天线的基本单元

合集下载

天线的基本参数

天线的基本参数

天线的基本参数1.1天线的基本参数从左侧的传输线的⾓度看,天线是⼀个阻抗(impedance)为Z的2终端电路单元(2-terminal circuit element),其中Z包含的电阻部分(resistive component)被称为辐射电阻(radiation resistance,R r);从右侧的⾃由空间⾓度来看,天线的特征可以⽤辐射⽅向图(radiation pattern)或者包含场量的⽅向图。

R r不等于天线材料⾃⼰的电阻,⽽是天线、天线所处的环境(⽐如温度)和天线终端的综合结果。

影响辐射电阻R r的还包括天线温度(antenna temperature,T A)。

对于⽆损天线来说,天线温度T A和天线材料本⾝的温度⼀点都没有关系,⽽是与⾃由空间的温度有关。

确切地说,天线温度与其说是天线的固有属性,还不如说是⼀个取决于天线“看到”的区域的参数。

从这个⾓度看,⼀个接收天线可以被视作能遥感测温设备。

辐射电阻R r和天线温度T A都是标量。

另⼀⽅⾯,辐射⽅向图包括场变量或者功率变量(功率变量与场变量的平⽅成正⽐),这两个变量都是球体坐标θ和Φ的函数。

1.2天线的⽅向性(D,Directivity)和增益(G,Gain)D=4π/ΩA,其中ΩA是总波束范围(或者波束⽴体⾓)。

ΩA由主瓣范围(⽴体⾓)ΩM+副瓣范围(⽴体⾓)Ωm。

如果是各向同性的(isotropic)天线,则ΩA=4π,因此D=1。

各向同性天线具有最低的⽅向性,所有实际的天线的⽅向性都⼤于1。

如果⼀个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi。

简单短偶极⼦具有波束范围ΩA=2.67πsr,和定向性D=1.5(1.76dBi)。

如果⼀个天线的主瓣在θ平⾯和Φ平⾯的半功率波束宽度HPBW都是20度,则D=4πsr/ΩA sr=41000 deg2/(20 deg)*(20 deg)≈103≈20dBi(dB over isotropic)。

电磁波传播基本知识及天线原理 (1)

电磁波传播基本知识及天线原理 (1)

交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
下零点填充 方向图圆度
三、天线主要性能参数
天线增益
系指天线在某一规定方向上的辐射功率通量密度与参考天线(通常采用理 想点源)在相同输入功率时最大辐射功率通量密度的比值。
P1
P0 天线
P2
理想辐射单元
G = 10log(P1/P2)
三、天线主要性能参数
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
下零点填充 方向图圆度
三、天线主要性能参数
前后比
±30°? 25dB ? +/-2dB ?
抑制同频干扰或导频污染的重要指标
通常仅需考察水平面方向图(?)的前后比,并特指后向±30°范围内(?)的最差值。
前后比指标越差,后向辐射就越大,对该天
线后面的覆盖小区造成干扰的可能性就越大。
特殊应用中才会考察垂直面方向图的前后比,
比如基站背向区域有超高层建筑物。
后向功率
前向功率
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标

