垂直平分线的作图方法
1.3.2_线段的垂直平分线(2)
D
提示:
因为直线CD与线段AB的交点就是AB的中点,所以我们也用 这种方法作线段的中点.
回顾
思考 2
线段的垂直平分线的 性质定理
M
定理 线段垂直平分线上的点到这
条线段两个端点距离相等.
如图, ∵AC=BC,MN⊥AB,P是MN上任意一点 (已知), A ∴PA=PB (线段垂直平分线上的点到这 条线段两个端点距离相等).
所作出的三角形都全等吗? 若已知等腰三角形的底及底边上的高,
你能用尺规作出等腰三角形吗?能作几个?
做一做
初 露 锋 芒
已知底边及底边上的高,利用尺规作等腰三角形
a
h
已知:线段a,h(如图).
求作: △ABC,使AB=AC,且BC=a,高AD=h.
你能亲自写出作法吗?
随堂练习
已知:线段a,h(如图).
N
提示:这个结论是经常用来证明点在直线上
(或直线经过某一点)的根据之一.
试一试
小 试 牛 刀
1、已知直线和直线上一点P,利用尺规作直线
的垂线,使它经过点P.
C C
●
P B
A
D
l
想 一 想
学 无 止 境
1、已知直线和直线外一点P,利用尺规作直线 的垂线,使它经过点P.
P
●
l
想一想,做一做
利用尺规作出三角 形三条边的垂直平分线.
P
C
N
B
提示:
这个结论是经常用来证明两条线段相等的根据之一.
回顾
思考 3
线段的垂直平分线的 性质定理的逆定理
P
逆定理 到一条线段两个端点距离相等的点,在 这条线段的垂直平分线上. M 如图,
线段的垂直平分线 -八年级数学上册课件(沪科版)
对应练习
4、公路 l 同侧的A,B两村,共同出资在公路边修建一个停靠
站C,使停靠站到A,B两村距离相等.请你确定停靠站C的位置.
解:作AB的垂直平分线,交直线 l 于点C, 则点C就是停靠
站的位置.
B村
A村
C
l
5、如图,某城市规划局为了方便居民的生活,计划在三个住宅 小区A,B,C之间修建一个购物中心,试问:该购物中心应建 于何处,才能使得它到三个小区的距离相等?
知识拓展:
M
条件: 点在线段的垂直平分线上.
P
结论: 这个点到线段两端点的距离相等.
A
B
N
归纳总结 垂直平分线的性质:
定理: 线段垂直平分线上的点到线段两端的距离相等.
几何语言:
∵ 点 P 在线段AB的垂直平分线上 ∴ PA=PB (线段垂直平分线上的点到线段
两端的距离相等.)
知识拓展: 用线段的垂直平分线的性质可直接证明
必须要证明直线上有两点到线段两个端点的距离相等.
1、如图,在 △ABC 中,∠ACB=90°,AD 平分 ∠BAC, DE⊥AB 于 E . 求证:直线 AD 是 CE 的垂直平分线.
证明: ∵ AD平分∠BAC ∴ ∠EAD=∠CAD ∵ ∠ACB=90°,DE⊥AB ∴ ∠AED=∠ACB=90° 在 △AED 和 △FCE 中 ∠EAD=∠CAD ∵ ∠AED=∠ACB AD=AD (公共边) ∴ △ADE≌△ADC (AAS)
探究新知
问题:怎样作出线段的垂直平分线?
方法一: 折叠法
通过折纸,使线段AA'的两个
端点互相重合, 得到的折痕 l就
A (A')
是线段AA'的垂直平分线.
15.2线段的垂直平分线
∴BE+EC=AC.
∵AC=17,BC=16.
D
E
∴ △BCD的周长=BE+EC+BC=AC+BC=17+16=33.
练习3、如右图,△ABC中,AB=AC=16cm,AB的垂 直平分线ED交AC于D点. (1)当AE=13cm时,BE= cm; (2)当△BEC的周长为26cm时,则BC= cm; (3)当BC=15cm,则△BEC的周长是 cm.
C
A
O
B
线段垂直平分线的判定定理
定理 到线段两端距离相等的点在线段 的垂直平分线上.
P
几何语言 如图,
∵ PA=PB(已知)
∴点P在线段AB的垂直平分线上 (到线段两端距离相等的点在 A 线 段的垂直平分线上.)
