正弦型函数—公开课教案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当2x+ =2k - ,即x=k - (k z)时,有最小值
(2)略
例2:求函数y=sin - 的最小值和周期。
解:y= y=sin - =2( sin - )
=2(sin cos -cos sin )
=2sin( )
T= ,ymax=2,ymin=-2
巩固练习:
1.求下列函数的周期,最值,以及达到最值时的x的值。
(1)y= (2)y=-2sin( )
2.求下列函数的周期和最值
(1)y= x-cosx(2)y=5sin3x+12cos3x
课堂作业:
1.已知函数f(x)=2cos 。(1)求f(x)的周期,
(2)当x为何值时,f(x)取到最大值?
2.求函数y=cos2x+sinxcosx的值域。
课后作业:
一、选择
C.周期为2 的偶函数D.周期为2 的奇函数
4.cos + sin 的化简结果是 ( )
A. B.2sin( )
C.2sin( ) D.
二、求函数y=2sin( )的周期,单调区间。
三、已知函数y= 2x+ xcosx+1,x ,求周期、值域。
课时编写者正弦型函数考纲要求会求正弦型函数的周期值域基础自测
高二综合班《数学》教学案
第8课时编写者
课题
正弦型函数
考纲要求
1.了解正弦型函数的定义,以及各参数的意义
2.会求正弦型函数的周期、值域
基础自测:
1.函数y=sin 的周期振幅
2.函数y=sinx+cosx的最大值是最小值是
3.函数y=2cos3x-3cos3x的周期是
1.在函数y=sin2x,y=sinx,y=cosx,y=tan 中,最小正周期为 的函数是( )
A.y=sinxB.y=sin2xC.y=cosxD.y=tan
2.函数y=sinxcos 的周期为 ( )
A.4 B. 2 C. D.
3.函数y=sin 是 ( )
A.周期为3 的偶函数B.周期为3 的奇函数
令wx+ =0, 得x的值,进而得到相应的五点,然后用光滑的曲线相连。
例题选讲:
例1:求下列函数的周期、最大值、最小值以及使函数达到最大,最小值的x。
(1)y=2sin(2x+ ) (2)y=-3sin(3x+ )
解:(1)A=2,w=2,周期T=
最大值ymax=2,最小值ymin=-2
当2x+ =2k + ,即x=k + (k z)时,有最大值
知识梳理:
1.正弦型函数的定义:形如f(x)=Asin(wx+ )的函数,其中A>0,w>0, 都是常数,这种函数叫正弦函数。
2.正弦型函数的基本性质;
①A叫振幅,w叫圆频率ቤተ መጻሕፍቲ ባይዱ角速度, 为初相位
②定义域:实数集R
③值域:[-A,A],最大值是A,最小值是-A
④周期:T=
3.正弦型函数的图象:采用“五点法”作图
相关文档
最新文档