电磁辐射及原理

电磁辐射及原理

将上式与静态场比较可见, 将上式与静态场比较可见,它们分别是恒定电流元 Il 产生的磁场及 产生的静电场。场与源的相位完全相同,两者之间没有时差。 电偶极子 ql 产生的静电场。场与源的相位完全相同,两者之间没有时差。 可见,近区场与静态场的特性完全相同,无滞后现象, 可见,近区场与静态场的特性完全相同,无滞后现象,所以近区场 现象 称为似稳场。 称为似稳场。 似稳场 能流密度的实部为零,只存在虚部。 电场与磁场的时间相位差为 π ,能流密度的实部为零,只存在虚部。 2 可见近区场中没有能量的单向流动, 可见近区场中没有能量的单向流动,近区场的能量完全被束缚在源的周 因此近区场又称为束缚 束缚场 围,因此近区场又称为束缚场。
看录像补充的
Hφ = j
I l sin θ − jkr e 2λ r
Eθ = j
ZI l sin θ − jkr e 2λ r
一次方成反比 场强随距离增加不断衰减。 成反比, (3)远区场强振幅与距离 r 一次方成反比,场强随距离增加不断衰减。 ) ()远区场强振幅不仅与距离有关,而且与观察点所处的方位也有关, 5)电场及磁场的方向与时间无关。可见,,场强与方位角φ也有关 方 )电场及磁场的方向与,具有轴对称特点, 由于电流元沿Z 轴放置,具有轴对称特点电流元的辐射场具有线极化 (4)远区场强振幅不仅与距离有关,而且与观察点所处的方位也有关, 由于电流元沿 轴放置时间无关。可见,电流元的辐射场具有线极化 时间无关 轴对称特点 方位 无关, 无关, 这种衰减不是媒质的损耗引起的,而是球面波固有的扩散特性导致的。 球面波固有的扩散特性导致的 这种衰减不是媒质的损耗引起的,而是球面波固有的扩散特性导致的。 这种特性称为天线的方向性 ,场强的极化方向是不同的 有关的函数称为 特性。当然在不同的方向上, 方向性。 的函数, 可见, 这种特性称为天线的方向性。场强公式中与方位角θ 及 φ 。 向性因子仅为方位角θ 的函数,即 f (θ , φ ) = sin θ 。可见,电流元在θ = 0 的 特性。当然在不同的方向上 场强的极化方向是不同的。 方向性因子, 轴线方向上辐射为零, 表示。 方向上辐射最强。 方向性因子,以 f (θ, φ ) 在与轴线垂直的θ = 90°方向上辐射最强。 轴线方向上辐射为零, 表示。 方向上辐射最强 除了上述线极化特性外,其余四种特性是一切尺寸有限的天线远区 除了上述线极化特性外,其余四种特性是一切尺寸有限的天线远区 尺寸有限 场的共性,即一切有限尺寸的天线,其远区场为 辐射场, 场的共性,即一切有限尺寸的天线,其远区场为TEM波,是一种辐射场, 共性 有限尺寸的天线 波 是一种辐射场 其场强振幅不仅与距离 成反比,同时也与方向有关 与方向有关。 其场强振幅不仅与距离r 成反比,同时也与方向有关。 与距离 当然,严格说来, 远区场中也有电磁能量的交换部分。 当然,严格说来, 远区场中也有电磁能量的交换部分。但是由于形 成反比, 成能量交换部分的场强振幅至少与距离 r2 成反比,而构成能量辐射部分 的场强振幅与距离r 成反比,因此,远区中能量的交换部分所占的比重 中能量的交换 的场强振幅与距离 成反比,因此,远区中能量的交换部分所占的比重 很小。相反,近区中能量的辐射部分可以忽略。 很小。相反,近区中能量的辐射部分可以忽略。 中能量的辐射部分可以忽略

(完整版)天线原理介绍

(完整版)天线原理介绍

可能产生的三阶交调 频段(MHz) 860~890
916~973
925~940 948~966 1785~1845 1830~1860 2115~2160 2095~2140
可能产生的五阶交调 频段(MHz) 850~900
897~992
920~945 942~972 1765~1865 1820~1870 2100~2175 2080~2155
900MHz: 最小: 3m
建议:6m 1800MHz: 最 小 : 2m
建议:4m
天线原理—天线基本概念
应用 环境
密集建筑区 (室内)
密集建筑区 (室外)
一般城镇 (室内)
一般城镇 (室外)
农村
极化分集 增益(dB)
空间分集 增益(dB)
3.7
5.0
4.7
3.3
4.0
3.7
5.7
4.7
2.7
5.3
可靠性能的测试
振动试验
风洞试验
天线指标测试
高低温湿热试验
汽车模拟试验
淋水试验
Thanks!
结论
三阶、五阶都不落入到 Rx的接收范围
三阶不落入到Rx的接收 范围,五阶落入到Rx的
接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
天线原理—天线基本概念
前后比较差
前后比较好
天线原理—天线基本概念
实际站点的后瓣、旁瓣信号过强的原因分析
1、天线本身指标不合格,前后比、旁瓣不理想 2、扇区规划不合理、主方向反射、折射严重(如玻璃外墙阻挡、金属物质遮挡等)

天线,馈线知识点

天线,馈线知识点

一.天线有哪几种?答:有全向天线、有定向天线包括单极化天线、双极化天线、双频双极化天线,电调天线。

二.天线有哪几个厂家、生产?答:有安德鲁,ADC,新西兰,首信。

德尔泰克、凯瑟琳、贾尔威武(法国)。

三.什么叫电磁波?M答:移动天线的类型很多,分类方位也很多,按其工作状态可分为两大类。

全向,定向,当高频率信号沿馈线从始端传向终端时,线上各点的电流或电压就会按高频振荡的节拍而变化,这种情形就象是在线路上激起一种看不见的波浪一样。

如果终端负载与馈线特性阻抗不匹配,负载不能将传来的高頻信号功率全部吸取,势必有一部分功率由终端再经馈线返回始端,前者称为入射波,后者称为反射波。

当终端负载匹配时,高频功率完全被终端所吸收,这时馈线上就只有入射波而没有反射波。

四.什么叫电波传播?答:无线电通信,是将信息变为电信号,再调制到高频振荡上,由发射天线把已调的高频电流,以电磁波的形式发射出去,电磁波传播到接收地点时,由接收天线将它接收下来,变成已调的高频电流通过合路器和双功器放大、解调、取出信息、从而达到通信的目的。