线段垂直平分线的判定定理
B
练习1、
已知:如图,AC=AD,BC=BD, 求证:AB垂直平分CD。
E
交流与小结 本节课你学到了什么呢?
• • • • • 线段垂直平分线的折法 线段垂直平分线的画法 线段垂直平分线的性质 线段垂直平分线的判定 线段垂直平分线的应用
尺规作图 三角板取中点 画垂线
五、线段垂直平分线的判定
线段垂直平分线的性质定理 •线段垂直平分线上的点到线段两端距离相等. • 思考:你能写出上面定理的逆命题吗? • 它是真命题吗?如何证明呢? 命题 到线段两端距离相等的点在 这条线段的垂直平分线上. •
<一>操作:画线段垂直平分线 方法一
尺规画法
1
①分别以点A、B为圆心,大于 ½ AB长为半径画弧交于点E、F 则直线EF就是线段AB的垂直平分 线(如图) 方法二 利用三角板过中点画垂线
16.2尺规作图线段垂直平分线
永年县第四中学 吴睿
课前回顾
M P
1.垂直平分线的定义: ∵MN是AB的垂直平分线 AD=BD; ∴ MN⊥AB , A D B 2.垂直平分线的性质: N ∵MN是AB的垂直平分线 ∴ PA=PB ( 线段垂直平分线上点与这条线段两个端点的距离相等 ) 3.垂直平分线的判定: ∵PA=PB ∴ P在AB的垂直平分线上 ( 到线段两端距 离相等的点,在这条线段的垂直平分线上 )
先分别作出不同形状的三角形,再按要求去作图.
驶向胜利 的彼岸
作线段的垂直平分线
如果两个图形成轴对称,怎样作出图形的对称轴?
如果两个图形成轴对 称,其对称轴是任何一对 对应点所连线段的垂直平 分线.因此,只要找到任 意一组对应点,作出对应 点所连线段的垂直平分线, 就得到此图形的对称轴.
小结
1.说说线段垂直平分线的作法; 2.画成轴对称的图形的对称轴的几种常见方 法: (1)将图形对折; (2)用尺规作图; (3)用刻度尺先取一对对称点连线的中点,然 后画垂线.
(3)由DE是BC的垂直平分线得:BD=CD;所以AD+CD= AD+BD=AB. (4)由(2)中式子-(1)中式子得BC=10cm.
课堂练习
练习4 如图,过点P 画∠AOB 两边的垂线,并和 同桌交流你的作图过程. A
P O
B
独立作业
1
习题1.5
1.利用尺规作出三角形三条边的垂直平分线.
老师期望:
课堂练习
练习3:如图,与图形A成轴对称的是哪个图形? 画出它们的对称轴.
思考
两个成轴对称的图形,不经过折叠,你用什 么方法画出它的对称轴? 我们已经知道,如果两个图形关于某条直线 对称,那么对称轴是任何一对对应点所连线 段的垂直平分线.因此我们只要找到这两个 图形的一对对应点,然后画出以这两个对应 点为端点的线段的垂直平分线就可以了. 提问:如何画一条线段的垂直平分线呢?
线段的垂直平分线的作图
例2
2.如图,在△ABC中,∠ABC=60°, ∠C=45°. (1)作∠ABC的平分线BD,与AC交于点D; (用尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,证明:△ABD为等 腰三角形.
A
B
C
典例精析,没有直接应用五个基本 尺规作图,比较复杂的作图题
时成立。 • 4.作好图后,下结论。 • 5.作图痕迹要清晰。
• 3.如图,已知在△ABC中,AB=AC,将 △ABC沿BC翻折得到△A1BC.
(1)用直尺和圆规作出△A1BC;(保留作图 痕迹,不要求写作法和证明)
(2)请判断四边形AB A1C的形状,并证明
你例精析,没有直接应用五个基本 尺规作图,比较复杂的作图题
• 如图,已知在△ABC中,∠A=90°。 • (1)请用圆规和直尺作出⊙P,使圆心P在
例3 如图,107国道OA和320国道OB在某市相交于
点O,在∠AOB的内部有工厂C和D,现要修建一个
货站P,使P到OA、OB的距离相等且PC=PD,用尺
规作出货站P的位置(不写作法,保留作图痕迹,写出
结论).
