高中数学第八章立体几何初步之简单几何体的表面积与体积(精练)(必修第二册)(教师版含解析)

合集下载

高中数学人教A版(2019)必修 第二册第八章 立体几何初步8.3简单几何体的表面积与体积

高中数学人教A版(2019)必修 第二册第八章 立体几何初步8.3简单几何体的表面积与体积

必修第二册 8.3 简单几何体的表面积与体积一、单选题1.如图,位于贵州黔南的“中国天眼”是具有我国自主知识产权、世界最大单口径、最灵敏的球面射电望远镜,其反射面的形状为球冠,球冠是球面被平面所截后剩下的曲面,截得的圆为球冠的底,与截面垂直的球体直径被截得的部分为球冠的高,设球冠所在球的半径为R ,球冠底的半径为r ,球冠的高为h ,球冠底面圆的周长为C .已知球冠的表面积公式为2S Rh π=,若65000,500S C ππ==,则球冠所在球的表面积为( )A .1620000πB .1690000πC .1720000πD .1790000π 2.已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A .)41B 1C .)41D .)813.已知ABC O 的球面上,若球O 的体积为32π3,则O 到平面ABC 的距离为( )AB .32C .1D 4.已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .128πD .144π5.如图,在棱长为a 的正方体1111ABCD A B C D -中,P 在线段1BD 上,且12BP PD =,M 为线段11B C 上的动点,则三棱锥M PBC -的体积为( )A .319aB .332aC .313aD .与点M 的位置有关6.已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,且正四棱锥P ABCD -的底面面积为6,侧面积为,则球O 的表面积为( )A .323πBC .16πD .32π 7.已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的体积为( )AB C D 8.黄金分割是指将整体一分为二,较大部分与整体的比值等于较小部分与较大部分的,约为0.618.这个比例被公认为是最能引起美感的比例,因此被称为黄金比在几何世界中有很多黄金图形,在三角形中,如果相邻两边之比等于黄金分割比,且它们的夹角的余弦值为黄金分割比值,那么这个三角形一定是直角三角形,这个三角形称为黄金分割直角三角形.在正四棱锥中,以黄金分割直角三角形的长直角边作为正四棱锥的高,以短直角边的边长作为底面正方形的边心距(正多边形的边心距是正多边形的外接圆圆心到正多边形某一边的距离),斜边作为正四棱锥的斜高,所得到的正四棱锥称为黄金分割正四棱锥.在黄金分割正四棱锥中,以四棱锥的高为边长的正方形面积与该四棱锥的侧面积之比为( )A B C .1 D .149.阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径.若该球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π 10.平行四边形ABCD 中,AB BD ⊥,且2224AB BD +=,沿BD 将四边形折起成平面ABD ⊥平面BDC ,则三棱锥A BCD -外接球的表面积为( )A .2πB .2πC .4πD .16π 11.已知一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是( )A .122ππ+B .144ππ+C .12ππ+ D .142ππ+ 12.已知正四棱锥的底面边长和侧棱长均为2,则该正四棱锥的体积为( )A B .C D .二、填空题13.已知圆锥的侧面积(单位:2cm ) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.14.一个正四棱锥的顶点都在同一球面上,若该棱锥的高为2,底面边长为2,则该球的表面积为______.15.已知圆柱的轴截面(经过圆柱的轴的截面)是一个边长为2的正方形,则此圆柱的体积为________.16.若球的大圆的面积为9π,则该球的体积为________17.若五棱台11111ABCDE A B C D E -的表面积是30,侧面积是25,则两底面面积的和为______.三、解答题18.圆台的母线长为2a ,母线与轴的夹角为30,一个底面的半径是另一个底面的半径的2倍,求两底面的半径及两底面面积之和.19.将棱长为2的正方体1111ABCD A B C D -截去三棱锥1D ACD -后得到如图所示几何体,O 为11A C 的中点.(1)求证://OB 平面1ACD ;(2)求几何体111ACB A D 的体积.20.如图①,有一个圆柱形状的玻璃水杯,底面圆的直径为20cm ,高为30cm ,杯内有20cm 深的溶液.如图①,现将水杯倾斜,且倾斜时点B 始终在桌面上,设直径AB 所在直线与桌面所成的角为α.(1)求图①中圆柱的母线与液面所在平面所成的角(用α表示);(2)要使倾斜后容器内的溶液不会溢出,求α的最大值.21.“圆锥的两条母线所作的一切截面中,以轴截面的面积最大”是否成立?答案第1页,共1页 参考答案:1.B2.D3.C4.D5.A6.C7.C8.D9.C10.C11.A12.A13.114.9π15.2π16.36π17.518.圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为25a π. 19.(1)见解析;(2)4.20.(1)2πα-;(2)45°﹒21.答案见解析。

高中数学第八章立体几何初步之立体图形的直观图(精练)(必修第二册)(教师版含解析)

高中数学第八章立体几何初步之立体图形的直观图(精练)(必修第二册)(教师版含解析)

8.2 立体图形的直观图(精练)【题组一平面图形的直观图】1.(2020·全国高一课时练习)用斜二测画法画出下列水平放置的等腰直角三角形的直观图;(1)直角边横向;(2)斜边横向.【答案】见解析.【解析】(1)直角边横向如图①②.(2)斜边横向如图③2.(2020·全国高一课时练习)用斜二测画法画出下列水平放置的平面图形的直观图(尺寸自定).(1)矩形;(2)平行四边形;(3)正三角形;(4)正五边形【答案】见解析【解析】(1)根据斜二测画法的规则,可得:(2)根据斜二测画法的规则,可得:(3)根据斜二测画法的规则,可得:(4)根据斜二测画法的规则,可得:3.(2020·全国高一课时练习)用斜二测画法画水平放置的正六边形的直观图.【答案】见解析【解析】画法:(1)如图(1),在正六边形ABCDEF中,取AD所在直线为x轴,AD的垂直平分线MN为y轴,两轴相交于点O.在图(2)中,画相应的x'轴与y'轴,两轴相交于点'O,使'45x O y''︒∠=.(2)在图(2)中,以O'为中点,在x轴上取A D AD''=,在'y轴上取12M N MN''=以点'N为中点,画B C''平行于x'轴,并且等于BC;再以'M为中点,画F E''平行于x'轴,并且等于FE.(3)连接',,,A B C D D E F A''''''',并擦去辅助线'x轴和'y轴,便获得正六边形ABCDEF水平放置的直观图'A B C D E F'''''图(3).4.(2020·全国高一课时练习)如图所示是由正方形ABCD和正三角形CDE所构成的平面图形,请画出其水平放置的直观图.【答案】作图见解析【解析】(1)以AB所在直线为轴,AB的中垂线为y轴建立直角坐标系(如图①所示),再建立坐标系x O y''',使两坐标轴的夹角为45︒(如图②所示).(2)以O'为中点,在x'轴上截取A B AB''=;分别过A',B'作y'轴的平行线,截取12A E AE='',12B C BC=''.在y'轴上截取12O D OD=''.(3)连接E D'',E C'',C D'',得到平面图形A B C D E'''''.(4)去掉辅助线,就得到所求的直观图(如图③所示)5.(2020·全国高三专题练习(文))用斜二测画法画出图中水平放置的四边形OABC的直观图.【答案】见解析【解析】画法:(1)画x'轴,y'轴,使45x o y'''∠=︒;(2)在o x''轴上取D B''、,使3,O D O B OB''''==,在o y''轴上取C',使12O C OC''=;在o x''轴下方过D作D A''平行于o y'',使1D A''=;(3) 连线,连接O A A B B C''''''、、,所得四边形即为水平放置的四边形OABC的直观图.如图【题组二空间几何体的直观图】1.画出底面是正方形,侧棱均相等的四棱锥的直观图并说明画法.【答案】答案见解析.【解析】(1)画轴:画Ox轴、Oy轴、Oz轴,45xOy∠=(或135),90xOz∠=,如左图;(2)画底面:以O为中心,在xOy平面内,画出正方形水平放置的直观图ABCD;(3)画顶点:在Oz轴上截取OP,使OP的长度是原四棱锥的高;(4)成图:顺次连接PA、PB、PC、PD,并擦去辅助线,将被遮挡的部分改为虚线,得四棱锥的直观图,如下图.2.若给定长,宽,高分别为4cm,3cm,2cm的长方体ABCD A B C D''''-,如何用斜二测画法画出该长方体的直观图?【答案】见解析【解析】(1)画轴.如图(1),画x轴、y轴、z轴,三轴相交于点O,使45xOy∠=︒,90xOz∠=︒.(2)画底面.以点O为中点,在x轴上取线段MN,使4cmMN=;以点O为中点,在y轴上取线段PQ,使 1.5cmPQ=.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,则平面ABCD就是长方体的底面,如图(1).(3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2cm长的线段AA',BB',CC', DD',如图(1).(4)成图.顺次连接A',B',C',D',并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到了长方体的直观图,如图(2).3.(2020·全国高一课时练习)已知一棱柱的底面是边长为3cm的正方形,各侧面都是矩形,且侧棱长为4 cm,试用斜二测画法画出此棱柱的直观图.【答案】见解析【解析】(1)画轴.画出x轴、y轴z轴,三轴相交于点O,使45xOy∠=︒,90xOz∠=︒.(2)画底面.以点O为中点,在x轴上画3MN cm=,在y轴上画32PQ cm=,分别过点M,N作y轴的平行线,过点P,Q作x轴的平行线,设它们的交点分别为A,B,C,D,则四边形ABCD就是该棱柱的底面.(3)画侧棱.过点A,B,C,D分别作z轴的平行线,并在这些平行线上分别截取4cm长的线段AA',BB',CC',DD',如图①所示.(4)成图.连接A B'',B C'',C D'',D A'',并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到该棱柱的直观图,如图②所示.4.(2020·全国高一课时练习)画出一个上、下底面边长分别为1,2,高为2的正三棱台的直观图.【答案】见解析【解析】①建立空间直角坐标系,画x轴、y轴、z轴相交于点O.使x轴与y轴的夹角为45°,y轴与z轴的夹角为90°,②底面在y轴上取线段OD取36OD=,且以D为中点,作平行于x轴的线段AB,使2AB=,在y轴上取线段OC,使33OC=.连接,BC CA,则ABC为正三棱台的下底面的直观图.③画上底面在z轴上取OO',使2OO'=,过点O'作//O x Ox'',//O y Oy'',建立坐标系x O y'''.在x O y'''中,类似步骤②的画法得上底面的直观图A B C'''.④连线成图连接AA',BB',CC',去掉辅助线,将被遮住的部分画成虚线,则三棱台ABC A B C'''-即为要求画的正三棱台的直观图.5.(2020·全国高一课时练习)画出底面是正方形,高与底面边长相等且侧棱均相等的四棱锥的直观图.【答案】见解析【解析】(1)建系:先画x 轴、y 轴、z 轴,其交点为O ,使45xOy ∠=︒,90xOz ∠=︒. (2)画底面.以O 为中心,在xOy 平面内,画出正方形水平放置的直观图ABCD ,如图.(3)画顶点.在Oz 上截取OP ,使OP AB =.(4)成图.连接PA ,PB ,PC ,PD ,并擦去辅助线,将被遮挡的部分改为虚线,得四棱锥的直观图,如图.6.(2020·全国高一课时练习)已知一个圆锥由等腰直角三角形旋转形成,画出这个圆锥的直观图.【答案】见解析.【解析】圆锥直观图如下:⇒7.(2020·全国高一课时练习)一个简单组合体由上下两部分组成,下部是一个圆柱,上部是一个半球,并且半球的球心就是圆柱的上底面圆心,画出这个组合体的直观图. 【答案】见解析【解析】如图所示,先画出圆柱的上下底面,再在圆柱和球共同的轴线上确定球的半径,最后画出圆柱和半球,并标注相关字母,就得到组合体的直观图.8.(2020·全国高三专题练习)如图为一几何体的平面展开图,按图中虚线将它折叠起来,画出它的直观图.【答案】见解析【解析】由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.【题组三直观图的面积周长】1.如图,ABC的斜二测直观图为等腰'''Rt A B C,其中''2A B=,则ABC∆的面积为( )A.2 B.4 C.22D.42【答案】D【解析】由题意,ABC的斜二测直观图为等腰Rt A B C''',45C A B︒'''∠=//C O yA''''∴,2A B''=222A C ABC B''''''∴=+22A C''∴=由已知直观图根据斜二测化法规则画出原平面图形,则2AB=,42AC=,且AC AB⊥112424222ABCS AB AC∆∴=⋅⋅=⨯⨯=∴原平面图形的面积是42故选:D.2.用斜二测画法画水平放置的ABC的直观图,得到如图所示的等腰直角三角形A B C'''.已知点O'是斜边B C''的中点,且1A O,则ABC的边BC边上的高为( )A.1 B.2 C.2D.22【答案】D【解析】∵直观图是等腰直角三角形A B C ''',90,1B A C A O,∴2A C,根据直观图中平行于y 轴的长度变为原来的一半, ∴△ABC 的边BC 上的高222ACA C .故选D.3.如图,正方形O A B C ''''的边长为2cm ,它是水平放置的一个平面图形用斜二测画法得到的直观图,则原图形的周长是( )A .16cmB .12cmC .10cmD .18cm【答案】A【解析】将直观图还原为平面图形,如图所示.2OB O B ''==42,2OA O A ''==,所以222(42)6AB =+=,所以原图形的周长为16cm , 故选:A.4.已知用斜二测画法得到的某水平放置的平面图形的直观图是如图所示的等腰直角O B C ''',其中1O B ''=,则原平面图形中最大边长为( )A .2B .22C .3D .23【答案】D【解析】由斜坐标系中作A C B C''''⊥交x'轴于A'点,由1O B''=,O B C'''等腰直角三角形,2A C由斜二测法的纵半横不变,可将直观图在直角坐标系中还原成原平面图形如下:∴222AC A C,1OA=,∴最长边2223BC AC AB=+=,故选:D5.如图,平行四边形O A B C''''是水平放置的一个平面图形的直观图,其中4O A''=,2O C''=,30A O C'''∠=︒,则下列叙述正确的是( )A.原图形是正方形B.原图形是非正方形的菱形C.原图形的面积是82D.原图形的面积是83【答案】C【解析】过C'作C'D//y'轴,交x'轴于D,将DC'绕D逆时针旋转45°,并伸长到原来的两倍,得到实际图中的点C,将C沿O'A'方向和长度平移得到B,得到水平放置时直观图还原为实际的平面图形,如下图所示:30A O C''∠=︒,∴90,4AOC OC∠≠≠,故原图并不是正方形,也不是菱形,故A,B均错误,又直观图的面积11242sin3042S=⋅⋅⋅⋅=,所以原图的面积12282S S==,故选:C.6.把四边形ABCD 按斜二测画法得到平行四边形''''A B C D (如图所示),其中''''2B O O C ==,''3O D =,则四边形ABCD 一定是一个( )A .菱形B .矩形C .正方形D .梯形【答案】A【解析】把平行四边形''''A B C D 还原回原图形,过程如下: 在平面直角坐标系中,在x 轴上截取4BC =,且使O 为BC 的中点, 在y 轴上截取23OD =,过D 向左左x 轴的平行线段DA ,使4DA =, 连接AB ,CD ,可得平行四边形ABCD . ∵2OC =,23OD =,∴()222234CD =+=.∴平行四边形ABCD 为菱形. 故选:A .7.如图所示,一个水平放置的平面图形的直观图是一个底角为45°的等腰梯形,已知直观图OA B C '''的面积为4,则该平面图形的面积为( )A .2B .42C .82D .22【答案】C【解析】已知直观图OA B C'''的面积为4,所以原图的面积为22482⨯=,故选:C8.如图所示,正方形''''O A B C的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A.6cm B.8cm C.232cm+D.223cm+【答案】B【解析】先把水平放置的平面图形的直观图还原成原来的实际图形,如图:由斜二测画法得:'=1OA OA=,''=2=22OB O B,''=1BC BC=,2=1(22)3AB OC=+=,所以原图形周长为8.故选:B.9.如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形O A B C'''',则原平面图形的周长和面积分别为( )A.2a,224a B.8a,222aC.a,2a D.2a,22a【答案】B【解析】由直观图可得原图形,∴OA BC a==,22OB a=,90BOA∠=,∴3AB OC a==,原图形的周长为8a,∴22222S a a a=⋅=,故选:B9.如图所示,正方形O A B C''''的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的面积是( )A.21 cm B.22 2 cmC .23 2 cmD .22cm 4【答案】B【解析】如图所示,由斜二测画法的规则知与x '轴平行的线段其长度不变, 正方形的对角线在y '轴上,可求得其长度为2,故在原平面图中其在y 轴上, 且其长度变为原来的2倍,长度为22, 所以原来的图形是平行四边形, 其在横轴上的边长为1,高为22, 所以它的面积是21222 2 (cm )⨯=. 故选:B .10.一个水平放置的平面图形的直观图是一个底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ). A .12+ B .22+C .1222+D .212+【答案】B【解析】如图,恢复后的原图形为一直角梯形,所以1(121)2222S=++⨯=+.故选:B.11.如图,边长为1的正方形''''O A B C是一个水平放置的平面图形OABC的直观图,则图形OABC的面积是( )A.24B.22C.2D.22【答案】D【解析】由直观图''''O A B C画出原图OABC,如图,因为''2O B=,所以22OB=,1OA=,则图形OABC的面积是22.故选:D12.已知边长为1的菱形ABCD中,3Aπ∠=,则用斜二测画法画出这个菱形的直观图的面积为( ) A.32B.34C.66D.68【答案】D【解析】菱形ABCD中,1AB=,3Aπ∠=,则菱形的面积为132211sin232ABDABCDS Sπ∆==⨯⨯⨯⨯=菱形;所以用斜二测画法画出这个菱形的直观图面积为36282222ABCDSS===菱形.故选D.13.已知正三角形ABC的边长为2,那么ΔABC的直观图△A1B1C1的面积为( )A.32B.12C.64D.34【答案】C【解析】如图所示,直观图△A1B1C1的高为11116sin45sin452sin60sin45224h C D CD===⨯⨯=,底边长为112A B AB==;所以△A1B1C1的面积为:1116622244S A B h=⋅=⨯⨯=.故选:C.14.如图是水平放置的平面图形的斜二测直观图,则其原平面图形的面积为__________.【答案】4【解析】由斜二测画法可知原平面图形为两直角边分别为2,4的直角三角形.故面积为12442⨯⨯=.故答案为:4【题组四斜二测画法】1.(2020·全国高一单元测试)下列命题中正确的是( )A.正方形的直观图是正方形B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台【答案】B【解析】选项A,正方形的直观图是平行四边形,故A错误;选项B,由斜二测画法规则知平行性不变,即平行四边形的直观图是平行四边形,故②正确;选项C,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,要注意棱柱的每相邻两个四边形的公共边互相平行,故C错误;选项D,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D错误.故选:B.2.(2020·全国高三专题练习)用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A.原来相交的仍相交B.原来垂直的仍垂直C.原来平行的仍平行D.原来共点的仍共点【答案】B【解析】根据斜二测画法作水平放置的平面图形的直观图的规则,与x轴平行的线段长度不变,与y轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B.3.(2020·包头市第九中学高一期末)用斜二测画法画水平放置的平面图形直观图时,下列结论中正确的个数是( )①平行的线段在直观图中仍然平行;②相等的线段在直观图中仍然相等;③相等的角在直观图中仍然相等;④正方形在直观图中仍然是正方形A.1 B.2 C.3 D.4【答案】A【解析】对于①,平行的线段在直观图中仍然是平行线段,所以①正确;对于②,相等的线段在直观图中不一定相等,如平行于x轴的线段,长度不变,平行于y轴的线段,变为原来的12,所以②错误;对于③,相等的角在直观图中不一定相等,如直角坐标系内两个相邻的直角,在斜二测画法内是45︒和135︒,所以③错误;对于④,正方形在直观图中不是正方形,是平行四边形,所以④错误;综上,正确的命题序号是①,共1个.故选:A .4.(2019·安徽合肥市·合肥一中高二月考(理))下列说法正确的是( )A .用一个平面去截棱锥,底面与截面之间的部分称为棱台B .空间中如果两个角的两边分别对应平行,那么这两个角相等C .通过圆台侧面上一点,有且只有一条母线D .相等的角在直观图中对应的角仍相等【答案】C【解析】对A , 用一个平行于底面的平面去截棱锥,底面与截面之间的部分称为棱台,所以A 错误; 对B , 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,所以B 错误;对C ,根据母线的定义可知,正确;对D ,如等腰直角三角形,画出直观图后,不是等腰三角形,所以D 错误.故选:C . 5.(2020·全国高一课时练习)在用斜二测画法画水平放置的ABC 的直观图时,若在直角坐标系中A ∠的两边分别平行于x 轴、y 轴,则在直观图中A '∠等于( )A .45︒B .135︒C .90︒D .45︒或135︒【答案】D【解析】因为A ∠的两边分别平行于x 轴、y 轴,所以90A ︒∠=在直观图中,由斜二测画法知45x O y '''︒∠=或135x O y ︒''∠=',即45A ︒'∠=或135A ︒'∠=.故选:D6.(2020·全国高一课时练习)利用斜二测画法画直观图时,下列说法中正确的是( )①两条相交直线的直观图是平行直线;②两条垂直直线的直观图仍然是垂直直线;③正方形的直观图是平行四边形;④梯形的直观图是梯形.A .①②B .③④C .①③D .②③ 【答案】B【解析】两条相交直线的直观图仍然是相交直线,故①错;两条垂直直线的直观图是两条相交但不垂直的直线,故②错;③④正确.故选:B。