五.天线在无线电通信中的作用是什么?答:天线是一种换能器、发射天线是将高频电能转换成为电磁波的装置、接收天线则是将电磁波转换成高频电能的装置,因而它在无线电通信中占有极其种重要的地位、天线安装质量如何,对移动通信质量的好坏起着重要的作用,因此设计和安装天线时,必须十分重视保证质量。

六.对挂天线的抱杆要求90°为什么?答:抱杆900 天线抱杆是安装天线的基础,抱杆垂直、不垂直,关系到天线方位和倾角的调整。

七.抱杆要和大楼连接地线为什么?答:抱杆、框架和大楼地线连接是为了防止雷电伤害天线,使天线安全渡过雷电区,把雷电放入大地。

八.抱杆为什么要用热镀锌?答:抱杆是天线的支柱,抱杆的好坏确定天线的长久性。

热镀锌层,能够长久地耐受较苛刻条件下的腐蚀。

是因为镀锌层可以克服和减缓大气对钢铁的化学和电化学腐蚀。

九.抱杆上焊接避雷针,为什么?答:抱杆和天线上的避雷针起着及其重要的作用。

天线的基本参数

天线的基本参数

1.1天线的基本参数从左侧的传输线的角度看,天线是一个阻抗(impedance)为Z的2终端电路单元(2-terminal circuit element),其中Z包含的电阻部分(resistive component)被称为辐射电阻(radiation resistance,R r);从右侧的自由空间角度来看,天线的特征可以用辐射方向图(radiation pattern)或者包含场量的方向图。

R r不等于天线材料自己的电阻,而是天线、天线所处的环境(比如温度)和天线终端的综合结果。

影响辐射电阻R r的还包括天线温度(antenna temperature,T A)。

对于无损天线来说,天线温度T A和天线材料本身的温度一点都没有关系,而是与自由空间的温度有关。

确切地说,天线温度与其说是天线的固有属性,还不如说是一个取决于天线“看到”的区域的参数。

从这个角度看,一个接收天线可以被视作能遥感测温设备。

辐射电阻R r和天线温度T A都是标量。

另一方面,辐射方向图包括场变量或者功率变量(功率变量与场变量的平方成正比),这两个变量都是球体坐标θ和Φ的函数。

1.2天线的方向性(D,Directivity)和增益(G,Gain)D=4π/ΩA,其中ΩA是总波束范围(或者波束立体角)。

ΩA由主瓣范围(立体角)ΩM+副瓣范围(立体角)Ωm。

如果是各向同性的(isotropic)天线,则ΩA=4π,因此D=1。

各向同性天线具有最低的方向性,所有实际的天线的方向性都大于1。

如果一个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi。

简单短偶极子具有波束范围ΩA=2.67πsr,和定向性D=1.5(1.76dBi)。

如果一个天线的主瓣在θ平面和Φ平面的半功率波束宽度HPBW都是20度,则D=4πsr/ΩA sr=41000 deg2/(20 deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。

电磁波与天线知识点

电磁波与天线知识点

第一章1.天线的定义:用来辐射和接收无线电波的装置2.天线的作用:3.天线基本辐射单元:电基本振子、磁基本振子、惠更斯元4.电基本振子又称电流元,其辐射场是球面波(等相位面的形状),辐射的是线极化波,传输的波的模式是横电磁波(TEM 波,沿传播方向电场、磁场分量为0)5.媒质波阻抗η 自由空间(120ηπ=Ω) 电基本振子E H θηϕ= 磁基本振子E H ϕθη=-6. 磁基本振子又称磁流元、磁偶极子7. 电基本振子归一化方向函数(,)sin F θϕθ=理想电源归一化方向函数(,)1F θϕ=8.方向图:E 面 H 面9. 电基本振子E 面方向函数()sin E F θθ=,H 面()1H F ϕ=磁基本振子E 面方向函数()1E F θ=,H 面()sin H F ϕϕ=10.方向系数:在同一距离及相同辐射功率条件下,某天线在最大辐射方向上的辐射功率密度(场强的平方)和无方向性天线(点源)的辐射功率密度(场强的平方)之比11.电基本振子D=1.5 半波振子D=1.6412.增益系数:在同一距离及相同输入功率条件下,某天线在最大辐射方向上的辐射功率密度(场强的平方)和无方向性天线(点源)的辐射功率密度(场强的平方)之比13.天线效率:物理意义(表述了天线能量转换的有效程度)14. A G D η=15.天线极化可分为:线极化、圆极化、椭圆极化16.有效长度17.输入阻抗18.频带宽度19.有效接收面积是衡量接收天线接收无线电波能力的重要指标。

