八年级上册数学总复习
人教版 八年级数学 上册 期末总复习—第十一章 三角形
课堂练习 A 组 复习与三角形有关的线段:
1.若三角形的两边分别为 3 和 5 ,则第三边长m 的取值范围是__2__<_m__<__8_.
A 组 复习与三角形有关的线段:
2.如图:
A
(1)若AD ⊥BC,垂足
为D,则:
∠_A_D__B_
F
=∠_A__D_C_
= 90°;
B
DE
C
A 组 复习与三角形有关的线段:
c.三角形的高:从三角形的一个顶点向它的对边 作垂线,所得线段叫做三角形的高.
④三角形三边间的关系: 三角形两边的和大于第三边.
⑤三角形的稳定性及应用: 三角形具有稳定性.
⑥多边形的对角线、内角和、外角和: n 边形的对角线条数等于 n(n 3,) 内角和等于
2 (n-2)·180°,外角和等于360°.
如图,在△ABC 中,∠BAC =80°,
∠ABC =60°.
A
(1)∠C = 40° ;
F
(2)若AE 是△ABC 的
O
角平分线,则:
∠AEC = 100° ;
(3)若BF 是△ABC 的 B 高,与角平分线
E
C
AE 相交于点O,则∠EOF = 130° .
典型例题
例1 已知等腰三角形的两边长分别为10 和6 , 则三角形的周长是 22或26 .
②∠A:∠B:∠C =1:2:3,③∠A = 90°-∠B,④
∠A =∠B =∠C中,能确定△ABC是直角三角形的条件
有( )C
A.1个
B.2个 C.3个 D.4个
练习1(3)已知一个多边形的内角和是外角 和的2倍,则这个多边形的边数为___6___.
八年级上册数学总复习资料
八年级上册数学总复习资料初二数学上册总复习指导第一章勾股定理1、探索勾股定理① 勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗① 如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数① 有理数:总是可以用有限小数和无限循环小数表示② 无理数:无限不循环小数2、平方根① 算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 就叫做a的算数平方根② 特别地,我们规定:0的算数平方根是0③ 平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a 的平方根,也叫做二次方根④ 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤ 正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥ 开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根① 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根,也叫三次方根② 每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③ 开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算① 估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数① 实数:有理数和无理数的统称② 实数也可以分为正实数、0、负实数③ 每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式① 含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数② =(a≥0,b≥0),=(a≥0,b0)③ 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④ 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置① 在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系① 含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系② 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。
1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。
第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
人教版八年级数学上册期末考试综合复习练习题(含答案)
人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。
下列各题,每小题只有一个选项符合题意。
)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。
八年级上册数学知识点总结归纳
八年级上册数学知识点总结归纳一、代数1. 一元一次方程与一元一次不等式1) 一元一次方程的定义及解法2) 一元一次不等式的定义及解法3) 实际生活中的应用案例2. 二元一次方程组1) 二元一次方程组的定义及解法2) 二元一次方程组的几何意义3) 实际生活中的应用案例3. 整式的加减和乘除1) 整式的概念2) 整式的加减法规则3) 整式的乘除法规则4) 实际生活中的应用案例4. 因式分解1) 因式分解的基本概念2) 因式分解的公式及方法3) 实际生活中的应用案例二、平面几何1. 直角三角形1) 直角三角形的性质及判定方法2) 特殊直角三角形(30-60-90三角形、45-45-90三角形)3) 直角三角形的应用题2. 平行线与相交线1) 平行线与转化线的基本概念2) 平行线与转化线的判定方法3) 平行线与转化线的性质3. 圆1) 圆的基本概念2) 圆的性质及判定3) 圆的应用题4. 规则图形1) 正方形、矩形、菱形、平行四边形的性质2) 规则图形的面积和周长计算方法3) 规则图形的应用题三、空间与立体几何1. 空间图形的投影1) 正投影与侧投影的概念2) 空间图形的投影绘制方法3) 实际生活中的应用案例2. 三棱柱与三棱锥1) 三棱柱与三棱锥的定义及性质2) 三棱柱与三棱锥的表面积和体积计算方法3) 实际生活中的应用案例3. 直角坐标系1) 直角坐标系的建立及性质2) 直角坐标系中点、距离的计算方法3) 实际生活中的应用案例四、统计与概率1. 统计图1) 条形图、折线图、饼状图的绘制方法2) 统计图的解读及应用2. 概率1) 随机事件与概率的基本概念2) 概率的计算方法及性质3) 实际生活中的应用案例以上就是八年级上册数学知识点的总结归纳,希望同学们能够通过系统的学习和复习,牢固掌握这些知识点,为将来更深入的学习打下坚实的基础。
北师大版数学八年级上册全册复习
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
图1-5
方法技巧
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 BE=a-14a=34a,
八年级上册数学 全册全套试卷复习练习(Word版 含答案)