高中数学第八章立体几何初步8.3.1棱柱棱锥棱台的表面积和体积课时素养检测含解析第二册

高中数学第八章立体几何初步8.3.1棱柱棱锥棱台的表面积和体积课时素养检测含解析第二册

课时素养检测二十二棱柱、棱锥、棱台的表面积和体积(30分钟60分)一、选择题(每小题4分,共24分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1。

正方体的表面积为96,则正方体的体积是()A.48B.64 C。

16 D.96【解析】选B.设正方体棱长为a,则6a2=96,a=4,V正方体=a3=64。

2。

已知高为3的三棱柱ABC—A1B1C1的底面是边长为1的正三角形,则三棱锥B1-ABC的体积为()A。

B。

C。

D.【解析】选D.V=Sh=××3=。

3。

底面为正方形的直棱柱,它的底面对角线长为,体对角线长为,则这个棱柱的侧面积是()A。

2 B。

4 C。

6 D。

8【解析】选D.由已知得底面边长为1,侧棱长为=2.所以S侧=1×2×4=8。

4.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则三棱锥D1—ACD 的体积是()A.B。

C. D.1【解析】选A。

三棱锥D1-ADC的体积V=S△ADC×D1D=××AD ×DC×D1D=××1×1×1=。

5。

棱台上、下底面面积之比为1∶9,则棱台的中截面分棱台成两部分的体积之比是()A.4∶9B.10∶19C.7∶19D.5∶9【解析】选C。

设棱台高为2h,上底面面积为S,则下底面面积为9S,中截面面积为4S,==。

6.(多选题)下列说法正确的有()A.多面体的表面积等于各个面的面积之和B.棱台的侧面展开图是由若干个等腰梯形组成的C。

沿不同的棱将多面体展开,得到的展开图相同,表面积相等D.多面体的侧面积等于各个侧面的面积之和【解析】选AD。

A正确.多面体的表面积等于侧面积与底面积之和.B错误.棱台的侧面展开图是由若干个梯形组成的,不一定是等腰梯形。

C错误.由于剪开的棱不同,同一个几何体的表面展开图可能不是全等形。

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

8.3。

2圆柱、圆锥、圆台、球的表面积和体积课后篇巩固提升基础达标练1。

(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A。

圆柱的侧面积为2πR2B.圆锥的侧面积为2πR2C。

圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2R,则圆柱的侧面积为2πR×2R=4πR2,∴A错误;圆锥的侧面积为πR×R=πR2,∴B错误;球的表面积为4πR2,∵圆柱的侧面积为4πR2,∴C正确;∵V圆柱=πR2·2R=2πR3,V圆锥=πR2·2R=πR3,V球=πR3,∴V圆柱∶V圆锥∶V球=2πR3∶πR3∶πR3=3∶1∶2,∴D正确.2.若一个正方体内接于表面积为4π的球,则正方体的表面积等于()A.4 B。

8 C。

8 D.8x,球半径为R,则S球=4πR2=4π,∴R=1。

∵正方体内接于球,∴x=2R=2,∴x=,∴S正=6x2=6×=8。

3。

(2019广东高二期末)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D—ABC体积的最大值为()A。

12 B.18C.24D.54点M为三角形ABC的中心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC的体积最大,此时,OD=OB=R=4.∵S△ABC=AB2=9,∴AB=6.∵点M为△ABC的中心,∴BM=BE=2。

∴Rt△OMB中,有OM==2。

∴DM=OD+OM=4+2=6。

∴(V D—ABC)max=×9×6=18。

故选B。

4。

《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A。

人教A版高中同步学案数学必修第二册精品课件 第八章 立体几何初步 圆柱、圆锥、圆台、球的表面积和体积

人教A版高中同步学案数学必修第二册精品课件 第八章 立体几何初步 圆柱、圆锥、圆台、球的表面积和体积

2.圆柱、圆锥、圆台三者的表面积公式之间有什么关系?
提示
如图所示.
知识点2 圆柱、圆锥、圆台的体积
1.圆柱 = π 2 ℎ(是圆柱的底面半径,ℎ是圆柱的高)
1
3
2.圆锥 = π 2 ℎ(是圆锥的底面半径,ℎ是圆锥的高)
3.圆台 =
1
πℎ
3
′2 + ′ + 2 (′,分别是上、下底面半径,ℎ是高).


= × ,即
规律方法解决几何体的外接球和内切球问题的关键是确定球的球心位置,然后求半径.
内切球的半径常用等体积法;简单几何体的外接球,如长方体的外接球,根据长方体的体
对角线即为外接球的直径求解,若长方体的体对角线及长、宽、高分别为,,,,则
2 = 2 + 2 + 2 .
1
= ′ + ′ + ℎ
= ℎ
3
3
( √ )
() √
(√ )
知识点3 球的表面积和体积
1.球 = 4π2 (是球的半径)
4
3
2.球 = π3 (是球的半径)
过关自诊
1.判断正误.(正确的画 ,错误的画×)
(1)若球的直径为,则它的表面积为π2 .
() √
(2)两个球的半径之比为1: 2,则其体积之比为1: 4.
成的曲面所围成的几何体为一个组合体,如图,该组合体由两个同底
的圆锥组成,两个圆锥的底面半径为 ,高为1,体积为
×



×


× = .
规律方法 求圆柱、圆锥、圆台的体积问题,一是要牢记公式,然后观察空间图形的构成,
是单一的旋转体,还是组合体;二是注意旋转体的构成,以及圆柱、圆锥、圆台轴截面的

高中数学第八章立体几何初步基本立体图形(精练)(必修第二册)(教师版含解析)

高中数学第八章立体几何初步基本立体图形(精练)(必修第二册)(教师版含解析)

8.1 基本立体图形(精练)【题组一多面体】1.(2020·广西崇左市·崇左高中)下列几何体中是棱锥的有( )A.0个B.1个C.2个D.3个【答案】C【解析】由棱锥的定义可得,只有几何体⑤、⑥为棱锥.故选:C.2.(2020·广西桂林市·桂林十八中)下列命题正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可以都是棱柱【答案】D【解析】对于选项,A棱柱的底面也可以是三角形,五边形等,不一定是平行四边形,所以该选项错误;对于选项B,棱锥的底面不一定是三角形,也可以是四边形,五边形等,所以该选项错误;对于选项C,棱锥被平面分成的两部分可能都是棱锥,所以该选项错误;对于选项D,棱柱被平面分成的两部分可以都是棱柱,所以该选项正确.故选:D3.(2020·全国高三专题练习)一个棱锥所有的棱长都相等,则该棱锥一定不是( )A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥【答案】D【解析】因为正六变形的中心到底面顶点的距离等于边长,所以正六棱锥的侧棱必大于底面棱长,故选:D.4.(2021·江苏高一课时练习)棱台不具备的特点是( )A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点【答案】C【解析】根据棱台的定义,由平行于棱锥底面的平面截棱锥,截面与底面之间的部分叫棱台.棱台的两底面是相似多边形,A正确;侧面的上下底边平行,侧面都是梯形,B正确;侧棱延长后交于一点,D正确;由于棱锥的侧棱不一定相等,所以棱台的侧棱也不一定相等,C不一定成立,故选:C.5.(2021·河南焦作市)某几何体有6个顶点,则该几何体不可能是( )A.五棱锥B.三棱柱C.三棱台D.四棱台【答案】D【解析】四棱台有8个顶点,不符合题意.,其他都是6个顶点.故选:D.6.(2020·全国高三专题练习(文))下列说法中正确的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是梯形的几何体叫棱台D.有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥【答案】D【解析】因为有两个面平行,其余各面是相邻的公共边都相互平行的平行四边形的几何体叫棱柱,所以A、B错误;而一个平行于底面的平面截棱锥,底面与截面之间的部分叫棱台,所以棱台各侧棱的延长线交于一点,所以C错误;因为有一个面是多边形,其余各面都是有公共顶点的三角形的几何体叫棱锥,所以D正确.故选:D.7.(2020·朝阳县柳城高级中学)下列说法正确的是( )A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直D.棱台的侧棱延长后交于一点,侧面是等腰梯形【答案】C【解析】A. 棱柱的侧棱都相等,侧面是平行四边形,但不一定全等,故错误;B.用一个平面去截棱锥,当棱锥底面与截面平行时,才是棱台,故错误;C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直,如正方体共顶点的三个相邻平面,故正确;D.棱台的侧棱延长后交于一点,但侧面不一定是等腰梯形,故错误;故选:C8.(2021·江苏高一课时练习)下列说法正确的是________(填序号).①底面是正多边形的棱锥为正棱锥;②各侧棱都相等的棱锥为正棱锥;③各侧面都是等腰三角形的棱锥为正棱锥;④各侧面都是全等的等腰三角形的棱锥是正棱锥;⑤底面是正多边形且各侧面全等的棱锥为正棱锥.【答案】⑤【解析】对于①,如果棱锥的顶点在底面上的射影不是正多边形的中心,则此棱锥不是正棱锥,故①错误.对于②,如图(1),棱锥的顶点是圆锥的顶点,而底面多边形是圆锥底面圆的内接非正多边形,此时棱锥满足各侧棱都相等,但不是正棱锥,故②错误.对于③④,如图(2),侧面都是等腰三角形,且它们全等,但该三棱锥不是正棱锥,故③④错误.对于⑤,因为底面是正多边形且各侧面全等的棱锥为正棱锥,故顶点底面上的射影O为正多边形的中心,此时棱锥为正棱锥,故⑤正确.故答案为:⑤9.(2020·全国高三专题练习)给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.【答案】②③④【解析】①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体1111ABCD A B C D-中的三棱锥1C ABC-,四个面都是直角三角形.故答案为:②③④10.(2020·全国高三专题练习)下列关于棱锥、棱台的说法中,正确说法的序号是________ ①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④棱台的各侧棱延长后必交于一点;⑤棱锥被平面截成的两部分不可能都是棱锥.【答案】②③④【解析】①错,若平面不与棱锥底面平行,用这个平面去截棱锥,则棱锥底面和截面之间的部分不是棱台;②对,棱台的侧面一定是梯形,而不是平行四边形;③对,由棱锥的定义知棱锥的侧面只能是三角形;④对,棱台是由平行于棱锥底面的平面截得的,故棱台的各侧棱延长后必交于一点;⑤错,如图所示四棱锥被平面PBD截成的两部分都是棱锥.故答案为:②③④11.(2021·江苏高一课时练习)如图,下列几何体中,_______是棱柱,_______是棱锥,_______是棱台(仅填相应序号).【答案】①③④⑥⑤【解析】结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.故答案为:①③④;⑥;⑤.【题组二旋转体】1.(2020·浙江)以下空间几何体是旋转体的是( )A.圆台B.棱台C.正方体D.三棱锥【答案】A【解析】由封闭的旋转面围成的几何体叫作旋转体可知,只有A项满足题意故选:A2.(2020·东台创新高级中学高一月考)给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A.①③B.②④C.①④D.②③【答案】B【解析】圆柱的母线与它的轴平行,故①错误;圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形,故②正确;在圆台的上、下两底面圆周上各取一点,则这两点的连线不一定是圆台的母线,故③错误;圆柱的任意两条母线所在的直线是互相平行的,故④正确;故选:B3.(2020·全国高一课时练习)如图所示,观察下面四个几何体,其中判断正确的是( )A.①是圆台B.②是圆台C.③是圆锥D.④是圆台【答案】C【解析】图①不是由圆锥截得的,所以①不是圆台;图②上下两个面不平行,所以②不是圆台;图④不是由圆锥截得的,所以④不是圆台;很明显③是圆锥,故选:C.4.(2032·上海市)有下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点连线的长度是母线的长度;②圆锥顶点与底面圆周上任意一点连线的长度是母线的长度;③圆柱的任意两条母线所在直线互相平行;④过球上任意两点有且只有一个大圆;其中正确命题的序号是_____【答案】②③【解析】①若上下顶面两点连线不垂直于底面,则两点连线长度不是母线的长度,①错误;②由圆锥的特点可知,圆锥顶点到底面圆周上任意一点长度相等,均为母线长度,②正确;③圆柱的母线均垂直于底面,所以任意两条母线所在直线互相平行,③正确;④若两点连线为球的直径,则过两点有两个大圆,④错误.故答案为②③【题组三组合体】1.(2020·全国高一课时练习)说出图中物体的主要结构特征.【答案】详见解析【解析】(1)一个圆柱与一个圆锥的组合体,上部分为圆锥,下部分为圆柱;(2)一个六棱柱里面挖去了一个圆柱.2.(2020·全国高一课时练习)如图,以直角梯形ABCD的下底AB所在直线为轴,其余三边旋转一周形成的面围成一个几何体,说出这个几何体的结构特征.【答案】详见解析【解析】几何体如图(2)所示,其中DE AB,垂足为E.这个几何体是由圆柱BE和圆锥AE组合而成的.其中圆柱BE的底面分别是B和E,侧面是由梯形的上底CD绕轴AB旋转形成的;圆锥AE的底面是E,侧面是由梯形的边AD绕轴AB旋转而成的. 3.(2020·全国高一课时练习)如图,说出图中两个几何体的结构特征.【答案】(1)由圆锥和圆台组合而成的简单组合体.(2)由四梭柱和四棱锥组合而成的简单组合体.【解析】几何体(1)是圆台上拼接了一个与圆台上底同底的圆锥;几何体(2)是长方体上拼接了一个同底的四棱锥;4.(2020·全国高一课时练习)试指出图中组成各几何体的基本元素.【答案】(1)几何体由6个顶点、12条棱和8个面组成(2)几何体由6个顶点、10条棱和6个面组成【解析】(1) 是由两个四棱锥组成的,有6个顶点、12条棱和8个面组成.(2)是由两个锥体组合而成,有6个顶点、10条棱和6个面组成.【题组四截面问题】1.(2020·江西吉安市·高三其他模拟(文))如图是一个正方体的表面展开图,则图中“0”在正方体中所在的面的对面上的是( )A.2 B.1 C.高D.考【答案】C【解析】将展开图还原成正方体可知,“0”在正方体中所在的面的对面上的是“高”,故选:C.2.(2021·江苏高一课时练习)如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是( )A.三棱锥B.四棱锥C.三棱柱D.组合体【答案】B【解析】根据棱锥的结构特征可判断,余下部分是四棱锥A′-BCC′B′.故选:B.3.(2020·唐山市第十一中学高二期中)用一个平面去截一个几何体,得到的截面是三角形面,这个几何体不可能是( )A.棱锥B.圆锥C.圆柱D.正方体【答案】C【解析】圆柱的截面的图形只有矩形或圆形,如果截面是三角形,那么这个几何体不可能是圆柱.故选:C4.(2021·江苏高一课时练习)如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )A.①②B.①③C.①④D.①⑤【答案】D【解析】一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,当截面经过圆柱上下底面的圆心时,圆锥的截面为三角形除去一条边,所以①正确;当截面不经过圆柱上下底面的圆心时,圆锥的截面为抛物线的一部分,所以⑤正确;故选:D。