20.对称振子中间馈电,极化方式为线极化,辐射场为球面波。

计算输入阻抗采用“等值传输线法”,最终等效成具有一平均特性阻抗的有耗传输线。

对称振子天线振子越粗,平均特性阻抗越小。

21.末端效应:由于对称振子末端具有较大的端面电容,末端电流实际不为零。

22.采用天线阵是为了加强天线的定向辐射能力。

23.方向图乘积定理P2624.水平线天线镜像一定时负镜像;垂直对称线天线正镜像垂直驻波单导线半波正垂直驻波单导线全波负25.无限大理想导电反射面对天线电性能的影响主要有两个方面:对方向性的影响;对阻抗特性的影响26.沿导电平面方向,正镜像始终是最大辐射,负镜像始终是零辐射。

天线名词解释

天线名词解释

【天线及天线程式】天线是在无线电收发系统中,向空间辐射或从空间接收电磁波的装置。

是无线电通信系统中必不可少的部分。

由于各种设备要求采用的波段不同,天线的设计也就不同,不同用途的天线需要设计成各种样式,就是我们通常称的天线程式。

如在长、中、短波段,一般用导线构成天线,有T形、倒L形、环形、菱形、鱼骨形、笼形天线等。

在微波波段,用金属板或网制成喇叭天线,抛物面天线,金属面上开槽的裂缝天线,金属或介质条排成的透镜天线等。

天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。

这些参数是衡量天线质量好坏的重要指标。

【天线的方向性】是指天线向一定方向辐射电磁波的能力。

它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。

所以方向性是衡量天线优劣的重要因素之一。

天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的保密性和抗干扰性。

【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。

实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。

在这个立体图中,由于所取的截面不同而有不同的方向性图。

最常用的是水平面内的方向性图(即和大地平行的平面内的方向性图)和垂直面内的方向性图(即垂直于大地的平面内的方向性图)。

有的专业书籍上也称赤道面方向性图或子午面方向性图。

【波瓣宽度】有时也称波束宽度。

系指方向性图的主瓣宽度。

一般是指半功率波瓣宽度。

由图(18)可以看出A、Aˊ点至O点间的夹角,称主瓣角宽度。

当L/λ数值不同时,其波瓣宽度也不同。

L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。

因此,波瓣宽度越小,其方向性越强,保密性也强,干扰邻台的可能性小。

所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。

【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——用MATLAB仿真天线方向图吴正琳天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。

在无线电设备中用来发射或接收电磁波的部件。

无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。

此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。

一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。

同一天线作为发射或接收的基本特性参数是相同的。

这就是天线的互易定理。

天线的基本单元就是单元天线。

1、单元天线对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图主要是说明一下以下几点:1、在Matlab中的极坐标画图的方法:polar(theta,rho,LineSpec);theta:极坐标坐标系0-2*pirho:满足极坐标的方程LineSpec:画出线的颜色2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。

也就是说这时的方向图只剩下一半。

3、半波振子天线方向图归一化方程:Matlab程序:clear alllam=1000;%波长k=2*pi./lam;L=lam/4;%天线臂长theta=0:pi/100:2*pi;f1=1./(1-cos(k*L));f2=(cos(k*L*cos(theta))-cos(k*L))./sin(theta);rho=f1*f2;polar(theta,abs(rho),'b');%极坐标系画图2、线性阵列天线2.1方向图乘积定理阵中第i 个天线单元在远区产生的电场强度为:2(,)ij i i i i ie E K If r πλθϕ-=式中,i K 为第i 个天线单元辐射场强的比例常数,i r 为第i 个天线单元至观察点的距离,(,)i f θϕ为第i 个天线单元的方向图函数,i I 为第i 个天线单元的激励电流,可以表示成为:Bji i i I a e φ-∆=式中,i a 为幅度加权系数,B φ∆为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。

