湖北省武汉市江汉区2021-2022学年八年级上学期期中数学试卷 (含答案与解析)

合集下载

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列大学的校徽图案是轴对称图形的是( )A.清华大学B.北京大学C.中国人民大学D.浙江大学2.(3分)下列图形中,具有稳定性的是( )A.平行四边形B.梯形C.正方形D.直角三角形3.(3分)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.4.(3分)已知图中的两个三角形全等,则∠α的度数是( )A.72°B.60°C.58°D.50°5.(3分)如图,数学课上,老师让学生尺规作图画∠MON的角平分线OB.小明的作法如图所示,连接BA、BC,你认为这种作法中判断△ABO≌△CBO的依据是( )A .SSSB .SASC .ASAD .AAS6.(3分)如图,在△ABC 中,AB =AC ,∠C =70°,△AB 'C '与△ABC 关于直线AD 对称,∠CAD =10°,连接BB ',则∠ABB '的度数是( )A .45°B .40°C .35°D .30°7.(3分)如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的最大周长为( )A .20B .22C .23D .248.(3分)下列条件中,能构成钝角△ABC 的是( )A .∠A =∠B =∠CB .∠A +∠C =∠B C .∠B =∠C =14∠AD .∠A =12∠B =13∠C 9.(3分)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ,在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E …按此做法继续下去,则第2021个三角形中以A 2021为顶点的内角度数是( )A .(12)2019•75°B .(12)2020•75°C .(12)2021•75°D .(12)2022•75°10.(3分)如图,已知在△ABC 中,AB =AC ,∠ACB 和∠BAC 的平分线交于点O ,过点A 作AD ⊥AO 交CO 的延长线于点D ,若∠ACD =α,则∠BDC 度数为( )A.45°﹣αB.90°―α2C.90°﹣2αD.a2二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知点A(2,a)与点B(b,4)关于y轴对称,则a+b= .12.(3分)一个正多边形的每一个内角都是108°,则它是正 边形.13.(3分)已知等腰三角形的两边长分别为10和6,则三角形的周长是 .14.(3分)若三角形的一个内角是另一个内角的3倍,我们称此三角形为特异三角形”,若一个“特异三角形”为直角三角形,则这个“特异三角形”最小内角度数为 .15.(3分)如图,已知△ABC中,OE、OF分别是AB、AC的垂直平分线,∠OBC,∠OCB的平分线相交于点I,有如下结论:①AO=CI;②∠ABC+∠ACO=90°;③∠BOI=∠COI;④OI⊥BC.其中正确的结论是 .(填序号)16.(3分)如图,在△ABC中,AH是高,AE∥BC,AB=AE,在AB边上取点D,连接DE,DE=AC,若S△ABC=5S△ADE,BH=1,则BC= .三、解答题(本大题共8个题,共72分)17.(8分)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.18.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.19.(8分)如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,求证:AD=3BD.20.(8分)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.21.(8分)如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上,A(﹣3,3),B(﹣4,﹣2),C(0,﹣1).(1)直接写出△ABC的面积为 ;(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应,点E与点B对应),点E的坐标为 ;(3)用无刻度的直尺,运用所学的知识作图(保留作图痕迹).①作出△ABC的高线AF;②在边BC上确定一点P,使得∠CAP=45°.22.(10分)已知,△ABC中,点D,E分别在边AB,BC上,BD=BE,连接CD.(1)如图1,若∠CAD=∠CED=2∠ADC,求证:AD=DE;(2)如图2,点F在AD上,连接EF,若∠CAD=∠AFE,∠CEF=2∠ADC,求证:AD=EF.23.(10分)已知,点C为线段AB上的一点,以AC为边作等边△ACD,连接BD.(1)如图1,以BC为边在AB的上方作等边△BCE,接AE,交BD于点G,求∠AGB的度数;(2)如图2,在(1)的条件下连接CG,求证:CG+DG+EG=AE;(3)如图3,点K在线段BD上,∠BKC=60°,点H为线段AD上,AH=BC,AK,CH交于点I,BD =a,AK=b,则IK= .(用含a,b的式子表示)24.(12分)在平面直角坐标系中,点A的坐标为(3,0),点B在y轴上,以B为直角顶点;在AB上方作等腰Rt△ABC.(1)如图1,若点B的坐标为(0,1),则C点的坐标是 .(2)如图2,若点B在y轴正半轴上,OD平分∠AOB交AC于D,求证:AD=CD;(3)如图3,若点B为y轴上的一个动点,连接OC,当AC+OC值最小时,求B点坐标.2021-2022学年湖北省武汉市武昌区武珞路中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列大学的校徽图案是轴对称图形的是( )A.清华大学B.北京大学C.中国人民大学D.浙江大学【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:B.2.(3分)下列图形中,具有稳定性的是( )A.平行四边形B.梯形C.正方形D.直角三角形【解答】解:根据三角形具有稳定性,可知四个选项中只有直角三角形具有稳定性的.故选:D.3.(3分)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选:D.4.(3分)已知图中的两个三角形全等,则∠α的度数是( )A.72°B.60°C.58°D.50°【解答】解:∵两个三角形全等,∴∠α的度数是72°.故选:A.5.(3分)如图,数学课上,老师让学生尺规作图画∠MON的角平分线OB.小明的作法如图所示,连接BA、BC,你认为这种作法中判断△ABO≌△CBO的依据是( )A.SSS B.SAS C.ASA D.AAS【解答】解:由作图可知,OA=OC,AB=CB,在△AOB和△COB中,OA=OCAB=CB,OB=OB∴△AOB≌△COB(SSS),∴∠BOA=∠BOC,故选:A.6.(3分)如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是( )A.45°B.40°C.35°D.30°【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=12(180°﹣100°)=40°,故选:B.7.(3分)如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的最大周长为( )A.20B.22C.23D.24【解答】解:设第三边为a,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则a可以为4或6或8或10.∴这个三角形的最大周长为5+7+10=22.故选:B.8.(3分)下列条件中,能构成钝角△ABC的是( )A.∠A=∠B=∠C B.∠A+∠C=∠BC.∠B=∠C=14∠A D.∠A=12∠B=13∠C【解答】解:A.根据三角形内角和定理,由∠A=∠B=∠C,得∠A=∠B=∠C=60°,故△ABC是锐角三角形,那么A不符合题意.B.根据三角形内角和定理,由∠A+∠B+∠C=180°,得2∠B=180°,故∠B=90°,即△ABC是直角三角形,那么B不符合题意.C.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠B=∠C=14∠A,得∠A+14∠A+14∠A=180°,故∠A=120°,此时△ABC是钝角三角形,那么C符合题意.D.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠A=12∠B=13∠C,得∠A=30°,∠B=60°,∠C=90°,此时△ABC是直角三角形,那么D不符合题意.故选:C.9.(3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A 2A 3E …按此做法继续下去,则第2021个三角形中以A 2021为顶点的内角度数是( )A .(12)2019•75°B .(12)2020•75°C .(12)2021•75°D .(12)2022•75°【解答】解:∵∠B =30°,A 1B =CB ,∴∠BA 1C =∠C ,30°+∠BA 1C +∠C =180°.∴2∠BA 1C =150°.∴∠BA 1C =12×150°=75°.∵A 1A 2=A 1D ,∴∠DA 2A 1=∠A 1DA 2.∴∠BA 1C =∠DA 2A 1+∠A 2DA 1=2∠DA 2A 1.∴∠DA 2A 1=12∠BA 1C =12×12×150°.同理可得:∠EA 3A 2=12∠DA 2A 1=12×12×12×150°.…以此类推,以A n 为顶点的内角度数是∠A n =(12)n ×150°=(12)n ﹣1×75°.∴以A 2021为顶点的内角度数是(12)2020×75°.故选:B .10.(3分)如图,已知在△ABC 中,AB =AC ,∠ACB 和∠BAC 的平分线交于点O ,过点A 作AD ⊥AO 交CO 的延长线于点D ,若∠ACD =α,则∠BDC 度数为( )A.45°﹣αB.90°―α2C.90°﹣2αD.a2【解答】解:∵AB=AC,∠ACD=α,OC平分∠ACB,∴∠ABC=∠ACB=2α,∵∠ACB和∠BAC的平分线交于点O,∴∠OBC=∠OBA=∠OCB=α,∴∠DOB=∠OBC+∠OCB=2α,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣4α,∴∠BOA=90°﹣2α,∵AD⊥AO,∴∠DAB=∠DOB=2α,∴O、A、D、B四点共圆,∴∠BDC=∠DOA=90°﹣2α.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知点A(2,a)与点B(b,4)关于y轴对称,则a+b= 2 .【解答】解:由题意得,a=4,b=﹣2,则a+b=4+(﹣2)=2,故答案为:2.12.(3分)一个正多边形的每一个内角都是108°,则它是正 五 边形.【解答】解:180°﹣108°=72°,360°÷72°=5.故答案为:五.13.(3分)已知等腰三角形的两边长分别为10和6,则三角形的周长是 22或26 .【解答】解:当6为底时,其它两边都为6,10、10可以构成三角形,周长为26;当6为腰时,其它两边为6和10,可以构成三角形,周长为22.故答案为:22或26.14.(3分)若三角形的一个内角是另一个内角的3倍,我们称此三角形为特异三角形”,若一个“特异三角形”为直角三角形,则这个“特异三角形”最小内角度数为 22.5°或30° .【解答】解:设这个“特异三角形”最小内角的度数为x,则另外两个内角分别是3x、90°或3x=90°、90°﹣x.当“特异三角形”三个内角的度数分别为x、3x、90°,∴x+3x+90°=180°.∴x=22.5°.当“特异三角形”三个内家的度数分别为x、90°、90°﹣x.∴3x=90°.∴x=30°.∴90°﹣x=60°.此时,三个内角的度数分别为30°、60°、90°.∴这个“特异三角形”最小内角度数为30°.综上:这个“特异三角形”最小内角度数为22.5°或30°.故答案为:22.5°或30°.15.(3分)如图,已知△ABC中,OE、OF分别是AB、AC的垂直平分线,∠OBC,∠OCB的平分线相交于点I,有如下结论:①AO=CI;②∠ABC+∠ACO=90°;③∠BOI=∠COI;④OI⊥BC.其中正确的结论是 ②③④ .(填序号)【解答】解:∵OE,OF分别是AB,AC边的中垂线,∴OA=OB,OA=OC,∴OB=OC=OA,∴∠OAB=∠OBA,∠OBC=∠OCB,∠OAC=∠OCA,∵∠OAB+∠OBA+∠OBC=∠OCB+∠OAC=∠OCA=180°,∴∠OBA +∠OBC +∠OCA =90°,∴∠ABC +∠ACO =90°,故②正确;∵∠OBC ,∠OCB 的平分线相交于点I ,∴∠OBC =2∠IBC ,∠OCB =2∠ICB ,∴∠IBC =∠ICB ,∴BI =CI ,∴点I 在BC 的垂直平分线上,∵OB =OC ,∴点O 在BC 的垂直平分线上,∴OI ⊥BC ,故④正确;∵OI 是BC 的垂直平分线,且点O ,点I 不重合,∴OC ≠IC ,∴AO ≠IC ,故①错误;∵OB =OC ,OI 是BC 的垂直平分线,∴∠BOI =∠COI ,故③正确;故答案为②③④.16.(3分)如图,在△ABC 中,AH 是高,AE ∥BC ,AB =AE ,在AB 边上取点D ,连接DE ,DE =AC ,若S △ABC =5S △ADE ,BH =1,则BC = 52 .【解答】解:过点E 作EP ⊥BA ,交BA 的延长线于P ,∴∠P =∠AHB =90°,∵AE ∥BC ,∴∠EAP =∠CBA ,在△AEP和△BAH中,∠P=∠AHB∠PAE=∠BAE=AB,∴△AEP≌△BAH(AAS),∴PE=AH,在Rt△DEP和Rt△CAH中,DE=ACPE=AH,∴Rt△DEP≌Rt△CAH(HL),∴CH=DP,S△ACH=S△APE,∵S△ABC=S△ABH+S△AHC=2S△ABH+S△ADE=5S△ADE,∴S△ABH:S△ADE=2:1,∴BH:AD=2:1,∵BH=1,∴AD=1 2,∴DP=CH=1+12=32,∴BC=BH+CH=1+32=52,故答案为:5 2.三、解答题(本大题共8个题,共72分)17.(8分)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.【解答】证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,∠A=∠D∠B=∠DEFBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF.18.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.【解答】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.19.(8分)如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,求证:AD=3BD.【解答】证明:∵∠ACB=90°,∠A=30°,∴∠B=60°,AB=2BC,∵CD⊥AB,∴∠DCB=30°,∴BC=2BD,∴AB=4BD,∵AB=AD+BD,∴AD=3BD.20.(8分)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD 交于点D ,连接CD .求证:①AB =AD ;②CD 平分∠ACE .【解答】证明:①∵AD ∥BE ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠ABD =∠ADB ,∴AB =AD ;②∵AD ∥BE ,∴∠ADC =∠DCE ,由①知,AB =AD ,又∵AB =AC ,∴AC =AD ,∴∠ACD =∠ADC ,∴∠ACD =∠DCE ,∴CD 平分∠ACE .21.(8分)如图,在下列带有坐标系的网格中,△ABC 的顶点都在边长为1的小正方形的顶点上,A (﹣3,3),B (﹣4,﹣2),C (0,﹣1).(1)直接写出△ABC 的面积为 192 ;(2)画出△ABC 关于y 轴的对称的△DEC (点D 与点A 对应,点E 与点B 对应),点E 的坐标为 (4,﹣2) ;(3)用无刻度的直尺,运用所学的知识作图(保留作图痕迹).①作出△ABC 的高线AF ;②在边BC 上确定一点P ,使得∠CAP =45°.【解答】解:(1)S△ABC=4×5―12×1×5―12×1×4―12×3×4=192,故答案为:19 2;(2)如图,△DEC即为所求,E(4,﹣2),故答案为:(4,﹣2);(3)①如图,线段AF即为所求.②如图,点P即为所求.22.(10分)已知,△ABC中,点D,E分别在边AB,BC上,BD=BE,连接CD.(1)如图1,若∠CAD=∠CED=2∠ADC,求证:AD=DE;(2)如图2,点F在AD上,连接EF,若∠CAD=∠AFE,∠CEF=2∠ADC,求证:AD=EF.【解答】证明:(1)∵BD=BE,∴∠BDE=∠BED,∴∠ADE=∠CED,∵∠CAD=∠CED=2∠ADC,∴∠ADC=∠EDC=12∠CED=12∠ADE,在△ADC和△EDC中,∠CAD=∠ED∠ADC=∠EDCCD=CD,∴△ADC≌△EDC(AAS),∴AD=DE;(2)在EC上截取EG=DF,连接DG,如图2所示:∵BD=BE,∴BD+DF=BE+EG,即BF=BG,在△BDG和△BEF中,BD=BE∠B=∠BBG=BF,∴△BDG≌△BEF(SAS),∴DG=EF,∠BGD=∠BFE,∠BDG=∠BEF,∴∠ADG=∠CEF,∠CGD=∠AFE,∵∠CAD=∠AFE,∠CEF=2∠ADC,∴∠ADC=12∠CEF=12∠ADG=∠GDC,∠CAD=∠CGD,在△ADC和△GDC中,∠CAD=∠CGD∠ADC=∠GDCCD=CD,∴△ADC≌△GDC(AAS),∴AD=GD,∴AD=EF.23.(10分)已知,点C为线段AB上的一点,以AC为边作等边△ACD,连接BD.(1)如图1,以BC为边在AB的上方作等边△BCE,接AE,交BD于点G,求∠AGB的度数;(2)如图2,在(1)的条件下连接CG,求证:CG+DG+EG=AE;(3)如图3,点K在线段BD上,∠BKC=60°,点H为线段AD上,AH=BC,AK,CH交于点I,BD=a,AK=b,则IK= b―12a .(用含a,b的式子表示)【解答】解:(1)∵△ACD和△BCE是等边三角形,∴AC=CD,CB=CE,∠ACD=∠BCE=60°,∴∠ACE=∠BCD,在△ACE和△DCB中,AC=CD∠ACE=∠DCBCE=CB,∴△ACE≌△DCB(SAS),∴∠CAE=∠CDB,∴∠EAC+∠CBD=∠CDB+∠CBD=∠ACD=60°,∴∠AGB=180°﹣(∠EAC+∠ABG)=180°﹣60°=120°;(2)作∠GCF=60°,交AE于F,∴∠ACF=∠DCG,由(1)知∠CAE=∠CDB,又∵AC=CD,∴△ACF≌△DCG(ASA),∴DG=AF,CF=CG,∵∠FCG=60°,∴△FCG是等边三角形,∴CG=FG,∴AE=AF+FG+GE=DG+CG+GE;(3)如图,以BC为边作等边△BCE,连接AE,交BD于K',由(1)(2)可知:∠AK'C=∠BK'C=60°,AE=BD,∵∠BKC=60°,∴点K、K'重合,∵∠DAC=∠ECB=60°,∴AD∥CE,∴∠DAI=∠CEI,又∵AH=CB,CB=CE,∴AH=CE,且∠AIE=∠CIE,∴△AHI≌△ECI(AAS),∴AI=IE=12AE=12a,∴IK=AK﹣AI=b―12 a,故答案为:b―12 a.24.(12分)在平面直角坐标系中,点A的坐标为(3,0),点B在y轴上,以B为直角顶点;在AB上方作等腰Rt△ABC.(1)如图1,若点B的坐标为(0,1),则C点的坐标是 (1,4) .(2)如图2,若点B在y轴正半轴上,OD平分∠AOB交AC于D,求证:AD=CD;(3)如图3,若点B为y轴上的一个动点,连接OC,当AC+OC值最小时,求B点坐标.【解答】(1)解:过点C作CH⊥y轴于H,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠HBC,又∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴OA=BH,BO=HC,∵点A的坐标为(3,0),B的坐标为(0,1),∴OA=3,OB=1,∴OH=OB+BH=3+1=4,CH=OB=1,∴点C(1,4),故答案为:(1,4);(2)证明:作CH⊥y轴于H,交OD的延长线于E,由(1)知△ABO≌△BCH,∴OA=BH=3,OB=HC,设OB=HC=m,∵OD平分∠AOB,∴∠AOD=∠HOE,∵HE∥OA,∴∠E=∠AOE,∴∠HOE=∠E,∴HE=OH,∵OB=HC,∴CE=BH=OA,又∵∠CDE=∠ADO,∴△EDC≌△ODA(AAS),∴AD=CD;(3)解:设OB=m,由(1)知C(m,m+3),∴点C在直线y=x+3上运动,设直线y=x+3交x、y轴于F、G点,则OF=OG=3,∴∠GFO=∠FGO=45°,作点O关于直线CF的对称点O',则∠OFO'=90°,O'F=OF=3,∴O'(﹣3,3),∴AC+OC值最小时,点O'、B、A共线,由O'(﹣3,3),A(3,0)知,直线AO'的函数解析式为y=―12x+32,直线AO'与CF的交点为C'(﹣1,2),∴点B(0,﹣1).。

江汉区第一学期期中考试八年级数学试卷

江汉区第一学期期中考试八年级数学试卷

D CB A第10题图一、选择题:(共8小题,每小题3分,共24分) 1.点A (-3,-4)关于x 轴的对称点是( ).A .(3,-4)B .(-3,4)C .(3,4)D .(-4,3)2.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( ).A .1个B .2个C .3个D .4个3.如图,△ACE ≌△DBF ,若AD =8,BC =2,则AB 的长度等于( ). A .6 B .4 C .2 D .34.如果等腰三角形两边长分别是10cm 和4cm ,那么它的周长是( ). A .14cm B .18cm C .24cm 或18cm D .24cm 5.下列运算正确的是( ). A .632a a a =⋅B .532)(a a = C .a a a 532=+D .23a a a =-6.等腰三角形中有一个角是40︒,则另外两个角的度数是( ).A .70︒ , 70︒B .40︒, 100︒C .70︒, 40︒D .70︒, 70︒或40︒,100︒ 7.若412++kx x 是完全平方式,则常数k 的值为( ). A .21 B .21± C .1 D .1± 8.如图,O 是△ABC 的两条边AB 、BC 的垂直平分线的交点,∠BAC =70°, 则∠BOC =( ). A .120° B .125°C .130°D .140°二、填空题(共8小题,每小题3分,共24分)9.已知如图,AD =BC ,要得到△ABD ≌△CDB ,可以添加角的条件:∠_______=∠_______.第9题图10.如图,△ABC 中,已知AB =AC ,BD =DC ,则∠ADB =_______.11.如图,△ABC 的两条高CD 与BE 交于O ,若CD=BE ,则图中共有_______对全等三角形.第3题图DBC第11题图OCA第8题图A12.计算:()()12+-x x = .13.一个正方形的边长增加3cm ,它的面积就增加39cm 2,则这个正方形的边长为 cm .14.如图,在Rt △ABC 中,∠ACB =90°, ∠A =30°, CD ⊥AB 于D 点,若1=BD ,则=AD .第14题图15.如图,等边△ABC 的边长为3cm ,D 、E 分别是AB 、AC 上的两点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长为________ cm .16.命题:①有一条边相等的两个等边三角形全等;②两条直角边对应相等的两个直角三角形全等;③有两边和一角分别相等的两个三角形全等;④底边相等的两个等腰三角形全等. 以上命题正确的有_________.(填序号)三、解答题(共52分)17.计算: (1) xy x 362⋅ (2) ()()b ba 242--18.先化简,再求值: ()()()b a b a b a -+-+522,其中31=a ,61-=b .19.(本题满分10分)如图,△ABC 中,AC =BC ,∠BAC =50°,延长CB 至D ,使DB =BA ,延长BC 至E ,使CE =CA ,连接AD 、AE ,求∠D ,∠E 的度数.20. (本题满分10分)如图,BD 是∠ABC 的平分线,AB =BC ,点E 在BD 上,连接AE ,CE ,DF ⊥AE ,DG ⊥CE ,垂足分别是F 、G ,求证:DF =DG .EDBACABCDEA ′第15题图FGEDBACDCBA四、选择题(共2小题,每小题4分,共8分)22.若63=m ,34=n ,则2412的值(用含m 、n 的式子表示)为( ).A .mnB .2118n m C .42n m D .84n m23.如图,△ABC 是等腰直角三角形,∠EDF 是一个直角,将顶点D 放在BC 的中点上,转动∠EDF ,设DE ,DF 分别交AC ,BA 的延长线于E ,G ,则下列结论:①AG =CE ;② DG =DE ;③CE AC BG =-;④ 2S △BDG -2S △CDE =S △ABC . .其中总是成立的是( ). A .①②③ B.①②③④ C.②③④ D.①②④五、填空题(共2小题,每小题4分,共8) 24.若0132=+-x x ,则221xx += .25. 如图,将长方形ABCD 沿EF 折叠,使CD 落在GH 的位置,GH 交BC 于M ,若∠HMB =52°,则HEF ∠的度数为________.六、解答题(共34分)26.(本题满分10分)五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE .27.如图,△ABC 是等边三角形,D 是三角形外一动点.(1)若∠ADB =600,当D 点在AC 的垂直平分线上时,请直接写出线段DA ,DC ,DB 的数量关系;(2)若∠ADB =600,当D 点不在AC 的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;DCBA第23题图M HGF EDCB A第25题图第26题图D CBA(3)当D 点在如图的位置时,∠ADC =600,请直接写出线段AD 、BD 和CD 之间的数量关系.28.(本题满分12分) 如图,直角坐标系中,点B (a ,0),点C (0,b ),点A 在第一象限.若a ,b 满足(t >0) . (1)证明:OB =OC ;(2)如图1,连接AB ,过A 作AD ⊥AB 交y 轴于D ,在射线AD 上截取AE =AB ,连接CE ,F 是CE 的中点,连接AF ,OA ,当点A 在第一象限内运动(AD 不过点C )时,证明:∠OAF 的大小不变;(3)如图2,B ′与B 关于y 轴对称,M 在线段BC 上,N 在CB ′的延长线上,且BM =NB ′,连接MN 交x 轴于点T ,过T 作TQ ⊥MN 交y 轴于点Q ,求点Q 的坐标.()02=-+-tb t a 图1图2第一学期期中考试 八年级数学试题 答案 第Ⅰ卷(本卷满分100分)一、选择题1.B 2.D 3.D 4.D 5.C 6.D 7.D 8.D 二、填空题9.ADB ; CBD 10. 90° 11. 3 12.22--x x 13.5 14..3 15. 9 16. ①② 三、解答题17. ①y x 318 ②328b ab +-18. 原式=()22225444bab a b ab a -+-++ ┄┄┄┄┄4´=2263b a + ┄┄┄┄┄6´当31=a ,61-=b 时,原式=6561-631322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛ ┄┄┄┄┄10´19. 证明: ∵AC =BC∴∠ABC =∠BAC =50°,∠ACB =180°-50°-50°=80° ┄┄┄┄┄2´ ∵BD =AB∴∠BAD =∠D ´ 又∠BAD +∠D =∠ABC =50°∴∠D =25° ┄┄┄┄┄6´ 同理:∠E =40° ┄┄┄┄┄10´20.证明: ∵BD 平分∠ABC∴∠ABD =∠DBC ┄┄┄┄┄2´ 在△ABD 和△CBD 中, ∵BD =CB ∠ABD =∠DBCBD =BD∴△ABD ≌△CBD∴∠ADB =∠BDC ┄┄┄┄┄6´∴∠AED =∠CED又∵DF ⊥AE , DG ⊥EC ∴DF =DG ┄┄┄┄10´21. (1) (1,3); (0,6); (3,5) ┄┄┄┄┄3´画图△A 1B 1C 1与△A 2B 2C 2 ┄┄┄┄┄6´ (2) FF 2=4 ┄┄┄┄┄12´ 方法1:根据坐标求长度方法2:根据轴对称的性质求长度第Ⅱ卷(本卷满分50分)22. D 23. B 24. 7 25.71° 26. 证明:延长DE 至T ,使ET =BC ,连接AT 、AC ┄┄┄┄┄1´证明△AET≌△ABC ┄┄┄┄┄5´ 再证明△A CD ≌△ATD ┄┄┄┄┄9´ ∴∠CDA =∠TDA即:AD 平分∠CDE. ┄┄┄┄┄10´27. (1)BD =AD +AC ┄┄┄2´ (2)延长DA 到E ,使得∠EBD =600,∵∠ADB =60°∴△EBD 是一个等边三角形, ∴BE =ED =BD ,∠EBD =60°, ┄┄┄┄┄4´ ∵△ABC 是等边三角形, ∴AB =BC ,∠ABC =60°,∴∠EBA =∠DBC ┄┄┄┄┄6´ 在△EBA 与△DBC 中,BE BD EBA DBC AB BC =⎧⎪∠=∠⎨⎪=⎩∴△EBD ≌△CBD , ┄┄┄┄┄8´ ∴EA =DC ┄┄┄┄┄9´ ∴BD =ED =EA +AD =DC +AD ;. ┄┄┄┄┄10´ (3)DC <DA +DB ┄┄┄┄┄12´ 28.(1)易得t a =,t b =,B (t ,0),点C (0,t )∴OB =OC ┄┄┄┄┄3´ (2)延长AF 至T ,使TF =AF ,连接TC ,TO ,F , 证明△TCF ≌△AEF ┄┄┄┄┄4´ 再证明△TCO ≌△ABO ┄┄┄┄┄6´得到△TAO 为等腰直角三角形,从而△FAO 为等腰直角三角形,故∠OAF=45°┄┄┄┄┄7´ (3)连接MQ ,NQ ,BQ ,B ’Q ,过M 作MH‖CN 交x 轴于H. 证明△NTB ’≌△MTH , ∴TN =MT ,又TQ ⊥MN ∴MQ =NQ∵CQ 垂直平分BB ’y C∴BQ=B’Q∴△NQB’≌△MQB∴∠NB’Q=∠CBQ┄┄┄┄┄10´而∠NB’Q+∠CB’Q=180°∴∠CBQ+∠CB’Q=180°∴∠B’CB+∠B’QB=180°,又∠B’CB=90°∴∠B’QB=90°∴△BQB’是等腰直角三角形,∴OQ=OB=t∴Q(0,-t) ┄┄┄┄┄12´。