2023版高中数学新同步精讲精炼(必修第二册) 第八章 立体几何初步 章末测试(基础)(学生版)

2023版高中数学新同步精讲精炼(必修第二册) 第八章 立体几何初步 章末测试(基础)(学生版)

第八章立体几何初步章末测试(基础)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)''''的边长为1,它是一个水平放置的平面图形的1.(2021·广东·铁一中学高一月考)如图,正方形O A B C直观图,则原图形的周长为( )A.4 B.6 C.8 D.2+2.(2021·福建·永泰县三中高一月考)下列命题正确的是( )A.棱柱的每个面都是平行四边形B.一个棱柱至少有五个面C.棱柱有且只有两个面互相平行D.棱柱的侧面都是矩形3.(2021·重庆市杨家坪中学高一月考)如图是一个正方体的表面展开图,则图中“0”在正方体中所在的面的对面上的是( )A.2 B.1 C.高D.考4.(2021·全国·高一课时练习)已知两个平面相互垂直,下列命题:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数是( )A .3B .2C .1D .05.(2021·山西·大同市平城中学校高一月考)在正方体1111ABCD A B C D -中,M 是正方形ABCD 的中心,则直线1A D 与直线1B M 所成角大小为( )A .30°B .45°C .60°D .90°6.(2021·浙江·高一单元测试)已知圆锥的顶点为P ,底面圆心为O ,若过直线OP 的平面截圆锥所得的截面是面积为4的等腰直角三角形,则该圆锥的侧面积为( )A .B .C .4πD .()4π7.(2021·浙江省桐庐中学高一期末)如图,在正方体1111ABCD A B C D -中,点P 为线段1B C 上一动点,则下列说法错误的是( )A .直线1BD ⊥平面11AC DB .异面直线1BC 与11A C 所成角为45︒C .三棱锥11P A DC -的体积为定值D .平面11AC D 与底面ABCD 的交线平行于11A C8.(2021·广东白云·高一期末)已知图1是棱长为1的正六边形ABCDEF ,将其沿直线FC 折叠成如图2的空间图形F A E C B D ''''''-,其中A E ''=F A E C B D ''''''-的体积为( )A .38B .716C .12D .78二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·全国·高一课时练习)(多选题)下列命题中,错误的结论有( )A .如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B .如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C .如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D .如果两条直线同时平行于第三条直线,那么这两条直线互相平行10.(2021·全国·高一课时练习)如图,已知正方体1111ABCD A B C D -,,M N 分别为11A D 和1AA 的中点,则下列四种说法中正确的是( )A .1//C M ACB .1BD AC ⊥C .1BC 与AC 所成的角为60D .CD 与BN 为异面直线11.(2021·江苏·滨海县八滩中学高一期中)如图是一个正方体的平面展开图,则在该正方体中( )A .BM 与ED 平行B .AF 与CN 垂直C .CN 与BE 是异面直线D .CN 与BM 成60︒角12.(2021·河北石家庄·高一月考)如图1,E ,F 分别为等腰梯形底边AB ,CD 的中点,2224AB AD CD BC ====,将四边形EFCB 沿EF 进行折叠,使BC 到达11B C 位置,连接1AB ,1C D ,如图2,使得13AEB π∠=,则( )A .EF ⊥平面1AEB B .平面1//AEB 平面1DFCC .11B C 与平面AEFD .多面体11AEB C DF 的体积为32三、填空题(每题5分,共20分)13.(2021·湖南·长沙市第二十一中学高一期中)已知直线m ,n ,平面α,β,若//αβ,m α⊂,n β⊂,则直线m 与n 的关系是___________14.(2021·全国·高一课时练习)已知圆柱的轴截面是正方形,若圆柱的高与球的直径相等,则圆柱的表面积与球的表面积之比为________.15.(2021·湖北·钟祥市实验中学高一期中)在正三棱锥S ABC -中,6AB BC CA ===,点D 是SA 的中点,若SB CD ⊥,则该三棱锥外接球的表面积为___________.16.(2021·上海·华东师范大学第三附属中学)如图,OABC 是边长为1的正方形,AC 是四分之一圆弧,则图中阴影部分绕轴OC 旋转一周得到的旋转体的表面积为________________.四、解答题(17题10分,其余每题12分,共70分)17.(2021·浙江·嘉兴市第五高级中学高一期中)如图所示,在三棱柱ABC ­111A B C 中,E ,F ,G ,H 分别是AB ,AC ,11A B ,11A C 的中点,求证:(1)B ,C ,H ,G 四点共面;(2)1A E ∥平面BCHG .18.(2021·四川省南充市白塔中学高一月考)如图,在正方体1111ABCD A B C D 中,E 、F 分别是AB 、AA 1的中点.(1)证明:四边形EFD 1C 是梯形;(2)求异面直线EF 与BC 1所成角.19.(2021·全国·高一课时练习)如图所示的一块四棱柱木料1111ABCD A B C D -,底面ABCD 是梯形,且//CD AB .(1)要经过面1111D C B A 内的一点P 和侧棱1DD 将木料锯开,应怎样画线?(2)所画的线之间有什么位置关系?20.(2021·浙江·高一单元测试)点E ,F 分别是正方形ABCD 的边AB ,BC 的中点,点M 在边AB 上,且3AB AM =,沿图1中的虚线DE ,EF ,FD 将,,ADE BEF CDF ,折起使A ,B ,C 三点重合,重合后的点记为点P ,如图2.(1)证明:PF DM ⊥;(2)若正方形ABCD 的边长为6,求点M 到平面DEF 的距离.21.(2021·广东·南方科技大学附属中学高一期中)如图,在四棱锥P ABCD -中,PAB △是等边三角形,CB ⊥平面,//PAB AD BC 且22PB BC AD F ===,为PC 中点.(1)求证://DF 平面PAB ;(2)求直线AB 与平面PDC 所成角的正弦值.22.(2021·全国·高一课时练习)如图,直三棱柱ABC A B C '''-中,5AC BC ==,6AA AB '==,,D E 分别为,AB BB '上的点,且AD BE DB EB '=(1)当D 为AB 的中点时,求证:A B CE '⊥;(2)当D 在线段AB 上运动时(不含端点),求三棱锥A CDE '-体积的最小值.。

2021高中人教A版数学必修第二册课件:第八章-8.3 简单几何体的表面积与体积

2021高中人教A版数学必修第二册课件:第八章-8.3 简单几何体的表面积与体积
第八章 立体几何初步
8.3 简单几何体的表面积与体积
学习目标
1.了解球、柱、锥、台体的表面积的计算公式. 2.了解球、柱、锥、台体的体积的计算公式.
重点:了解柱体、锥体、台体和球的表面积和体积公式. 难点:台体的表面积和体积计算公式.
知识梳理
一、 棱柱、棱锥、棱台的表面积和体积
1.棱柱、棱锥、棱台的表面积 多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台 的表面积就是围成它们的各个面的面积的和.
S圆柱=2πr(r+l)(r是底面半径,l是母线长), S圆锥=πr(r+l)(r是底面半径,l是母线长), S 圆台=π(r′2+r2+r′l+rl)(r′,r 分别是上、下底面半径,l 是母线长).
拓展: 圆柱、圆锥、圆台的表面积公式之间的关系 由于圆柱可看成上、下两底面全等的圆台,圆锥可看成上底面半径为零的圆台, 因此圆柱、圆锥就可以看成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统 一在圆台的表面积公式之下,如图所示.
2.球的体积
V球=
4 3
πR3.R为球的半径.
【知识拓展】多面体的内切球与外接球问题 1.多面体的内切球(球在多面体内)
①若一个球与一个多面体的每一个面都相切,则称这个球是该多面体的内切球(并 不是每一个多面体都有内切球).
②求解多面体的内切球问题一般采用“切割法”:对于多面体的内切球,设其球心为 O,连接多面体各顶点与球心,将多面体分割为若干个棱锥. 设多面体的体积为 V,多面体的表面积为 S,内切球的半径为 r,即球心 O 到各个面
圆台的表面积为
.
(13+5 5 )π 解析:作出轴截面如图所示.
设GF=h,则EG=6-h,∴ 6 h = 2 ,∴ h=2,即DH=2.

高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

高中数学必修二   8  简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD ­-A 1B 1C 1D 1中,三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1­AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。

人教A版高中数学必修第二册课后习题 第8章 立体几何初步 8.3.1 棱柱、棱锥、棱台的表面积和体积

人教A版高中数学必修第二册课后习题 第8章 立体几何初步 8.3.1 棱柱、棱锥、棱台的表面积和体积

8.3.1 棱柱、棱锥、棱台的表面积和体积课后训练巩固提升1.若长方体的长、宽、高分别为3 cm,4 cm,5 cm,则长方体的体积为( )A.27 cm3B.60 cm3C.64 cm3D.125 cm3,其体积为底面积×高,即为3×4×5=60(cm3).2.已知正四棱锥,其底面边长为8,侧棱长为√41,则正四棱锥的表面积为( )A.48B.64C.80D.144,正四棱锥P-ABCD,取AB的中点E,连接PE,则PE⊥AB.在△PAB中,PA=PB=√41,AE=4,PE=√PA2-AE2=5.×8×5=20.故S△PAB=12即正四棱锥的表面积S=4S△PAB+S四边形ABCD=4×20+82=144.3.已知正方体的八个顶点中有四个恰为正四面体的顶点,则正方体的表面积与正四面体的表面积之比为( )A.√2∶1B.√3∶1C.√6∶2D.2∶√3a,则S正方体=6a2,正四面体的棱长为√2a,则S正四面体×(√2a)2=2√3a2,故正方体的表面积与正四面体的表面积之比为6a2∶=4×√342√3a2=√3∶1.4.已知长方体三个面的面积分别为2,6和9,则长方体的体积是( )A.6√3B.3√6C.11D.12a,b,c,则(abc)2=2×6×9=108.故体积V=abc=6√3.5.如图所示,在三棱台ABC-A1B1C1中,A1B1∶AB=1∶2,则三棱锥B-A1B1C1与三棱锥A1-ABC的体积比为( )A.1∶2B.1∶3C.1∶√2D.1∶4B-A 1B 1C 1与三棱锥A 1-ABC 的高相等,故其体积之比等于△A 1B 1C 1与△ABC 的面积之比,而△A 1B 1C 1与△ABC 的面积之比等于A 1B 1与AB 之比的平方,即1∶4,故选D.6.一个正四棱台,其上、下底面均为正方形,边长分别为8 cm 和18 cm,侧棱长为13 cm,则其表面积为 .h=√132-(18-82)2=12(cm),故S 侧=4×12×(8+18)×12=624(cm 2),S 上底=8×8=64(cm 2),S 下底=18×18=324(cm 2),于是表面积S=624+64+324=1012(cm 2).27.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为 .E 在线段AA 1上,所以S △DED 1=12×1×1=12.又因为点F 在线段B 1C 上,所以点F 到平面DED 1的距离为1,即h=1,所以V D 1-EDF =V F -DED 1=13×S △DED 1×h=13×12×1=16.8.如图①,一个正三棱柱容器,底面边长为a,高为2a,内装水若干,将容器放倒,把一个侧面作为底面,如图②,这时水面恰好为中截面,则图①中容器内水面的高度是 .①②h,水的体积为V,则V=S △ABC h.又题图②中水组成了一个直四棱柱,其底面积为34S △ABC ,高度为2a,则V=34S △ABC ·2a,故h=34S △ABC·2a S △ABC=32a.9.已知正四棱锥底面正方形的边长为4,高与斜高的夹角为30°,求正四棱锥的表面积和体积.,正四棱锥P-ABCD,其中PE 为斜高,PO 为高,则在Rt △POE 中,OE=2,∠OPE=30°, 所以PE=2OE=4,OP=2√3.因此S 侧=4×12PE·BC=4×12×4×4=32,S 表面=S 侧+S 底=32+16=48.V=13S 底·PO=13×16×2√3=323√3.10.已知正三棱锥S-ABC,一个正三棱柱的一个底面的三个顶点在棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15 cm,底面边长为12 cm,内接正三棱柱的侧面积为120 cm 2. (1)求正三棱柱的高;(2)求三棱柱上底面截得的棱锥与原棱锥侧面积之比.如图,设正三棱柱的高为hcm,底面边长为xcm, 则15-h 15=x12,得x=45(15-h).①因为S 三棱柱侧=3x·h=120,所以xh=40.②解①②,得{x =4,h =10或{x =8,h =5.故正三棱柱的高为10cm 或5cm.(2)由棱锥的性质,得S S -A 1B 1C 1侧S S -ABC 侧=(15-1015)2=19或S S -A 1B 1C 1侧S S -ABC 侧=(15-515)2=49.。

05-第三节 简单几何体的表面积与体积-课时3 球的表面积和体积高中数学必修第二册人教版

05-第三节 简单几何体的表面积与体积-课时3 球的表面积和体积高中数学必修第二册人教版
中心重合),若其中一个截面圆的周长为4π ,则该球
的体积为( A )
256π
A.
3
B.256π
64π
C.
3
16π
D.
3
【解析】 分析知球心到六个截面的距离均为正方体棱长的一半,即2 3.
2π = 4π,
设截面圆半径为,球的半径为,则ቊ 2
得 = 4,故该球
2
2
= + (2 3) ,
4
22 + 152 = 2 ,
1 + 2 = 27,
当两截面圆位于球心的两侧时,有൞12 + 242 = 2 ,解得 = 25.
22 + 152 = 2 ,
所以球 = 4π2 = 2 500π(cm2 ),
球 =
4
π3
3
4
3
3
= × π × 25 =
62 500
π(cm3 ).
3,
第10题解析图
11.[2024北京四中期中]若圆台的上、下底面半径分别为1 ,2 ,且1 2 = 3,
则此圆台的内切球(与圆台的上、下底面及侧面都相切的球称为圆台的内
12π
切球)的表面积为_____.
【解析】 如图,设圆台上、下底面圆心分别为1 ,
2 ,连接1 2 ,则圆台内切球的球心为1 2 的
256
3
的体积为 π × 4 =
π .
3
3
2.[2024山东德州联考]已知球心到过球面上,,三点的截面的距离等
于球半径的一半,且 = 18, = 24, = 30,则球的体积为( B
A.4 000π
B.4 000

C.12 000π

人教A版数学必修第二册第八章【高中数学《必修第二册》简单几何体的表面积与体积知识点汇总】

人教A版数学必修第二册第八章【高中数学《必修第二册》简单几何体的表面积与体积知识点汇总】

高中数学《必修第二册》简单几何体的表面积与体积知识点汇总知识清单1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们各个面的面积的和.2.棱柱、棱锥、棱台的体积(1),为棱柱的底面面积,为棱柱的高,(2),为棱锥的底面面积,为棱锥的高,(3),其中分别为棱台的上、下底面面积,为棱台的高.3.圆柱的表面积与体积(1)圆柱的侧面展开是一个矩形,(是底面半径,是母线长),(2)(是底面半径,是母线长),(3)(是底面半径,是高).4.圆锥的表面积与体积(1)圆锥的侧面展开是一个扇形,(是底面半径,是母线长),(2)(是底面半径,是母线长),(3)(是底面半径,是高).5.圆台的表面积与体积(1)圆台的侧面展开是一个扇环,(、分别是上、下底面半径,是母线长),(2),(3)((、分别是上、下底面半径,是高).6.球的表面积与体积(1),(2).《简单几何体的表面积与体积》综合练习题型一 棱柱、棱锥、棱台的表面积与体积1.正四棱锥的各棱长均为1,则它的体积是( )A.B.C.D.2.正六棱柱的高为6,底面边长为4,则它的全面积为( )A.B.C.D.1443.若棱台的上、下底面面积分别为4、16,高为3,则该棱台的体积为( )A.26B.28C.30D.324.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.B.C.D.5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A.B.C.D.6.在三棱台中,,则三棱锥,,的体积之比为()A.1:1:1B.2:1:1C.4:2:1D.4:1:27.已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,则该四棱台的表面积为8.已知一个三棱台的上、下底面分别是边长为20cm和30cm的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面的面积之和,则棱台的高为题型二 圆柱的的表面积与体积9.已知圆柱的上、下底面的中心分别为过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.B.C.D.10.已知圆柱的高为1,它的两个底面的圆周在直径为2的一个球的球面上,则该圆柱的体积为( )A.B.C.D.11.一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( )A.B.C.D.12.已知圆柱的高为4,底面积为,则圆柱的侧面积为 题型三 圆锥的表面积与体积13.底面积为,侧面积为的圆锥的体积是( )A.B.C.D.14.一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( )A.1B.2C.4D.815.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2B.C.4D.16.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为和,体积分别为和.若,则( )A.B.C.D.17.已知圆锥的表面积为,则其体积的最大值为( )A.B.C.D.18.已知圆锥的侧面积为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径是 19.已知一个圆锥的底面半径为6,其体积为,则该圆锥的侧面积为 20.已知一个圆锥的侧面展开图是一个半径为3,圆心角为的扇形,则该圆锥的体积为题型四 圆台的表面积与体积21.圆台上、下底面面积分别是,侧面积是,这个圆台的体积是( )A.B.C.D.22.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A.54B.C.58D.23.一个圆台的上、下底面面积分别为1、49,一个平行于底面的截面面积为25,则这个截面与上、下两个底面的距离之比为( )A.2:1B.3:1C.:1D.:124.如图,圆台上、下底面半径分别为5,10,母线长为20,从母线AB的中点M拉一条细绳,围绕圆台侧面转至下底面的点B,则B,M间细绳的最短长度为题型五 球的表面积与体积25.已知球O的表面积为,则球O的体积为( )A.B.C.D.26.若棱长为的正方体的顶点都在同一球面上,则该球的表面积为( )A.B.C.D.27.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A.B.C.D.28.已知H是球O的直径AB上一点,AH:HB=1:2,过点H的平面截球O所得截面圆的圆心为点H,且截面圆的面积为,则球O的表面积为 29.已知过球面上三点A、B、C的截面到球心的距离等于球半径的一半,且,则球的表面积等于 30.已知一个球内有相距的两个平行截面,它们的面积分别为和,则球的表面积是题型六 组合体的表面积与体积31.将一正方体截去四个角后,得到一个正四面体,这个四面体的体积是原正方体体积的( )A.B.C.D.32.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.B.C.D.33.在梯形中,,将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .B .C .D .34.如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .2735.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为,高为,内孔半径为,则此六角螺帽毛坯的体积是 36.如图所示,一个正方体的棱长为2,以相对两个面的中心连线为轴,钻一个半径为的圆柱形孔,则所得几何体的表面积为 35题图 36题图参考答案题型一 棱柱、棱锥、棱台的表面积与体积1-6 C,A,B,C,D,D 7.8.题型二 圆柱的的表面积与体积9-12 B,C,B,题型三 圆锥的表面积与体积13-17 B,B,B,C,A 18.1 19.20.题型四 圆台的表面积与体积21-24 D,A,A,50题型五 球的表面积与体积25-27 D,C,A 28.29.30.题型六 组合体的表面积与体积31-36 C,B,C,D,,。