串馈阵列天线基础知识

串馈阵列天线基础知识

串馈阵列天线基础知识一、引言串馈阵列天线是一种常见的天线形式,其应用广泛于通信领域。

本文将介绍串馈阵列天线的基础知识,包括其定义、结构、工作原理以及应用。

二、定义串馈阵列天线是由多个天线单元按照一定顺序串联起来的天线系统。

每个天线单元都有自己的馈线,这些馈线按照一定的规则相互连接,形成一个整体。

三、结构串馈阵列天线的结构可以分为两部分:天线单元和馈线网络。

1. 天线单元:天线单元是串馈阵列天线中的基本组成部分。

它可以是一个简单的天线,如偶极子天线或微带天线,也可以是一个复杂的天线单元,如有源天线单元。

天线单元的选择取决于具体的应用场景和设计要求。

2. 馈线网络:馈线网络是将天线单元按照一定的顺序串联起来的结构。

它的作用是将信号从一个天线单元传递到下一个天线单元,并保证信号的相位和幅度的一致性。

常见的馈线网络包括平面波导、微带线、同轴电缆等。

四、工作原理串馈阵列天线的工作原理可以简单理解为多个天线单元的合作。

当信号经过第一个天线单元时,它会产生一个辐射场。

这个辐射场会传递到下一个天线单元,然后再被辐射出去。

通过多个天线单元的串联,信号可以被放大和定向,从而实现更远距离的通信。

五、应用串馈阵列天线在通信领域有着广泛的应用。

以下是几个常见的应用场景:1. 无线通信:串馈阵列天线可以用于增强无线通信系统的覆盖范围和传输距离。

通过调整天线单元之间的相位差,可以实现波束的形成,从而提高信号强度和抗干扰能力。

2. 雷达系统:串馈阵列天线可以用于雷达系统中的天线阵列。

它可以实现高分辨率和多目标跟踪,并提高雷达系统的性能。

3. 卫星通信:卫星通信系统需要长距离的传输和高速率的数据传输。

串馈阵列天线可以提供高增益、窄波束和低副瓣等特性,从而满足卫星通信的需求。

4. 毫米波通信:毫米波通信是一种新兴的通信技术,其工作频段在30GHz到300GHz之间。

串馈阵列天线由于其高增益和窄波束的特性,被广泛应用于毫米波通信系统中。

移动通信基站及天线基本知识

移动通信基站及天线基本知识
特殊情况天线安装在高建筑物或专用时,应保证其有一个较大的下倾角。
容许的折衷办法是结合电下倾和机械下倾 机械下倾安装架:预置下倾 可调电下倾:微调
无线网络
分集技术
? 多路径传播 ? 分集原理 ? 空间分集 ? 极化分集
无线网络
? 分集接收/多路径传播
? 信号中包括直射波和大量反射波 ? 反射的振幅、相位和极化各不相同 ? 形成快衰落,即短距离内大幅度改变接收信号电平
? 失配损耗
? 由于反射(或返回)功率,该损耗会影响到系统性能。
? VSWR
1.5
1.3
1.2
? 失配损耗(dB) 0.18
0.08 0.04
天线基本概念
? VSWR 驻波比
? 比较在天线端口和馈电电 缆端口的驻波测量结果
? 通过馈电电缆衰减后测试的 VSWR 和回波损耗的值比在天 线端口直接测量的值好.
反射体前
(2λ/2 对称振子)
? 天线增益表示的是
“垂直”和“水平”
增益的总和
半功率波瓣宽度 360 °
增益 0dB
180 °
3dB
90 °
6dB
天线基本概念
? 板状天线
? 移动通信常用的定向板状天线 ? 水平波束宽度65° 增益 15dBi
水平方向图
垂直方向图
天线基本概念
定向天线立体辐射图
天线基本概念
? 波传播:
无线电波持续进行电能(电场)和磁能(磁 场)间的相互转换的过程。
电场
磁场
电场 传播方向
磁场
电场
天线基本概念
? 阻抗
传输线上各点电压 与电流的比值等于特 性阻抗。
? 为充分优化系统性能,系 统所有的设备必须匹配连 接。

天线的种类及选型

天线的种类及选型

1.天线的基本原理天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。

在移动网络通信中从基站天线到用户手机天线,或从用户手机天线到基站天线的无线连接,它的运行质量在整个网络运行质量中所占的位置是十分明显的。

因此,网络优化也就自然与天线密切相关。

在无线通信系统中,天线是收发信机与外界传播介质之间的接口。

同一副天线既可以辐射乂可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。

在选择基站天线时,需要考虑其电气和机械性能。

电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。

机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。

基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。

按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交义极化天线(也叫双极化天线)。

上述两种极化方式都为线极化方式。

圆极化和椭圆极化天线一般不采用。

按外形来区分主要有:鞭状天线、平板天线、帽形天线等。

在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic )天线。

各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。

另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。

它与各向同性天线是两个不同的概念。

半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率rli o为了便于介绍,先从天线的几个基本特性谈起。

(见下图)(■天线的指标举例一—一基站天馈系统示意图1.1天线的基本特性1.1.1天线辐射的方向图天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。

