解法。

1. 一元一次方程:掌握利用加减、乘除以及移项等方法解一元一次方程,这可以帮助学生解决很多实际问题。

2. 一元两次方程:掌握用配方法、公式法等解法解一元二次方程,这是高中阶段初步代数的基础。

总结在七年级数学上册中,数的性质、正比例与反比例、图形的基本性质和方程的解法都是非常重要的知识点,掌握这些知识点可以帮助学生更好地理解数学概念和应用方法,为高中数学打下坚实的基础。

初中七年级上册数学重难点

初中七年级上册数学重难点

初中七年级上册数学重难点一、有理数。

1. 重点。

- 有理数的概念:整数和分数统称为有理数。

要能准确区分正有理数、负有理数和0。

例如, -3是负有理数,2是正有理数,0既不是正数也不是负数。

- 数轴:理解数轴的三要素(原点、正方向、单位长度),会用数轴上的点表示有理数,并且能根据数轴比较有理数的大小。

在数轴上,右边的数总比左边的数大。

- 相反数:互为相反数的两个数之和为0。

如3和 -3是相反数,它们满足3+( -3)=0。

- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,5 = 5, - 5=5。

会计算有理数的绝对值,并且能利用绝对值比较两个负数的大小,两个负数比较大小,绝对值大的反而小。

- 有理数的四则运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

- 减法法则:减去一个数,等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

- 除法法则:除以一个不等于0的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

2. 难点。

- 绝对值概念的理解:绝对值的几何意义(表示数在数轴上的点到原点的距离)和代数意义的结合运用。

例如,当a<0时,| a|=-a,这里的-a是正数,学生容易混淆。

- 有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。

在计算过程中,要注意符号的变化,很多学生在这方面容易出错。

例如,计算2 - 3×(-2)^2,要先算乘方(-2)^2 = 4,再算乘法3×4 = 12,最后算减法2-12=-10。

二、整式的加减。

1. 重点。

- 单项式、多项式的概念:由数与字母的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式;几个单项式的和叫做多项式。

初一数学必考的个知识点重难点

初一数学必考的个知识点重难点

一、数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。

)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

二、相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

三、绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)四、有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b.五、有理数的减法有理数减法法则:减去一个数,等于加上这个数的相反数。

七年级上册数学重点难点

七年级上册数学重点难点

七年级上册数学重点难点
一、有理数
1.重点:
-理解有理数的概念,包括正有理数、负有理数和零。

-掌握有理数的加减法、乘除法及混合运算规则。

-会比较有理数的大小。

2.难点:
-对负数概念的理解,特别是涉及到实际问题中的负数意义。

-有理数混合运算的顺序及准确性。

二、整式的加减
1.重点:
-认识单项式、多项式的概念。

-掌握整式的概念,包括同类项的识别与合并。

2.难点:
-准确识别同类项并进行合并。

-理解整式加减的实质是去括号与合并同类项。

三、一元一次方程
1.重点:
-理解一元一次方程的概念及方程的解的含义。

-掌握一元一次方程的解法。

-能运用一元一次方程解决实际问题。

2.难点:
-解方程过程中去分母、去括号等步骤的准确操作。

-从实际问题中抽象出数学模型,列出一元一次方程。

四、几何图形初步
1.重点:
-认识常见的几何图形,如点、线、面、体。

-掌握直线、射线、线段的概念及表示方法。

-会进行角的度量与角的运算。

2.难点:
-理解立体图形与平面图形之间的关系。

-角的度分秒的换算及复杂角度的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册必考的知识点及重难点1.整数:
-整数的概念及表示方法;
-整数之间的大小关系;
-整数的加法、减法、乘法和除法运算;
-整式的化简和展开。

2.分数:
-分数的概念及表示方法;
-分数与数轴的关系;
-分数的加法、减法、乘法和除法运算;
-分数的化简和约分。

3.小数:
-小数的概念及表示方法;
-小数与分数的相互转换;
-小数的加法、减法、乘法和除法运算;
-小数的进位与舍位计算。

4.平方根:
-平方根的概念及表示方法;
-平方根的计算;
-平方根与平方的关系;
-平方根的应用。

5.比例与比例的应用:
-比例的概念及表示方法;
-比例的性质与判定方法;
-比例的四种基本关系;
-比例的应用,如物体相似、线段分割等。

6.百分数与百分数的应用:
-百分数的概念及表示方法;
-百分数与分数、小数的相互转换;
-百分数的基本计算;
-百分数的应用,如利润、增长率、折扣等。

7.几何图形:
-点、线、面、角的基本概念;
-直线、射线、线段的区别与判定方法;
-正方形、长方形、菱形、平行四边形等各种图形的性质;
-三角形及各种特殊三角形的性质。

8.平面与空间:
-平面与立体图形的概念;
-各种立体图形的性质,如长方体、正方体、棱锥、棱柱等;
-空间几何体的展开与折叠。

9.统计与概率:
-了解统计学的基本概念;
-数据的收集、整理与分析方法;
-概率的基本概念及计算方法;
-利用概率进行问题解答。

1.整数运算中的进位与舍位计算;
2.分数和小数之间的转换;
3.平方根的计算和应用;
4.比例和百分数的应用问题;
5.图形的性质及判定方法;
6.立体图形的展开与折叠;
7.数据的收集、整理与分析方法;
8.概率的计算和应用。

要提高数学水平,建议学生重点掌握以下方法:
1.培养数学的逻辑思维能力,学会分析问题并找出解决方法;
2.注重基础知识的掌握,特别是对概念和运算规则的理解;
3.多进行练习,通过做题来巩固知识,理清思路;
4.注意归纳总结,将不同类型的题目归类整理,帮助记忆和应用;
5.多与同学和老师进行交流和讨论,探讨解题思路和方法;
6.及时查漏补缺,对于不懂的知识点可以与老师或同学请教。

通过以上的学习和练习,相信学生可以综合运用数学的知识和方法,提高数学解题的能力,取得更好的成绩。

相关文档
最新文档