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册课件(机构适用)

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册课件(机构适用)

(2)圆锥体积:V圆锥
=
1 3
r
2h
(r是底面半径,h是高)
03
(3)圆台体积:V圆台
=
1 3
h
r
2
r
r
r
2

r
,
r分别是上、下底面半径,是高)
01
名师点拨
01
柱体、椎体的体积公式可以看做台体体积公式的“特殊
02
形式”
03
V柱体
=Sh
SS
V台体
=
1 3
S
SS S
h
S0V椎体
=
1 3
Sh
05 球的表面积和体积
A.1610 m3 B.1440 m3 C.1320 m3
D.1150 m3
经典例题
解析
【详解】
因为墙体厚度为1m,所以除去墙体厚度的外环直径变为(30-2)m,加上墙体
厚度的内环直径变为(16+2)m,墙体高10m,由题意得围屋所有房间的室内总
体积为
30 2
2
2
16 2
2
2
02
2.圆锥表面积:S圆锥 = r r l(r是底面半径,l是母线长)
3.圆台表面积:S圆台= r2 r2 rl rl ( r, r 分别是上、下底面半径, l 是母线长)
03
01
归纳小结
01
02 03
04 圆柱、圆锥、圆台体积
02
体积
02 (1)圆柱体积:V圆柱=r2h (r是底面半径,h是高)
第八章立体形初步
8.3简单几何体的表面积与体积
学习目标
01
了解棱柱、棱锥、 棱台的表面积与体

新教材 人教A版高中数学必修第二册 第八章立体几何初步 课时练习题及章末测验 精选配套习题含解析

新教材 人教A版高中数学必修第二册 第八章立体几何初步 课时练习题及章末测验 精选配套习题含解析

第八章立体几何初步1、棱柱、棱锥、棱台的结构特征................................................................................ - 1 -2、圆柱、圆锥、圆台、球与简单组合体的结构特征................................................ - 7 -3、立体图形的直观图.................................................................................................. - 12 -4、棱柱、棱锥、棱台的表面积和体积...................................................................... - 18 -5、圆柱、圆锥、圆台的表面积和体积...................................................................... - 23 -6、球的表面积和体积.................................................................................................. - 29 -7、平面 ......................................................................................................................... - 35 -8、空间点、直线、平面之间的位置关系.................................................................. - 40 -9、直线与直线平行直线与平面平行...................................................................... - 44 -10、平面与平面平行.................................................................................................... - 49 -11、直线与直线垂直.................................................................................................... - 56 -12、直线与平面垂直.................................................................................................... - 63 -13、平面与平面垂直.................................................................................................... - 70 -章末综合测验................................................................................................................ - 76 -1、棱柱、棱锥、棱台的结构特征一、选择题1.(多选题)观察如下所示的四个几何体,其中判断正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台ACD[结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥.]2.(多选题)下列说法错误的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形ABC[选项A错误,反例如图①;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图②,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.①②]3.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()C[动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.]4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定A[如图.因为有水的部分始终有两个平面平行,而其余各面都易证是平行四边形,因此是棱柱.]5.用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形C[按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.①②]二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.12[该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,所以每条侧棱长为12 cm.]7.如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.10[将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.]8.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.3[如图,三棱台可分成三棱锥C1-ABC,三棱锥C1-ABB1,三棱锥A-A1B1C1,共3个.]三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解]这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.[解](1)如图①所示,三棱锥A1-AB1D1(答案不唯一).(2)如图②所示,三棱锥B1-ACD1(答案不唯一).(3)如图③所示,三棱柱A1B1D1-ABD(答案不唯一).①②③11.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是() A.三棱柱B.三棱台C.三棱锥D.四棱锥B[该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.]12.如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()①②③④A.①②B.②③C.③④D.①④B[在图②③中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图②③完全一样,而图①④则不同.]13.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.10[在上底面选一个顶点,同时在下底面选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.]14.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?[解](1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-12a2-a2-a2=32a2.15.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从点A出发沿长方体表面爬行到点C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.[解]把长方体的部分面展开,如图,有三种情况.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为90,74,80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为74.2、圆柱、圆锥、圆台、球与简单组合体的结构特征一、选择题1.下列几何体中是旋转体的是 ( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A .①和⑤B .①和②C .③和④D .①和④D [根据旋转体的概念可知,①和④是旋转体.]2.图①②中的图形折叠后的图形分别是( )① ②A .圆锥、棱柱B .圆锥、棱锥C .球、棱锥D .圆锥、圆柱B [根据图①的底面为圆,侧面为扇形,得图①折叠后的图形是圆锥;根据图②的底面为三角形,侧面均为三角形,得图②折叠后的图形是棱锥.]3.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是( )A .等边三角形B .等腰直角三角形C .顶角为30°等腰三角形D .其他等腰三角形A [设圆锥底面圆的半径为r ,依题意可知2πr =π·a 2,则r =a 4,故轴截面是边长为a 2的等边三角形.]4.如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A .一个棱柱中挖去一个棱柱B .一个棱柱中挖去一个圆柱C .一个圆柱中挖去一个棱锥D .一个棱台中挖去一个圆柱B [一个六棱柱挖去一个等高的圆柱,选B .]5.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.]二、填空题6.如图是一个几何体的表面展开图形,则这个几何体是________.圆柱 [一个长方形和两个圆折叠后,能围成的几何体是圆柱.]7.下列命题中错误的是________.①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.② [因为圆锥的母线长一定,根据三角形面积公式,当两条母线的夹角为90°时,圆锥的轴截面面积最大.]8.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为________ cm 2.9π [设截面圆半径为r cm ,则r 2+42=52,所以r =3.所以截面圆面积为9π cm 2.]三、解答题9.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.[解]如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.10.一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解](1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得上底面半径O1A=2(cm),下底面半径OB=5(cm),又因为腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA,OO1,CD交于点S,设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l-12l=25,解得l=20 (cm),即截得此圆台的圆锥的母线长为20 cm.11. (多选题)对如图中的组合体的结构特征有以下几种说法,其中说法正确的是()A.由一个长方体割去一个四棱柱所构成的B.由一个长方体与两个四棱柱组合而成的C.由一个长方体挖去一个四棱台所构成的D.由一个长方体与两个四棱台组合而成的AB[如图,该组合体可由一个长方体割去一个四棱柱所构成,也可以由一个长方体与两个四棱柱组合而成.故选项AB正确.]12.在正方体ABCD-A′B′C′D′中,P为棱AA′上一动点,Q为底面ABCD上一动点,M是PQ的中点,若点P,Q都运动时,点M构成的点集是一个空间几何体,则这个几何体是()A.棱柱B.棱台C.棱锥D.球的一部分A[由题意知,当P在A′处,Q在AB上运动时,M的轨迹为过AA′的中点,在平面AA′B′B内平行于AB的线段(靠近AA′),当P在A′处,Q在AD上运动时,M的轨迹为过AA′的中点,在平面AA′D′D内平行于AD的线段(靠近AA′), 当Q在B处,P在AA′上运动时,M的轨迹为过AB的中点,在平面AA′B′B内平行于AA′的线段(靠近AB), 当Q在D处,P在AA′上运动时,M的轨迹为过AD的中点,在平面AA′D′D内平行于AA′的线段(靠近AB), 当P在A处,Q在BC上运动时,M 的轨迹为过AB的中点,在平面ABCD内平行于AD的线段(靠近AB), 当P在A处,Q在CD上运动时,M的轨迹为过AD的中点,在平面ABCD内平行于AB的线段(靠近AD), 同理得到:P在A′处,Q在BC上运动;P在A′处,Q在CD上运动;Q在C处,P在AA′上运动;P,Q都在AB,AD,AA′上运动的轨迹.进一步分析其他情形即可得到M的轨迹为棱柱体.故选A.]13.如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA 上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.则绳子的最短长度的平方f(x)=________.x2+16(0≤x≤4)[将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA′的长度L就是圆O的周长,所以L=2πr=2π,所以∠ASM=Ll=π2.由题意知绳子长度的最小值为展开图中的AM,其值为AM=x2+16 (0≤x≤4).所以f(x)=AM2=x2+16(0≤x≤4).]14.球的两个平行截面的面积分别是5π,8π,两截面间的距离为1,求球的半径.[解]设两个平行截面圆的半径分别为r1,r2,球半径为R.由πr21=5π,得r1= 5.由πr22=8π,得r2=2 2.(1)如图,当两个截面位于球心O的同侧时,有R2-r21-R2-r22=1,即R2-5=1+R2-8,解得R=3.(2)当两个截面位于球心O的异侧时,有R2-5+R2-8=1.此方程无解.由(1)(2)知球的半径为3.15.圆台上底面面积为π,下底面面积为16π,用一个平行于底面的平面去截圆台,该平面自上而下分圆台的高的比为2∶1,求这个截面的面积.[解]圆台的轴截面如图,O1,O2,O3分别为上底面、下底面、截面圆心.过点D作DF⊥AB于点F,交GH于点E.由题意知DO1=1,AO2=4,∴AF=3.∵DE=2EF,∴DF=3EF,∴GEAF=DEDF=23,∴GE=2.∴⊙O3的半径为3.∴这个截面面积为9π.3、立体图形的直观图一、选择题1.(多选题)如图,已知等腰三角形ABC,则如下所示的四个图中,可能是△ABC 的直观图的是()A B C DCD[原等腰三角形画成直观图后,原来的腰长不相等,CD两图分别为在∠x′O′y′成135°和45°的坐标系中的直观图.]2.(多选题)对于用斜二测画法画水平放置的图形的直观图来说,下列描述正确的是()A.三角形的直观图仍然是一个三角形B.90°的角的直观图会变为45°的角C.与y轴平行的线段长度变为原来的一半D.由于选轴的不同,所得的直观图可能不同ACD [对于A ,根据斜二测画法特点知,相交直线的直观图仍是相交直线,因此三角形的直观图仍是一个三角形,故A 正确;对于B,90°的角的直观图会变为45°或135°的角,故B 错误;C ,D 显然正确.]3.把△ABC 按斜二测画法得到△A ′B ′C ′(如图所示),其中B ′O ′=C ′O ′=1,A ′O ′=32,那么△ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .三边互不相等的三角形A [根据斜二测画法还原三角形在直角坐标系中的图形,如图所示:由图易得AB =BC =AC =2,故△ABC 为等边三角形,故选A .]4.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m 、5 m 、10 m ,四棱锥的高为8 m ,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A .4 cm,1 cm,2 cm,1.6 cmB .4 cm,0.5 cm,2 cm,0.8 cmC .4 cm,0.5 cm,2 cm,1.6 cmD .2 cm,0.5 cm,1 cm,0.8 cmC [由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm 和1.6 cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm ,2 cm ,1.6 cm.]5.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B .1+22C .2+22D .1+2A[画出其相应平面图易求,故选A.]二、填空题6.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.(4,2)[在x′轴的正方向上取点M1,使O′M1=4,在y′轴上取点M2,使O′M2=2,过M1和M2分别作平行于y′轴和x′轴的直线,则交点就是M′.] 7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.2.5[由直观图知,由原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.]8.水平放置的△ABC在直角坐标系中的直观图如图所示,其中D′是A′C′的中点,且∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.2[△ABC为直角三角形,因为D为AC中点,所以BD=AD=CD.所以与BD的长相等的线段有2条.]三、解答题9.画出水平放置的四边形OBCD(如图所示)的直观图.[解](1)过点C作CE⊥x轴,垂足为点E,如图①所示,画出对应的x′轴、y′轴,使∠x′O′y′=45°,如图②所示.①②③(2)如图②所示,在x′轴上取点B′,E′,使得O′B′=OB,O′E′=OE;在y′轴上取一点D′,使得O′D′=12OD;过点E′作E′C′∥y′轴,使E′C′=12EC.(3)连接B′C′,C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图③所示,四边形O′B′C′D′就是所求的直观图.10.如图,△A′B′C′是水平放置的平面图形的直观图,试画出原平面图形△ABC.[解](1)画法:过C′,B′分别作y′轴的平行线交x′轴于D′,E′.(2)在直角坐标系xOy中.在x轴上取两点E,D使OE=O′E′,OD=O′D′,再分别过E,D作y轴平行线,取EB=2E′B′,DC=2D′C′.连接OB,OC,BC即求出原△ABC.11.如图所示,△A′O′B′表示水平放置的△AOB的直观图,B′在x′轴上,A′O′和x′轴垂直,且A′O′=2,则△AOB的边OB上的高为()A .2B .4C .2 2D .42D [设△AOB 的边OB 上的高为h ,由题意,得S 原图形=22S 直观图,所以12OB ·h =22×12×2×O ′B ′.因为OB =O ′B ′,所以h =4 2.故选D .]12.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为 3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cmD [由题意可知其直观图如图,由图可知两个顶点之间的距离为5 cm.故选D .]13.已知用斜二测画法,画得的正方形的直观图面积为182,则原正方形的面积为________.72 [如图所示,作出正方形OABC 的直观图O ′A ′B ′C ′,作C ′D ′⊥x ′轴于点D ′.S 直观图=O ′A ′×C ′D ′.又S 正方形=OC ×OA . 所以S 正方形S 直观图=OC ×OAO ′A ′×C ′D ′, 又在Rt △O ′D ′C ′中,O ′C ′=2C ′D ′,即C ′D ′=22O ′C ′,结合平面图与直观图的关系可知OA =O ′A ′,OC =2O ′C ′, 所以S 正方形S 直观图=OC ×OA OA ×22O ′C ′=2O ′C ′22O ′C ′=2 2. 又S 直观图=182,所以S 正方形=22×182=72.]14.如图是一个边长为1的正方形A ′B ′C ′D ′,已知该正方形是某个水平放置的四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.[解]四边形ABCD的真实图形如图所示,因为A′C′在水平位置,A′B′C′D′为正方形,所以∠D′A′C′=∠A′C′B′=45°,所以在原四边形ABCD中,AD⊥AC,AC⊥BC,因为AD=2D′A′=2,AC=A′C′=2,=AC·AD=2 2.所以S四边形ABCD15.画出底面是正方形,侧棱均相等的四棱锥的直观图.[解](1)画轴.画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°,如图①.(2)画底面.以O为中心在xOy平面内画出正方形水平放置的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是原四棱锥的高.(4)成图.连接P A、PB、PC、PD,并擦去辅助线,得四棱锥的直观图如图②.①②4、棱柱、棱锥、棱台的表面积和体积一、选择题1.如图,ABC-A′B′C′是体积为1的棱柱,则四棱锥C-AA′B′B的体积是()A .13 B .12 C .23D .34C [∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,∴V C -AA ′B ′B=1-13=23.] 2.正方体的表面积为96,则正方体的体积为( ) A .48 6 B .64 C .16 D .96[答案] B3.棱锥的一个平行于底面的截面把棱锥的高分成1∶2(从顶点到截面与从截面到底面)两部分,那么这个截面把棱锥的侧面分成两部分的面积之比等于( )A .1∶9B .1∶8C .1∶4D .1∶3 B [两个锥体的侧面积之比为1∶9,小锥体与台体的侧面积之比为1∶8,故选B .]4.若正方体八个顶点中有四个恰好是正四面体的顶点,则正方体的表面积与正四面体的表面积之比是( )A . 3B . 2C .23D .32 A [如图所示,正方体的A ′、C ′、D 、B 的四个顶点可构成一个正四面体,设正方体边长为a ,则正四面体边长为2a . ∴正方体表面积S 1=6a 2, 正四面体表面积为S 2=4×34×(2a )2=23a 2,∴S 1S 2=6a 223a 2= 3.] 5.四棱台的两底面分别是边长为x 和y 的正方形,各侧棱长都相等,高为z ,且侧面积等于两底面积之和,则下列关系式中正确的是( )A .1x =1y +1zB .1y =1x +1zC .1z =1x +1yD .1z =1x +yC [由条件知,各侧面是全等的等腰梯形,设其高为h ′,则根据条件得, ⎩⎪⎨⎪⎧4·x +y 2·h ′=x 2+y 2,z 2+⎝ ⎛⎭⎪⎫y -x 22=h ′2,消去h ′得,4z 2(x +y )2+(y -x )2(y +x )2=(x 2+y 2)2. ∴4z 2(x +y )2=4x 2y 2, ∴z (x +y )=xy , ∴1z =1x +1y .] 二、填空题6.已知一个长方体的三个面的面积分别是2,3,6,则这个长方体的体积为________.6[设长方体从一点出发的三条棱长分别为a ,b ,c ,则⎩⎪⎨⎪⎧ab =2,ac =3,bc =6,三式相乘得(abc )2=6,故长方体的体积V =abc = 6.]7.(一题两空)已知棱长为1,各面均为等边三角形的四面体,则它的表面积是________,体积是________.3 212 [S 表=4×34×12=3, V 体=13×34×12×12-⎝ ⎛⎭⎪⎫33 2=212.]8.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,则点A 到平面A 1BD 的距离d =________.33a [在三棱锥A 1-ABD 中,AA 1是三棱锥A 1-ABD 的高,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,∵V 三棱锥A 1-ABD =V 三棱锥A -A 1BD , ∴13×12a 2×a =13×12×2a ×32×2a ×d , ∴d =33a .∴点A 到平面A 1BD 的距离为33a .] 三、解答题9.已知四面体ABCD 中,AB =CD =13,BC =AD =25,BD =AC =5,求四面体ABCD 的体积.[解] 以四面体的各棱为对角线还原为长方体,如图. 设长方体的长、宽、高分别为x ,y ,z ,则⎩⎨⎧x 2+y 2=13,y 2+z 2=20,x 2+z 2=25,∴⎩⎨⎧x =3,y =2,z =4.∵V D -ABE =13DE ·S △ABE =16V 长方体, 同理,V C -ABF =V D -ACG =V D -BCH =16V 长方体, ∴V 四面体ABCD =V 长方体-4×16V 长方体=13V 长方体. 而V 长方体=2×3×4=24,∴V 四面体ABCD =8.10.如图,已知正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的表面积.[解] 如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ⊥AB ,与AB 交于点E ,连接SE ,则SE ⊥AB ,SE =h ′.∵S 侧=2S 底, ∴12·3a ·h ′=34a 2×2. ∴a =3h ′.∵SO ⊥OE ,∴SO 2+OE 2=SE 2. ∴32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.∴h ′=23,∴a =3h ′=6.∴S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ∴S 表=S 侧+S 底=183+93=27 3.11.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为( ) A .3π B .43 C .32πD .1B [如图所示,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为2,故底面积为(2)2=2;四棱锥的高为1,故四棱锥的体积为13×2×1=23.则几何体的体积为2×23=43.]12.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为( ) A .423 B . 2 C .223 D .23D [由题意,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为2,三条侧棱两两垂直,所以此三棱锥的体积为13×12×2×2×2=23.]13.(一题两空)已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是________,表面积是________.90 138 [该几何体的体积V =4×6×3+12×4×3×3=90,表面积S =2(4×6+4×3+6×3)-3×3+12×4×3×2+32+42×3+3×4=138.]14.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为4的正方形,EF ∥AB ,EF =2,EF 上任意一点到平面ABCD 的距离均为3,求该多面体的体积.[解] 如图,连接EB ,EC .四棱锥E -ABCD 的体积 V 四棱锥E -ABCD =13×42×3=16. ∵AB =2EF ,EF ∥AB , ∴S △EAB =2S △BEF .∴V 三棱锥F -EBC =V 三棱锥C -EFB =12V 三棱锥C -ABE =12V 三棱锥E -ABC =12×12V 四棱锥E -ABCD =4. ∴多面体的体积V =V 四棱锥E -ABCD +V 三棱锥F -EBC =16+4=20.15.一个正三棱锥P -ABC 的底面边长为a ,高为h .一个正三棱柱A 1B 1C 1-A 0B 0C 0的顶点A 1,B 1,C 1分别在三条棱上,A 0,B 0,C 0分别在底面△ABC 上,何时此三棱柱的侧面积取到最大值?[解] 设三棱锥的底面中心为O ,连接PO (图略),则PO 为三棱锥的高,设A 1,B 1,C 1所在的底面与PO 交于O 1点,则A 1B 1AB =PO 1PO ,令A 1B 1=x ,而PO =h ,则PO 1=ha x ,于是OO 1=h -PO 1=h -h a x =h ⎝ ⎛⎭⎪⎫1-x a .所以所求三棱柱的侧面积为S =3x ·h ⎝ ⎛⎭⎪⎫1-x a =3h a (a -x )x =3h a ⎣⎢⎡⎦⎥⎤a 24-⎝ ⎛⎭⎪⎫x -a 22.当x =a 2时,S 有最大值为34ah ,此时O 1为PO 的中点.5、圆柱、圆锥、圆台的表面积和体积一、选择题1.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为( ) A .πQ B .2πQ C .3πQD .4πQB [正方形绕其一边旋转一周,得到的是圆柱,其侧面积为S =2πrl =2π·Q ·Q =2πQ .故选B .]2.一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为( )A .2B .2 2C .4D .8C[圆台的轴截面如图,由题意知,l=12(r+R),S圆台侧=π(r+R)·l=π·2l·l=32π,∴l=4.]3.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7B.6C.5D.3A[设圆台较小底面半径为r,则另一底面半径为3r.由S=π(r+3r)·3=84π,解得r=7.]4.已知某圆柱的底面周长为12,高为2,矩形ABCD是该圆柱的轴截面,则在此圆柱侧面上,从A到C的路径中,最短路径的长度为()A.210 B.2 5C.3 D.2A[圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从A到C的最短路径为线段AC,AC=22+62=210.故选A.]5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这截面把圆锥母线分为两段的比是()A.1∶3 B.1∶ (3-1)C.1∶9 D.3∶2B[由面积比为1∶3,知小圆锥母线与原圆锥母线长之比为1∶3,故截面把圆锥母线分为1∶(3-1)两部分,故选B.]二、填空题6.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.2 [设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr .解得r =1,即直径为2.]7.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 3 [圆台的轴截面是下底长为12寸,上底长为28寸,高为18寸的等腰梯形,雨水线恰为中位线,故雨水线直径是20寸,所以降水量为π3(102+10×6+62)×9π×142=3(寸).]8.圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图扇环的圆心角是180°(如图),那么圆台的体积是________.7 000π3 3 cm 3[180°=20-10l ×360°,∴l =20, h =103,V =13π(r 21+r 22+r 1r 2)·h =7 0003π3 (cm 3).] 三、解答题9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. [解] 设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 圆锥=πr 2+πr ·6r =7πr 2=15π,得r =157,圆锥的高h =⎝⎛⎭⎪⎫61572-⎝⎛⎭⎪⎫1572=53,V =13πr 2h =13π×157×53=2537π.10.如图是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,且水面高于圆锥顶部,当铅锤从水中取出后,杯里的水将下降多少?[解] 因为圆锥形铅锤的体积为13×π×⎝ ⎛⎭⎪⎫622×20=60π(cm 3),设水面下降的高度为x cm ,则小圆柱的体积为π⎝ ⎛⎭⎪⎫2022x =100πx .所以有60π=100πx ,解此方程得x =0.6. 故杯里的水将下降0.6 cm.11.已知圆柱的侧面展开图矩形面积为S ,底面周长为C ,它的体积是( ) A .C 34πS B .4πS C 3 C .CS 2πD .SC 4πD [设圆柱底面半径为r ,高为h ,则⎩⎨⎧Ch =S ,C =2πr ,∴r =C 2π,h =S C .∴V =πr 2·h =π⎝ ⎛⎭⎪⎫C 2π2·S C =SC4π.]12.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b .那么圆柱被截后剩下部分的体积是________.πr 2(a +b )2 [采取补体方法,相当于一个母线长为a +b 的圆柱截成了两个体积相等的部分,所以剩下部分的体积V =πr 2(a +b )2.]13.(一题两空)圆柱内有一个内接长方体ABCD -A 1B 1C 1D 1,长方体的体对角线长是10 2 cm ,圆柱的侧面展开图为矩形,此矩形的面积是100π cm 2,则圆柱的底面半径为________cm ,高为________cm.5 10 [设圆柱底面半径为r cm ,高为h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则:⎩⎨⎧(2r )2+h 2=(102)2,2πrh =100π, 所以⎩⎨⎧r =5,h =10.即圆柱的底面半径为5 cm ,高为10 cm.]14.如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4, AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以S =S 底+S 侧=2π+23π=(2+23)π.15.某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪用).已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪种方案更经济些?[解] (1)设两种方案所建的仓库的体积分别为V 1,V 2.方案一:仓库的底面直径变成16 m ,则其体积V 1=13×π×⎝ ⎛⎭⎪⎫1622×4=2563π(m 3); 方案二:仓库的高变成8 m ,则其体积V 2=13×π×⎝ ⎛⎭⎪⎫1222×8=96π(m 3).(2)设两种方案所建的仓库的表面积分别为S 1,S 2. 方案一:仓库的底面直径变成16 m ,半径为8 m , 此时圆锥的母线长为l 1=82+42=45(m),则仓库的表面积S 1=π×8×(8+45)=(64+325)π(m 2);方案二:仓库的高变成8 m ,此时圆锥的母线长为l 2=82+62=10(m), 则仓库的表面积S 2=π×6×(6+10)=96π(m 2). (3)因为V 2>V 1,S 2<S 1, 所以方案二比方案一更加经济.。