用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。

天线基本参数说明

天线基本参数说明

天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。

这些参数是衡量天线质量好坏的重要指标。

【天线的方向性】是指天线向一定方向辐射电磁波的能力。

它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。

所以方向性是衡量天线优劣的重要因素之一。

天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的保密性和抗干扰性。

【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。

实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。

在这个立体图中,由于所取的截面不同而有不同的方向性图。

最常用的是水平面内的方向性图(即和大地平行的平面内的方向性图)和垂直面内的方向性图(即垂直于大地的平面内的方向性图)。

有的专业书籍上也称赤道面方向性图或子午面方向性图。

【波瓣宽度】有时也称波束宽度。

系指方向性图的主瓣宽度。

一般是指半功率波瓣宽度。

当L/λ数值不同时,其波瓣宽度也不同。

L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。

因此,波瓣宽度越小,其方向性越强,保密性也强,干扰邻台的可能性小。

所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。

【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。

为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。

任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。

按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。

通常如果不特别指出,就以最大辐射方向的方向性系数作为定向天线的方向性系数。

天线基础知识

天线基础知识

。这种同一天线收发参数相同的性质被称为天线的收发互易性
,它可以用电磁场理论中的互易定理予以证明。
• 1.2.2 有效接收面积 ;

有效接收面积(Effective Aperture)是衡量接收天线接收
无线电波能力的重要指标。接收天线的有效接收面积的定义为
:当天线以最大接收方向对准来波方向进行接收时,并且天线
化,若符合左手螺旋,则为左旋圆极化。

图6显示了某一时刻,以+z轴为传播方向的x方向线极化
的场强矢量线在空间的分布图。图7和图8显示了某一时刻,以
+z轴为传播方向的右、左旋圆极化的场强矢量线在空间的分布
图。要注意到,固定时间的场强矢量线在空间的分布旋向与固
定位置的场强矢量线随时间的旋向相反。椭圆极化的旋向定义
20
20. 5
主轴
图5 天线方向图的一般形状

(2)半功率点波瓣宽度(HalfPower Beam Width, HPBW
)2θ0.5E或2θ0.5H:指主瓣最大值两边场强等于最大值的0.707倍 (或等于最大功率密度的一半)的两辐射方向之间的夹角,又
叫3分贝波束宽度。如果天线的方向图只有一个强的主瓣,其它
第1章 天线基础知识
• 1.1 天线的电参数 • 1.2 天线辐射基础 • 1.3 常见天线分类 • 1.4 阵列天线 • 1.5 智能天线
1.1 发射天线的电参数

描述天线工作特性的参数称为天线电参数(Basic Antenna
Parameters),又称电指标。它们是定量衡量天线性能的尺度。我
,与传输线之间存在阻抗匹配问题。天线与传输线的连接处称
为天线的输入端,天线输入端呈现的阻抗值定义为天线的输入 阻抗(Input Resistance),即天线的输入阻抗Zin为天线的输入端 电压与电流之比:

天线的种类2

天线的种类2

只要使用到无线电波,就有可能需要用到天线以协助电波的发射与接收;天线依工作频段,由低到高可区分为超长波、长波、中波、短波、超短波和微波,应用层面遍及国防、民生工业,依据不同波长、天线大小长短因此有很大差异,例如使用 100MHz 左右的天线,与使用2.4GHz 频段的WLAN。

若按其方向可大略区分为全向性(Omni-directional)天线和指向性(directional)天线。

全向性天线的名称说明了电磁场的辐射能量在每个方位都会一致,目前最普遍的全向性天线当属偶极(DIPole)天线,绝大部分的基地台(ACCess Point),都是内建偶极天线,其水平辐射范围是360度的波束,由于水平每个方向的能量都均等,由天线上方往下看形成类似甜甜圈的波束形状,若压缩其垂直辐射范围,传输距离将随着波束的集中而延伸,波束形状则会趋近于薄饼。

下图是由天线上方与侧面描绘波束的图形,如果偶极天线的增益越大,表示波束垂直的半功率波束宽度(HPBW)越小,能传输的距离也越大。

因为全向性天线可以涵盖所有水平方向,因此通常安装于开阔、开放环境的中央位置;若是应用于户外,全向式天线必须安装在大楼顶端或高处,并且位于讯号涵盖区的中央位置,以便与其他指向性天线装置通讯,构成单点对多点(Point-to-Multipoint)的星状拓朴。

指向性天线只能用于一定的方位,但相对地传输距离会比较远,指向性天线有各种不同的款式与形状,例如:Patch 天线、Panel天线和八木(Yagi)天线,经常用于无线区域网路中短距离的桥接(Bridge);举例来说跨马路的两栋大楼,或者空间宽广的厂房、仓库都是理想的应用环境。