2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷及答案解析

2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷及答案解析

2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.16的算术平方根是( )A .8B .﹣8C .4D .±4 2.式子√2x+1x−1有意义的x 的取值范围是( ) A .x ≥−12且x ≠1 B .x ≠1 C .x ≥−12 D .x >−12且x ≠1 3.下列各组线段能构成直角三角形的一组是( )A .3,4,5B .2,3,4C .1,2,3D .4,5,64.下列二次根式中,与√6是同类二次根式的是( )A .√12B .√18C .√23D .√305.已知平行四边形ABCD 中,∠B =4∠A ,则∠C =( )A .18°B .36°C .72°D .144°6.下列命题中,是假命题的是( )A .对顶角相等B .同位角相等C .同角的余角相等D .全等三角形的面积相等7.如图,在宽为30m ,长为40m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )A .1200m 2B .1131m 2C .1181 m 2D .1209m 28.如图,一根垂直于地面的旗杆在离地面5m 处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是( )A .5mB .12mC .13mD .18m 9.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+210.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB,垂足E在线段AB上,F、G分别是AD、CE的中点,连接FG,EF、CD的延长线交于点H,则下列结论:①∠DCF=1∠BCD;②EF=CF:③S△BEC=2S△CEF;④∠DFE=3∠AEF.其中,正确结论的个数2是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.若x<2,化简√(x−2)2−|4﹣x|的结果是.12.已知√18−n是整数,自然数n的最小值为.13.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.14.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.15.如图,在ABC中,AB=BC=3,∠ABC=120°,点E是AB边上一个动点(不与端点重合),ED⊥AC交AC于点D,将△ADE沿DE折叠,点A的对应点为F,当△BCF为等腰三角形时,则AE的长为.16.如图,菱形ABCD的边长是4,∠ABC=60°,点E,F分别是AB,BC边上的动点(不与点A,B,C重合),且BE=BF,若EG∥BC,FG∥AB,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为.三.解答题(共8小题,满分72分)17.(8分)计算:2√18+6√12−5√6+√318.(8分)先化简,再求值:(x﹣2+8xx−2)÷x+22x−4,其中x=−12.19.(8分)如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)连接BD交EF于点O,当BE⊥EF时,BE=8,BF=10,求BD的长.20.(8分)如图,在8×8的正方形网格中,若小正方形的边长为1,△ABC的顶点A、B、C在网格的格点上(1)图1中△ABC的面积为.(2)若点A的坐标为(0,﹣1),请你在图中找出一点D,使A、B、C、D四个点为顶点的四边形为平行四边形,则满足条件的D点地坐标是.(3)在图2中画出三边长分别为√10,2√5,√26的格点△DEF.21.(8分)如图,长方形ABCD中,AB∥CD,∠D=90°,AB=CD,AD=4cm,点P从点D出发(不含点D)以2cm/s的速度沿D→A→B的方向运动到点B停止,点P出发1s后,点Q才开始从点C出发以acm/s的速度沿C→D的方向运动到点D停止,当点P 到达点B时,点Q恰好到达点D.(1)当点P到达点A时,△CPQ的面积为3cm2,求CD的长;(2)在(1)的条件下,设点P运动时间为t(s),运动过程中△BPQ的面积为S(cm2),请用含t(s)的式子表示面积S(cm2),并直接写出t的取值范围.22.(10分)已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.23.(10分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明:不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.24.(12分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.16的算术平方根是( )A .8B .﹣8C .4D .±4【解答】解:∵(±4)2=16,∴16的算术平方根是4,故选:C .2.式子√2x+1x−1有意义的x 的取值范围是( ) A .x ≥−12且x ≠1 B .x ≠1 C .x ≥−12 D .x >−12且x ≠1 【解答】解:由题意,得2x +1≥0且x ﹣1≠0,解得x ≥−12且x ≠1,故选:A .3.下列各组线段能构成直角三角形的一组是( )A .3,4,5B .2,3,4C .1,2,3D .4,5,6 【解答】解:A 、32+42=52,能构成直角三角形,故选项正确;B 、22+32≠42,不能构成直角三角形,故选项错误;C 、12+22≠32,不能构成直角三角形,故选项错误;D 、42+52≠62,不能构成直角三角形,故选项错误.故选:A .4.下列二次根式中,与√6是同类二次根式的是( )A .√12B .√18C .√23D .√30【解答】解:A 、√12=2√3,与√6不是同类二次根式,故本选项错误;B 、√18=3√2,与√6不是同类二次根式,故本选项错误;C 、√23=√63,与√6是同类二次根式,故本选项正确;D 、√30与√6不是同类二次根式,故本选项错误.故选:C .5.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选:B.6.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【解答】解:A、对顶角相等是真命题,故此选项不合题意;B、同位角相等是假命题,故此选项符合题意;C、同角的余角相等是真命题,故此选项不合题意;D、全等三角形的面积相等是真命题,故此选项不合题意;故选:B.7.如图,在宽为30m,长为40m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为()A.1200m2B.1131m2C.1181 m2D.1209m2【解答】解:可把两条路平移到耕地的边上,如图所示,则耕地的长变为(40﹣1)m,宽变为(30﹣1)m,耕地面积为:39×29=1131(m2).故选:B.8.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为√122+52=13m,所以旗杆折断之前高度为13m+5m=18m.故选:D.9.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+2【解答】解:∵第一个图案中,有白色的是6个,后边是依次多4个.∴第n个图案中,是6+4(n﹣1)=4n+2.故选:D.10.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB,垂足E在线段AB上,F、G分别是AD、CE的中点,连接FG,EF、CD的延长线交于点H,则下列结论:①∠DCF=12∠BCD ;②EF =CF :③S △BEC =2S △CEF ;④∠DFE =3∠AEF .其中,正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①∵F 是AD 的中点,∴AF =FD ,∵在▱ABCD 中,AD =2AB ,∴AF =FD =CD ,∴∠DFC =∠DCF ,∵AD ∥BC ,∴∠DFC =∠FCB ,∴∠DCF =∠BCF ,∴∠DCF =12∠BCD ,故此选项正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,{∠A =∠FDM AF =DF ∠AFE =∠DFM,∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.若x<2,化简√(x−2)2−|4﹣x|的结果是﹣2.【解答】解:∵x<2,∴√(x−2)2−|4﹣x|=|x﹣2|﹣(4﹣x)=2﹣x﹣4+x=﹣2.故答案为:﹣2.12.已知√18−n是整数,自然数n的最小值为2.【解答】解:∵√18−n是整数,n为最小自然数,∴18﹣n=16,∴n=2,故答案为:2.13.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=105°.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=12∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=12∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°14.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为2√10.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB=√62+22=2√10,故答案为:2√10.15.如图,在ABC中,AB=BC=3,∠ABC=120°,点E是AB边上一个动点(不与端点重合),ED⊥AC交AC于点D,将△ADE沿DE折叠,点A的对应点为F,当△BCF为等腰三角形时,则AE的长为2或3−√3.【解答】解:如图1,当BF=CF时,过点F作FM⊥AB于点M,∵AB=BC=3,∠ABC=120°,∴∠A=∠C=30°,∵CF=BF,∴∠CFB=∠CBF=75°,∴∠EBF=120°﹣75°=45°,设AE=x,∵将△ADE沿DE折叠,点A的对应点为F,∴AE=EF=x,∠A=∠EF A=30°,∴∠BEF=∠A+∠EF A=60°,∴EM=12x,MF=BM=√32x,∴x+12x+√32x=3,解得x=3−√3.∴AE=3−√3.如图2,当BF=CF时,∴∠C=∠FBC=30°,∴∠ABF=90°,∴BF=3×√33=√3,同理可知∠BEF=2∠A=60°,∴EF=AE=BFsin60°=√3√32=2.∴AE的长为2或3−√3.故答案为:2或3−√3.16.如图,菱形ABCD的边长是4,∠ABC=60°,点E,F分别是AB,BC边上的动点(不与点A,B,C重合),且BE=BF,若EG∥BC,FG∥AB,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为4−4√33或83.【解答】解:如图,连接AC交BD于O,∵菱形ABCD的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,∵EG∥BC,FG∥AB,∴四边形BEGF 是平行四边形,又∵BE =BF ,∴四边形BEGF 是菱形,∴∠ABG =30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD =30°,∴AO =12AB =2,BO =√3AO =2√3,∴BD =4√3,AC =4,同理可求BG =√3BE ,若AD =DG '=4时,∴BG '=BD ﹣DG '=4√3−4,∴BE '=4−4√33,若AG ''=G ''D 时,过点G ''作G ''H ⊥AD 于H ,∴AH =HD =2,∵∠ADB =30°,G ''H ⊥AD ,∴HG ''=2√33,DG ''=2HG ''=4√33, ∴BG ''=BD ﹣DG ''=8√33, ∴BE ''=83, 综上所述:BE 为4−4√33或83. 三.解答题(共8小题,满分72分)17.(8分)计算:2√18+6√12−5√6+√3【解答】解:原式=6√2+3√2−5√6+√3=9√2−5√6+√3.18.(8分)先化简,再求值:(x ﹣2+8x x−2)÷x+22x−4,其中x =−12.【解答】解:原式=(x 2−4x+4x−2+8x x−2)•2(x−2)x+2=(x+2)2x−2•2(x−2)x+2=2(x+2)=2x+4,当x=−12时,原式=2×(−12)+4=﹣1+4=3.19.(8分)如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)连接BD交EF于点O,当BE⊥EF时,BE=8,BF=10,求BD的长.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形;(2)解:∵BE⊥AC,∴∠BEF=90°,在Rt△BEF中,EF=√BF2−BE2=√102−82=6,∴OE=OF=3,在Rt△BEO中,OB=√BE2+OE2=√82+32=√73,∴BD=2OB=2√73.20.(8分)如图,在8×8的正方形网格中,若小正方形的边长为1,△ABC 的顶点A 、B 、C 在网格的格点上(1)图1中△ABC 的面积为 72 .(2)若点A 的坐标为(0,﹣1),请你在图中找出一点D ,使A 、B 、C 、D 四个点为顶点的四边形为平行四边形,则满足条件的D 点地坐标是 (﹣2,2)或(4,0)或(2,﹣4) .(3)在图2中画出三边长分别为√10,2√5,√26的格点△DEF .【解答】解:(1)△ABC 的面积为3×3−12×1×2−12×2×3−12×1×3=72,故答案为:72;(2)如图1所示,满足条件的点D 的坐标为(﹣2,2)或(4,0)或(2,﹣4),故答案为:(﹣2,2)或(4,0)或(2,﹣4);(3)如图所示,△DEF 即为所求.21.(8分)如图,长方形ABCD 中,AB ∥CD ,∠D =90°,AB =CD ,AD =4cm ,点P 从点D 出发(不含点D )以2cm /s 的速度沿D →A →B 的方向运动到点B 停止,点P 出发1s 后,点Q 才开始从点C 出发以acm /s 的速度沿C →D 的方向运动到点D 停止,当点P 到达点B 时,点Q 恰好到达点D .(1)当点P 到达点A 时,△CPQ 的面积为3cm 2,求CD 的长;(2)在(1)的条件下,设点P 运动时间为t (s ),运动过程中△BPQ 的面积为S (cm 2),请用含t (s )的式子表示面积S (cm 2),并直接写出t 的取值范围.【解答】解:(1)设点P 运动时间为t (s ),根据题意,得点P 出发1s 后,点Q 才开始从点C 出发以acm /s 的速度沿C →D 的方向运动到点D 停止,当点P 到达点B 时,点Q 恰好到达点D .∴2(t ﹣2)=a (t ﹣1),当点P 到达点A 时,△CPQ 的面积为3cm 2,即12a ×1×4=3,∴a =32.即2(t ﹣2)=32(t ﹣1),解得t =5,所以CD =a (t ﹣1)=6.答:CD 的长为6;(2)根据题意,得BC =AD =4,CD =6DP =2t ,CQ =1.5(t ﹣1),①点P 的运动时间为t ,0﹣1秒时点Q 还在点C ,△BPQ 面积不变为12×4×6=12; 即S =12(0<t ≤1)②当1<t ≤2时,DQ =6﹣1.5(t ﹣1)=7.5﹣1.5t ,S =S 梯形DPBC ﹣S △DPQ ﹣S △BQC=12(2t +4)×6−12×2t ×(7.5﹣1.5t )−12×1.5(t ﹣1)×4=1.5t 2﹣4.5t +15;③当2<t ≤5时,BP =10﹣2t ,S =12BP •BC=12(10﹣2t)×4=20﹣4t.综上所述:运动过程中△BPQ的面积为S(cm2),用含t(s)的式子表示面积S(cm2)为:S=12 (0<t≤1)或S=1.5t2﹣4.5t+15(1<t≤2)或S=20﹣4t(2<t≤5).22.(10分)已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.【解答】解:设AB=AC=acm,∵BC=10cm,CD=8cm,BD=6cm,∴BD2+CD2=BC2,∴∠BDC=90°,即∠ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a﹣6)2+82,解得:a=25 3,即AB=253cm.23.(10分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明:不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【解答】(1)证明:连接AC,如图所示,∵菱形ABCD,∠BAD=120°,∴∠BAC=∠DAC=60°,∴∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,BC∥AD,∴∠ABC=∠BAC=∠ACB=60°,∴△ABC、△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,{∠1=∠3AB=AC∠ABC=∠4,∴△ABE≌△ACF(ASA).∴BE=CF;(2)解:四边形AECF的面积不变.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=12BC•AH=12BC•√AB2−BH2=4√3.24.(12分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.【解答】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB +BD =AE ,理由如下:如图2,在AB 上取BH =BD ,连接DH ,∵BH =BD ,∠B =60°,∴△BDH 为等边三角形,∴∠BHD =60°,BD =DH ,∵AD =DE ,∴∠E =∠CAD ,∴∠BAC ﹣∠CAD =∠ACB ﹣∠E 即∠BAD =∠CDE , ∵∠BHD =60°,∠ACB =60°,∴180°﹣∠BHD =180°﹣∠ACB 即∠AHD =∠DCE , ∵∠BAD =∠CDE ,AD =DE ,∠AHD =∠DCE , 在△AHD 和△DCE ,{∠BAD =∠CDE ∠AHD =∠DCE AD =DE,∴△AHD ≌△DCE (AAS ),∴DH =CE ,∴BD =CE ,∴AE =AC +CE =AB +BD .(3)AB =BD +AE ,如图3,在AB 上取AF =AE ,连接DF ,∵△ABC 为等边三角形,∴∠BAC =∠ABC =60°,∴△AFE 是等边三角形,∴∠F AE =∠FEA =∠AFE =60°,∴EF ∥BC ,∴∠EDB =∠DEF ,∵AD =DE ,∴∠DEA =∠DAE ,∴∠DEF =∠DAF ,∵DF =DF ,AF =EF ,在△AFD 和△EFD 中,{AD =DE DF =DF AF =EF,∴△AFD ≌△EFD (SSS )∴∠ADF =∠EDF ,∠DAF =∠DEF ,∴∠FDB =∠EDF +∠EDB ,∠DFB =∠DAF +∠ADF , ∵∠EDB =∠DEF ,∴∠FDB =∠DFB ,∴DB =BF ,∵AB =AF +FB ,∴AB =BD +AE .。

湖北省武汉市江汉区2018-2019学年八年级(上)期中数学试卷(含答案解析)

湖北省武汉市江汉区2018-2019学年八年级(上)期中数学试卷(含答案解析)