高中数学新教材必修第二册第八章 立体几何初步 8.3 简单几何体的表面积与体积(南开题库含详解)

高中数学新教材必修第二册第八章  立体几何初步 8.3  简单几何体的表面积与体积(南开题库含详解)

第八章 立体几何初步 8.3 简单几何体的表面积与体积一、选择题(共40小题;共200分)1. 一个四面体的所有棱长都为 √2 ,四个顶点在同一球面上,则此球的表面积为 ( ) A. 3πB. 4πC. 3√3πD. 6π2. 有一个几何体的三视图及其尺寸如图(单位:cm ),该几何体的表面积和体积为 ( )A. 24π,12πB. 15π,12πC. 24π,36πD. 以上都不正确3. 已知下列三个命题:①若一个球的半径缩小到原来的 12,则其体积缩小到原来的 18; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线 x +y +1=0 与圆 x 2+y 2=12 相切.其中真命题的序号是 ( ) A. ①②③B. ①②C. ①③D. ②③4. 如图,是一个几何体的三视图,其主视图、左视图是直角边长为 2 的等腰直角三角形,俯视图为边长为 2 的正方形,则此几何体的表面积为 ( )A. 8+4√2B. 8+4√3C. 6+6√2D. 8+2√2+2√35. 一个四棱锥的三视图如图所示,其侧视图是等边三角形.则该四棱锥的体积等于 ( )A. 8√3B. 16√3C. 24√3D. 48√36. 如图,在长方体ABCD−A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC,A1D1的两个平行截面将长方体分成三部分,其体积分别记为V1=V AEA1−DFD1,V2=V EBE1A1−FCF1D1,V3=V B1E1B−C1F1C.若V1:V2:V3=1:4:1,则截面A1EFD1的面积为( )A. 4√10B. 8√3C. 4√13D. 167. 一个几何体的三视图如图所示,则该几何体的体积(单位:cm3)为( )A. π+√33B. 2π+√33C. 2π+√3D. π+√38. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 64B. 72C. 80D. 1129. 在△ABC中,AB=2,BC=1.5,∠ABC=120∘,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是( )A. 32π B. 52π C. 72π D. 92π10. 某空间几何体的三视图如图所示,则该几何体的表面积为( )A. 180B. 240C. 276D. 30011. 已知某四棱锥的三视图,如图所示.则此四棱锥的体积为( )A. 6B. 5C. 4D. 312. 正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是( )A. π3a B. π2a C. 2πa D. 3πa13. 一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A. √3+√6B. √3+√5C. √2+√6D. √2+√514. 某几何体的三视图如图所示,则该几何体的体积为( )A. 8−2πB. 8−πC. 8−π2D. 8−π415. 直三棱柱ABC−A1B1C1的直观图及三视图如下图所示,D为AC的中点,则下列命题是假命题的是( )A. AB1∥平面BDC1B. A1C⊥平面BDC1C. 直三棱柱的体积V=4D. 直三棱柱的外接球的表面积为4π16. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A. 9πB. 10πC. 11πD. 12π17. 一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A. 1+2π2πB. 1+4π4πC. 1+2ππD. 1+4π2π18. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 23π+4 B. 2π+4 C. π+4 D. π+219. 在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2π3B. 4π3C. 5π3D. 2π20. 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A. √23B. √33C. 43D. 3221. 小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视图如图所示,若网格纸上小正方形的边长为1,则小明绘制的建筑物的体积为( )A. 16+8πB. 64+8πC. 64+8π3D. 16+8π322. 正三棱锥的底面边长为a,高为√66a,则此棱锥的侧面积为( )A. 34a2 B. 32a2 C. 3√34a2 D. 3√32a223. 已知正方形ABCD的边长为6,空间有一点M(不在平面ABCD内)满足∣MA∣+∣MB∣=10,则三棱锥A−BCM的体积的最大值是( )A. 48B. 36C. 30D. 2424. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A. 18B. 17C. 16D. 1525. 棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A. a33B. a34C. a36D. a31226. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2√23π B. 4√2π3C. 2√2πD. 4√2π27. 已知A,B是球O的球面上两点,∠AOB=90∘,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为( )A. 36πB. 64πC. 144πD. 256π28. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )A. 2B. 92C. 32D. 329. 如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A. 500π3cm3 B. 866π3cm3 C. 1372π3cm3 D. 2048π3cm330. 一个棱锥三个侧面两两互相垂直,它们的面积分别为12cm2,8cm2,6cm2,那么这个三棱锥的体积为( )A. 8√2πB. 8√23C. 24√2D. 8√231. E,F分别是边长为1的正方形ABCD边BC,CD的中点,沿线AF,AE,EF折起来,则所围成的三棱锥的体积为( )A. 13B. 16C. 112D. 12432. 如图,三棱柱ABC−A1B1C1中,D是棱AA1的中点,平面BDC1分此棱柱为上下两部分,则这上下两部分体积的比为( )A. 2:3B. 1:1C. 3:2D. 3:433. 正方体的全面积为a2,它的顶点都在同一个球面上,这个球的半径是( )A. √36a B. √24a C. √22a D. √32a34. 如图,△ABC为正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,则多面体ABC−A1B1C1在平面A1ABB1上的投影的面积为( )A. 274B. 92C. 9D. 27235. 如图,已知直三棱柱ABC−A1B1C1,点P,Q分别在侧棱AA1和CC1上,AP=C1Q,则平面BPQ把三棱柱分成两部分的体积比为( )A. 2:1B. 3:1C. 3:2D. 4:336. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A. 1B. 2C. 4D. 837. 如图所示,正方体ABCD−AʹBʹCʹDʹ的棱长为1,E,F分别是棱AAʹ,CCʹ的中点,过直线E F的平面分别与棱BBʹ,DDʹ交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDDʹBʹ;②当且仅当x=12时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥Cʹ−MENF的体积V=ℎ(x)为常函数.以上命题中假命题的序号为( )A. ①④B. ②C. ③D. ③④38. 如图,正方体ABCD−A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=√33.给出下列四个结论:①CE⊥BD;②三棱锥E−BCF的体积为定值;③△BEF在底面ABCD内的正投影是面积为定值的三角形;④在平面ABCD内存在无数条与平面DEA1平行的直线.其中,正确结论的个数是( )A. 1B. 2C. 3D. 439. 已知正方体ABCD−A1B1C1D1棱长为1,点P在线段BD1上,当∠APC最大时,三棱锥P−ABC的体积为( )A. 124B. 118C. 19D. 11240. 一个圆锥被过顶点的平面截去了较小的一部分,余下的几何体的三视图如图,则该几何体的表面积为( )A. √5+3√3π2+3π2+1 B. 2√5+3√3π+3π2+1C. √5+3√3π2+3π2D. √5+3√3π2+π2+1二、填空题(共40小题;共200分)41. 已知某球体的体积与其表面积的数值相等,则此球体的半径为.42. 若一个球的体积为4√3π,则它的表面积为.43. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.44. 一个正方体的各顶点均在同一球的球面上,若该球的体积为4√3π,则该正方体的表面积为.45. 某几何体的三视图如图所示,则该几何体的体积是.46. 已知某几何体的三视图如图所示,则该几何体的体积为.47. 一个几何体的三视图如图所示,则该几何体的体积为.48. 已知一个正方体的所有顶点在一个球面上,若球的体积为9π,则正方体的棱长为.249. 如图是一个几何体的三视图.若它的体积是3√3,则a=.50. 某空间几何体的三视图如图所示,则该几何体的体积为.51. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积是.52. 用一张长为12米,宽为8米的矩形铁皮围成圆柱的侧面,则这个圆柱的体积为.53. 有一个几何体的三视图及其尺寸(单位cm)如下图所示,则该几何体的表面积为:.54. 一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.55. 底面是正方形,容积为256的无盖水箱,它的高为时最省材料.56. 某几何体的三视图如图所示,则该几何体的体积为.57. 一个几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3.58. 已知一个四棱锥的三视图如图所示,则此四棱锥的体积为.59. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.60. 某几何体的三视图如图所示,则该几何体的体积为.61. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.62. 几何体的三视图如图所示,其侧视图是一个等边三角形,则这个几何体的体积是.63. 一空间几何体的三视图如图所示,则该几何体的体积为.64. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积为.65. 已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.66. 如图是一个几何体的三视图,则这个几何体的体积为.,则正视图与侧视图中x的值67. 一空间几何体的三视图如右图所示,该几何体的体积为12π+8√53为.68. 如图是—个几何体的三视图,则该几何体的表面积为.69. 一个几何体的三视图如图,正视图和侧视图都是由一个半圆和一个边长为2的正方形组成,俯视图是一个圆,则这个几何体的表面积为.70. 如图所示,一款冰淇淋甜筒的三视图中俯视图是以3为半径的圆,则该甜筒的表面积为.71. ―个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.72. 正方体ABCD−A1B1C1D1的棱长为2√3,则四面体A−B1CD1的外接球的体积为.73. 已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.74. 如图,已知正方体ABCD−A1B1C1D1的棱长为1,则四棱锥A1−BB1D1D的体积为.75. 已知某三棱锥的三视图如图所示,则它的外接球体积为.76. 如图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:cm)可知该几何体的表面积为.77. 图中的三个直角三角形是一个体积为20cm3的几何体的三视图,该几何体的外接球表面积为cm278. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.79. 一个圆锥体被过其顶点的平面截去一部分,余下的几何体的三视图如图所示(单位:cm),则余下的几何体的体积为cm3.80. 棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为.三、解答题(共20小题;共260分)81. 如图,长方体ABCD−A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.82. 三棱锥S−ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S−BCED的体积.83. 在单位正方体AC1中,点E,F分别是棱BC,CD的中点.(1)求证:D1E⊥平面AB1F;(2)求三棱锥E−AB1F的体积;(3)设直线B1E,B1D1与平面AB1F所成的角分别为α,β,求cos(α+β)的值.84. 如图,三棱锥S−ABC内接于一个圆锥(有公共顶点和底面,侧棱与圆锥母线重合).已知AB=5cm,BC=3cm,AC=4cm,SA=SB=SC=10cm,(1)求圆锥的侧面积及侧面展开图的中心角;(2)求A经过圆锥的侧面到B点的最短距离.85. 如图,四棱锥P−ABCD中,底面ABCD为平行四边形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分别在线段AD,CP上,且AMMD =PNNC=4.(1)求证:MN∥平面PAB;(2)求三棱锥P−AMN的体积.86. 如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45∘,AB=2AD=2,∠BAD=60∘.(1)求证:BD⊥平面ADG;(2)求此多面体的全面积.87. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12(m),高4(m),养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4(m)(高不变);二是高度增加4(m)(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?88. 如图,ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC,Eʹ和Fʹ是平面ABCD内的两点,EʹE和FʹF都与平面ABCD垂直.(1)证明:直线EʹFʹ垂直且平分线段AD.(2)若∠EAD=∠EAB=60∘,EF=2,求多面体ABCDEF的体积.89. 如图,三棱锥A−BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A−MBC的体积.90. 如图,四棱锥 P −ABCD 中,底面是以 O 为中心的菱形,PO ⊥ 底面 ABCD ,AB =2,∠BAD =π3,M 为 BC 上一点,且 BM =12.(1)证明:BC ⊥ 平面 POM ; (2)若 MP ⊥AP ,求四棱锥 P −ABMO 的体积.91. 如图,平行四边形 ABCD 中,∠DAB =60∘,AB =2,AD =4,将 △CBD 沿 BD 折起到 △EBD的位置,使平面 EBD ⊥ 平面 ABD .(1)求证:AB ⊥DE ; (2)求三棱锥 E −ABD 的侧面积.92. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为 12 m ,高 4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大 4 m (高不变);二是高度增加 4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的侧面积; (3)哪个方案更经济些?93. 如图所示,三棱柱 ABC −A 1B 1C 1 中,AA 1⊥平面ABC ,D ,E 分别为 A 1B 1,AA 1 的中点,点 F在棱 AB 上,且 AF =14AB .(1)求证:EF ∥平面BC 1D ;(2)在棱 AC 上是否存在一个点 G ,使得平面 EFG 将三棱柱分割成的两部分体积之比为 1:15,若存在,指出点 G 的位置;若不存在,请说明理由.94. 如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体N−BCM的体积.95. 如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;,求该三棱锥的侧面积.(2)若∠ABC=120∘,AE⊥EC,三棱锥E−ACD的体积为√6396. 如图,在斜三棱柱ABC−A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120∘,E、F分别是棱B1C1、A1A的中点.(1)求A1A与底面ABC所成的角;(2)证明A1E∥平面B1FC;(3)求经过A1、A、B、C四点的球的体积.97. 如图1,∠ACB=45∘,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90∘(如图2所示).(1)当BD的长为多少时,三棱锥A−BCD的体积最大;(2)当三棱锥A−BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.98. 如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D−AE−C为60∘,AP=1,AD=√3,求三棱锥E−ACD的体积.99. 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(1)证明:BD⊥PC;(2)若AD=4,BC=2,直线PD与平面PAC所成的角为30∘,求四棱锥P−ABCD的体积.100. 如图,已知正方体ABCD−A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM= AN=1.(1)证明:M,N,C,D1四点共面;(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.答案第一部分1. A2. A3. C4. A 【解析】由三视图知,该几何体是底面为正方形的四棱锥,其直观图如下图.所以其表面积为2×2+2×(12×2×2)+2×(12×2×2√2)=8+4√2.5. A【解析】由三视图可以看出,该几何体为四棱锥,所以V=13×12(2+4)×4×2√3=8√3.6. C7. A8. C 【解析】该几何体是由一个正方体和一个四棱锥组合而成,V=4×4×4+13×4×4×3=80.9. A 【解析】如图:△ABC中,绕直线BC旋转一周,则所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分.