八年级上册数学全册全套试卷复习练习(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.2.如图,在平面直角坐标系中,A、B坐标为()6,0、()0,6,P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM ON=,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD OP⊥,交OP、OA分别于F、D两点,E为OA上一点,且PEA BDO=∠∠,试判断线段OD与AE的数量关系,并说明理由.【答案】(1)PM=PN,PM⊥PN,理由见解析;(2)OD=AE,理由见解析【解析】【分析】(1)连接OP.只要证明△PON≌△PAM即可解决问题;(2)作AG⊥x轴交OP的延长线于G.由△DBO≌△GOA,推出OD=AG,∠BDO=∠G,再证明△PAE≌△PAG即可解决问题;【详解】(1)结论:PM=PN,PM⊥PN.理由如下:如图1中,连接OP.∵A 、B 坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P 为AB 的中点,∴OP=12AB=PB=PA ,OP ⊥AB ,∠PON=∠PAM=45°, ∴∠OPA=90°,在△PON 和△PAM 中, ON AM PON PAM OP AP =⎧⎪∠=∠⎨⎪=⎩,∴△PON ≌△PAM (SAS ),∴PN=PM ,∠OPN=∠APM ,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.4.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.在等边ABC中,点D是边BC上一点.作射线AD,点B关于射线AD的对称点为点E.连接CE并延长,交射线AD于点F.(1)如图,连接AE,①AE与AC的数量关系是__________;②设BAF α∠=,用α表示BCF ∠的大小;(2)如图,用等式表示线段AF ,CF ,EF 之间的数量关系,并证明.【答案】(1) ①AB=AE ;②∠BCF=α;(2) AF-EF=CF ,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由轴对称性,得:AE=AB ,∠BAF=∠EAF=α,由ABC 是等边三角形,得AB=AC ,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解; (2)作∠FCG=60°交AD 于点G ,连接BF ,易证∆FCG 是等边三角形,得GF=FC ,再证∆ACG ≅∆BCF(SAS),从而得AG=BF ,进而可得到结论.【详解】(1)①∵点B 关于射线AD 的对称点为点E ,∴AB 和AE 关于射线AD 的对称,∴AB=AE.故答案是:AB=AE ;②∵点B 关于射线AD 的对称点为点E ,∴AE=AB ,∠BAF=∠EAF=α,∵ABC 是等边三角形,∴AB=AC ,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC ,∴∠ACE=1180(602)602αα⎡⎤--=+⎣⎦, ∴∠BCF=∠ACE-∠ACB=60α+-60°=α. (2)AF-EF=CF ,理由如下:作∠FCG=60°交AD 于点G ,连接BF ,∵∠BAF=∠BCF=α,∠ADB=∠CDF ,∴∠ABC=∠AFC=60°,∴∆FCG 是等边三角形,∴GF=FC ,∵ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠ACG=∠BCF=α.在∆ACG和∆BCF中,∵CA CBACG BCFCG CF=⎧⎪∠=∠⎨⎪=⎩,∴∆ACG≅∆BCF(SAS),∴AG=BF,∵点B关于射线AD的对称点为点E,∴AG=BF=EF,∵AF-AG=GF,∴AF-EF=CF.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.在梯形ABCD中,//AD BC,90B∠=︒,45C∠=︒,8AB=,14BC=,点E、F 分别在边AB、CD上,//EF AD,点P与AD在直线EF的两侧,90EPF∠=︒,PE PF=,射线EP、FP与边BC分别相交于点M、N,设AE x=,MN y=.(1)求边AD的长;(2)如图,当点P在梯形ABCD内部时,求关于x的函数解析式,并写出定义域;(3)如果MN的长为2,求梯形AEFD的面积.【答案】(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF∥AD,∴EF∥BC∴∠EFP=∠C=45°∵EP⊥PF∴△EPF是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形 ∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4∴()16644322ABCDS=⨯++⨯=梯形【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x的取值范围,需要一定的空间想象能力.7.如图,在ABC△中,已知AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于点F,求证:AF EF=.【答案】证明见解析【解析】【分析】延长AD到点G,使得AD DG=,连接BG,结合D是BC的中点,易证△ADC和△GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD到点G,延长AD到点G,使得AD DG=,连接BG.∵AD是BC边上的中线,∴DC DB=.在ADC和GDB△中,AD DGADC GDBDC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC ≌GDB △(SAS ).∴CAD G ∠=∠,BG AC =.又BE AC =,∴BE BG =.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.8.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC∆为等边三角形,点M是BC的中点∴AM平分∠BAC,AM BC⊥,60B BAC∠=∠=︒∴30BAM∠=︒,90AMB∠=︒∵60AMN∠=︒∴90AMNBAM∠+=︒∠,30∠=︒BMN∴90ANM∠=︒∴18090BNM ANM=︒-=︒∠∠∴在Rt BNM∆中,2BM BN=在Rt ABM∆中,2AB BM=∴24AB AN BN BM BN=+==∴3AN BN=即3ANBN=.