此外还有专门用于长距离通讯的高方向性天线,有极窄的波束宽度与很高的增益值,也可称为高增益指向性天线;例如:碟形(dish)天线和格状(grid)天线,通常用于点对点的通讯连接,传输距离可以高达25英哩;因为波束非常地窄,天线彼此之间必须很精准的瞄准,而且天线之间的直视(Light of Sigh t)必须没有任何阻碍物。

微波光子学阵列天线的研究与设计

微波光子学阵列天线的研究与设计

微波光子学阵列天线的研究与设计天线是通信系统中不可缺少的重要部分,它的作用是将电磁波转化为电信号或将电信号转换为电磁波的形式,起到收发信号的作用。

微波光子学阵列天线是一种新型的天线类型,其结构简单、频带宽、能量转化效率高,因此有着广泛的应用前景。

本文就微波光子学阵列天线的研究与设计进行阐述。

一、微波光子学阵列天线概述微波光子学阵列天线是一种由多个天线单元组成的,能够在空间中产生具有复杂波面形态的辐射场。

它将微波信号和射频信号相互转化,可以实现对天线的宽带化和高效化。

微波光子学阵列天线由于其独特的结构和优良的性能,已被广泛应用于航空、航天、通信等领域。

二、微波光子学阵列天线相关技术1. 微波光子学技术微波光子学技术是一种将微波与光纤相结合的技术,它不仅克服了传统天线技术中的缺陷,同时也具备了激光技术的高精度和高速度特点。

在微波光子学技术的支持下,可以实现对微波信号的调制和解调,从而实现对天线的高效化和宽带化。

2. 阵列天线技术阵列天线技术是一种利用多个天线单元组成阵列的技术。

由于阵列天线能够产生可控的相位差,使得其具备了高方向性。

同时,阵列天线也可以通过电子调制来实现天线的多波束调制,从而适应不同的工作条件。

三、微波光子学阵列天线的设计流程1. 确定工作频率微波光子学阵列天线的工作频率范围一般为10-100GHz之间,但具体的工作频率由其应用场景而定。

在实际设计中,需要根据需要确定其工作频率范围,以便进行后续设计。

2. 确定阵列天线结构在确定工作频率之后,需要选择合适的阵列天线结构。

阵列天线一般采用线性阵列或平面阵列结构,不同的结构对应着不同的增益和方向性。

3. 进行阵列单元设计阵列天线由多个阵列单元组成,阵列单元是天线的基本单元。

阵列单元的设计需要考虑其增益、方向性、功率密度等参数。

阵列单元的大小和形状也是需要考虑的因素。

4. 进行阵列调制在完成阵列单元设计之后,需要进行阵列调制,通过控制阵列单元之间的相位关系来控制阵列天线产生的波束形态和方向性。

天线与馈线

天线与馈线

效率
?它是指天线辐射出去的功率(即有效 地转换电磁波部分的功率)和输入到 天线的有功功率之比。是恒小于1的 数值。
增益
?天线作为一种无源器件,其增益的概念与 一般功率放大器增益的概念不同。功率放 大器具有能量放大作用,但天线本身并没 有增加所辐射信号的能量,它只是通过天 线振子的组合并改变其馈电方式把能量集 中到某一方向。
?常用馈线类型:1/2”、7/8”、5/4” ?馈线选取
?900MHz ,馈线长度大于 80 米采用 5/4 ”馈线 ,小于80米采用7/8 ”馈线
?1800MHz ,馈线长度大于 50米采用 5/4 ”馈线 ,小于50米采用7/8 ”馈线
?馈线弯曲曲率不宜过大,外导体要求 ?接地良好
天线馈线系统连接图
方向性系数
?方向性系数是用来表示天线向某一个方向 集中辐射电磁波程度(即方向性图的尖锐 程度)的一个参数。 为了确定定向天线的 方向性系数,通常以理想的非定向天线作 为比较的标准。 任一定向天线的方向性系数是指在接 收点产生相等电场强度的条件下,非定向 天线的总辐射功率对该定向天线的总辐射 功率之比。
分类基本天线单元多元天线缝隙天带天线面天线环形天线线状天线基本天线单元电偶极子?振荡电荷?产生电磁波辐射磁偶极子?环状线圈?产生电磁波辐射开口波导?薄壁金属?馈送微波射频能量线状天线环形天线定义
天线及馈线
天线
定义:天线是用来辐射和接收 无线电波的一种设备, 实现电流和电磁波之间 的相互转换。
天线
定向天线方向图
主瓣与波束宽度
?主瓣:天线具有方向性本质上是通过振子 的排列以及各振子馈电相位的变化来获得 的,在原理上与光的干涉效应十分相似。 因此会在某些方向上能量得到增强,而某 些方向上能量被减弱,即形成一个个波瓣 (或波束)和零点。能量最强的波瓣叫主 瓣。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线的基本单元
1.1 天线的定义和作用
定义:能够有效地向空间某特定方向辐射电磁波或者有效的接收空间某特定方向来的电磁波的装置;
天线(antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波(将电子转换为光子),或者进行相反的变换。