A
O
实际作图
D
C
B
几何作图
例3的解答
E
G
P
则点P为所求作的货站位置
如何做好一道作图题
• 1.首先掌握好五个基本尺规作图 • 2.看清该题是直接作图还是间接作图题 • 3.间接作图题要综合考虑,满足多个条件同
置,并说明理由.
A
C
B
2. 如图, △ABC,在图中找一点O,使T 它到△ABC的三边距离都相等. 点O应 在何处?请在图中标出点O的位置,并 说明理由.
人教版数学八年级上册课件:13.1.2线段的垂直平分线(2)
与1.一能条用线尺段规两作个已(端1知点)线用距段离尺的相垂等规直的平作点分,图线在.这的(难条点方线)段法的垂在直直平分线线上l上. 求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);
问题2:不折叠图形,你能准确地作出轴对称图形的对称轴吗?
特别说明:这个作法实际上就是线段垂直平分线的尺规作图,我们也可以用这种方法确定线段的中点.
相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不
写作法,保留作图痕迹) 解:如图所示:
M
A
P
O
N
B
方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的
点在两点连线的垂直平分线上.
作轴对称图形的对称轴
想一想:下图中的五角星有几条对称轴?如何作出这些对称轴呢?
2.进一步了解尺规作图的一般步骤和作图语言,理解作图的依据.
例1 如图,已知点AAB、点垂B以直及平直线分l. 线与公路的交点便是.
B
方法总结:对于轴对称图形,只要找到任意一组对称点,作出对称点所连线段的垂直平分线,即能得此图形的对称轴.
线段垂直平分线的有关作图
A
公共汽车站
问题2:不折叠图形,你能准确地作出轴对称图形的对称轴吗?
线段垂直平分线的判定 与线段两个端点距离相等的点在这条线段的垂直平分线上.
应用格式: ∵ PA =PB, ∴ 点P 在AB 的垂直平分线上.A
P B
作用:判断一个点是否在线段的垂直平分线上.
问题1:有时我们感觉一(两)个平面图形是轴对称的,如何验证呢?
通过折叠,如果这(两)个图形能够互相重合,则这(两)个图形是轴对称的.
方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上.
尺规作图之垂直平分线
尺规作图之垂直平分线
1 .怎么用尺规作图画垂直平分线
2 .已知线段AB和动点P,点P总可以使PA=PB,求证:点P的所有可能位置是线段AB的垂直平分线。
3 .如图,已知线段A8及线段48外一点C,过点C作直线CZX使得8_1A8.
小欣的作法如下:
①以点B为圆心,BC长为半径作弧;
②以点A为圆心,AC长为半径作弧,两弧交于点。
;
③作直线CD.
则直线CO即为所求.
(1)根据小欣的作图过程补全图形;
(2)完成下面的证明.
证明:连接AC,AD,BC,BD.
,:BC=BD,
・・・点B在线段CO的垂直平分线上.()(填推理的依据)
VAC=,
・・・点A在线段CD的垂直平分线上.
・•・直线AB为线段CD的垂直平分线.
,∖CD±AB.
•C。
尺规作图垂直平分线
尺规作图垂直平分线
利用尺规作图垂直平分线,在建筑设计中,获得良好的效果就成了一项重要的
任务。
如果可以建立一道垂直平分线,就可以切分出均对等的空间,并建立一个完整的体系。
因此,尺规作图垂直平分线有助于构建出连续、有完整性的建筑空间。
利用尺规作图垂直平分线,可以使得整个建筑的空间结构更加均衡,这样不仅
可以满足室内的比例要求和空间构成,而且也可以增强建筑物整体的外观视觉效果。
在建筑设计中尤其突出,尺规作图垂直平分线有助于凸显建筑物尺度及室内布局,使得建筑设计空间更加统一、有层次感。
此外,使用尺规作图垂直平分线也可以有效控制建筑物室内的光线,提升建筑
的宜居性。
垂直平分线建立的两个对等的空间可以很好地调节室内的穿透光线,既可以防止室内过暗,也可以保证室内光线充足,从而使得建筑空间更加宜人。
尺规作图垂直平分线是一项重要的建筑技术,可以有效提升室内空间的美感。
它可以帮助构建出均衡、有层次感的空间,以及统一的穿透光线,更是提升了室内的宜居性。
因此,建筑师应该充分利用尺规作图垂直平分线这种技术,相信这会有助于设计出更加绚丽多彩的建筑艺术。
三角形中的垂直平分线
1.证明了定理:三角形三条边的垂
直平分线相交于一点,并且这一
点到三个顶点的距离相等。
c 2.已知等腰三角形的底边和底边
上的高作等腰三角形
B
aA b
PC
剪一个三角形纸片通过折叠找出每条 边的垂直平分线。 结论:三角形三条边的垂直平分线相 交于一点。
怎样证明这个 结论呢?