(2)如下图:过点M作ME∥BC交AC于E∴∠CME=∠MCB,∠AEM=∠ACB∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P 作PM ∥BC 交AB 于M∴AMP ABC =∠∠∵ABC ∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC ==∴60AMP A ==︒∠∠∴AP MP =,180120EMP AMP =︒-=︒∠∠,180120FCP ACB =︒-=︒∠∠ ∴AMP ∆是等边三角形,120EMP FCP ==︒∠∠∴AP MP AM ==∵P 点是AC 的中点 ∴111222AP PC MP AM AC AB BC ====== ∴12AM MB AB == 在EMP ∆与FCP ∆中EMP FCP AEP PFC MP PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS ∆∆≌∴ME FC = ∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+= ∴3322BC BF BE BC BC -==. 【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.9.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G .(1)求证:AE CG =.(2)如图2,直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M,求证:BE CM=.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.10.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0°<α<60°),点A关于射线CP 的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出∠BEC60=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD=602α︒+,BC=DC,∴∠DBC=∠BDC()1806021806022BCDαα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.(阅读材料)因式分解:()()221x y x y ++++.解:将“x y +”看成整体,令x y A +=,则原式()22211A A A =++=+.再将“A ”还原,原式()21x y =++.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.(问题解决)(1)因式分解:()()2154x y x y +-+-;(2)因式分解:()()44a b a b ++-+;(3)证明:若n 为正整数,则代数式()()()21231n n n n ++++的值一定是某个整数的平方.【答案】(1)()()144x y x y +-+-1.(2)()22a b +-;(3)见解析. 【解析】【分析】(1)把(x-y )看作一个整体,直接利用十字相乘法因式分解即可;(2)把a+b 看作一个整体,去括号后利用完全平方公式即可将原式因式分解;(3)将原式转化为()()223231n n n n ++++,进一步整理为(n 2+3n+1)2,根据n 为正整数得到n 2+3n+1也为正整数,从而说明原式是整数的平方.【详解】(1)()()[][]21541()14()(1)(144)x y x y x y x y x y x y +-+-=+-+-=+-+-; (2)()()2244()4()4(2)a b a b a b a b a b ++-+=+-++=+-; (3)原式()()223231n n n n =++++()()2223231n n n n =++++ ()2231n n =++. ∵n 为正整数,∴231n n ++为正整数.∴代数()()()21231n n n n ++++的值一定是某个整数的平方. 【点睛】本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.12.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.13.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数即是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,321=+,∴321是“和数”,2232-1=,∴321是“谐数”,∴321是“和谐数”.(1)最小的和谐数是 ,最大的和谐数是 ;(2)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(3)已知103817m b c =++(0714b c ≤≤≤≤,,且,b c 均为整数)是一个“和数”,请求出所有m .【答案】(1)110;954;(2)见解析;(3)880m =或853或826.【解析】【分析】(1)根据“和数”与“谐数”的概念求解可得;(2)设“谐数”的百位数字为x 、十位数字为y ,个位数字为z ,根据“谐数”的概念得x=y 2-z 2=(y+z )(y-z ),由x+y+z=(y+z )(y-z )+y+z=(y+z )(y-z+1)及y+z 、y-z+1必然一奇一偶可得答案;(3)先判断出2≤b+2≤9、10≤3c+7≤19,据此可得m=10b+3c+817=8×100+(b+2)×10+(3c-3),根据“和数”的概念知8=b+2+3c-3,即b+3c=9,从而进一步求解可得.【详解】(1)最小的和谐数是110,最大的和谐数是954.(2)设:“谐数”的百位数字为x ,十位数字为y ,个位数字为z(19,09,09x y z ≤≤≤≤≤≤且 y z >且 ,,x y z 均为正数),由题意知,()()22x y z y z y z =-=+-, ∴()()()()1x y z y z y z y z y z y z ++=+-++=+-+,z∵y z +与y z -奇偶性相同,∴y z +与1y z -+必一奇一偶,∴()()1y z y z +-+必是偶数,∴任意“谐数”的各个数位上的数字之和一定是偶数;(3)∵07b ≤≤,∴229b ≤+≤,∵14c ≤≤,∴3312c ≤≤,∴103719c ≤+≤,∴817103m b c =++,()()810011037b c =⨯++⨯++()()81002103710b c =⨯++⨯++-()()810021033b c =⨯++⨯+-,∵m 为和数,∴8233b c =++-,即39b c +=,∴61b c =⎧⎨=⎩或32b c =⎧⎨=⎩或03b c =⎧⎨=⎩, ∴880m =或853或826.【点睛】本题考查因式分解的应用,解题的关键是理解题意、熟练掌握“和数”与“谐数”的概念及整式的运算、不等式的性质.14.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.15.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2﹣4x +1)(x 2﹣4x +7)+9进行因式分解的过程. 解:设x 2﹣4x =y原式=(y +1)(y +7)+9(第一步)=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;(3)请你用换元法对多项式(x 2+2x )(x 2+2x +2)+1进行因式分解.