在无线电设备中用来发射或接收电磁波的部件。

无线电发信机输出的射频信号,通过馈线(射频电缆)输送到天线,以电磁波形式辐射出去。

电磁波到达接收点后,由天线接收,并通过馈线送到无线电收信机。

一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。

同一天线作为发射或接收的基本特性参数是相同的。

这就是天线的互易定理。

1.2 天线的基本原理
天线使用LC回路做谐振回路,因为LC回路可以具有比RC回路高的多的“品质因数”,一般的LC回路品质因数可达几十至几百。

品质因数大于1的谐振回路,可以吸收并“放大”(实际是转换)外来信号,品质因数在几百的回路,可以在很弱的外电场条件下,感应出很强的“震荡信号”;按照麦克斯韦电磁场理论,变化的电场在其周围空间产生变化的磁场,而变化的磁场又产生变化的电场。

这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间辐射出去。

对于中点馈电的对称振子天线,其结构可看作是一段开路传输线张开而成。

终端开路的平行双线传输线,其上电流呈驻波分布,如图所示。

在两根相互平行的导线上电流方向相反,两线间距 d 远远小于波长,它们所激发的电磁场在两线外的周围空间因两线上电流相位相反而相互抵消,辐射很弱。

如果两线末端逐渐张开,如图所示,辐射将逐渐增强。

当两线完全展开时,如图所示,张开的两臂上电流方向相同,辐射明显增强。

对称振子后面未张开的部分就作为天线的馈电传输线
天线的基本辐射单元:半波对称振子,两臂长度相等的振子叫做对称阵子。

每臂长度为四分之一波长,全长为二分之一波长的振子,称半波对称振子。

波长越长,半波振子越大。


子(能够产生辐射的导线)半波振子在短波、超短波或微波波段中,作为天线、天线馈电器或天线阵的振子。

导体的波长为l/2,其中l为电信号的波长。

信号发生器通过一根传输线 (也称为天线馈电) 在天线的中心点为其供电。

按照这个长度,将在整个导线上形成电压和电流驻波
输入到天线的电能被转换为电磁辐射,并以相应的频率辐射到空中。

该天线由天线馈电供电,馈电的特性阻抗为50 Ω,并且辐射特性阻抗为377 Ω的空间中;
提问:为什么天线振子的总长度是l/2 ?
对于天线的几何形状,有两个非常重要的事项需要注意:
1. 天线长度
2. 天线馈电
长度为l/2 的天线被称为偶极天线。

但在印刷电路板中,大多作为天线使用的导体长度仅为l/4,但仍具有相同的性能
过在导体下方一定距离的位置上放置接地层,可以创建与导体长度相同的镜像 (l/4)。

被组合在一起时,这些引脚作为偶极天线使用。

这种天线被称为四分之一波长 (l/4) 天线。

PCB 上几乎所有的天线都按铜制接地层上四分之一波长的尺寸实现。

请注意,该信号现在是单端馈电,同时接地层作为返回路径使用;
特别注意:经过实际仿真,微带天线的谐振频率点并不是l/4,而是l/4*0.75 左右,所以做微带天线仿真的时候,一般会取天线在真空上l/4的0.8倍和微带天线的l/4长度做遍历;
1.3 天线的分类
天线的形式很多。

为了便于讨论,可根据不同情况分类。

1. 按工作性质分类可分为发射天线、接收天线和收发共用天线。

2. 按用途分类
有通信天线、广播天线、电视天线、雷达天线、导航天线、测向天线等。

3. 按天线特性分类
■从方向性分:定向天线、全向天线、针状波束天线、扇形波束天线等。

■从极化特性分:有线极化天线、圆极化天线和椭圆极化天线。

线极化天线又分为垂直极化和水平极化天线。

■从频带特性分:有窄频带天线、宽频带天线和超宽频带天线。

4. 按天线上电流分布分类有行波天线、驻波天线。

5. 按使用波段分类有长波、超长波天线、中波天线、短波天线、超短波天线和微波天线。

6. 按载体分有车载天线、机载天线、星载天线,弹载天线等。

7. 按天线外形分类
有鞭状天线、 T 形天线、Γ形天线、 V 形天线、菱形天线、环天线、螺旋天线、波导口天线、波导缝隙天线、喇叭天线、反射面天线、八木天线,对数周期天线、阵列天线。

阵列天线又有直线阵天线、平面阵天线、附在某些载体表面的共形阵列天线等。

相关文档
最新文档