2018-2019学年湖北省武汉市江汉区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm2.如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB3.下列运算中,正确的是()A.x+x=x2B.3x2﹣2x=x C.(x2)3=x6D.x2•x3=x64.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS5.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab6.如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,则∠CDE的度数是()A.50°B.60°C.70°D.120°7.如图,AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论:①DE =DF;②BD=CD;③AE=AF;④∠ADE=∠ADF,其中正确结论的个数有()A.1个B.2个C.3个D.4个8.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a﹣b)(a+2b)=a2﹣2b2+abB.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)(a+b)=a2﹣b29.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.已知3m=a,81n=b,m、n为正整数,则33m+12n的值为()A.a3b3B.15ab C.3a+12b D.a3+b3二、填空题(共6小题,每小题3分,共18分)11.计算:(x﹣2)(2+x)=.12.八边形中过其中一个顶点有条对角线.13.如图,△ABC≌△DEF,则∠E的度数为.14.如果等腰三角形的两边长分别为3和7,那么它的周长为.15.若x2+kx﹣15=(x+3)(x+b),则k=.16.若一个多边形的每一个内角都等于156°,则这个多边形是边形.三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)17.(1)计算:(﹣4x)(2x2+3x﹣1)(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)18.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.20.已知x2+y2=25,x+y=7,求xy和x﹣y的值.21.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为;(2)直接写出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.四、填空题(共4小题,每小题4分,共16分)22.若x2+2(m﹣4)x+25是一个完全平方式,那么m的值应为.23.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是.24.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE与AC交于点E,连接DE,则∠DEB=.25.如图,在△ABC中,BC=10,BC边上的高为3.将点A绕点B逆时针旋转90°得到点E,绕点C顺时针旋转90°得到点D.沿BC翻折得到点F,从而得到一个凸五边形BFCDE,则五边形BFCDE的面积为.五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)26.(1)计算:(x3)2+x3•x5÷x2﹣(2x2)3(2)化简:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x.27.如图,在等腰Rt△ABC中,∠ACB=90°,∠CBA=∠CAB,AC=BC.点D在CB的延长线上,BD=CB.DF⊥BC,点E在BC的延长线上,EC=FD.(1)如图1,若点E、A、F三点共线,求证:∠FAB=∠FBA;(2)如图2,若线段EF与BA的延长线交于点M,求证:EM=FM.28.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.2018-2019学年湖北省武汉市江汉区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm【分析】根据三角形的三边关系可得6﹣4<第三根小棒的长度<6+4,再解不等式可得答案.【解答】解:设第三根小棒的长度为xcm,由题意得:6﹣4<x<6+4,解得:2<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB【分析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出正确结果.【解答】解:A、补充BC=BD,根据SAS可以推出△ABC≌△ABD,故本选项错误;B、补充AC=AD,没有两边及其一边的对角相等的两三角形全等的判断方法,∴不能推出△ABC≌△ABD,故本选项正确;C、补充∠ACB=∠ADB,根据AAS可以推出△ABC≌△ABD,故本选项错误;D、补充∠CAB=∠DAB,根据ASA可以推出△ABC≌△ABD,故本选项错误.故选:B.【点评】本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.做题时要逐个验证,排除错误的选项.3.下列运算中,正确的是()A.x+x=x2B.3x2﹣2x=x C.(x2)3=x6D.x2•x3=x6【分析】直接利用合并同类项法则以及幂的乘方运算法则和同底数幂的乘法运算法则分别计算得出答案.【解答】解:A、x+x=2x,故此选项错误;B、3x2﹣2x,无法计算,故此选项错误;C、(x2)3=x6,正确;D、x2•x3=x5,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及幂的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.4.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS【分析】由三边对应相等得△DOF≌△EOF,即由SSS判定两个三角形全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:依题意知,在△DOF与△EOF中,,∴△DOF≌△EOF(SSS),∴∠AOF=∠BOF,即OF即是∠AOB的平分线.故选:D.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.5.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(﹣4a2+12a3b)÷(﹣4a2)=1﹣3ab.故选:A.【点评】此题主要考查了整式的除法,正确掌握运算法则是解题关键.6.如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,则∠CDE的度数是()A.50°B.60°C.70°D.120°【分析】根据角平分线定义求出∠FCB和∠EBC,根据三角形的外角性质求出即可.【解答】解:∵BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,∴∠EBC=∠ABC==25°,∠FCB===35°,∴∠CDE=∠EBC+∠FCB=25°+35°=60°,故选:B.【点评】本题考查了三角形的角平分线定义和三角形的外角性质,能根据三角形的外角性质得出∠CDE=∠EBC+∠FCB是解此题的关键.7.如图,AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论:①DE=DF;②BD=CD;③AE=AF;④∠ADE=∠ADF,其中正确结论的个数有()A.1个B.2个C.3个D.4个【分析】根据角平分线的性质可得①正确,即可证△ADE≌△ADF,可得③④正确.【解答】解:∵AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F∴DE=DF∵DE=DF,AD=AD∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∠ADE=∠ADF故①③④正确∵只有等腰三角形顶角的角平分线才是底边的中线∴②错误故选:C.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,熟练运用这些性质解决问题是本题的关键.8.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a﹣b)(a+2b)=a2﹣2b2+abB.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)(a+b)=a2﹣b2【分析】左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a﹣b),根据二者相等,即可解答.【解答】解:由题可得:(a﹣b)(a+b)=a2﹣b2.故选:D.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.10.已知3m=a,81n=b,m、n为正整数,则33m+12n的值为()A.a3b3B.15ab C.3a+12b D.a3+b3【分析】根据幂的乘方与积的乘方运算法则计算即可.【解答】解:33m+12n=(3m)3•(34n)3=(3m)3•(81n)3=a3b3,故选:A.【点评】本题考查的是幂的乘方与积的乘方运算,掌握幂的乘方与积的乘方的运算法则是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.计算:(x﹣2)(2+x)=x2﹣4.【分析】依据平方差公式进行计算即可.【解答】解:(x﹣2)(2+x)=(x+2)(x﹣2)=x2﹣22=x2﹣4.故答案为:x2﹣4.【点评】本题主要考查的是平方差公式的应用,熟练掌握平方差公式是解题的关键.12.八边形中过其中一个顶点有5条对角线.【分析】根据从n边形的一个顶点可以作对角线的条数为(n﹣3),即可得解.【解答】解:∵一个八边形过一个顶点有5条对角线,故答案为:5.【点评】本题考查了多边形的对角线的公式,牢记公式是解题的关键.13.如图,△ABC≌△DEF,则∠E的度数为38°.【分析】利用全等三角形的性质以及三角形的内角和定理即可解决问题;【解答】解:∵△ABC≌△DEF,∴∠E=∠ABC,∵∠ABC=180°﹣∠A﹣∠C=38°,∴∠E=38°,故答案为38°.【点评】本题考查全等三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.14.如果等腰三角形的两边长分别为3和7,那么它的周长为17.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.15.若x2+kx﹣15=(x+3)(x+b),则k=﹣2.【分析】已知等式右边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出k的值.【解答】解:x2+kx﹣15=(x+3)(x+b)=x2+(b+3)x+3b,∴k=b+3,3b=﹣15,解得:b=﹣5,k=﹣2.故答案为:﹣2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.若一个多边形的每一个内角都等于156°,则这个多边形是十五边形.【分析】先求出多边形一个外角的度数,然后根据多边形的外角和为360°,求出边数即可.【解答】解:∵多边形的每一个内角都等于156°,∴多边形的每一个外角都等于180°﹣156°=24°,∴边数n=360°÷24°=15.故答案为:十五.【点评】题主要考查了多边形的内角与外角的关系,解题的关键根据外角和定理求出多边形的边数.三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)17.(1)计算:(﹣4x)(2x2+3x﹣1)(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)【分析】(1)根据单项式乘多项式的运算法则计算可得;(2)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)原式=﹣8x3﹣12x2+4x;(2)6x2﹣4x﹣9x+6=6x2﹣24,6x2﹣4x﹣9x﹣6x2=﹣24﹣6,﹣13x=﹣30,x=.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.18.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.【解答】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE.【点评】本题主要考查全等三角形的判定,涉及到平行线的性质知识点,比较简单.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.【分析】先根据角平分线的定义求得∠EAC的度数,再由外角的性质得∠AED,最后由直角三角形的性质可得结论.【解答】解:∵AE平分∠BAC,∴∠EAC===50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.【点评】此题主要考查了三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余.20.已知x2+y2=25,x+y=7,求xy和x﹣y的值.【分析】先根据完全平方公式求出xy的值,再根据完全平方公式求出(x﹣y)2的值,再求出答案即可.【解答】解:∵x2+y2=(x+y)2﹣2xy,∴25=72﹣2xy,∴xy=12,∴(x﹣y)2=x2﹣2xy+y2=25﹣2×12=1,∴x﹣y=±1.【点评】本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键,注意:a2+2ab+b2=(a+b)2,a2﹣2ab+b2=(a﹣b)2.21.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为6;(2)直接写出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.【分析】(1)根据三角形的构造法则,确定出(a+b)4的展开式中各项系数最大的数;(2)原式变形后,计算即可得到结果;(3)当x=0时,得到a2019=1,当x=1时,得到a2019=1,于是得到结论.【解答】解:(1)根据题意得:(a+b)4的展开式中各项系数分别为1,4,6,4,1,即最大的数为6;故答案为:6;(2)原式=(2﹣3)5=﹣1;(3)当x=0时,a2019=1,当x=1时,a1+a2+a3+…+a2017+a2018+a2019=1,∴a1+a2+a3+…+a2017+a2018=0.【点评】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.四、填空题(共4小题,每小题4分,共16分)22.若x2+2(m﹣4)x+25是一个完全平方式,那么m的值应为﹣1或9.【分析】根据完全平方式得出2(m﹣4)x=±2•x•5,求出即可.【解答】解:∵x2+2(m﹣4)x+25是一个完全平方式,∴2(m﹣4)x=±2•x•5,解得:m=﹣1或9,故答案为:﹣1或9.【点评】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.23.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是92°.【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.【点评】此题考查了翻折变换(折叠问题)以及三角形外角性质,熟练掌握折叠的性质是解本题的关键.24.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE与AC交于点E,连接DE,则∠DEB=40°.【分析】作辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH,设∠DEG=y,∠GEB=x,根据三角形的内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB,列方程为2y+x=80﹣x,y+x=40,可得结论:∠DEB=40°.【解答】解:过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD,∴EH=EF,∵∠BAC=130°,∴∠FAE=∠CAD=50°,∴EF=EG,∴EG=EH,∴EH平分∠CDG,∴∠HED=∠DEG,设∠DEG=y,∠GEB=x,∵∠EFA=∠EGA=90°,∴∠GEA=∠FEA=40°,∵∠EFB=∠EHB=90°,∠EBF=∠EBH,∴∠FEB=∠HEB,∴2y+x=80﹣x,2y +2x =80,y +x =40,即∠DEB =40°,故答案为:40°.【点评】本题考查了三角形内角和定理和角平分线的性质,正确作辅助线是本题的关键,有难度. 25.如图,在△ABC 中,BC =10,BC 边上的高为3.将点A 绕点B 逆时针旋转90°得到点E ,绕点C 顺时针旋转90°得到点D .沿BC 翻折得到点F ,从而得到一个凸五边形BFCDE ,则五边形BFCDE 的面积为 80 .【分析】将点C 绕点B 逆时针旋转90°得到点G ,绕点C 顺时针旋转90°得到点H ,连接EG 、DH 、GH ,则△EBG ≌△ABC ≌△HDC ,四边形BCHG 是正方形,六边形BCDHGE 是中心对称图形,根据轴对称和中心对称的性质得出S △BEG =S △CDH =S △ABC ,S 四边形BCDE =S 六边形BCDHGE ,然后由S 五边形BFDE =S 四边形BCDE +S △BFC 即可求得.【解答】解:将点C 绕点B 逆时针旋转90°得到点G ,绕点C 顺时针旋转90°得到点H ,连接EG 、DH 、GH ,则△EBG ≌△ABC ≌△HDC ,四边形BCHG 是正方形,六边形BCDHGE 是中心对称图形,∴四边形BCDE ≌四边形HGED ,∵S △BEG =S △CDH =S △ABC =×10×3=15=S △BFC ,S 正方形BCHG =10×10=100,∴S 六边形BCDHGE =S △BEG +S △CDH +S 正方形BCHG =2×15+100=130,∴S 四边形BCDE =S 六边形BCDHGE =65,∴S 五边形BFDE =S 四边形BCDE +S △BFC =65+15=80,故答案为80.【点评】本题考查了图形的全等,熟练掌握轴对称和中心对称的性质是解题的关键.五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)26.(1)计算:(x3)2+x3•x5÷x2﹣(2x2)3(2)化简:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x.【分析】(1)根据幂的乘方、同底数幂的乘除法和积的乘方可以解答本题;(2)根据完全平方公式和多项式乘多项式以及整式的除法可以解答本题.【解答】解:(1)(x3)2+x3•x5÷x2﹣(2x2)3=x6+x6﹣8x6=﹣6x6;(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x=[x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2]÷2x=(﹣2x2+2xy)÷2x=﹣x+y.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.27.如图,在等腰Rt△ABC中,∠ACB=90°,∠CBA=∠CAB,AC=BC.点D在CB的延长线上,BD=CB.DF⊥BC,点E在BC的延长线上,EC=FD.(1)如图1,若点E、A、F三点共线,求证:∠FAB=∠FBA;(2)如图2,若线段EF与BA的延长线交于点M,求证:EM=FM.【分析】(1)证明△ACE≌△BDF(SAS),得∠EAC=∠FBD,根据平角的定义可得∠FAB=∠FBA;(2)连接FB,EA,延长BM,分别过点E,F作BM的垂线,垂足分别为P,Q,同理得△EAC≌△FBD,所以AE=BF,再证明△EAP≌△FBQ和△EMP≌△FMQ,可得结论.【解答】证明:(1)连接BF,∵AC=BC,BC=BD,∴AC=BD,∵DF⊥BC,∴∠ACB=∠D=∠ACE=90°,在△ACE和△BDF中,∵,∴△ACE≌△BDF(SAS),∴∠EAC=∠FBD,∵∠FAB=180°﹣∠EAC﹣∠CAB,∠FBA=180°﹣∠FBD﹣∠CBA,∵∠CAB=∠ABC,∴∠FAB=∠FBA;(2)如图2,连接FB,EA,延长BM,分别过点E,F作BM的垂线,垂足分别为P,Q,同理得:△EAC≌△FBD,∴AE=BF,同理可知:∠EAP=∠FBQ,在△EAP和△FBQ中,,∴△EAP≌△FBQ(AAS),∴PE=FQ,在△EMP和△FMQ中,∴△EMP≌△FMQ(AAS),∴EM=FM.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用定理是解题的关键.28.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【分析】(1)根据非负性得出a=b=4,过点A分别作x轴,y轴的垂线,垂足分别为M、N,进而利用角平分线的性质解答即可;(2)过A作AH平分∠OAB,交BM于点H,根据全等三角形的判定和性质解答即可;(3)过H作HM⊥OF,HN⊥EF于M、N,根据全等三角形的判定和性质解答.【解答】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM ∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△AHC中∴△AOE≌△AHC(ASA)∴AH=OE在△ONE和△AMH中∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=180°﹣2∠ONE=90°﹣∠NEA∴2∠ONE﹣∠NEA=90°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8【点评】此题是三角形综合题,主要考查了角平分线的性质,全等三角形的性质和判定,解本题的关键是全等三角形性质和判定的运用.。

2020-2021学年湖北省武汉市江汉区八年级上学期期末考试数学试卷( 含答案)

2020-2021学年湖北省武汉市江汉区八年级上学期期末考试数学试卷( 含答案)
考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
12.1.6×10-5
【分析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
设∠BAD=∠BDA=x,∠E=∠CAE=y,
∴∠ABC=∠BAD+∠BDA=2x,∠ACB=∠E+∠CAE=2y,
∵∠ABC+∠ACB+∠BAC=180°,
∴2x+2y+50°=180°,
∴x+y=65°,
∴∠DAE=∠DAB+∠CAE+∠BAC=65°+50°=115°.
故答案为:115°.
【点评】
(2)若∠BAC=108°,∠D=36o,则图中共有个等腰三角形.
24.(1)先化简,再求值: ,其中a=2020;
(2)解方程: .
25.如图,所有的网格都是由边长为1的小正方形构成,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形, ABC为格点三角形.
(1)如图,图1,图2,图3都是6×6的正方形网格,点M,点N都是格点,请分别按要求在网格中作图:
解:根据题意,∠ABC=∠EDC,BC=CD,∠ACB=∠ECD,
∴能证明△ABC≌△EDC最直接的依据是ASA.
故选:C.
【点评】
本题考查证明三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市洪山区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)下列平面图形中,不是轴对称图形的为( )A.B.C.D.2.(3分)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm3.(3分)如图,∠DAC=∠BAC,下列条件中,不能判定△ABC≌△ADC的是( )A.DC=BC B.AB=AD C.∠D=∠B D.∠DCA=∠BCA4.(3分)在△ABC中,到三边距离相等的点是△ABC的( )A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点5.(3分)已知正多边形的一个内角为144°,则该正多边形的边数为( )A.12B.10C.8D.66.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F的值是( )A.360°B.480°C.540°D.720°7.(3分)等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF =12,则△FBC的面积为( )A.40B.46C.48D.508.(3分)如图,设△ABC和△CDE都是正三角形,且∠EBD=58°,则∠AEB的度数是( )A.124°B.122°C.120°D.118°9.(3分)如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正确的有( )A.②③B.①②④C.③④D.①②③④10.(3分)如图,锐角∠AOB=x,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠QNO=β,当MP+PQ+QN最小时,则关于α,β,x的数量关系正确的是( )A.α﹣β=2x B.2β+α=90°+2xC.β+α=90°+x D.β+2α=180°﹣2x二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上。

2021-2022学年八年级上学期期中考试数学试卷含答案

2021-2022学年八年级上学期期中考试数学试卷含答案

2021-2022学年八年级上学期期中考试数学试卷
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图,其中是轴对称图形的是()
A.B.C.D.
2.点M(1,2)关于x轴对称的点的坐标为()
A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.下列运算正确的是()
A.a•a2=a2B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a5 4.等腰三角形的两边长分别为2和7,则它的周长是()
A.9B.11C.16D.11或16
5.下列多项式中能用平方差公式分解因式的是()
A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9
6.若x2+8x+m是完全平方式,则m的值为()
A.4B.﹣4C.16D.﹣16
7.如图,△ABC中,AB=AC=15,AB的垂直平分线DE交AC于D,连结BD,若△DBC 的周长为23,则BC的长为()
A.6B.7C.8D.9
8.计算[(﹣a)3]4÷(﹣a4)3的结果是()
A.﹣1B.1C.0D.﹣a
9.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A =∠ABE,AC=5,BC=3,则BD的长为()
第1 页共23 页。

湖北省武汉市江汉区2024-2025学年八年级上学期11月期中考试数学试题

湖北省武汉市江汉区2024-2025学年八年级上学期11月期中考试数学试题

湖北省武汉市江汉区2024-2025学年八年级上学期11月期中考试数学试题一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.小明不慎将一块三角形的玻璃摔碎成如图所示的四块,若将其中的一块带去,就能配一块同样的三角形玻璃,则带去的编号是()A .1B .2C .3D .43.下列各式中计算结果为x 6的是()A .24x x +B .()32x -C .122x x ÷D .24x x ⋅4.如图,ABC V 与A B C ''' 关于直线l 对称,则B ∠的度数是()A .50︒B .80︒C .100︒D .120︒5.如图,两根钢条AA BB '',的中点O 连在一起,AA BB '',可绕点O 自由转动,则A B ''的长等于内槽宽AB .判定AOB OA B ''△≌△的理由是()A .SASB .ASAC .SSSD .AAS6.如图,点E 、F 在BC 上,AB CD =,AF DE =,AF DE 、相交于点G ,添加下列哪一个条件,可使得ABF DCE △△≌()A .BC ∠=∠B .AG DG =C .AFE DEF ∠=∠D .BE CF=7.下列各式不能用平方差公式计算的是()A .()()22y x x y +-B .()()33x y x y --+C .()()222222x y x y -+D .()()44a b a b +-8.如图,三条公路将,,A B C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三个村庄的距离相等,那么这个集贸市场应建的位置是()A .三条高线的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点9.如图,A 是ABC 的角平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,连接EF 交A 于点G ,下列结论不.一定.成立的是()A .DE DF =B .EG FG =C .AD EF ⊥D .AG DG=10.已知5a x =,2b x =,则23a b x -的值是()A .200B .17C .258D .52二、填空题11.计算:()2633a a a -÷=.12.如图,在ABC V 中,AB AC =,D 是BC 上的一点,O 是AD 上一点,且OB OC =,若4BC =,则BD 的长是.13.若()()2312x m x x nx +-=+-对任意的x 恒成立,则n 的值是.14.如图,已知7AB AC ==,5BC =,分别以A ,B 两点为圆心,大于12AB 的长为半径作弧,两弧相交于点M ,N ,直线MN 与AC 相交于点D ,BDC 的周长是.15.如图,在四边形ABCD 中,90BAD BCD ∠=∠=︒,AB AD =,AE BC ⊥于点E .若3CD =,5CE =,则BC 的长是.16.计算:210011006994-⨯=.三、解答题17.(1)计算:()()2342a a a a --÷;(2)解不等式:()()()()3422x x x x +->+-.18.如图,已知点E ,C 在线段BF 上,BE CF =,AB DE ∥,AB DE =.(1)求证:ABC DEF ≌△△;(2)AC 与DE 交于点G ,当35B ∠=︒,70F ∠=︒时,求AGD ∠的度数.19.先化简,再求值:(1)()()2211xx x x x --+-,其中12x =.(2)()()()()232121128m m m m m +----÷,其中m 满足260m m +-=.20.如图,在ABC V 中,BD 是中线.(1)如图(1),延长BD 至点E ,使得DE BD =,连接AE .①求证:ADE CDB ≌;②若6AB =,4BC =,设BD x =,直接写出x 的取值范围;(2)如图(2),延长CA 到点F ,使AF BC =,若ABC BAC ∠=∠,求证:2BF BD =.21.在平面直角坐标系中有1012⨯的正方形网格,仅用无刻度的直尺画图,并回答问题.其中,()()()0,3,3,1,6,0A B C -.(1)在图(1)中,画ABC V 关于x 轴对称的A B C ''△,写出点,A B ''的坐标;(2)在图(1)中,点M 在AC 上,画点M 关于x 轴的对称点M ';(3)在图(2)中,AC 向下平移到DE ,画点P ,使DPE 与ABC V 全等(画出所有满足条件的点P );(4)在图(2)中,在AC 上画点Q ,使AQB ABC ∠=∠.四、填空题22.若()211x x +-=,则x 的值是.23.如图,在ABC V 中,BP 平分ABC ∠,AP BP ⊥于点P ,若ABC V 的面积是14,ABP 的面积是5,则APC △的面积是.24.定义一种新运算a b ☆:当a b ≥时,2a b a b =+☆;当a b <时,2a b a b =-☆.若()()22272433xx x x +--+=☆,则x 的值是.25.如图,在ABC 中,A 的垂直平分线与ABC 的外角平分线A 交于点D ,DE AC ⊥于点E ,DF BC ⊥交BC 的延长线于点F .下列结论:①ADE BDF ≌V V ;②1902DCF BDA ∠=︒-∠;③1902ADC ABC ∠=︒-∠;④若AC a =,()BC b a b =>,则224a b AE CF -⋅=.其中一定成立的是(填序号).五、解答题26.(1)【问题呈现】已知1a b -=,6ab =,求下列各代数式的值:①22a b +;②a b +.(2)【问题推广】若()()342x x --=,则()()2234x x -+-=________;(3)【问题拓展】如图,已知E ,F 分别是正方形ABCD 的边A ,DC 上的点,且2AE =,5CF =,长方形DEMF 的面积是20,分别以MF ,DF 为边长作正方形MFRN 和正方形DHGF ,直接写出阴影部分的面积.27.如图,已知ABC V ,AD BC ∥,AD AB =,在直线AB 上取点E .(1)如图(1),点E 在BA 的延长线上,证明以下结论:①若AE BC =,则DE AC =.②若DE AC =,则AE BC =.(2)如图(2),点E 在边AB 上,DE AC =,CF AB ⊥于点F .若AB BC =,求证F 是BE 的中点.28.如图,在平面直角坐标系中,()()50,012A B ,,,已知13AB =.(1)如图,点C 在第二象限,且90ACB ∠=︒,AC BC =.①如图(1),求点C 的坐标;②如图(2),BAO ∠的平分线交射线OC 于点P ,连接PB ,求点P 的坐标;(2)如图(3),点D ,E 分别在x 轴,y 轴上,若AB EB AD ==,点I 是ABO 内角平分线的交点,ID IE ,分别交坐标轴于点F ,G ,直接写出OFG △的周长.。

2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试题及答案解析

2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试题及答案解析

2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列四幅图形中,是轴对称图形的是( )A. B. C. D.2.点P(1,−2)关于x轴对称的点的坐标是( )A. (−1,2)B. (−2,1)C. (−1,−2)D. (1,2)3.2021年5月7日IBM公司宣布推出全球首个2nm芯片,其中1nm=0.000000001m,将2nm用科学记数法可表示为( )A. 2×10−10mB. 2×10−9mC. 2×1010mD. 2×109m4.若分式x−1x−2有意义,则x的取值范围是( )A. x≠1B. x=2C. x≠2D. x>25.分式13x2y2,14xy2的最简公分母是( )A. 12x2y2B. 12x3y4C. xyD. xy26.下列因式分解最后结果正确的是( )A. x2−2x−3=(x−1)(x+3)B. x(x−y)+y(y−x)=(x−y)2C. x3−x=x(x2−1)D. 6x−9−x2=(x−3)27.下列等式中,从左向右的变形正确的是( )A. a−ba+b =b−ab+aB. 22a+b=1a+bC. abab−b2=aa−bD. a−a+b=−aa+b8.某同学借了一本书,共140页,要在一周内读完.当他读了这本书的一半时,发现平均每天要多读21页才能刚好在借期内读完,他读这本书的前一半时,平均每天读多少页?设他读这本书的前一半时,平均每天读x页,则下列方程中正确的是( )A. 70x +70x−21=7 B. 70x+70x+21=7C. 140x +140x−21=7 D. 140x+140x+21=79.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为点H,若BC=6,AB=8,AC=10,那么IH的值为( )A. 2B. 3C. 4D. 510.如图,AD是等边三角形ABC的边BC上的高,点E是AD上的一个动点(点E不与点A重合),连接CE.将线段CE绕点E顺时针旋转60°得到EF,连接DF、CF,若AB=6,则线段DF长度的最小值是( )A. 3B. √3C. 1.5D. 1二、填空题(本大题共6小题,共18.0分)11.计算:(a2)3=______,(3a)2=______,3−2=______.12.若分式x2−1x+1的值为0,则x=______.13.已知一个等腰三角形的一个外角为100°,则它的顶角的度数是______.14.如图,△ABC中,AB=6,BC=5,将△ABC沿折痕AD折叠,使点B恰好落在AC边上的点E处,若△DEC的周长为7,则AC的长为______.15.如果关于x的方程axx−1+11−x=2无解,则a的值为______.16.如图,在等腰直角三角形ABC中,∠ABC=90°,O是AC的中点,点F、D分别在AB、BC上(点F、D与点A、B、C都不重合)运动,其中OF⊥OD、OE⊥AD交AB于点E.下列结论:①BD=BE ;②AF =BD ;③点E 是BF 的中点;④CDEF的值为定值.其中正确的结论是______(填写序号).三、计算题(本大题共2小题,共16.0分)17. 计算:(1)3a(5a −2);(2)(7x 2y 3−8x 3y 2z)÷8x 2y 2.18. 因式分解:(1)x 2−9;(2)ax 2+2a 2x +a 3.四、解答题(本大题共6小题,共56.0分。

2021-2022学年八年级上学期期中数学试题(含解析)

2021-2022学年八年级上学期期中数学试题(含解析)
【详解】解:∵等腰三角形的顶角为80°,
∴它的一个底角为(180°−80°)÷2=50°.
故填50.
【点睛】此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.
10.如图,在△ABC中,AB=5cm,AC=3 cm,BC的垂直平分线交BC于D,交AB于E,连接EC.则△AEC的周长为________cm.
故选C.
【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.
6.如图,在∠AOB中,OM平分∠AOB,MA⊥OA,垂足为A,MB⊥OB,垂足为B.若∠MAB=20°,则∠AOB的度数为()
A.20°B.25°C.30°D.40°
【答案】D
【解析】
【分析】根据角的平分线的性质得到MA=MB,从而得到∠AMB=140°,利用四边形内角和定理计算即可.
1.下列四个图形中,不是轴对称图形的为()
A. B. C. D.
2.如图, , , ,则 度数是()
A.35°B.40°C.50°D.60°
3.在△ABC中,∠A=60°,∠B=50°,AB=8,下列条件能得到△ABC≌△DEF的是( )
A.∠D=60°,∠E=50°,DF=8B.∠D=60°,∠F=50°,DE=8
C.∠E=50°,∠F=70°,DE=8D.∠D=60°,∠F=70°,EF=8
【答案】C
【解析】
【分析】显然题中使用ASA证明三角形全等, ,需要保证 ,可以根据三角形内角和定理确定∠F.
【详解】解:∵△ABC≌△DEF,
∴∠B=∠E=50°,∠A=∠D=60°,AB=DE=8,
∴∠F=180°﹣∠E﹣∠D=70°,