【答案】(1)C;(2)(x﹣2)4;(3)(x+1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C;(2)(x2﹣4x+1)(x2﹣4x+7)+9,设x2﹣4x=y,则:原式=(y+1)(y+7)+9=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4;(3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.四、八年级数学分式解答题压轴题(难)16.已知分式 A =2344 (1)11a aaa a-+ +-÷--(1)化简这个分式;(2)当 a>2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.【答案】(1)22aa+-;(2)原分式值变小了,见解析;(3)11【解析】【分析】(1)根据分式混合运算顺序和运算法则化简即可得;(2)根据题意列出算式2622a aA Ba a++-=--+,化简可得16(2)(2)A Ba a-=-+,结合a的范围判断结果与0的大小即可得;(3)由24122aAa a+==+--可知,2a-=±1、±2、±4,结合a的取值范围可得.【详解】解:(1)A=2344 (1)11a aaa a-+ +-÷--=22 1311(2) a aa a---⨯--=2(2)(2)11(2)a a a a a +--⨯-- =22a a +-; (2)变小了,理由如下: ∵22a A a +=-, ∴62a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>,∴0A B ->,∴分式的值变小了;(3)∵A 是整数,a 是整数, 则24122a A a a +==+--, ∴21a -=±、2±、4±,∵1a ≠,∴a 的值可能为:3、0、4、6、-2;∴3046(2)11++++-=;∴符合条件的所有a 值的和为11.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17.阅读下面材料并解答问题 材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++,则323223x x x x ax x a b --++=--+++∵对任意x 上述等式均成立,∴2a =且3a b +=,∴2a =,1b = ∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值. 【答案】(1)3+101x -;(2)8 【解析】【分析】(1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】解:(1)371x x +-=33101x x -+- =()31101x x -+- =3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++,则4268x x --+ ()()221x x a b =-+++422x ax x a b =--+++ 42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立,∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩ ∴422681x x x --+-+ ()()2221711x x x -+++=-+ ()()222217111x x x x -++=+-+-+22171x x =++-+. ∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8. 【点睛】 本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.18.阅读后解决问题:在“15.3分式方程”一课的学习中,老师提出这样的一个问题:如果关于x 的分式方程3111a x x+=--的解为正数,那么a 的取值范围是什么? 经过交流后,形成下面两种不同的答案:小明说:解这个关于x 的分式方程,得到方程的解为x=a ﹣2.因为解是正数,可得a ﹣2>0,所以a >2.小强说:本题还要必须a≠3,所以a 取值范围是a >2且a≠3.(1)小明与小强谁说的对,为什么?(2)关于x 的方程11222mx x x-+=--有整数解,求整数m 的值. 【答案】(1)小强的说法对,理由见解析;(2)m=3,4,0.【解析】【分析】 (1)先根据解分式方程的步骤和解法解分式方程可得x =a ﹣2,根据分式方程有解和解是正数可得:x >0且x ≠1, 即a ﹣2>0, a ﹣2≠1,即可求解,(2) 先根据解分式方程的步骤和解法解分式方程可得(m ﹣2)x =﹣2, 当m ≠2时,解得:x =﹣22m -,根据分式方程有整数解可得: m ﹣2=±1,m ﹣2=±2,继而求m 的值. 【详解】解:(1)小强的说法对,理由如下:解这个关于x 的分式方程,得到方程的解为x =a ﹣2,因为解是正数,可得a ﹣2>0,即a >2,同时a ﹣2≠1,即a ≠3,则a 的范围是a >2且a≠3,(2)去分母得:mx ﹣1﹣1=2x ﹣4,整理得:(m ﹣2)x =﹣2,当m ≠2时,解得: x =﹣22m -,由方程有整数解,得到m ﹣2=±1,m ﹣2=±2,解得:m =3,4,0. 【点睛】 本题主要考查分式方程解是正数和解是整数问题,解决本题的关键是要熟练掌握解分式方程的解法. 19.探索:(1)如果32311x m x x -=+++,则m=_______; (2)如果53522x m x x -=+++,则m=_________; 总结:如果ax b m a x c x c +=+++(其中a 、b 、c 为常数),则m=________; (3)利用上述结论解决:若代数式431x x --的值为整数,求满足条件的整数x 的值. 【答案】(1)-5;(2)-13 ; b -ac ;(3)0或2【解析】试题解析: ()323(1)55133.1111x x m x x x x -+-==-=+++++ 5.m ∴=-()535(2)1313255.2222x x m x x x x -+-==-=+++++ 13.m ∴=-总结:().ax b a x c b ac b ac m a a x c x c x c x c+++--==+=+++++ .m b ac ∴=-()434(1)1134.111x x x x x --+==+--- 又∵代数式431x x --的值为整数, 11x ∴-为整数, 11x ∴-=或11x -=-2x ∴=或 0.20.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【答案】(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x 天,则乙队单独完成这项工程需要2x 天, 根据题意,得611161x x 2x ⎛⎫++= ⎪⎝⎭, 解得x =30经检验,x =30是原方程的根,则2x =2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y 天, 则有11y 13060⎛⎫+= ⎪⎝⎭, 解得y =20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.