因为AB=2,BC=1.5,∠ABC=120∘,所以AE=ABsin60∘=√3,BE=ABcos60∘=1,设V1是以ACD为轴截面的圆锥的体积,V2是以ABD为轴截面的圆锥的体积.V1=13π⋅AE2⋅CE=52π,V2=13π⋅AE2⋅BE=π,所以V=V1−V2=32π.10. B【解析】由三视图可知,该几何体是由一个四棱锥和一个正方体组成,所以表面积=4×12×6×5+ 5×62=240.11. C 【解析】V=13×12×(2+4)×2×2=412. B 【解析】设球的半径为R,则正方体的对角线长为2R,依题意知43R2=16a,即R2=18a,所以S球=4πR2=4π⋅18a=π2a.13. C 【解析】由三视图可得:该几何体是四棱锥(如图所示),所以BA=BC=√2,BP=1,PA=PC=√3,PD=√5,可得PA⊥AD;S△PBC=S△PBA=1 2×√2×1=√22,S△PDC=S△PDA=12×√2×√3=√62,所以该几何体的侧面积S=2S△PBC+2S△PDC=√2+√6.14. B 【解析】该几何体为一个棱长为2的正方体在两端各削去一个14圆柱,V=2×2×2−2×14×(π×12×2)=8−π.15. D16. D17. A18. C19. C 【解析】提示:分析知,围成的几何体为如图所示一个圆柱挖去一个圆锥.20. A【解析】提示:如图,作AM⊥EF于点M,BN⊥EF于点N,则可将原多面体分成一个直三棱柱和两个三棱锥,然后去求其体积.21. C 【解析】由三视图可知,该建筑物由一个圆锥、一个圆柱以及一个正方体拼接而成,故所求几何体的体积V=13×π×12×2+π×12×2+4×4×4=64+8π3.22. A 【解析】利用高、底面正三角形的边心距和斜高组成的直角三角形可得斜高为√(√66a)2+(13×√32a)2=12a,于是侧面积S=3×12×a×12a=34a2.23. D24. D25. C【解析】提示:算出一个正四棱锥的体积再乘2即可.26. B27. C 【解析】在三棱锥O−ABC中,底面OAB的面积确定,所以要使O−ABC的体积最大,则C到平面OAB的距离最大,即为球的半径.设球半径为R,则三棱锥O−ABC的体积V max=13×12×R2×R=36,解得R=6,此时球的表面积S=4πR2=144π.28. D29. A30. D31. D 【解析】设AF,AE,EF折起交于点P,因为AP⊥PF,AP⊥PE,所以AP⊥面PEF,所以V P−AEF=V A−PEF=13×1×12×12×12=124.32. B【解析】不妨设此三棱柱为正三棱柱,AB=1,AA1=2,则正三棱柱的体积V=√34×2=√32,V下面部分=13×√32×32=√34,所以V上面部分=√34,所以上下两部分的体积的比为1:133. B 【解析】由正方体外接球的直径2R等于正方体的体对角线的长,得2R=√3⋅√a26,所以R=√24a.34. A35. A【解析】设B到AC的距离为m,AC=x,棱柱的高为ℎ,可得V四棱锥B−ACQP =16xℎm,V三棱柱ABC−A1B1C1=12xℎm,V四棱锥B−ACQPV三棱柱ABC−A1B1C1=13,所以平面BPQ把三棱柱分成两部分的体积比为1:2.36. B 【解析】提示:此组合体是过圆柱对称轴的平面截圆柱所得的半个圆柱和一个半球组成的组合体.37. C 【解析】因为EF⊥BD,EF⊥面BDDʹBʹ,EF⊂面EMFN,所以平面MENF⊥平面BDDʹBʹ成立;又因为四边形EMFN为菱形,∣MN∣2=(1−2x)2+2,所以S MENF=12∣EF∣×∣MN∣=1 2×√2×√4x2−4x+3,当x=12时,面积最小,所以②成立;四边形MENF的周长L=f(x)=4√4x 2−4x +3,在 (0,12) 上是单调递减函数,在 (12,1) 上是单调递增函数,所以命题③不正确;V Cʹ−MENF =2V Cʹ−MNF =2V M−CʹNF =16,所以 V =ℎ(x ) 为常函数.38. D 【解析】因为在正方体 ABCD −A 1B 1C 1D 1 中,BD ⊥平面AA 1CC 1,CE ⊂平面AA 1CC 1,所以 BD ⊥CE ,①正确;EF =√33,而 C 到 EF 的距离即为 C 到 AC 1 的距离,所以 △EFC 面积为定值,又 B点到 平面EFC 的距离为定值,所以三棱锥 E −BCF 的体积为定值,②正确;因为 EF 为定值,且在体对角线 AC 1 上,所以 EF 在底面上的投影为定值,而点 B 到 AC 的距离为定值,所以 △BEF 在底面 ABCD 内的正投影是面积为定值的三角形,③正确;因为平面 ABCD 与平面 DEA 1 不重合,显然在平面 ABCD 内存在无数条与平面 DEA 1 平行的直线,④正确.39. B 【解析】设 AP =CP =a ,在 △PAC 中,利用余弦定理有 cos∠APC =a 2+a 2−22a 2=1−1a 2,又因为当 AP ⊥BD 1 时,AP 最小,当 P 与点 D 1 重合时最大,所以 a ∈[√63,√2],所以当 AP ⊥BD 1 时,∠APC 最大,在 △BDD 1 中,BP =√33,则 P 到面 ABC 的距离为 √33√3=13.所以 V P−ABC =12×1×1×13×13=118.40. A【解析】圆锥母线为 l =√(√5)2+1=√6,高为 ℎ=√(√5)2−1=2,圆锥底面半径为 r =√l 2−ℎ2=√2,截去的底面弧的圆心角为直角,截去的弧长是底面圆周的 14,圆锥侧面剩余 34,即为 S 1=34⋅π⋅rl =34π⋅√2×√6=3√32π,截面三角形的面积为 S 2=12×2×√5=√5,底面剩余部分为S 3=34πr 2+12×√2×√2=1+3π2,所以被截后该几何体的表面积为 S =3π2+3√3π2+√5+1.第二部分 41. 3 42. 12π【解析】提示:球的半径为 √3. 43. 14π 44. 24【解析】球的半径为 √3 ,则正方体的体对角线长为 2√3 ,从而正方体的棱长为 2 ,表面积为 6×22=24 . 45. 16π−16 46. 12π【解析】提示:由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成.47. 12+π【解析】该几何体是一个长方体和一个圆柱的组合体.由三视图可知长方体的长、宽、高分别为4、3、1,圆柱的底面半径为1,高为1,故该组合体的体积为V=4×3×1+π×1×1=12+π.48. √349. √3【解析】三视图对应的空间几何体是以2为底、高为a的三角形作为底面,以3为高的卧放的一个三棱柱.50. 2π+2√3351. 9√3π52. 288πcm3或192πcm3.53. 24πcm2【解析】由三视图可知:该几何体是一个圆锥,其母线长是5cm,底面直径是6cm.所以该三棱锥的表面积S=π×32+12×6π×5=24πcm2.54. 6+π【解析】如图:该几何体为一个棱柱与一个圆锥的组合体.所以V=3×2×1+13π×12×3=6+π.55. 456. 108+3π【解析】由三视图可知,该几何体由两个长方体和一个圆柱组成.所以V=2×6×6×32+π×12×3=108+3π.57. 48【解析】由三视图可知,该几何体为四棱锥,所以V=13×62×4=48.58. 5359. 9π260. 13【解析】由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A−BCDE的高为1,四边形BCDE是边长为1的正方形,则V=13×1×1×1=13.61. 20π3【解析】三视图可得该几何体是组合体,上面是底面圆的半径为2m、高为2m的圆锥,下面是底面圆的半径为1m、高为4m的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m3).62. 8√3+4√3π3【解析】由三视图可知,该几何体是由半个圆锥和一个四棱锥组成,所以体积为12×13×π×22×2√3+13×3×4×2√3=8√3+4√33π.63. 16+8π【解析】由三视图可知,该几何体是由一个长方体和半个圆柱形成,所以体积为V=2×2×4+ 12π×22×4=16+8π.64. 9√3π【解析】如下图所示:PO=√62−32=3√3,所以体积为13⋅3√3⋅π⋅32=9√3π.65. 20π3【解析】该几何体的体积为π⋅4+13π⋅22⋅2=20π3m3.66. 3【解析】由三视图可知,该几何体为上面一个三棱柱,下方一个四棱柱.故V上=12×1×1×2=1,V下=2×1×1=2,所以V=1+2=3.67. 3【解析】由三视图可以看出,该几何体是由一个四棱锥和一个圆柱组成.体积为13×(2√2)2×√5+π×22x=12π+8√53,所以x=3.68. 9π【解析】由三视图可知,该几何体的侧面积为2π×1×3=6π,下底面面积为π×12=π,顶部为半个球的表面积12×4π×12=2π,所以该几何体的表面积为9π.69. 7π【解析】由三视图可知该几何体是由一个圆柱和半个球组成,所以表面积为π×12+2π×1×2+12×4π×12=7π.70. 33π【解析】上半部分为半个球,表面积为12×4πr2=18π.下半部分为圆锥,侧面积为12×2πr×母线=15π.所以表面积为33π.71. 18+9π【解析】由三视图可知,该几何体为两个相切的球上方加了一个长方体组成的组合体,所以其体积为V=3×6×1+2×43π×(32)3=18+9π(m3).72. 36π.73. 11274. 1375. 43π【解析】由俯视图可知,直角三角形的斜边中线等于斜边的一半,根据射影定理,球心为斜边中点,半径为1,所以球的体积为43πr3=43π.76. (18+2√3)cm2.77. 77π【解析】提示:依题意得20=13×12×5×6×ℎ,解出ℎ=4.可算出外接球半径为√772,所以外接球表面积为77π.78. 83π【解析】由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1m,圆锥的高均为1m,圆柱的高为2m.因此该几何体的体积为V=2×13π×12×1+π×12×2=83πm3.79. 16π9+2√33【解析】由三视图可知,该几何体由23个圆锥和一个三棱锥组成,所以体积为23×13π×22×2+13×12×2√3×1×2=16π9+2√33.80. √63【解析】提示:设这个棱长为1的正四面体的四个顶点分别为A、B、C、D,可求得其高为ℎ=√63,设每个面面积为S,则V A−BCD =V P−ABC +V P−ACD +V P−ABD +V P−BCD ,所以13ℎS =13d 1S +13d 2S +13d 3S +13d 4S, 得 d 1+d 2+d 3+d 4=ℎ=√63. 第三部分81. (1) 交线围成的正方形 EHGF 如图.(2) 作 EM ⊥AB ,垂足为 M ,则 AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形 EHGF 为正方形,所以 EH =EF =BC =10. 于是 MH =√EH 2−EM 2=6,AH =10,HB =6.故 S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72. 因为长方体被平面 α 分为两个高为 10 的直棱柱,所以其体积的比值为 97(79 也正确). 82. ∵ D ,E 分别是 AB ,AC 中点, ∴ S △ADE =14S △ABC ,∴ V 三棱锥S−ADE =14V 三棱锥S−ABC ,∴ V 四棱锥S−BCED =V 三棱锥S−ABC −V 三棱锥S−ADE =34V 三棱锥S−ABC .∵ 三棱锥 S −ABC 的三条侧棱两两垂直,∴ V 三棱锥S−ABC =16⋅SA ⋅SB ⋅SC =16×5×4×3=10,∴ V 四棱锥S−BCED =34V 三棱锥S−ABC =34×10=152.83. (1) 因为点 E ,F 分别是棱 BC ,CD 的中点,所以AF ⊥DE又AF ⊥DD 1DE ∩DD 1=D}⇒AF ⊥面EDD 1⇒AF ⊥D 1E 又C 1D ∥B 1A C 1D ⊥面BCD 1}⇒D 1E ⊥B 1AB 1A ∩AF =A }}⇒D 1E ⊥面AB 1F.(2) V E−AB 1F =V B 1−AEF =13⋅1⋅38=18.(3) 由⑴可知:D 1E ⊥ 平面 AB 1F ,直线 B 1E ,B 1D 1 与平面 AB 1F 所成的角分别为 α,β,即 α+β=∠EB 1D 1,所以cos(α+β)=cos∠EB1D1=54+2−(14+1+1)2×√52×√2=√1010.84. (1)因为AB=5cm,BC=3cm,AC=4cm,所以∠ACB=90∘⇒AB为底面圆的直径⇒S侧=12⋅10⋅π⋅5=25π.圆锥的侧面展开图是一个扇形,设此扇形的中心角为θ,弧长为l,则l=10θ,所以2π×52=10θ,所以θ=π2.(2)沿着圆锥的侧棱SA展开,在展开图△ABS中,∠ASB=45∘,SA=SB=10,⇒AB2= SA2+SB2−2SA⋅SB⋅cos∠ASB⇒AB=10√2−√2.85. (1)在AC上取一点Q,使得AQQC=4,连接MQ,QN,则AMMD =AQQC=PNNC,所以QN∥AP,MQ∥CD,又CD∥AB,所以MQ∥AB.又因为AB⊂平面PAB,PA⊂平面PAB,MQ⊂平面MNQ,NQ⊂平面MNQ,所以平面PAB∥平面MNQ,又因为MN⊂平面MNQ,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AB=3,BC=5,AC=4,所以AB⊥AC.过C作CH⊥AD,垂足为H,则CH=3×45=125,因为PA⊥平面ABCD,CH⊂平面ABCD,所以PA⊥CH,又CH⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,所以CH⊥平面PAD,因为PC=√PA2+AC2=√41,PNNC=4,所以N到平面PAD的距离ℎ=45CH=4825,所以V P−AMN=V N−PAM=13S△PAM⋅ℎ=13×12×5×4×4825=325.86. (1)在△BAD中,因为AB=2AD=2,∠BAD=60∘,所以由余弦定理可得BD=√3.AB2=AD2+BD2,所以AD⊥BD.又在直平行六面体中,GD⊥平面ABCD,BD⊂平面ABCD,所以GD⊥BD.又AD∩GD=D,所以BD⊥平面ADG.(2)由已知可得AG∥EF,AE∥GF,四边形AEFG是平行四边形.GD=AD=1,所以EF=AG=√2.EB=AB=2,所以GF=AE=2√2.过G作GM∥DC交CF于H,得FH=2,所以FC=3.过G作GM∥DB交BE于M,得GM=DB=√3,ME=1,所以GE=2.cos∠GAE=2×2√2×√2=34,所以sin∠GAE=√74.S AEFG=2×12×√2×2√2×√74=√7.该几何体的全面积S=√7+2×12×1×√3+12×1×1+12×2×2+12×(1+3)×2+12×(2+3)×1=√7+√3+9.87. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13Sℎ=13×π×(162)2×4=2563π(m3),如果按方案二,仓库的高变成8m,则仓库的体积V2=13Sℎ=13×π×(122)2×8=2883π(m3).(2)如果按方案一,仓库的底面直径变成16m,半径为8m.棱锥的母线长为l=√82+42=4√5,则仓库的表面积S1=π×8×4√5=32√5π(m2),如果按方案二,仓库的高变成8m.棱锥的母线长为l=√82+62=10,则仓库的表面积S2=π×6×10=60π(m2).(3)∵V2>V1,S2<S1,∴方案二比方案一更加经济.88. (1)因为EA=ED且EEʹ⊥平面ABCD,所以EʹD=EʹA,所以点Eʹ在线段AD的垂直平分线上,同理点Fʹ在线段BC的垂直平分线上.又ABCD是正方形,所以线段BC的垂直平分线也就是线段AD的垂直平分线即点EʹFʹ都居线段AD的垂直平分线上,所以直线E′F′垂直平分线段AD.(2)连接EB,EC,设AD中点为M,由题意知,AB=2,∠EAD=∠EAB=60∘,EF=2,所以ME=√3,BE=FC=2,则多面体ABCDEF可分割成正四棱锥E−ABCD和正四面体E−BCF两部分,在Rt△MEEʹ中,由于MEʹ=1,ME=√3,所以EEʹ=√2,所以V E−ABCD=13S正方形ABCD⋅EEʹ=13×4×√2=4√23.V E−BCF=V C−BEF=V C−BEA=V E−ABC=13S△ABC⋅EEʹ=13×12×4×√2=23√2,所以多面体ABCDEF的体积为V E−BCF+V E−ABCD=2√2.89. (1)在三棱锥A−BCD中,∵AB⊥平面BCD,又∵CD⊂平面BCD,∴AB⊥CD.又∵BD⊥CD,且BD∩AB=B,∴CD⊥平面ABD.(2)法一:由AB⊥平面BCD,得AB⊥BD,∵AB=BD=1,∴S△ABD=12.∵M是AD中点,∴S△ABM=12S△ABD=14.由(1)知,CD⊥平面ABD,∴三棱锥C−ABM的高ℎ=CD=1,因此三棱锥A−MBC的体积为V A−MBC=V C−ABM=13S△ABM⋅ℎ=112.法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,如图,过点M作MN⊥BD交BD于点N,则MN⊥平面BCD,且MN=12AB=12,又CD⊥BD,BD=CD=1,所以S△BCD=1 2 ,∴三棱锥A−MBC的体积V A−MBC=V A−BCD −V M−BCD =13AB ⋅S △BCD −13MN ⋅S △BCD=112.90. (1) 如图,因 ABCD 为菱形,O 为菱形中心,连接 OB ,则 AO ⊥OB ,因为 ∠BAD =π3,故OB =AB ⋅sin∠OAB =2sinπ6=1. 又因为 BM =12,且 ∠OBM =π3,在 △OBM 中OM 2=OB 2+BM 2−2OB ⋅BM ⋅cos∠OBM=12+(12)2−2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故 OM ⊥BM .又 PO ⊥ 底面 ABCD ,所以 PO ⊥BC ,从而 BC 与平面 POM 内两条相交直线 OM ,PO 都垂直, 所以 BC ⊥ 平面 POM .(2)由(1)可知,OA =AB ⋅cos∠OAB =2⋅cosπ6=√3, 设 PO =a ,由 PO ⊥ 底面 ABCD 知,△POA 为直角三角形,故PA 2=PO 2+OA 2=a 2+3,由 △POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34,连接 AM ,在 △ABM 中,AM 2=AB 2+BM 2−2AB ⋅BM ⋅cos∠ABM=22+(12)2−2⋅2⋅12⋅cos 2π3=214,由已知MP⊥AP,故△APM为直角三角形,则PA2+PM2=AM2,即a2+3+a2+34=214,得a=√32,a=−√32(舍去),即PO=√32,此时S ABMO=S△AOB+S△OMB=12⋅AO⋅OB+12⋅BM⋅OM=12⋅√3⋅1+12⋅12⋅√32=5√3 8,所以四棱锥P−ABMO的体积V P−ABMO=13⋅S ABMO⋅PO=13⋅5√38⋅√32=5 16.91. (1)在△ABD中,因为AB=2,AD=4,∠DAB=60∘,所以BD=√AB2+AD2−2AB⋅ADcos∠DAB=2√3.所以AB2+BD2=AD2,所以AB⊥BD.又因为平面EBD⊥平面ABD.平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.结合DE⊂平面EBD,可得AB⊥DE.(2)由(1)知AB⊥BD,因为CD∥AB,所以CD⊥BD,从而DE⊥BD.在Rt△DBE中,因为DB=2√3,DE=DC=AB=2,所以S△DBE=12DB⋅DE=2√3.又AB⊥平面EBD,BE⊂平面EBD,所以AB⊥BE.因为BE=BC=AD=4,所以S△ABE=12AB⋅BE=4.又DE⊥BD,平面EBD⊥平面ABD,故得到ED⊥平面ABD.而AD⊂平面ABD,所以ED⊥AD,因此S△ADE=12AD⋅DE=4.综上,三棱锥E−ABD的侧面积S=8+2√3.92. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13S⋅ℎ=13×π×(162)2×4=2563π(m3)如果按方案二,仓库的高变成8m,则仓库的体积V2=13S⋅ℎ=13×π×(122)2×8=2883π(m3)(2)如果按方案一,仓库的底面直径变成16m,半径为8m.圆锥的母线长为l1=√82+42=4√5(m),则仓库的侧面积S1=π×8×4√5=32√5π(m2);如果按方案二,仓库的高变成8m,圆锥的母线长为l2=√82+62=10(m),则仓库的侧面积S2=π×6×10=60π(m2).(3)因为V2>V1,S2<S1.所以方案二比方案一更加经济.93. (1)取AB的中点M,连接A1M.因为AF=14AB,所以F为AM的中点.。