2021-2022学年八年级第一学期期中考试数学试卷含答案解析

2021-2022学年八年级第一学期期中考试数学试卷含答案解析

2021-2022学年八年级上学期期中考试数学试卷
一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给的4个选项中,只有一项是符合题目要求的.将唯一正确答案的序号字母选出,然后用2B铅笔将答题卡上对应题目的答案标号涂黑.
1.如果三角形的三个内角的度数比是2:3:4,则它是()
A.锐角三角形B.钝角三角形
C.直角三角形D.钝角或直角三角形
2.下列长度的三条线段,能组成三角形的是()
A.4cm,5cm,9cm B.8cm,8cm,15cm
C.5cm,5cm,10cm D.6cm,7cm,14cm
3.点A(3,﹣1)关于x轴的对称点是()
A.(﹣1,3)B.(﹣3,﹣1)C.(3,﹣1)D.(3,1)
4.等腰三角形一个角的度数为50°,则顶角的度数为()
A.50°B.80°C.65°D.50°或80°5.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()
A.110°B.100°C.80°D.70°
6.如图,在△ABC中,点O到三边的距离相等,∠BAC=60°,则∠BOC=()
A.120°B.125°C.130°D.140°
7.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC,若CE=5,则BC等于()
第1 页共24 页。

2019-2020学年湖北省武汉市江汉区八年级(上)期中数学试卷-普通用卷

2019-2020学年湖北省武汉市江汉区八年级(上)期中数学试卷-普通用卷

2019-2020学年湖北省武汉市江汉区八年级(上)期中数学试卷1.现有长度为4cm和7cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,则下列长度的小棒可选的是()A. 2cmB. 3cmC. 5cmD. 12cm2.下列多边形中,对角线是5条的多边形是()A. 四边形B. 五边形C. 六边形D. 七边形3.下列运算中,正确的是()A. a2⋅a3=a6 B. (a2)3=a5 C. (2a)3=6a3D. (−a)2⋅a=a34.图中两个三角形全等,则∠1等于()A. 40°B. 50°C. 60°D. 80°5.如图,AD是△ABC的高,AD也是△ABC的中线,则下列结论不一定成立的是()A. AB=ACB. AD=BCC. ∠B=∠CD. ∠BAD=∠CAD6.如图,已知A,D,B,E在同一条直线上,且AD=BE,AC=DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF的是()A. BC=EFB.AC//DFC. ∠C=∠FD. ∠BAC=∠EDF7.下列条件中能判断△ABC为直角三角形的是()A. ∠A+∠B=∠CB. ∠A=∠B=∠CC. ∠A−∠B=90°D. ∠A=2∠B=3∠C8.若x2+kx+4是一个完全平方式,则k为()A. 4B. −4C. ±4D. ±29.计算10012−1004×996=()A. −2017B. 2017C. −2019D. 201910.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b11.计算:(12a2−3a)÷3a=______.12.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为______.13.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为______.14.如图,点E,F分别是四边形AB,AD上的点,已知△EBC≌△DFC,且∠A=80°,则∠BCF的度数是______.15.如图,△ABC的边BC上有一点D,取AD的中点E,连接BE,CE,如果△ABC的面积为2,则图中阴影部分的面积为______.16.如图,边长为n的正方形纸片剪出一个边长为n−3的正方形之后,剩余部分可剪拼成一个长方形,若该长方形一边的长为3,则另一边的长为______.17.(1)计算:a(a−1)−(a3)2÷a4(2)解不等式:(x+2)(x−3)>(x+l)(x−l)18.如图,BD是△ABC的角平分线,AE⊥BD交BD的延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.19.已知xy=5,(x−y)2=16,求x2+y2和x+y的值.20.如图,点B为AC上一点,AD//CE,∠ADB=∠CBE,BD=EB.求证:(1)△ABD≌△CEB;(2)AC=AD+CE.21.已知等腰三角形的周长是13.(1)如果腰长是底边长的4,求底边的长;5(2)若该三角形其中两边的长为3x和2x+5,求底边的长.22.已知2n=a,3n=b,n是正整数,则用含有a,b的式子表示62n的值为______.23.如图,四边形ABCD中,∠A=∠B=90°,AB边上有一点E,CE,DE分别是∠BCD和∠ADC的角平分线,如果△CDE的面积是12,CD=8,那么AB的长度为______.24.在△ABC中,AD是高,AE是角平分线,已知∠ACB=70°,∠EAD=15°,则∠ABC的度数为______.25.如图,AB⊥CD于点E,且AB=CD=AC,若点I是△ACE的角平分线的交点,点F是BD的中点.下列结论:①∠AIC=135°;②BD=BI;③S△AIC=S△BID;④IF⊥AC.其中正确的是______(填序号).26.如图,已知A(0,a),B(b,0),C(c,0)是平面直角坐标系中三点,且a,b满足|a−b|+a2−6a+9=0,c<3.(1)求A,B两点的坐标;(2)若△ABC的面积为6.①在图中画出△ABC;②若△ABP与△ABC全等,直接写出所有符合条件的P点的坐标;(3)已知∠MAB=∠ABC,BM=AC,若满足条件的M点有且只有两个,直接写出此时c的取值范围.27.以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)2______ 2(2x+1)(3x−2)6______ −2(ax+b)(mx+n)am______ bn(2)已知(x+3)2(x2+mx+n)既不含二次项,也不含一次项,求m+n的值.(3)多项式M与多项式x2−3x+1的乘积为2x4+ax3+bx2+cx−3,则2a+b+c的值为______.28.已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x轴正半轴上的点,连接AB,AC,BC.(1)如图1,若OB=1,OC=3,且A,B,C在同一条直线上,求t的值;2(2)如图2,当t=1,∠ACO+∠ACB=180°时,求BC+OC−OB的值;(3)如图3,点H(m,n)是AB上一点,∠A=∠OHA=90°,若OB=OC,求m+n的值.答案和解析1.【答案】C【解析】解:设第三根小棒的长度为xcm,由题意得:7−4<x<7+4,解得:3<x<11,故选:C.根据三角形的三边关系可得7−4<第三根小棒的长度<7+4,再解不等式可得答案.此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.【答案】B=5,【解析】解:由题意得,n(n−3)2解得:n=5,(负值舍去),故选:B.条,把5代入即可得到结论.根据n边形的对角线有n(n−3)2本题考查了多边形,掌握n边形的对角线有n(n−3)条是解题的关键.23.【答案】D【解析】解:A选项错误,结果应该是a5;B选项错误,结果应该是a6;C选项错误,结果应该是8a3;D选项正确.故选:D.根据幂的乘方与积的乘方和同底数幂的乘法进行计算即可求解.本题考查了幂的乘方与积的乘方和同底数幂的乘法,解决本题的关键是掌握各种运算法则.4.【答案】A【解析】解:∵两个三角形全等,∴∠1=180°−80°−60°=40°,由全等三角形的性质可求解.本题考查了全等三角形的性质,掌握全等三角形的对应边相等,全等三角形的对应角相等.5.【答案】B【解析】解:∵AD是△ABC的高,AD也是△ABC的中线,∴BC⊥AD,BD=CD,在△ABD和△ACD中,{AD=AD∠ADB=∠ADC=90°BD=CD,∴△ABD≌△ACD(SAS),∴AB=AC,∠B=∠C,∠BAD=∠BAD.故选:B.证明△ABD≌△ACD,可得AB=AC,∠B=∠C,∠BAD=∠BAD.则答案得出.考查了等腰三角形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.6.【答案】C【解析】解:∵AD=BE,∴AD+DB=BE+DB,∴AB=DE,又∵AC=DF,若BC=EF,则△ABC≌△DEF(SSS),故选项A不符题意;若AC//DF,∠BAC=∠EDF,则△ABC≌△DEF(SAS),故选项B不符题意;若∠C=∠F,则无法判定△ABC≌△DEF,故选项C符合题意;若∠BAC=∠EDF,则△ABC≌△DEF(SAS),故选项D不符合题意;故选:C.根据题目中的条件和各个选项中的条件,利用全等三角形的判定方法,可以判断出哪个选项中的条件不一定能得到△ABC≌△DEF,从而可以解答本题.本题考查全等三角形的判定,解答本题的关键是明确题意,利用全等三角形的判定方法解答.【解析】解:A、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,本选项不符合题意.B、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,∴△ABC是等边三角形,本选项不符合题意.C、∵∠A−∠B=90°,∴∠A>90°,∴△ABC是钝角三角形,本选项不符合题意.D、∵∠A=2∠B=3∠C,∴可以假设∠A=6k,∠B=3k,∠C=2k,∴6k+3k+2k=180°,∴k=(180)°,11)°>90°,∴∠A=(104811∴△ABC是钝角三角形,本选项不符合题意,故选:A.利用直角三角形的定义逐项判断即可.本题考查三角形内角和定理,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】C【解析】【分析】本题考查完全平方公式,根据其结构特征得首尾两项是x和2这两个数的平方,那么中间项为加上或减去x和2乘积的2倍,故k=±4.本题考查完全平方式的应用,要注意把握好公式的结构特征进行分析,两数的平方和加上或减去它们乘积的2倍,对于这三项,任意给出其中两项,都可对第三项进行分析.【解答】解:中间项为加上或减去x和2乘积的2倍,故k=±4.故选C.9.【答案】B【解析】解:原式=(1000+1)2−(1000+4)(1000−4)=10002+2000+1−10002+16=2017.故选:B.根据完全平方公式和平方差公式先将原式转化,再进行有理数运算即可求解.本题考查了有理数的混合运算,解决本题的关键是利用转化思想将原式变形.10.【答案】D【解析】解:根据题意,得=4a,纸盒底部长方形的宽为4a2bab∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.根据长方体纸盒的容积等于底面积乘以高,底面积等于底面长方形的长与宽的乘积可以先求出宽,再计算纸盒底部长方形的周长即可.本题考查了整式的除法,解决本题的关键是先求出纸盒底部长方形的宽.11.【答案】4a−1【解析】解:(12a2−3a)÷3a=4a−1,故答案为:4a−1.根据多项式除以单项式法则求出即可.本题考查了多项式除以单项式法则,能熟记法则的内容是解此题的关键.12.【答案】5【解析】解:设这个多边形的边数是n,则(n−2)⋅180°−360°=180°,解得n=5.故答案为:5.根据多边形的内角和公式(n−2)⋅180°与外角和定理列式求解即可.本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.【解析】解:∵B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,∴∠ABC的度数为80°−44°=36°,故答案为:36°.根据方向角的定义和平行线的性质可得结果.本题主要考查了方向角,根据图正确找出各角之间的关系再计算是解答此题的关键.14.【答案】100°【解析】解:∵△EBC≌△DFC,∴∠DFC=∠B,∵∠DFC+∠AFC=180°,∴∠B+∠AFC=180°,∴∠A+∠BCF=360°−(∠B+∠AFC)=180°,∵∠A=80°,∴∠BCF=180°−80°=100°,故答案为:100°.根据全等三角形的性质得出∠DFC=∠B,根据∠DFC+∠AFC=180°求出∠B+∠AFC= 180°,根据多边形的内角和求出∠A+∠BCF=180°,即可求出答案.本题考查了全等三角形的性质和四边形的内角和定理,能根据全等三角形的性质得出∠DFC=∠B是解此题的关键.15.【答案】1【解析】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC=2,∴阴影部分的面积=S△ABE+S△ACE=12(S△ABD+S△ADC)=12S△ABC=12×2=1;故答案为:1.根据三角形的中线把三角形分为面积相等的两部分计算,得到答案.本题考查的是三角形的面积计算,掌握三角形的中线把三角形分为面积相等的两部分是解题的关键.【解析】解:设另一边长为x,根据题意得,3x=n2−(n−3)2,∴x=2n−3故答案为:2n−3.设另一边长为x,然后根据剩余部分的面积的两种表示方法列式计算即可得解.本题考查了平方差公式的几何背景,此类题目根据图形的面积的两种表示方法列出等式是解题的关键.17.【答案】解:(1)原式=a2−a−a2=−a;(2)不等式整理得:x2−x−6>x2−1,移项合并得:−x>5,解得:x<−5.【解析】(1)原式利用单项式乘以多项式法则,幂的乘方及同底数幂的的除法法则计算,合并即可得到结果;(2)不等式整理后,将x系数化为1,即可求出解集.此题考查了整式的混合运算,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.18.【答案】解:设∠C=2x,则∠ADB=3x,∵BD平分∠ABC,∠ABC=72°,∴∠ABD=∠CBD=36°,∵∠ADB=∠DBC+∠C,∴3x=36°+2x,∴x=36°,∴∠C=72°,∠ADB=108°,∴∠BAC=180°−72°−72°=36°,∵AE⊥BE,∴∠E=90°,∵∠ADB=∠E+∠DAE,∴∠DAE=108°−90°=18°.【解析】设∠C=2x,则∠ADB=3x,利用三角形内角和定理以及三角形的外角的性质解决问题即可.本题考查三角形内角和定理,三角形的外角的性质,角平分线的定义等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.19.【答案】解:∵xy=5,(x−y)2=16,∴x2+y2=(x−y)2+2xy=16+2×5=26,x+y=±√(x+y)2=±√(x−y)2+4xy=±√16+4×5=±6.【解析】根据完全平方公式得出x2+y2=(x−y)2+2xy,x+y=±√(x−y)2+4xy,代入求出即可.本题考查了完全平方公式,能灵活运用公式进行变形是解此题的关键.20.【答案】证明:(1)∵AD//CE,∴∠A=∠C,在△ABD与△CEB中,{∠A=∠C∠ADB=∠CBE BD=EB,∴△ABD≌△CEB(AAS);(2)∵△ABD≌△CEB,∴AD=BC,AB=CE,∵AC=AB+BC,∴AC=AD+CE.【解析】(1)根据平行线的性质和全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质和线段的和差即可得到结论.本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.21.【答案】解:(1)设底边的长为x,则腰长为45x,依题意得2×45x+x=13,解得x=5,∴底边的长为5;(2)分三种情况讨论:①若两腰长分别为3x和2x+5,则3x=2x+5,解得x=5,∴腰长3x=15(不合题意);②若腰长为3x,底边长为2x+5,则6x+2x+5=13,解得x=1,3x=3,2x+5=7(不合题意);③若底边长为3x,腰长为2x+5,则3x+2(2x+5)=13,,解得x=37∴底边长=3x=9;7.综上所述,底边的长为97x,依据等腰三角形的周长是13,列方程即可【解析】(1)设底边的长为x,则腰长为45得到底边长.(2)分三种情况讨论:①两腰长分别为3x和2x+5,②腰长为3x,底边长为2x+5,③底边长为3x,腰长为2x+5,依据等腰三角形的周长是13,列方程即可得到底边长.本题考查的是等腰三角形的性质及三角形的三边关系,在解答此类题目时要注意分类讨论,不要漏解.22.【答案】a2b2【解析】解:∵2n=a,3n=b,∴2n⋅3n=ab,∴6n=ab∴62n=(6n)2=(ab)2=a2b2.故答案为a2b2.根据幂的乘方与积的乘方进行计算,利用整体思想即可求解.本题考查了幂的乘方与积的乘方,解决本题的关键是利用整体思想代入求值.23.【答案】6【解析】解:作EF⊥CD于F,如图:∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC,∵CE,DE分别是∠BCD和∠ADC的角平分线,∴EB=EF,EF=EA,∴AE=BE=EF,EF⋅CD,∵△CDE的面积=12∴12=1×EF×8,2∴EF=3,∴AB=AE+BE=2EF=2×3=6,故答案为:6.EF⋅CD,作EF⊥CD于F,由角平分线的性质得出AE=BE=EF,由△CDE的面积=12求出EF=3,即可得出结果.本题考查了角平分线的性质以及三角形面积的计算等知识,熟练掌握角平分线的性质是解题的关键.24.【答案】40°或100°【解析】解:①当∠B是锐角时,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°−∠C=20°,∴∠CAE=∠BAE=∠CAD+∠DAE=20°+15°=35°,∴∠CAB=70°,∴∠ABC=180°−70°−70°=40°.②当∠B是钝角时,同法可得∠CAE=∠BAE=5°,∴∠CAB=10°,∴∠ABC=180°−70°−10°=100°,故答案为40°或100°.分锐角三角形钝角三角形两种情形分别求解即可.本题考查三角形内角和定理,角平分线的定义,高的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【答案】①③④【解析】解:如图,延长IF到G,使得FG=FI,连接DG,BG,延长FI交AC于K.∵AB⊥CD,∴∠AEC=90°,∴∠EAC+∠ECA=90°,∴∠IAC+∠ICA=12∠EAC+12∠ECB=45°,∴∠AIC=180°−45°=135°,故①正确,∵AB=AC,∠IAB=∠IAC,AI=AI,∴△AIB≌△AIC(SAS),∴∠AIB=∠AIC=135°,IA=ID,∴∠BIC=360°−135°−135°=90°,同法可证:△ICA≌△ICD(SAS),∴∠AIC=∠CID=135°,IC=ID,∴∠AID=360°−135°−135°=90°,∴∠DIB+∠AIC=180°,∵DF=FB,IF=FG,∴四边形IBGD是平行四边形,∴ID=BG=AI,ID//BG,∴∠DIB+∠IBG=180°,∴∠AIC=∠IBG,∵IA=ID,IC=IB,∴△AIC≌△GBI(SAS),∴∠GIB=∠ACI,S△AIC=S△BGI=12S平行四边形DGBI=S△BDI,故③正确,∵∠GIB+∠CIK=90°,∴∠CIK+∠ICK=90°,∴∠IKC=90°,即IF⊥AC,故④正确,不妨设BI=BD,则△BDI是等腰直角三角形,显然ID=√2IB,即AI=√2IC,显然题目不满足这个条件,故②错误.故答案为①③④.如图,延长IF到G,使得FG=FI,连接DG,BG,延长FI交AC于K.利用全等三角形的判定和性质,平行四边形的判定和性质一一判断即可.本题考查全等三角形的判定和性质,角平分线的定义,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考填空题中的压轴题.26.【答案】解:(1)∵|a−b|+a2−6a+9=0,∴|a−b|+(a−3)2=0,∵|a−b|≥0,(a−3)2≥0,∴a−b=0,a−3=0,∴a=b=3,∴A(0,3),B(3,0)(2)①∵△ABC的面积为6,∴12⋅BC⋅OA=6,∴BC=4,∵c<3,∴C(−1,0),△ABC如图所示:②满足条件的点P如图所示,P(−1,0)或(0,−1)或(3,4)或(4,3).(3)如图,由题意满足条件的点M在直线y轴上或直线y=3上,当BM>AB时,满足条件的点M只有两个,∴AC=BM>3√2,∵当AC=3√2时,C(−3,0),观察图象可知满足条件的c的范围为:c<−3.【解析】(1)利用非负数的性质求出a,b的值即可.(2)①根据A,B,C的坐标,画出三角形即可.②画出满足条件的△PAB,写出点P的坐标即可.(3)如图,由题意满足条件的点M在直线y轴上或直线y=3上,当BM>AB时,满足条件的点M只有两个.本题属于三角形综合题,考查了非负数的性质,全等三角形的判定和性质,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.【答案】5 −1an+bm−4【解析】解:(1)(2x+1)(x+2)=2x2+5x+2(2x+1)(3x−2)=6x2−x−2(ax+b)(mx+n)=amx2+(an+bm)x+bn故答案为5、−1、an+bm.(2)(x+3)2(x2+mx+n)=(x2+6x+9)(x2+mx+n)=x4+(m+6)x3+(6m+n+9)x2+(9m+6n)x+9n∵既不含二次项,也不含一次项,∴6m+n+9=09m+6n=0解得:m=−2,n=3∴m+n=1.答m+n的值为1.(3)∵多项式M与多项式x2−3x+1的乘积为2x4+ax3+bx2+cx−3,∴设多项式M=2x2+mx−3,(2x2+mx−3)(x2−3x+1)=2x4−6x3+2x2+mx3−3mx2+mx−3x2+9x−3=2x4+(m−6)x3+(2−3m−3)x2+(m+9)x−3=2x4+ax3+bx2+cx−3,∴a=m−6,b=−3m−1,c=m+9∴2a+b+c=2m−12−3m−1+m+9=−4.故答案为−4.(1)根据多项式乘以多项式即可求解;(2)先用完全平方公式展开第一项,再进行多项式乘以多项式,合并同类项后使二次项系数和一次项系数为0即可求解;(3)根据多项式乘以多项式的结果可以设多项式M,再根据恒等式的意义即可求解.本题考查了多项式乘以多项式,解决本题的关键是准确进行计算,同时理解恒等变形.28.【答案】解:(1)过点A作AD⊥x轴于D,如图1所示:∵点A(t,1),∴AD=1,OD=t,∵A,B,C在同一条直线上,∴∠OCB=∠DCA,∵tan∠OCB =OB OC =132=23,∴tan∠OCB =tan∠DCA =AD CD =23,即1CD =23,解得:CD =32,∴t =OD =OC +CD =32+32=3;(2)作AD ⊥y 轴于D ,AM ⊥x 轴于M ,AN ⊥BC 于N ,如图2所示:则∠ADB =∠ANB =90°,∵t =1,∴点A(1,1),∴AD =AM =OM =1,∵∠ACO +∠ACB =180°,∠ACN +∠ACB =180°,∴∠ACO =∠ACN ,∵AM ⊥x 轴于M ,AN ⊥BC 于N ,∴AN =AM =AD =1,在Rt △ABD 和Rt △ABN 中,{AB =AB AD =AN ,∴Rt △ABD≌Rt △ABN(HL),∴BN =BD =OB +1,同理:Rt △ACM≌Rt △ACN(HL),∴CM =CN ,∵BC =BN −CN ,OC =OM +CM =1+CM ,∴BC +OC −OB =BN −CN +1+CM −OB =OB +1−CN +1+CM −OB =2;(3)作HG ⊥OC 于G ,如图3所示:∵OB =OC ,∠BOC =90°,∴△BOC 是等腰直角三角形,∠OCB =45°,∵∠OHA =90°,∴OH ⊥AB ,∴△OCH 是等腰直角三角形,∵HG ⊥OC ,∴△OGH是等腰直角三角形,∴OG=GH,即m=−n,∴m+n=0.【解析】(1)过点A作AD⊥x轴于D,则AD=1,OD=t,由∠OCB=∠DCA,tan∠OCB=OB OC =23,得出tan∠OCB=tan∠DCA=ADCD=23,即1CD=23,解得CD=32,得出t=OD=OC+CD=32+32=3;(2)作AD⊥y轴于D,AM⊥x轴于M,AN⊥BC于N,证出AD=AN,证明Rt△ABD≌Rt△ABN(HL),得出BN=BD=OB+1,同理Rt△ACM≌Rt△ACN(HL),得出CM=CN,由BC=BN−CN,OC=OM+CM=1+CM,即可得出答案;(3)作HG⊥OC于G,由题意得出△BOC是等腰直角三角形,∠OCB=45°,证出△OGH是等腰直角三角形,得出OG=GH,即m=−n,即可得出答案.本题是三角形综合题目,考查了坐标与图形性质、三角函数定义、角平分线的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.。

2021-2022学年湖北省武汉市硚口区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市硚口区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市硚口区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。