五、八年级数学三角形解答题压轴题(难)21.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由.(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH EG ⊥,求证://PF GH .(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使PHK HPK ∠=∠,作PQ 平分EPK ∠,求HPQ ∠的度数.【答案】(1)AB//CD ,理由见解析;(2)证明见解析;(3)45HPQ ∠=.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,即可证明; (2)利用(1)中平行线的性质、角平分线的性质、三角形内角和定理可得∠EPF=90°,即EG ⊥PF ,再结合GH ⊥EG ,即可证明;(3)利用三角形外角定理、三角形内角和定理求得∠A=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=-12∠EPK=45°+∠2,最后根据角与角间的和差关系即可求解.【详解】(1)//AB CD ,理由如下:如图1, 图1∵1∠与2∠互补,∴12180∠+∠=︒,又∵1AEF ∠=∠,2CFE ∠=∠,∴180AEF CFE ∠+∠=︒,∴//AB CD ;(2)如图2,由(1)知,//AB CD ,图2∴180BEF EFD ∠+∠=︒.又∵BEF ∠与EFD ∠的角平分线交于点P ,∴1(2)90FEP EFP BEF EFD ∠+∠=∠+∠=︒, ∴90EPF ∠=︒,即EG PF ⊥.∵GH EG ⊥, ∴//PF GH ;(3)如图3,∵PHK HPK ∠=∠,2PKG HPK ∴∠=∠.又∵GH EG ⊥,∴90902KPG PKG HPK ∠=-∠=-∠.∴180902EPK KPG HPK ∠=-∠=+∠.∵PQ 平分EPK ∠,∴1452QPK EPK HPK ∠=∠=+∠. ∴45HPQ QPK HPK ∠=∠-∠=.【点睛】本题主要考查了平行线的判定与性质、角平分线的性质、三角形内角和定理等知识.解题过程关注中“数形结合”思想是解答本题的关键.。
八年级上册数学总复习题有哪些
八年级上册数学总复习题有哪些一、选择题每小题3分,共24分1. 下列各式中,是二次根式的有① 7; ②-3; ③ ; ④13-12; ⑤3-xx≤3; ⑥-2xx>0;⑦ ; ⑧-x2-1; ⑨abab≥0 ; ⑩abab>0.A. 4个B. 5个C. 6个D. 7个2.下列条件中,能判定四边形ABCD为平行四边形的是A、AB∥CD,AD=BC;B、∠A=∠B,∠C=∠D;C、AB=CD,AD=BC;D、AB=AD,CB=CD3.小华所在的九年级一班共有50名学生,体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米4. 设 ,则的大小关系是A B C D5. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为A.15°或30°B.30°或45°C.45°或60°D.30°或60°6. 实数满足不等式的解集是那么函数的图象可能是7. 把直线y=﹣x+3向上平移m个单位后,与y=2x+4的交点在第一象限,则m的取值范围是A.11 D.m<48. 如图1,点E在正方形ABC D内,满足,AE=6,BE=8,则阴影部分的面积是A. B. C. D.80二、填空题每小题3分,共18分9.已知点在直线为常数,且上,则的值为__________.10.数据1,2,3,的平均数是3,数据4,5,,的众数是5,则 =_________.11.如图,菱形ABCD的边长为4,AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.12.如图,圆柱形容器高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B 处有一蚊子,此时一只壁虎正好在容器外壁离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为 m容器厚度忽略不计.13.如图,矩形OABC的顶点A、C的坐标分别为10,0,0,4,点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .14.如图,OP=1,过P作且,得 ;再过作且 =1,得 ;又过作且,得2;…依此法继续作下去,得 . 三、解答题每小题5分,共25分15.计算: 16.直线过点3,5,求≥0解集.17. 如图,平行四边形ABCD中,∠A的平分线AE交 CD于E,AB=5,BC=3,求线段EC的长.18.如图,四边形ABCD中,AB=3,AD=4,BC=13,CD=12,且∠A=90°,求四边形ABCD的面积。
八年级上册数学总复习
八年级上册数学总复习初二上册数学全册第十一章全等三角形综合复习人教新课标版1.全等三角形的概念及性质;2.三角形全等的判定;3.角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:找夹角SAS已知两边找第三边SSS找直角HL边为角的对边找任一角AAS找夹角的另一边SAS已知一边一角边为角的邻边找夹边的另一角ASA找边的对角AAS找夹边ASA已知两角找任一对边AAS和切记:“有三个角对应相等”“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1.如图,A,F,E,B四点共线,ACCE,,AEBF,ACBD。
求证:ACFBDE。
BDDF知识点二:构造全等三角形例2.例3.如图,在ABC中,ABBC,ABC90F为AB延长线上一点,点E在BC上,BEBF如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。
求证:21C。
,连接AE,EF和CF。
求证:AECF。
知识点三:常见辅助线的作法1.连接四边形的对角线例4.如图,AB//CD,AD//BC,求证:ABCD。
2.作垂线,利用角平分线的知识例5.如图,AP,CP分别是ABC外角MAC和NCA的平分线,它们交于点P。
求证:BP为MBN的平分线。
例6.如图,D是ABC的边BC上的点,且CDAB,ADBBAD,AE是ABD的中线。
求证:AC2AE。
4.“截长补短”构造全等三角形例7.如图,在ABC中,ABAC,12,P为AD上任意一点。
求证:ABACPBPC。
解答过程:法一:在AB上截取ANAC,连接PN在APN与APC中ANAC12APAPAPNAPCPNPC(SAS)在BPN中,PBPNBNPBPCABAC,即AB-AC>PB-PC。
法二:延长AC至M,使AMAB,连接PM在ABP与AMP中ABAM12APAPABPAMP(SAS)PBPM在PCM中,CMPMPCABACPBPC。