人教A版高中数学必修第二册强化练习题-第八章-立体几何初步(含答案)

人教A版高中数学必修第二册强化练习题-第八章-立体几何初步(含答案)

人教A版高中数学必修第二册第八章 立体几何初步全卷满分150分 考试用时120分钟一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )2.23.已知圆锥侧面展开图的圆心角为60°,底面圆的半径为8,4.5.6.如图,在直三棱柱ABC-A1B1C1中,点D,E分别在棱AA1,CC1上,AB=AC=AD=2A1D=CE=2C1E=2,点F满足BF=λBD(0<λ<1),若B1E∥平面ACF,则λ的值为( )A.23B.12C.13D.147.8.,,EF=12 D.642π每小题6分,共18分.在每小题给出的选项中部分选对的得部分分,有选错的得9.10.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,则下列四个命题中正确的是( )A.直线BC 与平面ABC 1D 1所成的角为π4B.点C到平面ABC1D1的距离为22C.异面直线D1C和BC1所成的角为π4D.二面角C-BC1-D的余弦值为-3311.如图1,在等腰梯形ABCD中,AB∥CD,EF⊥AB,CF=EF=2DF=2,AE=3,EB=4,将四边形AEFD沿EF进行折叠,使AD到达A'D'的位置,且平面A'D'FE⊥平面BCFE,连接A'B,D'C,如图2,则( )A.BE⊥A'D'B.平面A'EB∥平面D'FCC.多面体A'EBCD'F为三棱台D.直线A'D'与平面BCFE所成的角为π4三、填空题(本题共3小题,每小题5分,共15分)12.正四棱锥P-ABCD的底面边长为2,高为3,则点A到不经过点A的侧面的距离为 .13.在△ABC中,∠ACB=90°,AC=2,BC=5,P为AB上一点,沿CP将△ACP折起形成直二面角A'-CP-B,当A'B最短时,A'P= .BP14.农历五月初五是端午节,民间有吃粽子的习惯,一般情况下粽子的形状是四面体.如图1,已知底边和腰长分别为8 cm和12 cm的等腰三角形纸片,将它沿虚线(中位线)折起来,可以得到如图2所示粽子形状的四面体,若该四面体内包一蛋黄(近似于球),则蛋黄的半径的最大值为 cm(用最简根式表示);当该四面体的棱所在的直线是异面直线时,其所成的角中最小的角的余弦值为 .四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(13分)现需要设计一个仓库,由上下两部分组成,如图所示,上部分是正四棱锥P-A1B1C1D1,下部分是正四棱柱ABCD-A1B1C1D1,正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,求仓库的容积(含上下两部分);(2)若上部分正四棱锥的侧棱长为6 m,当PO1为多少时,下部分正四棱柱的侧面积最大?最大面积是多少?16.(15分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,E为PD的中点,EA=12 PD,EF⊥AC,垂足为F,且AC=4AF.证明:(1)PB∥平面ACE;(2)PA⊥平面ABCD.17.(15分)如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.18.(17分)如图,在四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使BE⊥EC.(1)若BE=3,在折叠后的线段AD上是否存在一点P,使得CP∥平面ABEF?若存在,求出AP的PD 值;若不存在,请说明理由;(2)求三棱锥A-CDF的体积的最大值,并求出此时点F到平面ACD的距离.,平面ABB1A1⊥平面BCC1B1,△ABC 19.(17分)如图,已知三棱台ABC-A1B1C1的体积为7312是以B为直角顶点的等腰直角三角形,且AB=2AA1=2A1B1=2BB1.(1)证明:BC⊥平面ABB1A1;(2)求点B到平面ACC1A1的距离;?若存在,求出CF的长;若不(3)在线段CC1上是否存在点F,使得二面角F-AB-C的大小为π6存在,请说明理由.答案全解全析1.D 对于A,长方体是四棱柱,底面不是长方形的直四棱柱不是长方体,A 错误;对于B,棱台侧棱的延长线必须相交于一点,B 错误;对于C,各侧面都是正方形,底面不是正方形(如菱形)的四棱柱不是正方体,C 错误;对于D,棱柱的侧棱相等,侧面都是平行四边形,D 正确. 2.3.母线长为l,则r=8,πrl=8×48π=384π.4.由扇环的圆心角为180°,又C=2π×10,所以SA=20,同理SB=40,则AB=SB-SA=20,圆台的高h=AB 2-(20-10)2=103,表面积S=π(10+20)×20+100π+400π=1 100π,体积V=13π×103×(102+10×20+202)=700033π.故选C.5.A 取BD 的中点E,连接ED 1,AE,易得PD 1∥BE 且PD 1=BE,所以四边形BED 1P 为平行四边形,所以PB ∥D 1E,故∠AD 1E(或其补角)为直线PB 与AD 1所成的角.设AB=AD=AA 1=2,因为∠ABD=45°,所以∠DAB=90°,因为E 为BD 的中点,所以AE=DE=22AB=2.易得AD 1=AD 2+D D 21=22,D 1E=DE 2+D D 21=6,因为A D 21=AE 2+D 1E 2,所以AE ⊥D 1E.故cos ∠AD 1E=D 1EAD 1=622=32,又0°<∠AD 1E<180°,所以∠AD 1E=30°.故选A.6.C 在BB 1上取一点G,使得B 1G=2BG,连接CG,AG,如图所示.∵CE=2C 1E=2,∴CC 1=BB 1=3,∴在直三棱柱ABC-A 1B 1C 1中,B 1G ∥CE,且B 1G=CE=2,∴四边形B 1GCE 为平行四边形,∴B 1E ∥CG,∵B 1E ⊄平面ACG,CG ⊂平面ACG,∴B 1E ∥平面ACG,若B 1E ∥平面ACF,则F 在平面ACG 内,又F 为BD 上一点,∴F 为BD 与AG 的交点.易知△BFG ∽△DFA,∴BF DF =BG DA =12,∴BF =13BD ,即λ的值为13.故选C.7.D 取AD 的中点M,AB 的中点N,连接PD,MD 1,MN,NB 1,B 1D 1,A 1C 1,AC.易知M,N,B1,D1四点共面,D1M⊥PD,D1M⊥CD,∵PD∩CD=D,PD,CD⊂平面PCD,∴D1M⊥平面2,AB∥MN,点O是MN的中点AE2-A N2=22,同理FM=2EN2-MN-EF22=7,当点O1在线段O2O的延长线(含点O)上时,视OO1为非负数;当点O1在线段O2O(不含点O)上时,视OO1为负数,即O2O1=O2O+OO1=7+OO1,所以(22)2+O O21=1+(7+O O1)2,解得OO1=0,因此刍甍的外接球球心在点O处,半径为OA=22,所以刍甍的外接球的体积为4π3×(22)3=642π3.故选A.9.AC 对于A,因为圆锥的底面半径为3,所以圆锥的底面周长为2π×3=6π,又因为圆锥的母线长为4,所以圆锥的侧面展开图的圆心角为6π4=3π2,故A选项正确.对于B,因为圆锥的底面半径为3,母线长为4,所以圆锥的高h=42-32=7,故圆锥的体积V=13×π×32×7=37π,故B选项不正确.对于C,设圆锥的两条母线的夹角为θ,则过这两条母线所作截面的面积为12×4×4×sin θ=8sinθ,易知过圆锥母线的截面中,轴截面三角形对应的θ最大,此时cos θ=42+42-622×4×4=-18,所以θ最大是钝角,所以当θ=π2时,截面的面积最大,为8sin π2=8,故C选项正确.对于D,易知圆锥的轴截面的面积为12×6×7=37,故D选项不正确.故选AC.10.AB 如图,取BC1的中点H,连接CH,易证CH⊥平面ABC1D1,所以∠C1BC是直线BC与平面ABC1D1所成的角,为π4,故A正确.点C到平面ABC1D1的距离即为CH的长,为22,故B正确.易证BC1∥AD1,所以异面直线D1C和BC1所成的角为∠AD1C(或其补角),连接AC,易知△ACD1为等边三角形,所以∠AD1C=π3,所以异面直线D1C和BC1所成的角为π3,故C错误.连接DH,易知BD=DC1,所以DH⊥BC1,又CH⊥BC1,所以∠CHD为二面角C-BC1-D的平面角,易求得DH=62,又CD=1,CH=22,所以由余弦定理的推论可得cos∠CHD=DH2+C H2-C D22DH·CH =33,故D错误.故选AB.11.ABD 对于A,因为平面A'D'FE⊥平面BCFE,平面A'D'FE∩平面BCFE=EF,BE⊂平面BCFE,BE⊥EF,所以BE⊥平面A'D'FE,又因为A'D'⊂平面A'D'FE,所以BE⊥A'D',故A正确.对于B,因为A'E ∥D'F,A'E ⊄平面D'FC,D'F ⊂平面D'FC,所以A'E ∥平面D'FC,因为BE ∥CF,BE ⊄平面D'FC,CF ⊂平面D'FC,所以BE ∥平面D'FC,又因为A'E∩BE=E,A'E,BE ⊂平面A'EB,所以平面A'EB ∥平面D'FC,故B 正确.对于C,因为D 'F A 'E =13,FC EB =24=12,则D 'F A 'E ≠FCEB ,所以多面体A'EBCD'F 不是三棱台,故C 错误.对于D,延长A'D',EF,相交于点G,A'D'FE∩平面BCFE=EF,A'E 为直线A'D'与平面GF+2,则32+12=10,到侧面PBC 的距离相等易知S △PDC =S △PBC =12×2×10=10,正四棱锥P-ABCD 的体积V=13S 四边形ABCD ·PO=13×2×2×3=4,设点A 到侧面PBC 的距离为d,则V=V A-PDC +V A-PBC =13S △PDC ·d+13S △PBC ·d=13d×210=4,解得d=3105.故答案为3105.13.答案 25解析 过点A 作AD ⊥CP 于点D,连接BD,设∠ACP=α0<α<则∠PCB=π2-α,所以A'D=2sin α,CD=2cos α,在△BCD 中,由余弦定理可得BD 2=CD 2+BC 2α=4cos 2α+25-10sin 2α,因为A'-CP-B 为直二面角,所以A'D ⊥平面BCP,所以A'D ⊥BD,则A'B 2=A'D 2+BD 2=4sin 2α+4cos 2α+25-10sin 2α=29-10sin 2α,当A'B 2最小时,A'B 最短,2α=π2,所以α=π4,此时CP 平分∠ACB,由角平分线定理可得AP BP =AC BC =25,即A 'P BP =25.14.答案 144;59解析 对题图1中各点进行标记,同时将题图2置于长方体中如下,其中A,B,C 三点重合.设EP=x cm,ER=y cm,SE=z cm,则x 2+y 2=36,x 2+z 2=36,y 2+z 2=16,解得x =27,y =z =22,∴四面体ADEF 的体积为13V 长方体=13xyz=1673(cm 3),四面体ADEF 的表面积S=4S △DEF =4×12×4×42=322(cm 2).当蛋黄与四面体各个面相切时,蛋黄的半径最大,设此时蛋黄(近似于球)的半径为r cm,则V 长方体=13Sr,∴r=3V 长方体S =167322=144.设SQ∩DF=O,取DQ 的中点M,连接OM,则OQ=3 cm,MQ=2 cm,在Rt △OMQ 中,sin ∠QOM=MQ OQ =23,∴cos ∠DOQ=cos(2∠QOM)=1-2sin 2∠QOM=1-49=59,∴∴则∴∵∴又则AE=OE,又AE=12PD,OE=12PB,所以PB=PD,连接OP,则PO ⊥BD,(9分)因为四边形ABCD 为菱形,所以AC ⊥BD,又PO∩AC=O,PO,AC ⊂平面PAC,所以BD ⊥平面PAC,又PA ⊂平面PAC,所以BD ⊥PA.(11分)因为AE=12PD,E 为PD 的中点,所以∠PAD=90°,即PA ⊥AD,(13分)又AD∩BD=D,AD,BD ⊂平面ABCD,所以PA ⊥平面ABCD.(15分)17.解析 (1)证明:∵AC 2+BC 2=AB 2,∴AC ⊥BC.又∵C 1C ⊥AC,C 1C∩BC=C,∴AC ⊥平面BCC 1B 1.(3分)∵BC 1⊂平面BCC 1B 1,∴AC ⊥BC 1.(5分)(2)证明:设CB 1与C 1B 的交点为E,则E 是BC 1的中点,连接DE,∵D 是AB 的中点,∴DE ∥AC 1.(8分)∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(10分)(3)∵DE ∥AC 1,∴∠CED(或其补角)为AC 1与B 1C 所成的角.在Rt △AA 1C 1中,AC 1=AA 21+A 1C 21=5,∴ED=12AC 1=52,易得CD=12AB=52,CE=12CB 1=22,(13分)∴cos ∠CED=252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.(15分)18.解析 (1)假设存在满足条件的点P.如图,过点P 作PM ∥FD,交AF 于点M,连接ME,∵CE ∥FD,∴MP ∥EC,∴M,P,C,E 四点共面.(2分)∵CP∥平面ABEF,CP⊂平面CEMP,平面ABEF∩平面CEMP=ME,∴CP∥ME,∴四边形CEMP为平行四边形,(4分)∴MP=CE=4-BE=1,易得FD=6-3=3,由MP∥FD可得APAD =MPFD=13,∴APPD=12.(7分)此时AP=1.(8∴又故∴∴在∴∴设由在三棱台ABC-A1B1C1中,AB∥A1B1,∵AB=2AA1=2A1B1=2BB1,∴四边形ABB1A1为等腰梯形且∠ABB1=∠BAA1=60°,(1分)设AB=2x,则BB1=x.由余弦定理得A B21=AB2+B B21-2AB·BB1cos 60°=3x2,∴AB2=A B21+B B21,∴AB1⊥BB1,(2分)∵平面ABB 1A 1⊥平面BCC 1B 1,平面ABB 1A 1∩平面BCC 1B 1=BB 1,AB 1⊂平面ABB 1A 1,∴AB 1⊥平面BCC 1B 1,(3分)又BC ⊂平面BCC 1B 1,∴AB 1⊥BC.∵△ABC 是以B 为直角顶点的等腰直角三角形,∴BC ⊥AB,∵AB∩AB 1=A,AB,AB 1⊂平面ABB 1A 1,∴BC ⊥平面ABB 1A 1.(4分)(2)延长AA 1,BB 1,CC 1交于一点P,∵A 1B 1=12AB,∴S △ABC =4S △A 1B 1C 1,∴V P-ABC =8V P -A 1B 1C 1,∴V P-ABC =87V ABC -A 1B 1C 1=87×7312=233,(5分)∵BC ⊥平面ABB 1A 1即BC ⊥平面PAB,∴BC 的长即为点C 到平面PAB 的距离.(6分)由(1)知AB=BC=2x,∠PAB=∠PBA=60°,∴△PAB 为等边三角形,∴PA=PB=AB=2x,∴V P-ABC =13S △PAB ·BC=13×12×(2x)2×32·2x=233x 3=233,∴x=1,∴AB=BC=PA=PB=2,∴AC=PC=22,∴S △PAC =12×2×(22)2-12=7,(8分)设点B 到平面ACC 1A 1的距离为d,即点B 到平面PAC 的距离为d,∵V B-PAC =V P-ABC ,∴13S △PAC ·d=73d=233,解得d=2217.即点B 到平面ACC 1A 1的距离为2217.(10分)(3)假设存在满足条件的点F.∵BC ⊥平面PAB,BC ⊂平面ABC,∴平面ABC ⊥平面PAB,取AB 的中点N,连接PN,NC,则PN ⊥AB,∵平面ABC∩平面PAB=AB,PN ⊂平面PAB,∴PN ⊥平面ABC,(12分)作FE ∥PN,交CN 于点E,则FE ⊥平面ABC,作ED⊥AB于D,连接FD,则ED即为FD在平面ABC上的射影,∵FE⊥平面ABC,AB⊂平面ABC,∴AB⊥FE,∵∵V由设则∴∴。