1.(3分)在以下节水、回收、节能、绿色食品四个标志中,是轴对称图形的是( )A.B.C.D.2.(3分)以下列每组三条线段为边,能组成三角形的是( )A.3,4,8B.5,6,11C.4,4,9D.6,6,103.(3分)盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,使其窗框不变形(如图所示),这样做的数学依据是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.(3分)点P(﹣1,2)关于x轴的对称点的坐标是( )A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,﹣2)5.(3分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东10°方向,C处在B处的北偏东85°方向,则∠ACB的大小是( )A.80°B.75°C.85°D.88°6.(3分)下面的多边形中,内角和与外角和相等的是( )A.B.C .D .7.(3分)用三角尺可按下面方法画角的平分线.如图,在∠AOB 两边上,分别取OM =ON ,再分别过点M ,N 作OA ,OB 的垂线,交点为P ,画射线OP ,可得△POM ≌△PON .则判定三角形全等的依据是( )A .SSSB .SASC .ASAD .HL8.(3分)如图,在Rt △ABC 中,∠ACB =90°,CD 是高,若∠BCD =30°,BD =1,则AB 的长是( )A .2B .3C .4D .59.(3分)如图,在△ABC 纸片中,AB =8,BC =6,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,若∠C =2∠BDE ,则DE 的长是( )A .32B .74C .43D .210.(3分)如图,AE 是等腰Rt △ABC 的角平分线,∠ACB =90°,AC =BC ,过点B 作BF ∥AC ,且BF =CE .连接CF 交AE 于点D ,交AB 于点G ,点P 是线段AD 上的动点,点Q 是线段AG 上的动点,连接PG ,PQ ,下列四个结论:①AE ⊥CF ;②BF =BG ;③CE +AC =AB ;④PG +PQ ≥12AB .其中正确的是( )A.①②③B.①②④C.②③D.①②③④二、填空题(共6小题,每题3分,共18分)11.(3分)从五边形的一个顶点出发,可以作 条对角线.12.(3分)已知等腰三角形的两边长分别是4和9,则它的腰长是 .13.(3分)如图,在等腰△ABC中,AB=AC,AB的垂直平分线MN分别与AB、AC交于E、D两点.若BE=5,BC=8,则△BCD的周长是 .14.(3分)等腰三角形一腰上的高与另一腰的夹角为50°,它的底角为 .15.(3分)AD是△ABC的中线,AB=8,AC=10,则AD的取值范围是 .16.(3分)如图,在长方形ABCD中,对角线BD=6,∠ABD=60°.将长方形ABCD沿对角线BD折叠,得△BED,点M是线段BD上一点.则EM+12BM的最小值为 .三、解答题(共8小题,共18分)17.(8分)一个多边形的内角和比它的外角和多900°,求这个多边形的边数.18.(8分)如图,B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.19.(8分)如图,CA=CD,∠1=∠2,BC=EC.求证:AB=DE.20.(8分)在△ABC中,AD是高,AE,BF是角平分线,AE交BF于点O,∠BAC=80°,∠C=70°.(1)求∠BOE的大小;(2)求证:DE=DC.21.(8分)如图是10×6的小正方形构成的网格,每个小正方形的顶点叫做格点,△ABC的顶点都是格点.仅用无刻度的直尺在给定网格中依次完成画图,并回答问题.(1)直接写出∠ABC的大小;(2)在图1中,画△ABC的高AF,BD;(3)在图2中,①画△ABC的中线BE;②在△ABC的高AF上画点P,连接BP,EP,使∠APB=∠APE.22.(10分)如图1,△ABC中,AB=AC,点D在AB上,且AD=CD=BC.(1)求∠A的大小;(2)如图2,DE⊥AC于E,DF⊥BC于F,连接EF交CD于点H.①求证:CD垂直平分EF;②直接写出三条线段AE,DB,BF之间的数量关系.23.(10分)在等边△ABC 中,点D 和点E 分别在边AB ,BC 上,以DE 为边向右作等边△DEF ,连接CF .(1)如图1,当点D 和点A 重合时,求∠ACF 的大小;(2)如图2,点D 是边AB 的中点.①求证:∠FCE =∠FEC ;②如图3,连接AF ,当AF 最小时,直接写出BE BC的值.24.(12分)平面直角坐标系中,点B 在x 轴正半轴,点C 在y 轴正半轴,△ABC 是等腰直角三角形,CA =CB ,∠ACB =90°,AB 交y 轴负半轴于点D .(1)如图1,点C 的坐标是(0,4),点B 的坐标是(8,0),直接写出点A 的坐标;(2)如图2,AE ⊥AB 交x 轴的负半轴于点E ,连接CE ,CF ⊥CE 交AB 于F .①求证:CE =CF ;②求证:点D 是AF 的中点;③求证:S △ACD =12S △BCE .2021-2022学年湖北省武汉市硚口区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。

2021-2022学年八年级上学期期中考试数学试卷及答案

2021-2022学年八年级上学期期中考试数学试卷及答案

2021-2022学年八年级上学期期中考试数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑1.下列图案中,是利用轴对称设计的图案的有()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.2cm 2cm 4cm B.3cm 4cm 3cmC.4cm 5cm 9cm D.5cm 12cm 6cm3.如图,是一块三角形木板的残余部分,量得∠A=110°,∠B=30°,这块三角形木板缺少的角是()A.30°B.40°C.50°D.60°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°5.下列度数不能成为某多边形的内角和的是()A.1440°B.1080°C.900°D.600°6.根据下列条件,能画出唯一的三角形ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°7.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处8.点A和点B(2,3)关于x轴对称,则A、B两点间的距离为()A.4B.5C.6D.109.如图,在△ABC中,∠A=90°,CE平分∠ACB,ED垂直平分BC,CE=4,ED=2,则AB的长为()A.5B.6C.10D.1210.如图,△ABC周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=6cm,则△ABD的周长是()A.22cm B.18cm C.20cm D.15cm11.如图,七边形ABCDEFG中,AB,ED的延长线相交于点O,若图中∠1、∠2、∠3、∠4的外角和为240°,则∠BOD的度数为()A.40°B.45°C.50°D.60°12.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别是60和40,则△EDF的面积()A.8B.10C.12D.20二、填空题(共6小题,每小题3分,共18分)13.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉根木条.14.一个正多边形的每个外角都是36°,这个正多边形的边数是.15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)16.如图,△ABC中,D,E、F、G分别是边BC,AC,DC、EC的中点,若S△GFC=2cm2,则S△ABC=.17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,∠ACB的平分线与∠ABC的外角平分线交于点E,连接AE,则∠AEB的度数为.18.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(3,3)处,两直角边分别与坐标轴交于点A和点B,则OA+OB的值为.三、解答厨(本大题有8小题,共66分,各小题都必须写出解答过程)19.(6分)如图,求作一点M,使MC=MD,且使M到∠AOB两边的距离相等.(保留作图痕迹)20.(6分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?21.(8分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=5,BC=4,AC =3,求:(1)△ABC的面积;(2)CD的长?22.(8分)如图,已知AB=AC,AD=AE,BD=CE,且B、D、E三点共线,求证:∠3=∠1+∠2.23.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;24.(8分)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.25.(10分)如图,在△ABC中,∠B=∠C,点D、E、F分别在AB、BC、AC边上,且BE=CF,AD+EC=AB.(1)求证:DE=EF.(2)当∠A=36°时,求∠DEF的度数.26.(12分)已知△ABC中,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O.(1)直接写出∠BOC与∠A的数量关系;(2)若∠A=60°,利用(1)的关系,求出∠BOC的度数;(3)利用(2)的结果,试判断BE,CD,BC的数量关系,并证明.2021-2022学年八年级上学期期中考试数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑1.下列图案中,是利用轴对称设计的图案的有()A.B.C.D.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是对称图形,不合题意;D、是利用轴对称设计的图案,正确.故选:D.2.下列长度的三条线段,能组成三角形的是()A.2cm 2cm 4cm B.3cm 4cm 3cmC.4cm 5cm 9cm D.5cm 12cm 6cm【解答】解:根据三角形任意两边的和大于第三边.A、2+2=4,不能组成三角形,故选项错误;B、3+3>4,能够组成三角形,故选项正确;C、4+5=9,不能组成三角形,故选项错误;D、5+6<12,不能组成三角形,故选项错误.故选:B.3.如图,是一块三角形木板的残余部分,量得∠A=110°,∠B=30°,这块三角形木板缺少的角是()A.30°B.40°C.50°D.60°【解答】解:根据三角形的内角和定理第三个角=180°﹣110°﹣30°=40°,故选:B.4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.5.下列度数不能成为某多边形的内角和的是()A.1440°B.1080°C.900°D.600°【解答】解:不是180°的整数倍的选项只有选项D中的600°.故选:D.6.根据下列条件,能画出唯一的三角形ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°【解答】解:A、3+4<8,不能画出唯一三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故此选项错误;C、根据AB=5,AC=6,∠A=50°能画出唯一三角形,符合全等三角形的判定定理SAS,故此选项正确;D、根据∠A=30°,∠B=70°,∠C=80°不能画出唯一三角形,故此选项错误;故选:C.7.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.8.点A和点B(2,3)关于x轴对称,则A、B两点间的距离为()A.4B.5C.6D.10【解答】解:∵点A和点B(2,3)关于x轴对称,∴点A的坐标为(2,﹣3),∴AB=3﹣(﹣3)=3+3=6.故选:C.9.如图,在△ABC中,∠A=90°,CE平分∠ACB,ED垂直平分BC,CE=4,ED=2,则AB的长为()A.5B.6C.10D.12【解答】解:∵DE是BC边的垂直平分线,∴BE=EC=5,ED⊥BC,∵CE平分∠ACB,EA⊥AC,∴EA=ED=3,∴AB=AE+EB=ED+EC=5+1=6.故选:B.10.如图,△ABC周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=6cm,则△ABD的周长是()A.22cm B.18cm C.20cm D.15cm【解答】解:∵△ABC的边AC对折,顶点C和点A重合,∴AE=EC,AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=6cm,∴AC=AE+EC=6+6=12,∵△ABC的周长为30cm,∴AB+BC=30﹣12=18(cm),∴△ABD的周长是18cm.故选:B.11.如图,七边形ABCDEFG中,AB,ED的延长线相交于点O,若图中∠1、∠2、∠3、∠4的外角和为240°,则∠BOD的度数为()A .40°B .45°C .50°D .60°【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为240°,∴∠1+∠2+∠3+∠4+240°=4×180°,∴∠1+∠2+∠3+∠4=480°,∵五边形OAGFE 内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD =540°,∴∠BOD =540°﹣480°=60°,故选:D .12.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别是60和40,则△EDF 的面积( )A .8B .10C .12D .20【解答】解:如图,过点D 作DH ⊥AC 于H ,∵AD 是△ABC 的角平分线,DF ⊥AB ,∴DF =DH ,在Rt △DEF 和Rt △DGH 中,{DE =DG DF =DH, ∴Rt △DEF ≌Rt △DGH (HL ),∴S △EDF =S △GDH ,设S △EDF =S △GDH =S ,同理Rt △ADF ≌Rt △ADH (HL ),∴S △ADF =S △ADH ,即40+S =60﹣S ,解得:S=10.故选:B.二、填空题(共6小题,每小题3分,共18分)13.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉1根木条.【解答】解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故答案为:114.一个正多边形的每个外角都是36°,这个正多边形的边数是10.【解答】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件AC=DF.(只要填一个)【解答】解:补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,故填AC=DF.16.如图,△ABC中,D,E、F、G分别是边BC,AC,DC、EC的中点,若S△GFC=2cm2,则S△ABC=32cm2.【解答】解:∵FG是△EFC的中线,∴S△EFC=2S△GFC=4,同理,S△EDC=2S△EFC=8,S△ADC=S△EDC=16,S△ABC=2S△ADC=32(cm2)故答案为:32cm2.17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,∠ACB的平分线与∠ABC的外角平分线交于点E,连接AE,则∠AEB的度数为45°.【解答】解:作EF⊥AC交CA的延长线于F,EG⊥AB于G,EH⊥BC交CB的延长线于H,∵CE平分∠ACB,BE平分∠ABD,∴EF=EH,EG=EH,∴EF=EF,又EF⊥AC,EG⊥AB,∴AE平分∠F AG,∵∠CAB=40°,∴∠BAF=140°,∴∠EAB=70°,∵∠ACB=90°,∠CAB=40°,∴∠ABC=50°,∴∠ABH=130°,又BE平分∠ABD,∴∠ABE =65°,∴∠AEB =180°﹣∠EAB ﹣∠ABE =45°,故答案为:45°.18.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P (3,3)处,两直角边分别与坐标轴交于点A 和点B ,则OA +OB 的值为 6 .【解答】解:作PM ⊥x 轴于M ,PN ⊥y 轴于N ,则四边形PNOM 是正方形,∴PN =PM =ON =OM =3,∠NPM =∠APB =90°,∴∠NPB =∠MP A在△PNB 和△PMA 中,{∠PNB =∠PMA ∠NPB =∠MPA PN =PM,∴△P AM ≌△PBN (ASA ),则AM=BN,OM=ON,∴OA+OB=OM+ON=6.故答案为:6.三、解答厨(本大题有8小题,共66分,各小题都必须写出解答过程)19.(6分)如图,求作一点M,使MC=MD,且使M到∠AOB两边的距离相等.(保留作图痕迹)【解答】解:如图所示:点M即为所求.20.(6分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.21.(8分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=5,BC=4,AC =3,求:(1)△ABC的面积;(2)CD的长?【解答】解:(1)∵在△ABC中,∠ACB=90°,BC=4,AC=3,∴S△ABC=12AC•BC=12×3×4=6;(2)∵在△ABC中,∠ACB=90°,CD是AB边上的高,AB=5,BC=4,AC=3,∴S△ABC=12AB•CD=12AC•BC,即5CD=3×4,∴CD=12 5.22.(8分)如图,已知AB=AC,AD=AE,BD=CE,且B、D、E三点共线,求证:∠3=∠1+∠2.【解答】证明:在△ABD与△ACE中,{AB=AC AD=AE BD=CE,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.23.(8分)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;【解答】证明:∵AE 和BD 相交于点O ,∴∠AOD =∠BOE .在△AOD 和△BOE 中,∠A =∠B ,∴∠BEO =∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC =∠BED .在△AEC 和△BED 中,{∠A =∠B AE =BE ∠AEC =∠BED,∴△AEC ≌△BED (ASA ).24.(8分)如图,AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高,求证:AD 垂直平分EF .【解答】证明:设AD 、EF 的交点为K ,∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF .∵DE ⊥AB ,DF ⊥AC ,∴∠AED =∠AFD =90°,在Rt △ADE 和Rt △ADF 中,{AD=ADDE=DF,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF.∵AD是△ABC的角平分线∴AD是线段EF的垂直平分线.25.(10分)如图,在△ABC中,∠B=∠C,点D、E、F分别在AB、BC、AC边上,且BE=CF,AD+EC=AB.(1)求证:DE=EF.(2)当∠A=36°时,求∠DEF的度数.【解答】(1)证明:∵AD+EC=AB,AD+BD=AB∴BD=EC,在△BDE和△CEF中{BD=EC ∠B=∠C BE=CF,∴△BDE≌△CEF(SAS),∴DE=EF;(2)解:∵△ABC中,∠A=36°,∴∠B=∠C=12(180°﹣36°)=72°,由(1)知:△BDE≌△CEF∴∠BDE=∠CEF,又∵∠DEF+∠CEF=∠B+∠BDE,∴∠DEF =∠B =72°.26.(12分)已知△ABC 中,BD ,CE 分别平分∠ABC 和∠ACB ,BD 、CE 交于点O .(1)直接写出∠BOC 与∠A 的数量关系;(2)若∠A =60°,利用(1)的关系,求出∠BOC 的度数;(3)利用(2)的结果,试判断BE ,CD ,BC 的数量关系,并证明.【解答】解:(1)∠BOC =90°+12∠A ,理由如下:∠ABC +∠ACB =180°﹣∠A ,∵BD ,CE 分别平分∠ABC 和∠ACB ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°−12(∠ABC +∠ACB )=90°+12∠A ;(2)当∠A =60°时,∠BOC =90°+12×60°=120°;(3)BE +CD =BC ,证明:在BC 上取点G ,使得CG =CD ,连接OG ,由(2)知:∠BOC =120°,∴∠BOE =∠COD =60°,∵CE 平分∠ACB ,∴∠DCO =∠GCO ,在△COD 和△COG 中,{CD =CG ∠DCO =∠GCO CO =CO∴△COD ≌△COG (SAS )∴∠COG =∠COD =60°,∴∠BOG =120°﹣60°=60°=∠BOE ,∵BD 平分∠ABC ,第 21 页 共 21 页 ∴∠EBO =∠GBO ,∴在△BOE 和△BOG 中, {∠EBO =∠GBO BO =BO ∠BOE =∠BOG∴△BOE ≌△BOG (ASA ) ∴BE =BG ,∵BG +GC =BC , ∴BE +CD =BC .。

2021-2022学年八年级第一学期期中考试数学试卷附答案

2021-2022学年八年级第一学期期中考试数学试卷附答案

2021-2022学年八年级上学期期中考试数学试卷一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列判定两个三角形全等的说法中,不正确的是( )A .三角对应相等的两个三角形全等B .三边对应相等的两个三角形全等C .有一边及其对角和另一角对应相等的两个三角形全等D .有一组直角边和一组斜边对应相等的两个直角三角形全等3.等腰三角形的两边长分别为3cm 和7cm ,则周长为( )A .13cmB .17cmC .13cm 或17cmD .11cm 或17cm4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB 作法的合理顺序是( )①作射线OC ;②在OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C . A .①②③ B .②①③ C .②③① D .③②①5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确6.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE =4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm7.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.138.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.49.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3B.10C.12D.15 10.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 11.如图,已知AE∥DF,BE∥CF,AC=BD,则下列说法错误的是()A.△AEB≌△DFC B.△EBD≌△FCA C.ED=AF D.EA=EC 12.等边三角形的三条高把这个三角形分成()个直角三角形.A.8B.10C.11D.12二.填空题(共6小题,满分24分,每小题4分)13.平面直角坐标系中的点P(2−m,12m)关于x轴的对称点在第四象限,则m的取值范围为.14.如图,已知∠1=58°,∠B=60°,则∠2=°.15.如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.16.如果一斜坡的坡度为i=1:√3,某物体沿斜面向上推进了10米,那么物体升高了米.17.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为.18.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第5个等腰三角形的底角度数是.三.解答题(共7小题)19.如图,五边形ABCDE的内角都相等,EF平分∠AED,求证:EF⊥BC.20.画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是.(2)确定由B地到河边l的最短路线的依据是.21.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.22.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.23.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD 中AD边上的高,求∠ABE的度数.24.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ 的形状,并加以证明.25.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.2021-2022学年八年级上学期期中考试数学试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.下列判定两个三角形全等的说法中,不正确的是()A.三角对应相等的两个三角形全等B.三边对应相等的两个三角形全等C.有一边及其对角和另一角对应相等的两个三角形全等D.有一组直角边和一组斜边对应相等的两个直角三角形全等解:A、三角对应相等的两个三角形不一定全等,故A选项符合题意;B、三边对应相等的两个三角形全等,故B选项不符合题意;C、有一边及其对角和另一角对应相等的两个三角形全等,故C选项不符合题意;D、有一组直角边和一组斜边对应相等的两个直角三角形全等,故D选项不符合题意;故选:A.3.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm 解:当7为腰时,周长=7+7+3=17cm;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17cm.故选:B .4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB 作法的合理顺序是( )①作射线OC ;②在OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C . A .①②③ B .②①③ C .②③① D .③②①解:角平分线的作法是:在OA 和OB 上分别截取OD ,OE ,使OD =OE ;分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C ; 作射线OC .故其顺序为②③①.故选:C .5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确解:(1)如图所示:过两把直尺的交点P 作PE ⊥AO ,PF ⊥BO ,∵两把完全相同的长方形直尺,∴PE =PF ,∴OP 平分∠AOB (角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A .6.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE =4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,BE=AE=4,∴AB=BE+AE=4+4=8,∴△ABC的周长﹣△ADC的周长=AB+BC+AC﹣AC﹣CD﹣AD=AB+BD﹣AD=AB=8(cm),故选:C.7.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.13解:∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE=BE,∵AD=3,∴AB=6,∴AE+EC=AC=AB=6,∵BC=5,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=6+5=11;故选:C.8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.4解:如图,作DE⊥AB于点E,∵AD为∠CAB的平分线,∴DE=CD=3,∵∠B=30°,则BD=2DE=6,故选:B.9.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A .3B .10C .12D .15解:作DH ⊥AC 于H ,如图,在Rt △ABC 中,∠B =90°,AB =6,BC =8,∴AC =√62+82=10,∵AD 为∠BAC 的角平分线,∴DB =DH ,∵12×AB ×CD =12DH ×AC , ∴6(8﹣DH )=10DH ,解得DH =3,∴S △ADC =12×10×3=15.故选:D .10.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD解:∵△ABC 中,AB =AC ,D 是BC 中点∴∠B =∠C ,(故A 正确)AD ⊥BC ,(故B 正确)∠BAD =∠CAD (故C 正确)无法得到AB =2BD ,(故D 不正确).故选:D .11.如图,已知AE ∥DF ,BE ∥CF ,AC =BD ,则下列说法错误的是( )A .△AEB ≌△DFC B .△EBD ≌△FCA C .ED =AFD .EA =EC 证明:∵AE ∥DF ,∴∠EAB =∠FDC ,∵BE ∥CF ,∴∠EBC =∠BCF ,∴∠ABE =∠FCD ,∵AC =BD ,∴AB =CD ,在△AEB 和△DFC 中,{∠EAB =∠FDC AB =CD ∠ABE =∠FCD,△AEB ≌△DFC (ASA ),∴BE =CF ,在△EBD 和△FCA 中,{BE =CF ∠EBD =∠ACF AC =BD,∴△EBD ≌△FCA (SAS ),∴ED =AF .故A ,B ,C 选项正确,AE =CE 说法不正确,故选:D .12.等边三角形的三条高把这个三角形分成( )个直角三角形.A .8B .10C .11D .12 解:如图:直角三角形有△ABE 、△ACE 、△ABF 、△BCF 、△ACD 、△BCD 、△ADO 、△AFO 、△CFO 、△CEO ,△BEO 、△BDO ,共12个.故选:D .二.填空题(共6小题,满分24分,每小题4分)13.平面直角坐标系中的点P (2−m ,12m)关于x 轴的对称点在第四象限,则m 的取值范围为 0<m <2 .解:点P (2﹣m ,12m )关于x 轴对称的点的坐标为P 1(2﹣m ,−12m ), ∵P 1(2﹣m ,−12m )在第四象限,∴{2−m >0−12m <0,解得0<m <2, ∴m 的取值范围为 0<m <2.故答案为0<m <2.14.如图,已知∠1=58°,∠B =60°,则∠2= 118 °.解:∵∠2=∠B +∠1,∴∠2=58°+60°=118°,故答案为118.15.如图,已知BC 与DE 交于点M ,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为 360° .解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.16.如果一斜坡的坡度为i=1:√3,某物体沿斜面向上推进了10米,那么物体升高了5米.解:∵斜坡的坡度为i=1:√3,又∵i=tan∠ABC=AC BC∴ACBC =√3=√33,∴∠ABC=30°,∵某物体沿斜面向上推进了10米,即AB=10,∴AC=5.故答案为:5.17.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P ,Q 是△ABO 边上的两个动点(点P 不与点C 重合),以P ,O ,Q 为顶点的三角形与△COQ 全等,则满足条件的点P 的坐标为 (2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2) .解:以P ,O ,Q 为顶点的三角形与△COQ 全等,①如图1所示,当△POQ ≌△COQ 时,即OP =OC =4,过P 作PE ⊥OA 于E ,过B 作BF ⊥OA 于F ,则PE ∥BF ,∵B (2,6),∴OF =2,BF =6,∴OB =√22+62=2√10,∵PE ∥BF ,∴△POE ∽△BOF ,∴OP OB =PE BF =OE OF , ∴2√10=PE 6=OE2, ∴PE =6√105,OE =2√105, ∴点P 的坐标为(2√105,6√105);②如图2,当△POQ ≌△CQO 时,即QP =OC =4,OP =CQ ,∴四边形PQCO 是平行四边形,∴PQ ∥OA ,过P 作PE ⊥OA 于E ,过B 作BF ⊥OA 于F , 则PE ∥BF ,∵B(2,6),∴OF=2,BF=6,∴OB=√22+62=2√10,∵PQ∥OA,∴PBOB =PQ OA,∴PB=√10,∴PE=√10,∴点P是OB的中点,∵PE∥BF,∴PE=12BF=3,OE=12EF=1,∴点P的坐标为(1,3),如图3,如图3,当△OQC≌△QOP时,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴AF=6,∴△ABF和△APE是等腰直角三角形,∴PE=AE,∵直线AB的解析式为y=﹣x+8,∴设点P的坐标为(x,﹣x+8),连接PC∵△OQC≌△QOP,∴∠POQ=∠CQO,PQ=OC,CQ=OP,∴△PQC≌△COP,∴∠OPC=∠QCP,∴∠OQC=∠QCP,∴PC∥OQ,∴PC=12OB=√10,∵PC2=CE2+PE2,∴10=(x ﹣4)2+(﹣x +8)2,解得:x =5,x =7(不合题意舍去),∴P (5,3);如图4,当△OQC ≌△QOP 时,过P 作PE ⊥OA 于E ,连接PC ,同理PE =AE ,PC ∥OQ ,∵AC =OC ,∴AP =PQ ,∵△OQC ≌△QOP ,∴PQ =OC =4,∴AP =PQ =4,∴PE =AE =2√2,∴OE =8﹣2√2,∴P (8﹣2√2,2√2),综上所述,点P 的坐标为(2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2). 故答案为(2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2).18.如图,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第5个等腰三角形的底角度数是 5° .解:∵在△CBA 1中,∠B =20°,A 1B =CB ,∴∠BA 1C =180°−∠B 2=80°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×80°; 同理可得,∠EA 3A 2=(12)2×80°,∠F A 4A 3=(12)3×80°, ∴第n 个等腰三角形的底角度数是(12)n ﹣1×80°. ∴第5个等腰三角形的底角度数为:(12)4×80°=5°,故答案为:5°.三.解答题(共7小题)19.如图,五边形ABCDE的内角都相等,EF平分∠AED,求证:EF⊥BC.证明:五边形内角和为:(5﹣2)×180°=540°.∵5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF平分∠AED,∴∠1=∠2=54°.∵四边形的内角和为360°,在四边形ABFE中,∠3=360°﹣(108°+108°+54°)=90°.∴EF⊥BC.20.画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.解:自A地经过B地去河边l的最短路线,如图所示.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.21.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.解:(1)符合上述条件的五个结论为:△AOB ≌△DOC ,OA =OD ,OB =OC ,∠ABO =∠DCO ,∠OBC =∠OCB .(2)证明如下:∵AB =DC ,∠A =∠D ,又有∠AOB =∠DOC∴△AOB ≌△DOC∴OA =OD ,OB =OC ,∠ABO =∠DCO∵OB =OC∴∠OBC =∠OCB .22.如图,△ABC 中,A 点坐标为(2,4),B 点坐标为(﹣3,﹣2),C 点坐标为(3,1).(1)在图中画出△ABC 关于y 轴对称的△A ′B ′C ′(不写画法),并写出点A ′,B ′,C ′的坐标.(2)求△ABC 的面积.解:(1)如图,A ′(﹣2,4),B ′(3,﹣2),C ′(﹣3,1);(2)S △ABC =6×6−12×5×6−12×6×3−12×1×3,=36﹣15﹣9﹣112, =1012.23.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD 中AD边上的高,求∠ABE的度数.解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=12×68°=34°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°﹣∠AEB﹣∠BAE=180°﹣90°﹣34°=56°.24.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ的形状,并加以证明.解:(1)如图1,∵∠ACB =∠DCE =α,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{CA =CB ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ),∴BE =AD ;(2)△CPQ 为等腰直角三角形.证明:如图2,由(1)可得,BE =AD ,∵AD ,BE 的中点分别为点P 、Q ,∴AP =BQ ,∵△ACD ≌△BCE ,∴∠CAP =∠CBQ ,在△ACP 和△BCQ 中,{CA =CB∠CAP =∠CBQ AP =BQ,∴△ACP ≌△BCQ (SAS ),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.25.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=DC+EC.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.解:(1)∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAE AD=AE,∴△BAD≌△CAE(SAS),∴∴∠ACE=∠B=60°,BD=CE,∴BC=BD+CD=EC+CD,∴AC=BC=EC+CD;故答案为:60°,AC=DC+EC;(2)BD2+CD2=2AD2,理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)如图3,作AE⊥CD于E,连接AD,∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,∴BC=√9+25=√34,∵∠BAC=90°,AB=AC,∴AB=AC=√17,∠ABC=∠ACB=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴CE=5﹣DE,∵AE2+CE2=AC2,∴AE2+(5﹣AE)2=17,∴AE=1,AE=4,∴AD=√2或AD=4√2.。