点拨:要证明三条直线相交于一 点,只要证明其中两条直线的交 点在第三条直线上即可
命题:三角形三条边的垂直平分线相交于一点。
已知:如图,在△ABC中,AB,BC的垂直平分线相交于点P,
锐角三角形三边的垂直平分线交点在三角形内; 直角三角形三边的垂直平分线交点在斜边上; 钝角三角形三边的垂直平分线交点在三角形外。
2.已知:△ABC中,AB=AC,AD是 BC边上的中线,AB的垂直平分线 交AD于O 求证:OA=OB=OC.
证明: ∵AB=AC,AD是BC的中线, ∴AD垂直平分BC(等腰三角形底 B
1.3 线段的垂直平分线(2)
1.掌握和证明三角形的三条边的垂直平分线的性质定理。 2.已知底边和底边上的高,能用尺规作等腰三角形。
回顾 思考
1.线段的垂直平分线的性质定理和
判断定理。
A
B
2.线段的垂直平分线的作法。
D
利用尺规作三角形三条边的垂直平分线做完之后,你发 现了什么?
发现:三角形三边的垂直平分线 交于一点.这一点到三角形三个 顶点的距离相等.
求证:点P也在AC的垂直平分线上
证明:连接AP,BP,CP. A
∵点P在线段AB的垂直平分线上,
∴PA=PB
同理,PB=PC. ∴PA=PC.
线段的垂直平分线的作法PPT授课课件
2.4 线段的垂直平分线 第2课时 线段的垂直平分线的作法
提示:点击 进入习题
答案显示
新知笔记 1 点;线段的垂直平分线 2 垂直平分线
1D
2C
3A
43
5 见习题
6C 11 B
7C
8A
9D
10 B
12 见习题 13 见习题 14 见习题
1.作线段的垂直平分线:关键是要找出到线段两端距离相等的 ____点____ , 其 依 据 是 到 线 段 两 端 距 离 相 等 的 点 在 _线__段__的__垂__直__平__分__线___上.
(2)测量小车从A点出发到达B点所花费的时间,如果 过了B点才停止计时,所测AB段 的平均速度vAB会偏__小__。
基础巩固练
【点拨】由题图可知,小球从 D 点运动到 F 点的路程 s= 12.50 cm-4.50 cm=8.00 cm=0.08 m,时间 t=2×0.2 s= 0.4 s,速度 v=st=00.0.48 sm=0.2 m/s。
能力提升练
6.[中考·江苏常州节选]某列高铁的时刻表如表所示。从上 海 至 北 京 的 全 程 时 间 为 ___4_._5___h , 全 程 平 均 速 度 是 _3_0_0_km/h。
基础巩固练
3.[中考·广西钦州]如图所示是测量小车运动平均速度的实 验装置示意图,让小车从静止开始沿斜面向下运动,关 于小车通过前半段路程s1、后半段路程s2和全程s的平均 速度的判断,正确的是( B ) A.小车通过s1的平均速度最大 B.小车通过s2的平均速度最大 C.小车通过s1的平均速度大于通过s的平均速度 D.小车通过s2的平均速度小于通过s的平均速度
习题链接
1 8.00;0.2 2B 3B
尺规作图(画线段的垂直平分线) ppt课件
ppt课件
12
作法:
(1)任取一点M,使点M和点C在的两侧; (2)以C点为圆心,以CM长为半径画弧,
交于A、B两点; (3)分别以A、B两点为圆心,以大于1 AB
长为半径画弧,两弧相交于D点; 2
(4)过C、D两点作直线CD。 所以,直线CD就是所求作的。
ppt课件
13
练习
1、如图,过点P画∠O两边的 垂线.
ppt课件
6
2、如图,在△ABC中,∠C=90º,AD平分 ∠BAC,DE⊥AB,若∠BAD=30º,则 ∠B=___,DE=___
ppt课件
7
思考:
你能在ABC内找到一点P,使P到AB,AC, BC的距离相等吗?
ppt课件
8
用尺规作线段的垂直平分线
ppt课件
9
什么垂直平分线?