人教版八年级数学上册知识点总结和复习要点
人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。
性质:全等三角形的对应边相等,对应角相等。
2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边及其夹角对应相等的两个三角形全等。
ASA(角边角):两角及其夹边对应相等的两个三角形全等。
AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。
HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。
例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。
二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。
例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。
三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。
2实数的分类与性质实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是无限不循环小数。
实数具有封闭性、有序性和传递性等性质。
例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。
四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。
2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。
例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。
五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。
八年级数学知识点总结(3篇)
八年级数学知识点总结证明二、三角形内角和定理:三角形三个内角的和等于180度.1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据.如果两条直线都和第三条直线平行,那么这两条直线也相互平行.30.所对的直角边是斜边的一半.斜边上的高是斜边的一半.常考知识点:1、三角形的内角和定理,及三角形外角定理.2两直线平行的性质及判定.命题及其条件和结论,真假命题的定义.初二数学三角形知识点归纳三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。
求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:1.重心和三角形3个顶点组成的3个三角形面积相等。
2.重心到三角形3个顶点距离的平方和最小。
3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((____1+____2+____3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(____1+____2+____3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/34重心到顶点的距离与重心到对边中点的距离之比为2:1。
八年级数学上册-知识点复习总结
《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
(初二)八年级上册数学复习资料
八年级上册数学复习资料世间极占地位的,是读书一著。
然读书占地位,在人品上,不在势位上。
以下是我精心收集整理的八年级上册数学复习资料,下面我就和大家分享,来欣赏一下吧。
八年级上册数学复习资料1第四章四边形性质的探索1.多边形的分类:2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。
平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。
两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
(2)菱形:一组邻边相等的平行四边形叫做菱形。
菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。
四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。
菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1-L2/2)。
(3)矩形:有一个内角是直角的平行四边形叫做矩形。
矩形的对角线相等;四个角都是直角。
对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。
直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。
(4)正方形:一组邻边相等的矩形叫做正方形。
正方形具有平行四边形、菱形、矩形的一切性质。
(5)等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。
(6)三角形中位线:连接三角形相连两边重点的线段。
性质:平行且等于第三边的一半3.多边形的内角和公式:(n-2)-180°;多边形的外角和都等于。
4.中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
人教版八年级数学上册期末综合复习测试题(含答案)
八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。
初二(八年级)数学上册知识点总结
初二(八年级)数学上册知识点总结小编整理了关于初二(八年级)数学上册知识点总结,以供各位同学学习和复习,希望同学们及时抓住重点并查缺补漏以最佳状态备战期末考试,关于初二(八年级)数学上册知识点总结希望对于同学们的数学复习有所帮助,初二数学上册知识点我们一起来学习和分享吧!1 全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23 推论3 等边三角形的各角都相等,并且每一个角都等于60°24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25 推论1 三个角都相等的三角形是等边三角形26 推论 2 有一个角等于60°的等腰三角形是等边三角形27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28 直角三角形斜边上的中线等于斜边上的一半29 定理线段垂直平分线上的点和这条线段两个端点的距离相等30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32 定理1 