2021-2022学年湖北省黄冈市八年级(上)期中数学试卷 解析版(含解析)

2021-2022学年湖北省黄冈市八年级(上)期中数学试卷  解析版(含解析)

2021-2022学年湖北省黄冈市八年级第一学期期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.一个多边形的内角和是外角和的2倍,这个多边形的边数是()A.4B.6C.8D.103.如图,将△ABC一角折叠,若∠1+∠2=80°,则∠B+∠C=()A.40°B.100°C.140°D.160°4.已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD=2,CF=5,则AB的长为()A.1B.3C.5D.75.如图,△ABC中,∠CAB和∠CBA的角平分线交于点P,连接PA、PB、PC,若△PAB、△PBC、△PAC的面积分别为S1、S2、S3,则()A.S1<S2+S3B.S1=S2+S3C.S1>S2+S3D.无法确定S1与(S2+S3)的大小6.如图,在△ABC中,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,直线MN与AC、BC分别相交于E和D,连接AD,若AE=3cm,△ABC 的周长为13cm,则△ABD的周长是()A.7cm B.10cm C.16cm D.19cm7.如图,∠MON=36°,点P是∠MON中的一定点,点A、B分别在射线OM、ON上移动.当△PAB的周长最小时,∠APB的大小为()A.100°B.104°C.108°D.116°8.如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM =PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A.①②③B.①②④C.①③④D.②③④二、填空题(本大题共8小题,每小题3分,共24分)9.点(﹣3,﹣5)关于y轴对称的点的坐标是.10.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为.11.如图,以AD为高的三角形共有个.12.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).13.等腰三角形一腰上的高与另一腰的夹角为50°,那么这个等腰三角形的底角为.14.如图,在△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.当EF=6,BE=4时,CF的长为.15.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,PD⊥OA,垂足为D,则PD =.16.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.三、解答题(本大题共8小题,共72分)17.已知,在△ABC中.(1)若∠B=∠A+15°,∠C=∠B+15°,求△ABC的各内角度数;(2)若三边长分别为a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.18.如图,在△ABC中,AD是BC边上的高,∠B=30°,∠ACB=100°,AE平分∠BAC,求∠EAD的度数.19.如图,在△ABC中,点D为BC上一点,E、F两点分别在边AB、AC上,若BE=CD,BD=CF,∠B=∠C,∠A=50°,求∠EDF的度数.20.如图,△ABC是等边三角形,D、E分别是BC、AC边上的点,连接AD、BE,且AD、BE相交于点P,∠AEB=∠CDA.(1)求∠BPD的度数.(2)过点B作BQ⊥AD于Q,若PQ=3,PE=1,求BE的长.21.如图,已知△ABC三个顶点的坐标分别为A(﹣1,﹣1),B(﹣4,﹣2),C(﹣1,﹣4).(1)点A关于y轴对称的点的坐标是;(2)画出△ABC关于x轴对称的△A1B1C1分别写出点A1,B1,C1的坐标;(3)求△A1B1C1的面积.22.如图,△ABC中,AC的垂直平分线DE交AC于点E,交∠ABC的平分线于点D,DF ⊥BC于点F,连接AD.(1)求证AB+CF=BF;(2)若∠ABC=70°,求∠DAE的度数.23.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点H (1)求证:AD=BE.(2)连接CH,求证:CH平分∠AHE.(3)求∠AHE的度数(用含α的式子表示).24.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC 的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG =45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.一个多边形的内角和是外角和的2倍,这个多边形的边数是()A.4B.6C.8D.10【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形的边数是6.故选:B.3.如图,将△ABC一角折叠,若∠1+∠2=80°,则∠B+∠C=()A.40°B.100°C.140°D.160°【分析】利用三角形的外角的性质求出∠EAD,再利用三角形内角和定理求出∠B+∠C 即可.解:连接AA′.∵∠1=∠3+∠4,∠2=∠5+∠6,∴∠1+∠2=∠3+∠4+∠5+∠6=∠EAD+∠EA′D,∵∠EAD=∠EA′D,∴∠1+∠2=2∠EAD=160°,∴∠EAD=40°,∴∠B+∠C=180°﹣40°=140°,故选:C.4.已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD=2,CF=5,则AB的长为()A.1B.3C.5D.7【分析】利用ASA证明三角形ADE和CEF全等,进而得出AD=CF=5,即可求出AB 的长.解:∵FC∥AB,∴∠ADF=∠F.∵∠AED=∠CEF,DE=EF,∴△ADE≌△CEF(ASA).∴AD=CF=5.又∵BD=2,∴AB=AD+BD=5+2=7,故选:D.5.如图,△ABC中,∠CAB和∠CBA的角平分线交于点P,连接PA、PB、PC,若△PAB、△PBC、△PAC的面积分别为S1、S2、S3,则()A.S1<S2+S3B.S1=S2+S3C.S1>S2+S3D.无法确定S1与(S2+S3)的大小【分析】如图,过P点作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,利用角平分线的性质得到PD=PE=PF,再利用三角形面积公式得到S1=•AB•PD,S2=•BC•PF,S3=•AC•PE,然后根据三角形三边的关系求解.解:过P点作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,如图,∵∠CAB和∠CBA的角平分线交于点P,∴PD=PE=PF,∵S1=•AB•PD,S2=•BC•PF,S3=•AC•PE,∴S2+S3=•(AC+BC)•PD,∵AB<AC+BC,∴S1<S2+S3.故选:A.6.如图,在△ABC中,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,直线MN与AC、BC分别相交于E和D,连接AD,若AE=3cm,△ABC 的周长为13cm,则△ABD的周长是()A.7cm B.10cm C.16cm D.19cm【分析】利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到AE=CE =3,DA=DC,再利用三角形周长的定义和等线段代换得到AB+BD+DA的值即可.解:由作法得MN垂直平分AC,∴AE=CE=3,DA=DC,∵△ABC的周长为13cm,即AB+BC+AC=13,∴AB+BD+DA+6=13,即AB+BD+DA=7,∴△ABD的周长为7cm.故选:A.7.如图,∠MON=36°,点P是∠MON中的一定点,点A、B分别在射线OM、ON上移动.当△PAB的周长最小时,∠APB的大小为()A.100°B.104°C.108°D.116°【分析】设点P关于OM、ON对称点分别为P′、P″,当点A、B在P′P″上时,△PAB周长为PA+AB+BP=P′P″,此时周长最小.根据轴对称的性质,可求出∠APB的度数.解:如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″的长.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,所以∠P′OP″=2∠MON=2×36°=72°,所以∠OP′P″=∠OP″P′=(180°﹣72°)÷2=54°,又因为∠BPO=∠OP″B=54°,∠APO=∠AP′O=54°,所以∠APB=∠APO+∠BPO=108°.故选:C.8.如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM =PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A.①②③B.①②④C.①③④D.②③④【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴∠PEO=∠PFO=90°,在△POE和△POF中,,∴△POE≌△POF(AAS),∴OE=OF,PE=PF,在△PEM和△PFN中,,∴△PEM≌△PFN(ASA),∴EM=NF,PM=PN,故①正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故④正确,∵OM+ON=OE+ME+(OF﹣NF)=2OE,是定值,故②正确,在旋转过程中,△PMN是等腰三角形,形状是相似的,因为PM的长度是变化的,所以MN的长度是变化的,故③错误,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)9.点(﹣3,﹣5)关于y轴对称的点的坐标是(3,﹣5).【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.解:点(﹣3,﹣5)关于y轴对称的点的坐标是(3,﹣5),故答案为:(3,﹣5).10.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为7.【分析】先根据三角形的任意两边之和大于第三边,任意两边之差小于第三边求出第三边点的取值范围,再选择奇数即可.解:∵7﹣2=5,7+2=9,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故答案为:7.11.如图,以AD为高的三角形共有6个.【分析】由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故答案为:612.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED(或∠A=∠D或AC∥DF等)(只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.解:添加AB=ED(或∠A=∠D或AC∥DF等),∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED(或∠A=∠D或AC∥DF等).13.等腰三角形一腰上的高与另一腰的夹角为50°,那么这个等腰三角形的底角为70°或20°.【分析】根据题意,等腰三角形一腰上的高与另一腰的夹角为50°,分两种情况讨论,①如图一,当一腰上的高在三角形内部时,即∠ABD=50°时,②如图二,当一腰上的高在三角形外部时,即∠ABD=50°时;根据等腰三角形的性质,解答出即可.解:①如图一,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠A=90°﹣50°=40°,∴∠C=∠ABC==70°;②如图二,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠BAD=90°﹣50°=40°,又∵∠BAD=∠ABC+∠C,∠ABC=∠C,∴∠C=∠ABC===20°.故答案为:70°或20°.14.如图,在△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.当EF=6,BE=4时,CF的长为2.【分析】利用平行和角平分线得到BE=OE,OF=CF,可得出结论EF=BE+CF,由此即可求得CF的长.解:如图,∵BO平分∠ABC,∴∠ABO=∠CBO;∵EF∥BC,∴∠EOB=∠OBC,∴∠EOB=∠EBO,∴BE=OE;同理可证CF=OF,∴EF=BE+CF,∵EF=6,BE=4,∴OF=EF﹣OE=EF﹣BE=2,∴CF=OF=2,故答案为2.15.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,PD⊥OA,垂足为D,则PD =2.【分析】作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.解:作PE⊥OB于E,∵∠BOP=∠AOP,PD⊥OA,PE⊥OB,∴PE=PD,∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OA,∴∠BCP=∠AOB=30°,在Rt△PCE中,PE=PC=×4=2,∴PD=PE=2,故答案为:2.16.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是9.6.【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ 的长,如图所示.∵S△ABC=BC•AD=AC•BQ,∴BQ===9.6.故答案为:9.6.三、解答题(本大题共8小题,共72分)17.已知,在△ABC中.(1)若∠B=∠A+15°,∠C=∠B+15°,求△ABC的各内角度数;(2)若三边长分别为a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.【分析】(1)由∠B=∠A+15°,∠C=∠B+15°,结合∠A+∠B+∠C=180°可求出∠A的度数,再将其代入∠B=∠A+15°,∠C=∠B+15°中可求出∠B,∠C的度数;(2)利用“三角形两边之和大于第三边”可得出|a+b﹣c|=(a+b﹣c),|b﹣c﹣a|=(﹣b+c+a),再将其代入|a+b﹣c|﹣|b﹣c﹣a|中可得出|a+b﹣c|﹣|b﹣c﹣a|=2b﹣2c.解:(1)∵∠B=∠A+15°,∠C=∠B+15°,∠A+∠B+∠C=180°,∴∠A+(∠A+15°)+(∠A+15°+15°)=180°,∴∠A=45°,∴∠B=∠A+15°=45°+15°=60°,∠C=∠B+15°=60°+15°=75°.(2)|a+b﹣c|﹣|b﹣c﹣a|=(a+b﹣c)﹣(﹣b+c+a)=a+b﹣c+b﹣c﹣a=2b﹣2c.18.如图,在△ABC中,AD是BC边上的高,∠B=30°,∠ACB=100°,AE平分∠BAC,求∠EAD的度数.【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义得到∠BAE=∠CAE =25°,根据垂直的定义、三角形内角和定理计算,得到答案.解:∵∠B=30°,∠ACB=100°,∴∠BAC=50°,∵AE平分∠BAC,∴∠BAE=∠CAE=25°,∴∠AEC=55°,∵AD⊥BC,∴∠D=90°,∴∠EAD=35°.19.如图,在△ABC中,点D为BC上一点,E、F两点分别在边AB、AC上,若BE=CD,BD=CF,∠B=∠C,∠A=50°,求∠EDF的度数.【分析】通过证明△BDE≌△CFD,可得∠BDE=∠CFD,根据∠BDE+∠CDF+∠EDF =180°即可求得∠EDF的值,即可解题.解:在△BDE和△CFD中,∴△BDE≌△CFD(SAS),∴∠BDE=∠CFD,∵∠BDE+∠CDF+∠EDF=180°,∴∠CFD+∠CDF+∠EDF=180°,∵∠CFD+∠CDF+∠C=180°,∴∠EDF=∠C.∵∠B=∠C,∠A=50°,∴∠EDF=∠C=(180°﹣50°)=65°.20.如图,△ABC是等边三角形,D、E分别是BC、AC边上的点,连接AD、BE,且AD、BE相交于点P,∠AEB=∠CDA.(1)求∠BPD的度数.(2)过点B作BQ⊥AD于Q,若PQ=3,PE=1,求BE的长.【分析】(1)根据等边三角形的性质可得,∠ABC=∠C=60°,又根据∠AEB=∠CDA,进而求得∠EBC=∠BAD,即可得出答案;(2)根据题意求得∠PBQ=30°,再根据直角三角形中30°的角的性质求出BP的长度,即可得出答案.解:(1)由△ABC是等边三角形可得,∠ABC=∠C=60°,∵∠ADC=∠ABC+∠BAD,∠AEB=∠C+∠EBC,∠AEB=∠CDA,∴∠BAD=∠EBC,∵∠BPD=∠ABE+∠BAD,∴∠BPD=∠ABE+∠EBC=∠ABC=60°;(2)∵BQ⊥AD于Q,∴∠BQP=90°,∵∠BPD=60°,∴∠PBQ=90°﹣∠BPD=30°,在Rt△BPQ中,∵PQ=3,∠PBQ=30°,∴BP=2PQ=6,又∵PE=1,∴BE=BP+PE=6+1=7.21.如图,已知△ABC三个顶点的坐标分别为A(﹣1,﹣1),B(﹣4,﹣2),C(﹣1,﹣4).(1)点A关于y轴对称的点的坐标是(1,﹣1);(2)画出△ABC关于x轴对称的△A1B1C1分别写出点A1,B1,C1的坐标;(3)求△A1B1C1的面积.【分析】(1)直接利用关于y轴对称点的性质得出答案;(2)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(3)利用三角形面积求法得出答案.解:(1)点A关于y轴对称的点的坐标是:(1,﹣1),故答案为:(1,﹣1);(2)点A1(﹣1,1),B1(﹣4,2),C1(﹣1,4);(3)△A1B1C1的面积为:×3×3=.22.如图,△ABC中,AC的垂直平分线DE交AC于点E,交∠ABC的平分线于点D,DF ⊥BC于点F,连接AD.(1)求证AB+CF=BF;(2)若∠ABC=70°,求∠DAE的度数.【分析】(1)过D作AB的垂线交AB的延长线于点G,连接CD,根据全等三角形的判定和性质解答即可;(2)根据四边形内角和解答即可.【解答】证明:(1)过D作AB的垂线交AB的延长线于点G,连接CD,∵BD平分∠ABC,DG⊥AB,DF⊥BC,∴DG=DF,∵DE垂直平分AC,∴DA=DC,在Rt△ADG和Rt△CDF中,,∴Rt△ADG≌Rt△CDF(HL),∴AG=CF,∵DG⊥AB,DF⊥BC,∴∠BGD=∠BFD=90°,∵BD平分∠ABC,∴∠GBD=∠FBD,在△BDG和△BDF中,,∴△BDG≌△BDF(AAS),∴BG=BF,∴AB+CF=BF;(2)∵四边形BFDG的内角和为360°,∴∠FDG=180°﹣∠ABF=180°﹣70°=110°,由(1)知Rt△ADG≌Rt△CDF,∴∠GDA=∠CDF,∴∠FDG=∠ADC=110°,又∵DA=DC,DE⊥AC,∴∠ADE=∠CDE==55°,∴∠DAE=35°.23.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点H (1)求证:AD=BE.(2)连接CH,求证:CH平分∠AHE.(3)求∠AHE的度数(用含α的式子表示).【分析】(1)由条件根据SAS可证明△ACD≌△BCE,则结论得证;(2)过点C作CM⊥AD于M,CN⊥BE于N,可证明△ACM≌△BCN,可证得CM=CN,利用角平分线的判定可证明结论;(3)由(1)可得∠CAD=∠CBE,再利用三角形内角及外角的性质可求得∠AHE.【解答】(1)证明:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE;(2)证明:过点C作CM⊥AD于M,CN⊥BE于N,∵△ACD≌△BCE,∴∠CAM=∠CBN,在△ACM和△BCN中,∴△ACM≌△BCN(AAS),∴CM=CN,∴CH平分∠AHE;(3)解:∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠AMC=∠AMC,∴∠AHB=∠ACB=α,∴∠AHE=180°﹣α.24.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC 的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG =45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.【分析】(1)根据二次根式以及偶次方都是非负数,两个非负数的和是0,则每个数一定同时等于0,即可求解;(2)连接OC,只要证明OC是∠AOD的角平分线即可判断AC=CD,求出∠ACD的度数即可判断位置关系;(3)延长GA至点M,使AM=OF,连接BM,由全等三角形的判定定理得出△BAM≌△BOF,△FBG≌△MBG,故可得出FG=GM=AG+OF,由此即可得出结论.解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.。

2021-2022学年湖北省武汉市江夏区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市江夏区八年级(上)期中数学试卷(含答案)