(过线段的中点,垂直这条线段的 直线)
线段垂直平分线有哪些特征?
线段的垂直平分线上的点到线段 两端点的距离相等。
ppt课件
10
已知线段AB,画出它的垂直平分线.
说出你的 作图思路
ppt课件
议一议;能否说出这 种画法的依据,小组 讨论交流一下。
11
试一试你的能力
1、如图,点C在直线上,试过 点C画出直线的垂线。
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
轴对称图形的性质
线段是轴对称图形,它的一条对称轴垂直于这条 线段并且平分它,这样的直线叫做这条线段的垂直 平分线(简称中垂线)。
线段的垂直平分线上的点到这条线段 两个端点的距离相等。
ppt课件
1
实验一:想一想:(1)点A与点B关于直线m有什 么样的位置关系?
人教版八年级上册线段的垂直平分线的作图
(2)如图,AB=AC,MB=MC. 直线AM是线 段BC的垂直平分线吗?说明理由。
说说你的收获
五、当堂反馈
1、点P是△ABC中边BC的垂直平分线上的点,则 A 一定有( )
A. PB=PC B. PA=PC C. PA=PB
D.点P到∠ABC的两边距离相等
C
D
B
A
2、如右图,△ABC中,AD垂直平分边BC,且 D
AC=C,B点P
在l
上.
9 C.
PA=PB
求证: PA=PB A. 48 B.
在这条线段的
上。
证明:∵ PC⊥AB 问题2:你还能用不同的方法验证这一结论吗?
A.AB垂直平分CD
B.CD垂直平分AB
∴ ①作
,证
;
(二)证明猜想(群学) ∠PCB=∠PCA=90°
P4B=
……
在△ PCA 和△ PCB中 你发现了什么?
A. 48 B. 24 C. 12
D. 6
再 见!
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 4.最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思
∵ PC⊥AB, AC=BC(或PC 垂直平分AB) 路都是以老师的意志为主线,但是,现在你要直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向。
(6)概率与统计、算法初步、复数。此专题中概率统计是重点,以摸球、射击问题为背景理解概率问题。 10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
∴ PA=PB ○4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、
垂直平分线课件
首先,将圆规的两脚分开,分别置于 已知线段的两个端点上。然后,将圆 规的笔头置于线段的中点,旋转圆规 即可得到垂直平分线。
利用尺规作图作垂直平分线
总结词
尺规作图是一种更为精确的作图方法 ,通过尺规作图可以作出更为精确的 垂直平分线。
详细描述
首先,用直尺画出已知线段。然后, 用圆规以线段的中点为圆心,分别在 已知线段的两侧画弧。接着,用直尺 连接两个交点,即可得到垂直平分线 。
02
垂直平分线也是一条直线,它经 过线段的中点,并且与线段垂直 。
垂直平分线的图形定义
在几何图形中,垂直平分线通常用一 条通过线段中点并与线段垂直的虚线 表示。
这条虚线将线段分为两个相等的部分 ,并且与线段垂直。
垂直平分线的性质
垂直平分线上的任意一点到线段两端的距离相等。 经过线段中点的直线是该线段的垂直平分线。
利用垂直平分线性质解决实际问题
要点一
总结词
要点二
详细描述
垂直平分线的性质在实际问题中有着广泛的应用,如解决 几何作图问题、确定物体的位置等。
在几何作图问题中,利用垂直平分线的性质可以确定对称 点的位置。在解决实际问题时,如建筑、机械设计等领域 ,垂直平分线的性质可以帮助确定物体的位置和方向,简 化问题的解决过程。
垂直平分线的逆定理
总结词
垂直平分线的逆定理是,如果一条直线是某点的垂直平分线,则这条直线上有两点到该点的距离相等。
详细描述