关于某条直线对称的两个图形是全等形33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形38定理四边形的内角和等于360°39四边形的外角和等于360°40多边形内角和定理 n边形的内角的和等于(n-2)×180°41推论任意多边的外角和等于360°42平行四边形性质定理1 平行四边形的对角相等43平行四边形性质定理2 平行四边形的对边相等44推论夹在两条平行线间的平行线段相等45平行四边形性质定理3 平行四边形的对角线互相平分46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形48平行四边形判定定理3 对角线互相平分的四边形是平行四边形49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形50矩形性质定理1 矩形的四个角都是直角51矩形性质定理2 矩形的对角线相等52矩形判定定理1 有三个角是直角的四边形是矩形53矩形判定定理2 对角线相等的平行四边形是矩形54菱形性质定理1 菱形的四条边都相等55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角56菱形面积=对角线乘积的一半,即S=(a×b)÷257菱形判定定理1 四边都相等的四边形是菱形58菱形判定定理2 对角线互相垂直的平行四边形是菱形59正方形性质定理1 正方形的四个角都是直角,四条边都相等60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角61定理1 关于中心对称的两个图形是全等的62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称64等腰梯形性质定理等腰梯形在同一底上的两个角相等65等腰梯形的两条对角线相等66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形67对角线相等的梯形是等腰梯形68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边71 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半72 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h73 (1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b76 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例77 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例78 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例80 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)84 判定定理3 三边对应成比例,两三角形相似(SSS)85 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比87 性质定理2 相似三角形周长的比等于相似比88 性质定理3 相似三角形面积的比等于相似比的平方89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值91圆是定点的距离等于定长的点的集合92圆的内部可以看作是圆心的距离小于半径的点的集合93圆的外部可以看作是圆心的距离大于半径的点的集合94同圆或等圆的半径相等95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线97到已知角的两边距离相等的点的轨迹,是这个角的平分线98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线99定理不在同一直线上的三点确定一个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学总复习篇一:八年级数学上册期末复习资料初二上册数学全册第十一章全等三角形综合复习人教新课标版1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:??找夹角?SAS???已知两边?找第三边?SSS???找直角?HL???边为角的对边?找任一角?AAS???找夹角的另一边?SAS???已知一边一角????边为角的邻边?找夹边的另一角?ASA ????找边的对角?AAS????找夹边?ASA?已知两角???找任一对边?AAS??和切记:“有三个角对应相等”“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,A,F,E,B四点共线,AC?CE,,AE?BF,AC?BD。
求证:?ACF??BDE。
BD?DF知识点二:构造全等三角形例2. 例3.如图,在?ABC中,AB?BC,?ABC?90?。
F为AB延长线上一点,点E在BC上,BE?BF如图,在?ABC中,BE是∠ABC的平分线,AD?BE,垂足为D。
求证:?2??1??C。
,连接AE,EF和CF。
求证:AE?CF。
知识点三:常见辅助线的作法1. 连接四边形的对角线例4. 如图,AB//CD,AD//BC,求证:AB?CD。
2. 作垂线,利用角平分线的知识例5. 如图,AP,CP分别是?ABC外角?MAC和?NCA的平分线,它们交于点P。
求证:BP为?MBN的平分线。
例6. 如图,D是?ABC的边BC上的点,且CD?AB,?ADB??BAD,AE是?ABD的中线。
求证:AC?2AE。
4. “截长补短”构造全等三角形例7. 如图,在?ABC中,AB?AC,?1??2,P为AD上任意一点。
求证:AB?AC?PB?PC。
解答过程:法一:在AB上截取AN?AC,连接PN 在?APN与?APC中?AN?AC????1??2 ?AP?AP???APN??APC?PN?PC(SAS)?在?BPN中,PB?PN?BN ?PB?PC?AB?AC,即AB-AC>PB-PC。
法二:延长AC至M,使AM?AB,连接PM 在?ABP与?AMP中?AB?AM????1??2 ?AP?AP???ABP??AMP(SAS)?PB?PM?在?PCM中,CM?PM?PC ?AB?AC?PB?PC。
5.怎样的两个图形才成轴对称呢?什么样的图形是轴对称图形呢?探索一:下列哪些图形是轴对称图形?它们的对称轴在哪里?探索二:下图是轴对称图形,但是其对称轴另一侧的部分被遮挡住了,该怎样将它补充完整呢?探索三:如图,存在一个三角形与已知三角形关于已知直线对称,该怎样画出这个三角形呢?第十二章轴对称及作轴对称图形点击一: 什么是轴对称?什么是轴对称图形?它们之间有什么区别?有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称是两个图形之间的关系,轴对称图形是一个图形具有的特征.点击二: 图形的轴对称有哪些性质?图形的轴对称主要有下列两条性质:⑴如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.⑵轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.点击三:线段的垂直平分线有什么性质?线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.点击四:对称变换性质及坐标对称规律轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)?经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点。