2021-2022学年湖北省武汉市江夏区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的标号涂黑1.(3分)在△ABC中,AB=3cm,BC=7cm,若AC的长为整数,则AC的长可能是( )A.10cm B.5cm C.4cm D.2cm2.(3分)如图,△ABC≌△DBC,则∠ACB的对应角是( )A.∠DCB B.∠ABC C.∠DBC D.∠BAC3.(3分)如图中为轴对称图形的是( )A.B.C.D.4.(3分)若一个多边形的每个内角均为120°,则该多边形是( )A.四边形B.五边形C.六边形D.七边形5.(3分)点P(﹣6,﹣5)关于x轴对称的点P′的坐标为( )A.(6,﹣5)B.(﹣6,5)C.(6,5)D.(﹣6,﹣5)6.(3分)如图,将△ABC向右平移acm(a>0)得到△DEF,连接AD,若△ABC的周长是36cm,则四边形ABFD的周长是( )A.(36+a)cm B.(72+a)cm C.(36+2a)cm D.(72+2a)cm7.(3分)已知点M在∠AOB的平分线上,点M到OA边的距等于8,点N是OB边上的任意一点,则下列选项中正确的是( )A.MN≥8B.MN≤8C.MN>8D.MN<88.(3分)如图,七边形ABCDEFG中,EF,BA的延长线相交于点P,若∠ABC,∠BCD,∠CDE,∠DEF 的外角的度数和为230°,则∠P的度数为( )A.40°B.45°C.50°D.55°9.(3分)下列有四个命题:①如果两个三角形的三个角分别相等,那么这两个三角形全等,②如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个直角三角形全等,③如果两个三角形有两边和其中一边的对角分别相等,那么这两个三角形全等,④如果两个三角形有两边和其中一边上的中线分别相等,那么这两个三角形全等.其中说法正确的个数( )A.1个B.2个C.3个D.4个10.(3分)如图,“杨辉三角”是我国古代奉献给人类伟大的数学遗产之一,从下列图中取一列数1,3,6,10,…,记着a1=1,a2=1+2=3,a3=1+2+3=6,a4=10,…,若a16﹣2a n+n2=a14(n为正整数),则n的值为( )A.28B.29C.30D.31二、填空题(共6小题,每小题3,共18分)11.(3分)平面内不垂直的两条相交直线是轴对称图形,它有 条对称轴.12.(3分)△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠B= .13.(3分)如图,D是AB上一点,DF交AC于点E,E为DF的中点,FC∥AB,若BD=3,FC=8,则AB= .14.(3分)如图,点C关于OA,OB的对称点分别为E、F,连EF,分别交OA、OB于G、H,若EF=9,设△CGH的周长为a(a>0),则将点P(a,﹣6)向上平移5个单位后的点P′的坐标为 .15.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=8,DE=5,则△BCD的面积为 .16.(3分)如图,在直角三角形ABC中,∠ACB=90°,△ABC的角平分线AD、BE相交于点O,过点O 作OF⊥AD交BC的延长线于点F,交AC于点G,下列结论:①∠BOD=45°;②AD=OE+OF;③若BD=3,AG=8,则AB=11;④S△ACD:S△ABD=CD:BD.其中正确的结论是 .(只填写序号)三、解答题(共8小题,共72分)17.(8分)如图;以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(1,1).(1)直接写出点B,C,D的坐标.(2)直接写出图中点A、点C关于y轴对称的点.18.(8分)如图,是A,B,C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.(1)从B岛看A,C两岛的视角∠ABC是多少度?(2)从C岛看A,B两岛的视角∠ACB是多少度?19.(8分)如图,点C是线段AB的中点,两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D、E两地,DA⊥AB于点A,EB⊥AB于点B.求证:AD=BE.20.(8分)已知:在△ABC中,∠ABC、∠ACB的角平分线交于点O,∠ABC、∠ACB的外角平分线交于点D.(1)请探究∠BOC的度数与∠BDC的度数有什么数量关系?并证明你的结论.(2)若△ABC的三个外角平分线的交点为D、E、F,请判断△DEF是锐角三角形还是钝角三角形或直角三角形?并证明你的结论.21.(8分)已知:如图,△ABC的三个顶点的坐标分别为A(2,3),B(6,0),C(1,0).(1)画出△ABC关于直线m(直线m上各点的横坐标都为﹣1)对称的△A1B1C1并直接写出点A1,B1,C1的坐标.(2)若△PBC与△ABC全等,请在图中画出所有符合条件的△PBC(点P与点A重合除外),并直接写出点P的坐标.22.(10分)已知:AD=AC,AB=AE,AD交BC于点F.(1)如图1,若∠BAD=∠CAE,设DE交BC于点N,交AC于点M,求证:∠AMD=∠AFC.(2)如图2,若∠BAC+∠DAE=180°,且点F为BC的中点时,线段DE与线段AF之间存在某种数量关系,写出你的结论,并加以证明.23.(10分)在△ABC中,BD平分∠ABC交AC于点D.(1)如图1,若AB=6,BC=8,则S△ABD:S△BDC= .(直接写出结果)(2)如图2,点P为BD延长线上的一点,PG⊥AC于点G,当∠A=∠C+42°时,求∠P的度数.(3)如图3,CM平分∠ACB的外角交BD的延长线于点M,连AM,点N是BC延长线上的一点且MA=MN,请探究∠MNB与∠BMC之间是否存在某种数量关系,写出你的结论并加以证明.24.(12分)在平面直角坐标系中,点A在x轴负半轴上,点B在y轴正半轴上,连AB.(1)已知:OA=OB.①如图1,点C(3,0),连BC,过点A作AE⊥BC于点E,AE交OB于点F,若OA=8,求线段BF的长.②如图2,点G(4,3),连AG,OG,过点B作BP⊥AG于点P,过点O作OH⊥OG交BP的延长线于点H,求点H关于x轴或y轴对称的点的坐标.(2)我们都知道,一副三角板一般都有两个不同的三角板,其中的一个如图三角板,其特点之一是两条直角边a,b满足a=b,我们称它是等腰直角三角板.这样的三角形我们称它是等腰直角三角形.如图3,点D为△AOB的内角平分线的交点,过点D作DN⊥AB于点N,连DB,过点D作DM⊥BD交x轴于点M,若DN=512,求(BO﹣OM)的值.2021-2022学年湖北省武汉市江夏区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的标号涂黑1.(3分)在△ABC中,AB=3cm,BC=7cm,若AC的长为整数,则AC的长可能是( )A.10cm B.5cm C.4cm D.2cm【解答】解:根据三角形的三边关系可得:7﹣3<AC<7+3,解得:4<AC<10,∵AC的长为整数,∴AC=5,6,7,8,9,故选:B.2.(3分)如图,△ABC≌△DBC,则∠ACB的对应角是( )A.∠DCB B.∠ABC C.∠DBC D.∠BAC【解答】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,故选:A.3.(3分)如图中为轴对称图形的是( )A.B.C.D.【解答】解:选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.4.(3分)若一个多边形的每个内角均为120°,则该多边形是( )A.四边形B.五边形C.六边形D.七边形【解答】解:180°﹣120°=60°,360°÷60°=6.故选:C.5.(3分)点P(﹣6,﹣5)关于x轴对称的点P′的坐标为( )A.(6,﹣5)B.(﹣6,5)C.(6,5)D.(﹣6,﹣5)【解答】解:点P(﹣6,﹣5)关于x轴对称的点P′的坐标为(﹣6,5),故选:B.6.(3分)如图,将△ABC向右平移acm(a>0)得到△DEF,连接AD,若△ABC的周长是36cm,则四边形ABFD的周长是( )A.(36+a)cm B.(72+a)cm C.(36+2a)cm D.(72+2a)cm【解答】解:∵将周长为36cm的△ABC沿边BC向右平移a个单位得到△DEF,∴AD=a,BF=BC+CF=BC+a,DF=AC,又∵AB+BC+AC=36cm,∴四边形ABFD的周长=AD+AB+BF+DF=a+AB+BC+a+AC=(36+2a)(cm).故选:C.7.(3分)已知点M在∠AOB的平分线上,点M到OA边的距等于8,点N是OB边上的任意一点,则下列选项中正确的是( )A.MN≥8B.MN≤8C.MN>8D.MN<8【解答】解:∵点M在∠AOB的平分线上,点M到OA边的距离等于8,∴点M到OB的距离为8,∵点N是OB边上的任意一点,∴MN≥8.故选:A.8.(3分)如图,七边形ABCDEFG中,EF,BA的延长线相交于点P,若∠ABC,∠BCD,∠CDE,∠DEF 的外角的度数和为230°,则∠P的度数为( )A.40°B.45°C.50°D.55°【解答】解:如图.由题意得:∠1+∠2+∠3+∠4=230°.∴∠5+∠6+∠7=360°﹣230°=130°.∵∠8=∠6+∠7,∴∠5+∠8=130°.∴∠P=180°﹣(∠5+∠8)=180°﹣130°=50°.故选:C.9.(3分)下列有四个命题:①如果两个三角形的三个角分别相等,那么这两个三角形全等,②如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个直角三角形全等,③如果两个三角形有两边和其中一边的对角分别相等,那么这两个三角形全等,④如果两个三角形有两边和其中一边上的中线分别相等,那么这两个三角形全等.其中说法正确的个数( )A.1个B.2个C.3个D.4个【解答】解:①如果两个三角形的三个角分别相等,那么这两个三角形全等,错误,三角形全等,必须有一条边相等.②如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个直角三角形全等,错误,斜边对应相等时,两个直角三角形不一定全等.③如果两个三角形有两边和其中一边的对角分别相等,那么这两个三角形全等,错误SSA,两个三角形不一定全等.④如果两个三角形有两边和其中一边上的中线分别相等,那么这两个三角形全等.正确.故选:A.10.(3分)如图,“杨辉三角”是我国古代奉献给人类伟大的数学遗产之一,从下列图中取一列数1,3,6,10,…,记着a1=1,a2=1+2=3,a3=1+2+3=6,a4=10,…,若a16﹣2a n+n2=a14(n为正整数),则n的值为( )A.28B.29C.30D.31【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=n(n+1)2,∴a16=16×172=136,a14=14×152=105,∵a16﹣2a n+n2=a14,∴136﹣2⋅n(n+1)2+n2=105,解得n=31.故选:D.二、填空题(共6小题,每小题3,共18分)11.(3分)平面内不垂直的两条相交直线是轴对称图形,它有 2 条对称轴.【解答】解:根据轴对称图形的定义,平面内不垂直的两条相交直线是轴对称图形有2条对称轴.故答案为:2.12.(3分)△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠B= 60° .【解答】解:∵∠B=∠A+10°,∠C=∠B+10°,∴∠C=∠B+10°=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+(∠A+10°)+(∠A+20°)=180°,解得:∠A=50°,∴∠B=60°;故答案为:60°.13.(3分)如图,D是AB上一点,DF交AC于点E,E为DF的中点,FC∥AB,若BD=3,FC=8,则AB= 11 .【解答】解:∵FC∥AB,∴∠A=∠ECF,∵E为DF的中点,∴DE=FE,在△ADE和△CFE中,∠A=∠ECF∠AED=∠CEF,DE=FE∴△ADE≌△CFE(AAS),∴AD=CF=8,∴AB=AD+BD=8+3=11,故答案为:11.14.(3分)如图,点C关于OA,OB的对称点分别为E、F,连EF,分别交OA、OB于G、H,若EF=9,设△CGH的周长为a(a>0),则将点P(a,﹣6)向上平移5个单位后的点P′的坐标为 (9,﹣1) .【解答】解:∵点C关于OA,OB的对称点分别为E、F,∴OA是CE的垂直平分线,OB是CF的垂直平分线,∴GE=GC,HC=HF,∴EF=EG+G+HF=GC+GH+HC=△CGH的周长,∴a=9,∴点P(9,﹣6)向上平移5个单位后的点P′的坐标为(9,﹣1).故答案为:(9,﹣1).15.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=8,DE=5,则△BCD的面积为 92 .【解答】解:∵∠ACB=90°,∴∠BCE+∠ECA=90°,∵AD⊥CE于D,∴∠CAD+∠ECA=90°,∴∠CAD=∠BCE.在△ACD与△CBE中,∠ADC=∠CEB=90°∠CAD=∠BCEAC=BC,∴△ACD≌△CBE(AAS),∴BE=CD,CE=AD=8,∴BE=CD=CE﹣DE=8﹣5=3,∴S△CDB=12CD•BE=12×3×3=92.故答案为9 2.16.(3分)如图,在直角三角形ABC中,∠ACB=90°,△ABC的角平分线AD、BE相交于点O,过点O 作OF⊥AD交BC的延长线于点F,交AC于点G,下列结论:①∠BOD=45°;②AD=OE+OF;③若BD=3,AG=8,则AB=11;④S△ACD:S△ABD=CD:BD.其中正确的结论是 ①③④ .(只填写序号)【解答】解:∵△ABC的角平分线AD、BE相交于点O,∴∠ABO=∠CBO=12∠ABC,∠BAO=∠CAO=12∠BAC,∴∠AOB=180°﹣∠BAO﹣∠ABO=180°―12(∠ABC+∠BAC)=180°﹣45°=135°,∴∠BOD=45°,故①正确;∵OF⊥AD,∴∠DOF=90°,∴∠BOF=135°,∴∠BOF=∠BOA,又∵BO=BO,∠ABO=∠FBO,∴△ABO≌△FBO(ASA),∴AO=FO,AB=BF,∵∠ADC+∠DAC=90°=∠ADC+∠F,∴∠F=∠DAC,又∵∠AOF=∠FOD=90°,∴△AOG≌△FOD(ASA),∴OD=OG,DF=AG,∴AD=AO+OD=OF+OG,∵∠BEC=90°﹣∠EBC,∠OGE=∠CGF﹣90°﹣∠F,∴∠BEC≠∠OGE,∴OG≠OE,∴AD≠OF+OE,故②错误;∵BD=3,AG=DF=8,∴BF=11,∴AB=11,故③正确;∵S△ACD=12×CD×AC,S△ABD=12×BD×AC,∴S△ACD:S△ABD=CD:BD,故④正确;故答案为①③④.三、解答题(共8小题,共72分)17.(8分)如图;以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(1,1).(1)直接写出点B,C,D的坐标.(2)直接写出图中点A、点C关于y轴对称的点.【解答】解:(1)如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(1,1),∴点B、C、D的坐标分别为:(1,﹣1),(﹣1,﹣1),(﹣1,1);(2)点A、点C关于y轴对称的点分别是点D、点B.18.(8分)如图,是A,B,C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.(1)从B岛看A,C两岛的视角∠ABC是多少度?(2)从C岛看A,B两岛的视角∠ACB是多少度?【解答】解:(1)由题意可知,∠DAC=50°,∠DAB=80°,∠EBC=40°,∵DA∥BE,∴∠DAB+∠EBA=180°,∴∠EBA=180°﹣80°=100°,∴∠ABC=∠EBA﹣∠EBC=100°﹣40°=60°;(2)过点C作CF∥DA,则CF∥EB,∴∠ACF=∠DAC,∠BCF=∠EBC,∴∠ACB=∠DAC+∠EBC=50°+40°=90°.19.(8分)如图,点C是线段AB的中点,两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D、E两地,DA⊥AB于点A,EB⊥AB于点B.求证:AD=BE.【解答】证明:∵点C是线段AB的中点,∴AC=CB,∵两人从C同时出发,以相同的速度分别沿两条直线行走,∴DC=EC,∵DA⊥AB,EB⊥AB,∴∠A=∠B=90°,在Rt△ACD和Rt△BCE中,AC=CBCD=CE,∴Rt△ACD≌Rt△BCE(HL),∴AD=BE.20.(8分)已知:在△ABC中,∠ABC、∠ACB的角平分线交于点O,∠ABC、∠ACB的外角平分线交于点D.(1)请探究∠BOC的度数与∠BDC的度数有什么数量关系?并证明你的结论.(2)若△ABC的三个外角平分线的交点为D、E、F,请判断△DEF是锐角三角形还是钝角三角形或直角三角形?并证明你的结论.【解答】解:(1)∠BOC+∠BDC=180°,理由如下:如图所示:∵∠ABC、∠ACB的角平分线交于点O,∴∠3=12∠ABC,∠4=12∠ACB,∴∠BOC=180°﹣(∠3+∠4)=180°―12(∠ABC+∠ACB),∵∠ABC+∠ACB=180°﹣∠A,∴∠BOC=180°―12×(180°﹣∠A)=90°+12∠A;由题意得:∠EBC=∠A+∠ACB,∠FCB=∠A+∠ABC,∵∠ABC、∠ACB的外角平分线交于点D,∴∠1=12∠EBC=12(∠A+∠ACB),∠2=12∠FCB=12(∠A+∠ABC),∴∠1+∠2=12(∠A+∠ACB)+12(∠A+∠ABC)=∠A+12(∠ACB+∠ABC)=∠A+90°―12∠A=90°+12∠A,∴∠BDC=180°﹣(∠1+∠2)=90°―12∠A,∴∠BOC+∠BDC=90°+12∠A+90°―12∠A=180°;(2)△DEF是锐角三角形,理由如下:如图所示:由题意得:∠GBC=∠BAC+∠ACB,∠HCB=∠BAC+∠ABC,∵∠ABC、∠ACB的外角平分线交于点D,∴∠1=12∠GBC=12(∠BAC+∠ACB),∠2=12∠HCB=12(∠BAC+∠ABC),∴∠1+∠2=12(∠BAC+∠ACB)+12(∠BAC+∠ABC)=∠BAC+12(∠ACB+∠ABC)=∠BAC+90°―12∠BAC=90°+12∠BAC,∴∠D=180°﹣(∠1+∠2)=90°―12∠BAC;同理可得:∠E=90°―12∠ABC,∠F=90°―12∠ACB,∴∠D,∠E,∠F都是锐角,故△DEF是锐角三角形.21.(8分)已知:如图,△ABC的三个顶点的坐标分别为A(2,3),B(6,0),C(1,0).(1)画出△ABC关于直线m(直线m上各点的横坐标都为﹣1)对称的△A1B1C1并直接写出点A1,B1,C1的坐标.(2)若△PBC与△ABC全等,请在图中画出所有符合条件的△PBC(点P与点A重合除外),并直接写出点P的坐标.【解答】解:(1)如图所示:A1(﹣4,3),B1(﹣3,0),C1(﹣8,0);(2)点P坐标分别为(2,﹣3),(5,﹣3),(5,3).22.(10分)已知:AD=AC,AB=AE,AD交BC于点F.(1)如图1,若∠BAD=∠CAE,设DE交BC于点N,交AC于点M,求证:∠AMD=∠AFC.(2)如图2,若∠BAC+∠DAE=180°,且点F为BC的中点时,线段DE与线段AF之间存在某种数量关系,写出你的结论,并加以证明.【解答】(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAC=∠EAD,在△BAC和△EAD中,AB=AE∠BAC=∠EAD,AC=AD∴△BAC≌△EAD(SAS),∴∠C=∠D,∵∠DNF=∠CNM,∴∠DFN=∠CMN,∴∠AFC=∠AMD;(2)解:DE=2AF.证明:延长AD至G,使AF=GF,连接CG,∵F为BC的中点,∴BF=CF,在△AFB和△GFC中,AF=GF∠AFB=∠GFC,BF=CF∴△AFB≌△GFC(SAS),∴AB=GC,∠BAF=∠CGF,∴AB∥CG,∴∠BAC+∠ACG=180°,∵∠BAC+∠DAE=180°,∴∠ACG=∠DAE,∵AB=AE,∴AE=CG,在△DAE和△ACG中,AE=CG∠DAE=∠ACG,AD=AC∴△DAE≌△ACG(SAS),∴DE=AG=2AF,∴DE=2AF.23.(10分)在△ABC中,BD平分∠ABC交AC于点D.(1)如图1,若AB=6,BC=8,则S△ABD:S△BDC= 3:4 .(直接写出结果)(2)如图2,点P为BD延长线上的一点,PG⊥AC于点G,当∠A=∠C+42°时,求∠P的度数.(3)如图3,CM平分∠ACB的外角交BD的延长线于点M,连AM,点N是BC延长线上的一点且MA =MN,请探究∠MNB与∠BMC之间是否存在某种数量关系,写出你的结论并加以证明.【解答】解:(1)过点D作DE⊥AB于E,作DF⊥BC于F,∵BD平分∠ABC交AC于点D.∴DE=DF,∴S△ABD=12AB•DE,S△BDC=12BC•DF,∴S△ABD:S△BDC=AB:BC=6:8=3:4,故答案为:3:4;(2)设∠C=x,则∠A=∠C+42°=x+42°,∴∠ABC=180°﹣(∠A+∠C)=138°﹣2x,∵BD平分∠ABC,∴∠ABD=∠CBD=69°﹣x,∴∠PDG=∠C+∠CBD=x+69°﹣x=69°,∵PG⊥AC,∴∠PGD=90°,∴∠P=90°﹣∠PDG=21°;(3)∠MNB=90°﹣∠BMC.证明:如图3,过点M作MG⊥BN于点G,MQ⊥AC于点Q,ME⊥BA,交BA延长线于点E,∵BM平分∠ABC,CM平分∠ACN,∴ME=MG=MQ,又∵MA=MN,∴Rt△MAE≌Rt△MNG(HL),∴∠MNG=∠MAE,∵ME=MQ,MQ⊥AC,ME⊥BA,∴AM平分∠EAC,∵∠MCN﹣∠MBC=∠BMC,∴2∠MCN﹣2∠MBC=2∠BMC,即∠ACN﹣∠ABC=2∠BMC,∴∠BAC=∠ACN﹣∠ABC=2∠BMC,则∠MAE=∠MAC=∠MNB=12∠EAC=12(180°﹣∠BAC)=12(180°﹣2∠BMC)=90°﹣∠BMC,∴∠MNB=90°﹣∠BMC.24.(12分)在平面直角坐标系中,点A在x轴负半轴上,点B在y轴正半轴上,连AB.(1)已知:OA=OB.①如图1,点C(3,0),连BC,过点A作AE⊥BC于点E,AE交OB于点F,若OA=8,求线段BF的长.②如图2,点G(4,3),连AG,OG,过点B作BP⊥AG于点P,过点O作OH⊥OG交BP的延长线于点H,求点H关于x轴或y轴对称的点的坐标.(2)我们都知道,一副三角板一般都有两个不同的三角板,其中的一个如图三角板,其特点之一是两条直角边a,b满足a=b,我们称它是等腰直角三角板.这样的三角形我们称它是等腰直角三角形.如图3,点D为△AOB的内角平分线的交点,过点D作DN⊥AB于点N,连DB,过点D作DM⊥BD交x轴于点M,若DN=512,求(BO﹣OM)的值.【解答】解:(1)①∵点C(3,0),∴OC=3,∵AE⊥BC,∴∠AEC=∠AOB=90°,∴∠ACB+∠CBO=90°=∠ACB+∠EAC,∴∠CBO=∠EAC,又∵AO=BO,∠AOF=∠BOC=90°,∴△AOF≌△BOC(ASA),∴OC=OF=3,∴OA=OB=8,∴BF=5;②∵BP⊥AG,OH⊥OG,∴∠BPA=∠AOB=∠GOH=90°,∴∠AOG=∠BOH,∵∠BAP+∠ABO+∠PAO=90°,∠BAP+∠ABO+∠PBO=90°,∴∠PAO=∠PBO,又∵OA=OB,∴△AOG≌△BOH(ASA),∴OG=OH,如图2,过点G作GM⊥x轴于M,点H作HN⊥y轴于N,∴∠GMO=∠HNO=90°,∵点G(4,3),∴GM=3,OM=4,∵∠GOH=∠MON=90°,∴∠GOM=∠HON,又∵OG=OH,∴△GOM≌△HON(AAS),∴HN=GM=3,OM=ON=4,∴点H(3,﹣4),∴点H关于x轴的对称点坐标为(﹣3,﹣4),点H关于y轴对称的点的坐标为(3,4);(2)如图3,过点D作DF⊥OB于F,DE⊥AO于E,∵点D为△AOB的内角平分线的交点,DN⊥AB,DF⊥OB,DE⊥AO,∴DE=DN=DF=5 12,∵DF⊥OB,DE⊥AO,∴∠DEO=∠DFO=90°=∠EOF,∴四边形DFOE是矩形,∴∠EDF=∠BDM=90°,OE=DF=512,DE=OF=512,∴∠BDF=∠EDM,又∵DE=DF,∠DFB=∠DEM,∴△DME≌△DBF(AAS),∴EM=BF,∴BO﹣OM=BF+OF﹣OM=EO+OM+OF﹣OM=2×512=56.。

2021-2022学年湖北省武汉市东西湖区八年级(上)期中数学试卷 (含解析)

2021-2022学年湖北省武汉市东西湖区八年级(上)期中数学试卷 (含解析)