垂直平分线的逆定理是一个与判定定理相反的结论。如果一条直线是某点的垂直平分线,那么在这条直线上存在 两个点,它们到该点的距离是相等的。这个逆定理常常用于证明两条线段相等,或者确定一个点是否在某条直线 上。
质等来进行判定。
线段的垂直平分线
线段的垂直平分线线段的垂直平分线是指一条线段的中垂线,即将该线段垂直平分为两段相等的线段。
在几何学中,垂直平分线是一个重要的概念,它具有许多有趣的性质和应用。
本文将深入探讨线段的垂直平分线以及它的相关概念和性质。
1. 定义和性质线段的垂直平分线是指以线段的中点为圆心,线段长度的一半为半径的圆所确定的直线。
具体来说,给定线段AB,其中M为AB的中点,以M为圆心,AM或BM的长度为半径作圆,与线段AB的两个端点A和B交于C和D两点,则MC和MD即为线段AB的垂直平分线。
线段的垂直平分线具有以下重要性质:(1)垂直性质:线段的垂直平分线与该线段垂直相交,即角AMC和角BMD均为直角。
这是因为圆心M到圆上任一点的线段和圆的切线垂直。
(2)等长性质:线段的垂直平分线将线段AB平分为两个等长的线段,即AM=BM=MC=MD。
这是因为圆心M到圆上任一点的距离都相等。
(3)对称性质:线段的垂直平分线将线段AB分割成两个对称的部分。
即,点A和点B关于垂直平分线MC和MD是对称的。
2. 构造垂直平分线的方法构造线段的垂直平分线有多种方法,其中一种常用的方法是使用尺规作图。
步骤如下:(1)以线段AB为底边,以尺刻度确定线段的中点M。
(2)以尺为半径,以点M为圆心作两个相交的圆弧于点A和点B。
(3)以直尺连接点A和点B,该直线即为线段AB的垂直平分线。
另外,还可以使用传统的画垂线方法,即使用直尺和圆规:(1)以A和B为圆心,以AB的长度为半径分别作两个圆弧,交于点C和点D。
(2)以点C和点D为圆心,以AC或BC的长度为半径作两个相交的圆弧,分别与原线段AB交于点E和点F。
(3)以点E和点F连接,该直线即为线段AB的垂直平分线。
3. 垂直平分线的应用线段的垂直平分线在几何学中具有广泛的应用。
(1)几何证明:垂直平分线常常被用于证明一些几何命题,如证明两线段平行、证明三角形的性质等。
通过构造垂直平分线,可以将复杂的几何问题简化为更容易解决的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂直平分线的作图方法
展开全文
垂直平分线的作图顺序
①以A为中心,用圆规画出圆弧
②以B为中心,画出与①半径相同的圆弧
③连接交点
看到这张图,大家都觉得很熟悉吧?但是,为什么可以用这个方法画出垂直平分线,恐怕没几个人说得上来。
其实也不怪大家,因为这个方法是初中1年级上半学期的知识点,那时候大家还不具备全面理解垂直平分线原理的能力。
你能与以前学过的知识在此重聚,也算是一种缘分,既然如此,
我们就重新温习一下其中的原理吧。
【证明】
假设上图中的AP=BP、AQ=BQ。
在△APQ和△BPQ中,
AP=BP(假设)
AQ=BQ(假设)
PQ在一条直线上
由于三条边都相等,所以△APQ和△BPQ全等(关于三角形的全等条件,后面会详细说明)。
全等图形对应的角度是相等的,因此,
∠APQ=∠BPQ
接下来,看△APM和△BPM,
AP=BP(假设)
∠APM=∠BPM(∠APQ=∠BPQ)
PM在一条直线上
因为两边夹角相等,所以△APM和△BPM也全等。
全等三角形对应的边和角度是相等的,因此,
AM=BM ……①
∠AMP=∠BMP……②
由于∠AMB=180°,所以,
∠AMP+∠BMP=180°……③
根据①可得知,M是中点。
将③代入②,
综上所述,直线PQ是线段AB的垂直平分线。
(完)
我们再回顾一下刚才的作图方法。
设①和②的交点为P和Q,还是用①和②,证明出AP=BP、AQ=BQ。
另外,我们通过逆证明可以得知,线段的垂直平分线上的任意一点,到线段两端的点(图中的A和B)之间的距离是相等的。
垂直平分线的性质
线段垂直平分线上的点到这个线段的两个端点的距离相等。
这一性质非常重要,可以帮助你理解学到的等腰三角形和三角形外心的概念。