(3)连接任意一对对应点的线段被对称轴垂直平分.点P(x,y)关于x轴对称的点的坐标是(x,-y);点P (x,y)关于y轴对称的点的坐标是(-x,y);点P(x,y)关于原点对称的点的坐标是(-x,-y).点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y)类型之一:例1:如图,已知:△ABC,直线MN,求作△A1B1C1,使△A1B1C1与△ABC关于MN对称.类型之二:例2:如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,且AC=BD,若A到河岸CD的中点的距离为500cm.问:(1)牧童从A处牧牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?(2)最短路程是多少?类型之三:例3:在锐角∠AOB内有一定点P,试在OB上确定两点C、D,使△PCD的周长最短.第十三章实数综合复习人教新课标版类型一.有关概念的识别1.下面几个数:0.23,1.010010001?,,3π,,,其中,无理数的个数有()A、1 B、2 C、3 D、4举一反三:【变式1】下列说法中正确的是()A、的平方根是±3 B、1的立方根是±1 C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1【变式3】类型二.计算类型题2.设A.,则下列结论正确的是()B.C.D.B、1.4C、D、举一反三:【变式1】1)1.25的算术平方根是___;平方根是_______.2)-27立方根是______. 3)_______,________,_________.(2)(3)【变式2】求下列各式中的(1)类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______ 举一反三:【变式1】如图,数轴上表示1,C,则点C表示的数是().A.-1B.1-的对应点分别为A,B,点B关于点A的对称点为C.2-D.-2[变式2] 已知实数、、在数轴上的位置如图所示:化简类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4| (2) |π-3.142| (3) |-| (4) |x-|x-3|| (x≤3) (5) |x2+6x+10|篇二:八年级上册数学复习练习题八年级上册数学复习练习题一、填空。
1、如图,在Rt△ABC中,∠C=90°,以AB、BC为直径的半圆面积分别222是12.5? cm和4.5? cm,则Rt△ABC的面积为()cm. A.24 B.30 C.48 D.60 3、若x、y都是实数,且y=x?3+?x+8,求x+3y的立方根4、若xy=-2,x-y=52-1,则(x+1)(y-1)=______ 5、(2-)20022(2+3)2003=______6、已知,a、b互为倒数,c、d互为相反数,求?ab?c?d?1=7、(?)?_____,的算术平方根的平方根是8、有一个两位数,个位数比十位数大5,如果把这两个数的位置对换,那么所得的新数与原数的和是143.这个两位数是. 9、一次函数y?kx?b(k?0)的图象如下图,请你将空填写完整。
23210、顺次连接一个任意四边形四边的中点,得到一个_______四边形;顺次连接矩形各边中点所得的四边形是。
二、解答题。
1、已知:字母a、b满足0 0a?1?b?2?0,1111求的值??????ab(a?1)(b?1)(a?2)(b?2)(a?2008)(b?2008)2、如图菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH和AB的长(本小题8分)CAH3、如图,E是矩形ABCD边AD上的一点,且BE=ED,P 是对角线BD上任意一点,PF⊥BE于F,PG⊥AD与G,请你猜想PF、PG、AB它们之间有什么关系?并证明你的结论。
EGDBC(3题图)4、如图,lA lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。
(1)B出发时与A相距千米。
(2分)(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时。
(2分)(3)B出发后小时与A相遇。
(2分)(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米。
在图中表示出这个相遇点C。
(6分)(5)求出A行走的路程S与时间t 的函数关系式。
(写出过程,4分)B(4,-3)C(5,0),求四边形ABCO的面积。
(6分)6、图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t(分钟)之间的关系图像。
① 从图像知,通话2分钟需付的电话费是元。
② 当t≥3时求出该图像的解析式(写出求解过程)。
③ 通话7分钟需付的电话费是多少元?7、A、B两地相距36千米,甲从A地、乙从B地同时出发,相向而行,2小时相遇后,甲再走2小时30分钟到达B地,乙再走1小时36分钟到达A地,求两人的速度。
8、汽车在行驶时,由于惯性作用,刹车后还要向前滑行一段距离才会停止,我们称这段距离为“刹车距离”。
现在甲乙两车在一个弯道上相向而行,在相距16米的地方发现情况不对,同时刹车。
根据有关资料,甲、乙两车刹车距离S(米)与车速v(千米/时)之间与如下关系:① 分别求出两个函数的关系式② 若甲、乙两车的速度都是60千米/时,两车是否相撞?说说你的理由。
9、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,如超计划用水,则每吨按0.8元收费。
如单位自建水泵房抽水,每月需500元管理费,然后每用一吨水的费用为0.28元。
已知每抽一吨水需成本0.07元。
① 写出若该单位用自来水公司的水及自建水泵时水费y(元)与用水量(吨)的关系。
② 若该单位用水3100吨,是用自来水公司水合算,还是自建水泵房抽水合算?10、已知:如图,在△ABC中,AB=AC,E是AB中点,以E为圆心,EB为半径画弧交BC于D点,连接ED并延长到F,使DF=DE.求证:?A??FC?3x?2y?2k11、若方程组?的解之和:x+y=-5,求k的值,并解此方程组.5x?4y?k?3??2mx?3ny?19?3x?2y?412、已知方程组?和?有相同的解,求m和n的值.5y?x?3mx?ny?7??13、已知直线l1:y?k1x?b1经过点(-1,6)和(1,2),它和x轴、yl2:y?k1x?b2经过点(2,x -4)和(0,-3),它和x轴、y 轴的交点分别是D和C。