2021-2022学年湖北省武汉市东西湖区八年级第一学期期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.3cm,4cm,7cm B.3cm,3cm,6cmC.5cm,8cm,2cm D.4cm,5cm,8cm2.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.3.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.44.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于()A.60°B.54°C.56°D.66°5.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形6.如图,在△ABC中,∠C=90°,AC=4,AD=3CD,BD平分∠ABC,则点D到AB的距离为()A.1B.2C.3D.47.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中最多能画出()个格点三角形与△ABC成轴对称.A.6个B.5个C.4个D.3个8.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.105°B.75°C.65°D.55°9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=16cm2,则S阴影等于()A.8cm2B.4cm2C.2cm2D.1cm210.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=EC;⑤AE=NC,其中正确结论的个数是()A.2个B.3个C.4个D.5个二、填空题(共6小题,每小题3分,共18分)11.等腰三角形一个内角等于70°,则它的底角为.12.点M(﹣1,2)关于x轴对称点的坐标为.13.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=度.14.如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为.15.如图,Rt△ABC中,∠ABC=90°,AB=6,BC=8,BD为△ABC的角平分线,则点D 到边AB的距离为.16.△ABC中,∠ACB=60°,AC=4,BC=13,以AB为边作等边△ABD,过D作DE⊥BC于E,则BE的长为.三、解答题(共8题,共72分)17.如图,CA=CD,∠1=∠2,BC=EC.求证:AB=DE.18.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.19.用一条长为20cm的细绳围成一个等腰三角形,能围成一边长是6cm的等腰三角形吗?为什么?20.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.21.如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上,A(﹣3,3),B(﹣4,﹣2),C(0,﹣1).(1)直接写出△ABC的面积为.(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应),点E的坐标为.(3)用无刻度的直尺,运用所学的知识作出△ABC的高线BF(保留作图痕迹).22.如图,四边形ABCD中,CA平分∠BAD,CB=CD,CF⊥AD于F.(1)求证:∠ABC+∠ADC=180°;(2)若AF:CF=3:4,CF=8,求四边形ABCD的面积.23.如图1,B,C,E三点在一条直线上,△ABC和△DCE均为等边三角形,BD与AC交于点M,AE与CD交于点N,O为AE与BD交点.(1)求证:AE=BD;(2)如图2,连接MN,求证:MN∥BE;(3)如图3所示,在等边△ABC中,AD⊥BD,∠BAD=58°,∠ACD=28°,CD=1,求BD的长.24.在平面直角坐标系中,点A在x轴负半轴上,点B在y轴负半轴上,∠ABC=90°,BC=AB.(1)如图1,A(﹣5,0),B(0,﹣2),点C在第一象限,请直接写出C的坐标.(2)如图1,B(0,﹣2),BF⊥y轴,D在y轴上,BD=AO,连接CD并延长交BF 于点E,请求出BE的长度;(3)如图2,A(﹣n,0),H在AC延长线上,过H(m,n)作HG⊥x轴于G,探究线段BH、AG、BO之间的数量关系,并证明你的结论.参考答案一、选择题(共10小题,每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.3cm,4cm,7cm B.3cm,3cm,6cmC.5cm,8cm,2cm D.4cm,5cm,8cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:根据三角形的三边关系,知:A、3+4=7,不能组成三角形,故本选项不符合题意;B、3+3=6,不能组成三角形,故本选项不符合题意;C、5+2<8,不能组成三角形,故本选项不符合题意;D、5﹣4<8<5+4,能够组成三角形,故本选项符合题意.故选:D.2.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.解:线段BE是△ABC的高的图是选项D.故选:D.3.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.4【分析】三角形具有稳定性,所以要使五边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于()A.60°B.54°C.56°D.66°【分析】先根据全等三角形的性质,判断∠α=∠1,再根据三角形内角和定理,求得∠α的度数,即可得出∠1.解:根据图形可知,两个全等三角形中,b,c的夹角为对应角∴∠α=∠1又∵∠α=180°﹣54°﹣60°=66°∴∠1=66°故选:D.5.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n 的方程组,就可以求出边数n.解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选:C.6.如图,在△ABC中,∠C=90°,AC=4,AD=3CD,BD平分∠ABC,则点D到AB的距离为()A.1B.2C.3D.4【分析】过点D作DE⊥AB于点E,由AC=4,AD=3CD可求出CD的长,由BD平分∠ABC,利用角平分线的性质可求出DE的长.解:过点D作DE⊥AB于点E,如图所示.∵AC=4,AD=3CD,∴CD=AC=1.又∵BD平分∠ABC,∴DE=DC=1.故选:A.7.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中最多能画出()个格点三角形与△ABC成轴对称.A.6个B.5个C.4个D.3个【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解解:如图,最多能画出6个格点三角形与△ABC成轴对称.故选:A.8.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.105°B.75°C.65°D.55°【分析】根据三角形的外角性质解答即可.解:由三角形的外角性质可知:∠α=30°+45°=75°,故选:B.9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=16cm2,则S阴影等于()A.8cm2B.4cm2C.2cm2D.1cm2【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.解:∵点E是AD的中点,∴S△DBE=S△ABD,S△DCE=S△ADC,∴S△BCE=S△ABC=×16=8(cm2),∵点F是CE的中点,∴S△BEF=S△BCE=×8=4(cm2).故选:B.10.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=EC;⑤AE=NC,其中正确结论的个数是()A.2个B.3个C.4个D.5个【分析】求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断⑤;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断③,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断②,根据BE是∠ABC的平分线,,所以AE=,故④错误.解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴⑤正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴DM平分∠BMN∴③正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴②正确;∵等腰Rt△ABC中,∠BAC=90°,∴BC=AB,∵BE是∠ABC的平分线,∴,∴AE=,∴④错误,即正确的有4个,故选:C.二、填空题(共6小题,每小题3分,共18分)11.等腰三角形一个内角等于70°,则它的底角为70°或55°.【分析】分顶角为70°和底角为70°两种情况,结合三角形内角和定理可求得底角.解:当顶角为70°时,则底角==55°;当底角为70°时,则顶角为180°﹣2×70°=40°,符合题意;故答案为:70°或55°.12.点M(﹣1,2)关于x轴对称点的坐标为(﹣1,﹣2).【分析】两点关于x轴对称,那么让横坐标不变,纵坐标互为相反数即可.解:∵2的相反数是﹣2,∴点M(﹣1,2)关于x轴对称点的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).13.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=18度.【分析】利用了三角形内角和等于180°计算即可知.解:设∠A=x,则∠C=∠ABC=2x.根据三角形内为180°知,∠C+∠ABC+∠A=180°,即2x+2x+x=180°,所以x=36°,∠C=2x=72°.在直角三角形BDC中,∠DBC=90°﹣∠C=90°﹣72°=18°.故填18°.14.如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为7cm.【分析】根据折叠性质得到DC=DE,BE=BC=6cm,则AE=2cm,再根据三角形周长定义得到△AED周长=AD+DE+AE,然后利用DC代替DE得到△AED周长=AD+DC+AE =AC+AE=5+2=7(cm).解:∵过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴DC=DE,BE=BC=6cm,∵AB=8cm,∴AE=AB﹣BE=2cm,∵△AED周长=AD+DE+AE=AD+DC+AE=AC+AE=5cm+2cm=7cm.故答案为7cm.15.如图,Rt△ABC中,∠ABC=90°,AB=6,BC=8,BD为△ABC的角平分线,则点D 到边AB的距离为.【分析】过D作DE⊥AB于E,DF⊥BC于F,根据角平分线的性质得出DE=DF,求出△ABC的面积,再根据三角形的面积公式求出即可.解:过D作DE⊥AB于E,DF⊥BC于F,∵BD为△ABC的角平分线,∴DE=DF,设DE=DF=R,∵∠ABC=90°,AB=6,BC=8,∴S△ABC===24,∴S△ABD+S△DBC=24,∵AB=6,BC=8,∴R+=24,解得:R=,即DF=,∴点D到边AB的距离是,故答案为:.16.△ABC中,∠ACB=60°,AC=4,BC=13,以AB为边作等边△ABD,过D作DE⊥BC于E,则BE的长为 2.5或8.5.【分析】作辅助线,构建全等三角形,如图1,证明△ABC≌△DAG,则∠HGC=∠C=60°,DG=AC=4,再证明△GHC是等边三角形,计算DH=13,BH=4;在Rt△DHE 中,∠HDE=30°,根据直角三角形30°角的性质求EH=DH=6.5,从而得EC的长.延长AC至G,使AG=BC=13,连接GD,CD,设AD,BC交于F,根据等边三角形的性质得到AD=BD,∠ABD=∠C=60°,根据全等三角形的性质得到∠ADG=∠BDC,DG=CC,推出△CDG是等边三角形,根据直角三角形的性质即可得到答案.解:如图1,延长CA至G,使AG=BC=13,连接GD并延长,交CB的延长线于H,∵△ADB是等边三角形,∴AD=AB,∠DAB=60°,∴∠DAG+∠BAC=120°,∵∠C=60°,∴∠ABC+∠BAC=120°,∴∠DAG=∠ABC,在△ABC和△DAG中,,∴△ABC≌△DAG(SAS),∴∠HGC=∠C=60°,DG=AC=4,∴△GHC是等边三角形,∴GH=GC=HC=13+4=17,∠DHC=60°,∴DH=13,BH=4,∵DE⊥BC,∴∠DEH=90°,在Rt△DHE中,∠HDE=30°,∴EH=DH=6.5,∴BE=EH﹣BH=6.5﹣4=2.5;如图2,延长AC至G,使AG=BC=13,连接GD,CD,设AD,BC交于F,∵△ADB是等边三角形,∴AD=BD,∠ABD=∠C=60°,∵∠AFC=∠BFD,∴∠CAD=∠CBD,在△ADG和△BDC中,,∴△ADG≌△BDC(SAS),∴∠ADG=∠BDC,DG=CC,∴∠BDC﹣∠ADC=∠ADG﹣∠ADC,即∠ADB=∠CDG=60°,∴△CDG是等边三角形,∴∠DCG=60°,∴∠BCD=60°,∵DE⊥BC,∴∠DEC=90°,∴∠EDC=30°,∵CD=CG=AG﹣AC=BC﹣AC=9,∴CE=CD=4.5,∴BE=BC﹣CE=8.5,综上所述,BE的长为2.5或8.5,故答案为:2.5或8.5,三、解答题(共8题,共72分)17.如图,CA=CD,∠1=∠2,BC=EC.求证:AB=DE.【分析】由∠1=∠2据可以得出∠ACB=∠DCE.再证明△ABC≌△DEC就可以得出结论.【解答】证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).∴DE=AB.18.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.【分析】因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠DAC度数可求;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分线,则∠ABO=30°,故∠BOA的度数可求.解:∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.19.用一条长为20cm的细绳围成一个等腰三角形,能围成一边长是6cm的等腰三角形吗?为什么?【分析】题中没有指明6cm所在边是底还是腰,故应该分情况进行分析,注意利用三角形三边关系进行检验.解:能构成有一边长为6cm的等腰三角形,理由如下:①当6cm为底时,腰长=7cm;②当6cm为腰时,底边=8cm;故能构成有一边长为6cm的等腰三角形.20.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.【分析】先利用ASA证明△AOB≌△COD,得出OB=OD,根据线段垂直平分线的判定可知点O在线段BD的垂直平分线上,再由BE=DE,得出点E在线段BD的垂直平分线上,即O,E两点都在线段BD的垂直平分线上,从而可证明OE垂直平分BD.【解答】证明:在△AOB与△COD中,,∴△AOB≌△COD(ASA),∴OB=OD,∴点O在线段BD的垂直平分线上,∵BE=DE,∴点E在线段BD的垂直平分线上,∴OE垂直平分BD.21.如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上,A(﹣3,3),B(﹣4,﹣2),C(0,﹣1).(1)直接写出△ABC的面积为12.(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应),点E的坐标为(4,﹣2).(3)用无刻度的直尺,运用所学的知识作出△ABC的高线BF(保留作图痕迹).【分析】(1)用矩形的面积减去四周三个三角形的面积即可;(2)分别作出点A、B关于y轴的对称点,再与点C首尾顺次连接即可;(3)根据网格特点作CF′⊥CA,再利用网格作BF″⊥AC,与AC的交点即为所求.解:(1)△ABC的面积为4×5﹣×1×5﹣×3×4﹣×1×4=12,故答案为:12;(2)如图所示,△DEC即为所求,点E的坐标为(4,﹣2),(3)如图所示,BF即为所求.22.如图,四边形ABCD中,CA平分∠BAD,CB=CD,CF⊥AD于F.(1)求证:∠ABC+∠ADC=180°;(2)若AF:CF=3:4,CF=8,求四边形ABCD的面积.【分析】(1)过点C作CE⊥AB,交AB的延长线于E,由“AAS”可证△ACE≌△ACF,可得AF=AE,CE=CF,由“HL”可证Rt△CBE≌Rt△CDF,可得∠ADC=∠CBE,由平角的性质可得结论;(2)由全等三角形的性质可得S△CBE=S△CDF,S△ACE=S△ACF,即可求解.【解答】证明:(1)如图,过点C作CE⊥AB,交AB的延长线于E,、∵CA平分∠BAD,∴∠EAC=∠FAC,在△ACE和△ACF中,,∴△ACE≌△ACF(AAS),∴AF=AE,CE=CF,在Rt△CBE和Rt△CDF中,,∴Rt△CBE≌Rt△CDF(HL),∴∠ADC=∠CBE,∵∠ABC+∠CBE=180°,∴∠ADC+∠ABC=180°;(2)∵AF:CF=3:4,CF=8,∴AF=6,∴S△ACF=AF×CF=24,∵Rt△CBE≌Rt△CDF,△ACE≌△ACF,∴S△CBE=S△CDF,S△ACE=S△ACF,∴四边形ABCD的面积=S△ACE+S△ACF=2S△ACF=48.23.如图1,B,C,E三点在一条直线上,△ABC和△DCE均为等边三角形,BD与AC交于点M,AE与CD交于点N,O为AE与BD交点.(1)求证:AE=BD;(2)如图2,连接MN,求证:MN∥BE;(3)如图3所示,在等边△ABC中,AD⊥BD,∠BAD=58°,∠ACD=28°,CD=1,求BD的长.【分析】(1)根据等边三角形边长相等的性质和各内角为60°的性质可证得△BCD≌△ACE(SAS),根据全等三角形对应边相等的性质即可求得AE=BD.(2)△CMN是等边三角形,由△BCD≌△ACE可知∠CBM=∠CAN,根据ASA可证明△BCM≌△ACN,得到CM=CN,又∠MCN=60°,可知△CMN是等边三角形,得到∠CMN=60°,由∠ACB=60°,得到∠CMN=∠ACB,所以MN∥BC.(3)由等边三角形的性质及三角形内角和定理求出∠ADE=90°,将CD绕点C顺时针旋转60°得CE,边接DE,AE,则△CDE是等边三角形,可证明△BCD≌△ACE(SAS),由全等三角形的性质得出AE=BD,由直角三角形的性质可得出答案.【解答】(1)证明:如图1中,∵△ABC与△DCE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACB+∠ACD+∠DCE=180,∴∠ACD=60°,∠ACB+∠ACD=∠ACD+∠DCE,即∠BCD=∠ACE.在△BCD和△ACE中,,∴△BCD≌△ACE(SAS).∴BD=AE.(2)证明:∵△BCD≌△ACE,∴∠CBM=∠CAN.在△BCM和△ACN中,,∴△BCM≌△ACN(ASA),∴CM=CN,∵∠ACB=∠DCE=60°,∴∠MCN=60°,∴△CMN是等边三角形,∴∠CMN=60°,∵∠ACB=60°,∴∠CMN=∠ACB,∴MN∥BC.(3)解:∵△ABC是等边三角形,∴∠BAC=∠ACB=∠ABC=60°,∵AD⊥BD,∴∠ADB=90°,∵∠BAD=58°,∴∠ABD=90°﹣∠BAD=32°,∠DAC=∠BAC﹣58°=2°,∴∠DBC=∠ABC﹣∠ABD=28°,∵∠ACD=28°,∴∠DCB=∠ACB﹣∠ACD=32°,∴∠BDC=180°﹣∠DBC﹣∠DCB=120°,∴∠ADE=360°﹣∠ADB﹣∠BDC﹣∠EDC=360°﹣90°﹣120°﹣60°=90°,将CD绕点C顺时针旋转60°得CE,边接DE,AE,则△CDE是等边三角形,∵BC=AC,CD=CE,∠BCD=∠ACE=60°﹣∠ACD,∴△BCD≌△ACE(SAS),∴AE=BD,∴∠EAC=∠CBD=60°﹣32°=28°,∴∠DAE=2°+28°=30°,在Rt△ADE中,DE=1,∠DAE=30°,∴AE=BD=2.24.在平面直角坐标系中,点A在x轴负半轴上,点B在y轴负半轴上,∠ABC=90°,BC=AB.(1)如图1,A(﹣5,0),B(0,﹣2),点C在第一象限,请直接写出C的坐标.(2)如图1,B(0,﹣2),BF⊥y轴,D在y轴上,BD=AO,连接CD并延长交BF 于点E,请求出BE的长度;(3)如图2,A(﹣n,0),H在AC延长线上,过H(m,n)作HG⊥x轴于G,探究线段BH、AG、BO之间的数量关系,并证明你的结论.【分析】(1)过C作CR⊥y轴于R,证△AOB≌△BRC(AAS),得BR=AO=5,CR=OB=2,则OR=BR﹣OB=3,即可求解;(2)由(1)得CR=BO=2,BR=AO=5,再证△BDE≌△RDC(ASA),得BE=CR =BO=2即可;(3)在OG上取一点M,使MG=BO,连接HM幷延长交AB的延长线于N,证△ABO ≌△HMG(SAS),得∠BAO=∠MHG,AB=HM,再证△AHN是等腰直角三角形,得∠BAH=∠MHA=45°,然后证△ABH≌△HMA(SAS),得BH=MA,即可得出结论.解:(1)过C作CR⊥y轴于R,如图1所示:则∠BRC=90°,∵A(﹣5,0),B(0,﹣2),∴OA=5,OB=2,∵∠AOB=∠ABC=∠BRC=90°,∴∠ABO+∠CBR=90°,∠CBR+∠BCR=90°,∴∠ABO=∠BCR,∵AB=BC,∴△AOB≌△BRC(AAS),∴BR=AO=5,CR=OB=2,∴OR=BR﹣OB=3,∴C(2,3);(2)由(1)得:CR=BO=2,BR=AO=5,∵BD=AO,∴BD=BR,∴BD=RD,∵BF⊥y轴,∴∠EBD=90°=∠CRD,又∵∠BDE=∠RDC,∴△BDE≌△RDC(ASA),∴BE=CR=BO=2;(3)AG=BH+BO,证明如下:在OG上取一点M,使MG=BO,连接HM幷延长交AB的延长线于N,如图2所示:∵A(﹣n,0),∴AO=n,∵HG⊥x轴于G,H(m,n),∴OG=m,HG=n,∴AO=HG,∵∠AOB=∠HGM=90°,∴△ABO≌△HMG(SAS),∴∠BAO=∠MHG,AB=HM,∵∠AMN=∠HMG,∴∠ANM=∠HGM=90°,∵∠ABC=90°,BC=AB,∴∠BAC=45°,∴△AHN是等腰直角三角形,∴∠BAH=∠MHA=45°,又∵AB=HM,AH=HA,∴△ABH≌△HMA(SAS),∴BH=MA,∵AG=AM+MG,∴AG=BH+BO.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.计算:﹣22×(﹣2)3=.
12.如图,AC和BD相交于O点,若OA=
13.如图,△ACE≌△BDF,若AD=8,BC=3,则AB的长是.
14.如图,在△ABC和△DEC中,AB=DE,AC=DC,CE=CB.点E在AB上,若∠ACE=2∠ECB=50°,则∠A=.
五、解答题(共3小题第26题10分,第27题12分第28题12分共34分)下列各题需要在答题卷指定位置写出文宇说明证明过程计算步骤或作出图形
26.(1)已知2x2+6x=3,求代数式x(x+1)(x+2)(x+3)的值.
(2)如果多项式4x2+kx﹣7被4x+3除后余2,求k的值.
27.如图,四边形ABCD中,AB∥CD,∠C=110°,E为BC的中点,直线FG经过点E,DG⊥FG于点G,BF⊥FG于点F.
23.如图是今年某月的日历表(隐去日期),表中a,b,c,d表示该方框中日期的数值,则bc﹣ad=.
24.一个n边形,若其中n﹣1个内角的和为800°,则n=.
25.如图,正方形的边长为m+5,面积记为S1,长方形的两边长分别为m+3,m+9,面积记为S2(其中m为正整数).若某个图形的面积S介于S1,S2之间(不包括S1,S2),S的整数值有且只有15个,则m=.
解:在△ABC和△DEC中,

∴△ABC≌△DEC(SSS),
∴∠DCE=∠ACB,CE=CB,
∴∠DCE﹣∠ACE=∠ACB﹣∠ACE,
∴∠DCA=∠ECB,
∵∠ACE=2∠ECB=50°,
∴∠ACB=∠ACE+∠ECB=50°+25°=75°,
∵CE=CB,
∴∠B= ,
∴∠A=180°﹣∠B﹣∠ACB=180°﹣77.5°﹣75°=27.5°,
解:由折叠的性质得:BE=BC=6cm,DE=DC,
∴AE=AB﹣BE=AB﹣BC=8﹣6=2(cm),
∴△AED的周长=AD+DE+AE=AD+CD+AE=AC+AE=5+2=7(cm),
故选:C.
二.填空题(共6小题,每小题3分共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置。
11.计算:﹣22×(﹣2)3=32.
【分析】22表示两个2相乘,(﹣2)3表示3个﹣2相乘.
解:﹣22×(﹣2)3=﹣4×(﹣8)=32.
故答案为:32.
12.如图,AC和BD相交于O点,若OA=OD,用“AAS”证明△AOB≌△DOC还需增加条件∠B=∠C.
【分析】添加∠B=∠C,能证两三角形全等即可.
解:添加∠B=∠C,
∵∠AOB=∠DOC,OA=OD,
∴用“AAS”证明△AOB≌△DOC,
故答案为:∠B=∠C.
13.如图,△ACE≌△BDF,若AD=8,BC=3,则AB的长是2.5.
【分析】根据全等三角形对应边相等可得AC=BD,再求出AB=CD,然后代入数据进行计算即可得解.
解:∵△ACE≌△DBF,
(2)如图2,求证:AB﹣AF=2EB;
(3)若AC=8,AB=10,BC=6,直接写出DF的长.
四、填空题(共4小题,每小题4分共16分下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置
22.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E,AD、CE交于点H,已知AE=CE=5,CH=2,则BE=.
C、a•a2=a3,故C不符合题意;
D、(a3)2=a6,故D符合题意;
故选:D.
3.下面作三角形最长边上的高正确的是( )
A. B.
C. D.
【分析】钝角三角形最长边上的高在三角形内部,根据三角形的高的定义,可知过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.依此判断即可.
解:∵三角形为钝角三角形,
(1)求点A,B的坐标;
(2)如图1,D为x轴负半轴上一点,C为第三象限内一点,且∠ABC=∠ADC=90°,AO=DO,DB平分∠ADC,过点C作CE⊥DB于点E,求证:DE=OB;
(3)如图2,P为y轴正半轴上一动点,连接BP,过点B在x轴下方作BQ⊥BP,且BQ=BP,连接PC,PQ,QC.在(2)的条件下,设P(0,p),求△PCQ的面积(用含p的式子表示).
故答案为:27.5°.
武汉市江汉区2021~2022年度第一学期期中考试卷
八年级数学
(考试时间100分钟 全卷满分 120分)
学校:___________姓名:___________班级:___________考号:___________
题号





总分
得分
一、选择题(共10小题,每小题3分共30分下列各题中均有四个备选答案,其中有且只有一个正确请在答题卡上将正确答案的选项涂黑
A.a+b﹣c=a﹣(b﹣c)B.a+b﹣c=a+(b﹣c)
C.a﹣b﹣c=a﹣(b﹣c)D.a﹣b+c=a+(b﹣c)
【分析】根据添括号法则即可判断.
解:A、a+b﹣c=a﹣(﹣b+c),原添括号错误,故此选项不符合题意;
B、a+b﹣c=a+(b﹣c),原添括号正确,故此选项符合题意;
C、a﹣b﹣c=a﹣(b+c),原添括号错误,故此选项不符合题意;
∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.
故选:C.
4.已知图中的两个三角形全等,则∠α的度数是( )
A.72°B.60°C.58°D.50°
【分析】根据全等三角形对应角相等可知∠α是b、c边的夹角,然后写出即可.
解:∵两个三角形全等,
∴∠α的度数是72°.
故选:A.
5.下列添括号正确的是( )
∴∠ACB=∠EBD.
故选:C.
10.在如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB上的点E处,折痕为BD,则△AED的周长为( )
A.5cmB.6cmC.7cmD.8cm
【分析】先根据折叠的性质可得BE=BC,DE=CD,再求出AE的长,然后求出△ADE的周长=AC+AE,即可得出答案.
∴AC=DB,
∴AC﹣BC=BD﹣BC,
即AB=CD,
∵AD=8,BC=3,
∴AB= (AD﹣BC)= (8﹣3)=2.5.
故答案为:2.5.
14.如图,在△ABC和△DEC中,AB=DE,AC=DC,CE=CB.点E在AB上,若∠ACE=2∠ECB=50°,则∠A=27.5°.
【分析】根据SSS证明△ABC和△DEC全等,进而利用全等三角形的性质和三角形内角和定理解答即可.
A.120B.﹣120C.16D.
8.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )
A.15°B.20°C.25°D.30°
9.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于( )
参考答案
一、选择题(共10小题,每小题3分共30分下列各题中均有四个备选答案,其中有且只有一个正确请在答题卡上将正确答案的选项涂黑
1.下列三个图形中,具有稳定性的图形个数是( )
A.0个B.1个C.2个D.3个
【分析】】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.
解:具有稳定性的是第1个和第3个,共2个.
解:原式=am÷an,
∵am=128,an=8,
∴原式=128÷8=16,
故选:C.
8.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )
A.15°B.20°C.25°D.30°
【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.
(1)如图1,当∠BEF=70°时,求证:DG=BF;
(2)如图2,当∠BEF≠70°时,若BC=DC,DG=BF,请直接写出∠BEF的度数;
(3)当DG﹣BF的值最大时,直接写出∠BEF的度数.
28.在平面直角坐标系中,已知点A(0,a),B(b,0),其中a,b满足:(x+b)(x+2)=x2+ax+6(a,b为常数).
(2)(15x2y﹣10xy2)÷5xy.
18.如图,AB=AC,点D、E分别在AB、AC上,AD=AE,求证:CD=BE.
19.计算:
(1)x2(x﹣1)﹣(x+1)(x2+x);
(2)(2x+1)2﹣(x+3)(x﹣3)﹣(x﹣1)2.
20.如图,已知△ABC三个顶点的坐标分别为A(2,3),B(4,0),C(1,0).
(1)画出△ABC,直接写出△ABC的面积;
(2)画格点D,连接AD,使直线AD平分△ABC的面积;
(3)若∠CAE=45°,直接写出满足条件的格点E的个数.
21.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,F在边AC上,BD=DF.
(1)如图1,若∠C=90°,求证:△FCD≌△BED;
A.∠EDBB.∠BEDC.∠EBDD.∠ABF
【分析】先根据SSS定理得出△ABC≌△DEB(SSS),故∠ACB=∠EBD,再根据∠AFB是△BFC的外角,可知∠AFB=∠ACB+∠EBD,由此可得出∠AFB=2∠ACB,故可得出结论.
解:在△ABC与△DEB中,

∴△ABC≌△DEB(SSS),
D、a﹣b+c=a+(﹣b+c),原添括号错误,故此选项不符合题意.
相关文档
最新文档