新人教版高中数学必修第二册 第8章 8.3 简单几何体的表面积和体积 第1课时 柱、锥、台的表面积和体积

新人教版高中数学必修第二册  第8章  8.3 简单几何体的表面积和体积  第1课时 柱、锥、台的表面积和体积

8.3简单几何体的表面积与体积第1课时柱、锥、台的表面积和体积考点学习目标核心素养柱、锥、台的表面积了解柱体、锥体、台体的侧面展开图,掌握柱体、柱、锥、台的体积直观想象、数学运算锥体、台体的表面积的求法能利用柱体、锥体、台体的体积公式求体积,理解柱体、锥体、台体的体积之间的关系直观想象、数学运算问题导学预习教材P114-P117的内容,思考以下问题:1.棱柱、棱锥、棱台的表面积如何计算?2.圆柱、圆锥、圆台的侧面展开图分别是什么?3.圆柱、圆锥、圆台的侧面积公式是什么?4.柱体、锥体、台体的体积公式分别是什么?5.圆柱、圆锥、圆台的侧面积公式、体积公式之间分别有怎样的关系?1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台=13h(S′+SS′+S),其中S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积名称图形公式圆柱底面积:S底=πr2侧面积:S侧=2πrl表面积:S=2πrl+2πr2体积:V=πr2l圆锥底面积:S 底=πr 2 侧面积:S 侧=πrl表面积:S =πrl +πr 2 体积:V =13πr 2h圆台上底面面积:S 上底=πr ′2 下底面面积:S 下底=πr 2 侧面积:S 侧=πl (r +r ′)表面积:S =π(r ′2+r 2+r ′l +rl ) 体积:V =13πh (r ′2+r ′r +r 2)1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系 V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh .判断(正确的打“√”,错误的打“×”)(1)几何体的表面积就是其侧面面积与底面面积的和.( ) (2)几何体的侧面积是指各个侧面的面积之和.( ) (3)等底面面积且等高的两个同类几何体的体积相同.( ) (4)在三棱锥P -ABC 中,V P ­ABC =V A ­PBC =V B ­P AC =V C ­P AB .( ) 答案:(1)√ (2)√ (3)√ (4)√ 棱长都是 1 的三棱锥的表面积为( )A.3 B .23 C .33 D .43解析:选A.S表=4S正△=4×34= 3.若长方体的长、宽、高分别为3 cm,4 cm,5 cm,则长方体的体积为() A.27 cm3B.60 cm3C.64 cm3D.125 cm3解析:选B.长方体即为四棱柱,其体积为底面积×高,即为3×4×5=60(cm3).圆台的上、下底面半径分别为3 和4,母线长为6,则其表面积等于() A.72 B.42πC.67πD.72π解析:选C.S表=π(32+42+3×6+4×6)=67π.柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的()A.2倍B.3 倍C.2 倍D.5 倍(2)已知正方体的8 个顶点中,有4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6(3)已知某圆台的一个底面周长是另一个底面周长的3 倍,母线长为3 ,圆台的侧面积为84π,则该圆台较小底面的半径为()A.7B.6C.5 D.3【解析】(1)设圆锥的底面半径为r,母线长为l,则由题意可知,l=2r,于是S侧=πr·2r=2πr2,S底=πr2,可知选C.(2)棱锥B′­ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为1,则B′C=2,S△B′AC=32.三棱锥的表面积S锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为 r ,则另一底面的半径为 3r .由 S 侧=3π(r +3r )=84π,解得 r =7.【答案】 (1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.已知正四棱台(正四棱锥被平行于底面的平面所截,截面与底面间的部分)上底面边长为4,侧棱和下底面边长都是8,求它的侧面面积.解:法一:设正四棱台为ABCDA 1B 1C 1D 1,如图①.设B 1F 为斜高.在Rt △B 1FB 中,BF =12×(8-4)=2,B 1B =8,所以B 1F =82-22=215,所以S 正棱台侧=4×12×(4+8)×215=4815.①法二:设正四棱台为ABCDA 1B 1C 1D 1,延长正四棱台的侧棱交于点P ,作面PBC 上的斜高PE ,交B 1C 1于E 1,如图②.设PB 1=x ,则x x +8=48,解得x =8.所以PB 1=B 1B =8, 所以E 1为PE 的中点,又PE 1=PB 21-B 1E 21=82-22=215, ②所以PE =2PE 1=415.所以S 正棱台侧=S 大正棱锥侧-S 小正棱锥侧 =4×12×8×PE -4×12×4×PE 1=4×12×8×415-4×12×4×215=4815.柱、锥、台的体积如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,过顶点B ,D ,A 1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥A -A 1BD 的体积及高. 【解】 (1)V 三棱锥A 1­ABD =13S △ABD ·A 1A=13×12·AB ·AD ·A 1A =16a 3. 故剩余部分的体积V =V 正方体-V 三棱锥A 1­ABD =a 3-16a 3=56a 3.(2)V 三棱锥A -A 1BD =V 三棱锥A 1­ABD =16a 3.设三棱锥A -A 1BD 的高为h , 则V 三棱锥A -A 1BD =13·S △A 1BD ·h=13×12×32(2a )2h =36a 2h , 故36a 2h =16a 3,解得h =33a .求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等. (4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒] 求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.1.圆锥的轴截面是等腰直角三角形,侧面积是 162π,则圆锥的体积是( ) A.64π3B.128π3C .64πD .1282π解析:选 A .作圆锥的轴截面,如图所示.由题设,在 △P AB 中,∠APB =90°,P A =PB .设圆锥的高为 h ,底面半径为 r , 则 h =r ,PB =2r . 由 S 侧=π·r ·PB =162π,得2πr 2=162π.所以 r =4.则 h =4. 故圆锥的体积 V 圆锥=13πr 2h =643π.2.圆柱的侧面展开图是长 12 cm ,宽 8 cm 的矩形,则这个圆柱的体积为( ) A.288πcm 3 B.192π cm 3 C.288π cm 3或192πcm 3 D .192π cm 3解析:选 C .当圆柱的高为 8 cm 时, V =π×⎝ ⎛⎭⎪⎫122π2×8=288π(cm 3),当圆柱的高为 12cm 时,V =π×⎝ ⎛⎭⎪⎫82π2×12=192π(cm 3).3.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD -A 1B 1C 1D 1的体积为6×6×4=144(cm 3),四边形EFGH 为平行四边形,如图所示,连接GE ,HF ,易知四边形EFGH 的面积为矩形BCC 1B 1面积的一半,即12×6×4=12(cm 2),所以V 四棱锥O -EFGH =13×3×12=12(cm 3),所以该模型的体积为144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8组合体的表面积和体积如图在底面半径为 2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】 设圆锥的底面半径为 R ,圆柱的底面半径为 r ,表面积为 S . 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以 r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比.解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π.所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值. 解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EBOC ,即23-h 23=r 2, 所以 h =23-3r ,S圆柱侧=2πrh=2πr(23-3r)=-23πr2+43πr,所以当r=1,h=3时,圆柱的侧面积最大,其最大值为23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.1.如图,在多面体ABCDEF中,已知面ABCD是边长为4 的正方形,EF∥AB,EF =2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.解:如图,连接EB,EC.四棱锥E-ABCD的体积V四棱锥E-ABCD=13×42×3=16.因为AB=2EF,EF∥AB,所以S△EAB=2S△BEF.所以V三棱锥F-EBC=V三棱锥C-EFB=12V三棱锥C-ABE=12V三棱锥E-ABC =12×12V四棱锥E-ABCD=4.所以多面体的体积V=V四棱锥E-ABCD+V三棱锥F-EBC=16+4=20.2.如图,一个底面半径为2 的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2 和3,求该几何体的体积.解:用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.1.已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( ) A .22 B .20 C .10D .11解析:选A.所求长方体的表面积S =2×(1×2)+2×(1×3)+2×(2×3)=22. 2.正三棱锥的高为3,侧棱长为23,则这个正三棱锥的体积为( ) A.274 B.94 C.2734D.934解析:选D.由题意可得底面正三角形的边长为3,所以V =13×34×32×3=934.故选D.3.已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是________.解析:圆台的上、下底面半径之比为3∶5,设上、下底面半径为3x ,5x ,则中截面半径为4x ,设上台体的母线长为l ,则下台体的母线长也为l ,上台体侧面积S 1=π(3x +4x )l =7πxl ,下台体侧面积S 2=π(4x +5x )l =9πxl ,所以S 1∶S 2=7∶9.答案:7∶9 4.如图,三棱台ABC A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1ABC ,三棱锥BA 1B 1C ,三棱锥CA 1B 1C 1的体积之比.解:设棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S . 所以VA 1ABC =13S △ABC ·h =13Sh ,VCA 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V 台=13h (S +4S +2S )=73Sh ,所以VBA 1B 1C =V 台-VA 1ABC -VCA 1B 1C 1=73Sh -Sh 3-4Sh 3=23Sh , 所以体积比为1∶2∶4.[A 基础达标]1.若某圆锥的高等于其底面直径,则它的底面积与侧面积之比为( ) A .1∶2 B .1∶ 3 C .1∶ 5D.3∶2解析:选C.设圆锥底面半径为r ,则高h =2r ,所以其母线长l =5r .所以S 侧=πrl =5πr 2,S 底=πr 2,S 底∶S 侧=1∶ 5.2.如图,ABC ­A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12 C.23D.34解析:选C.因为V C ­A ′B ′C ′ =13V ABC ­A ′B ′C ′=13, 所以V C ­AA ′B ′B =1-13=23.3.(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 解析:选B.设所截正方形的边长为 a ,则 a 2=8,即 a =2 2.所以圆柱的母线长为 22,底面圆半径 r =2,所以圆柱的表面积为 22π×22+π(2)2×2=8π+4π=12π.4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是面A 1B 1C 1D 1内任意一点,则四棱锥P -ABCD 的体积为( )A.16 B.13 C.12D.23解析:选B.因为正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是面A 1B 1C 1D 1内任意一点,所以点P 到平面ABCD 的距离d =AA 1=1, S 正方形ABCD =1×1=1, 所以四棱锥P -ABCD 的体积为:V P ­ABCD =13×AA 1×S 正方形ABCD =13×1×1=13.故选B.5.(2019·临川检测)一个封闭的正三棱柱容器,高为 3,内装水若干(如图甲,底面处于水平状态),将容器放倒(如图乙,一个侧面处于水平状态),这时水面与各棱交点 E ,F ,F 1,E 1 分别为所在棱的中点,则图甲中水面的高度为( )A.32B.74 C .2D.94解析:选 D .因为 E ,F ,F 1,E 1 分别为所在棱的中点,所以棱柱 EFCB -E 1F 1C 1B 1 的体积 V =S梯形EFCB ×3=34S △ABC ×3=94S △ABC .设甲中水面的高度为 h ,则 S △ABC ×h =94S △ABC ,解得h =94,故选 D.6.已知圆柱 OO ′的母线 l =4 cm ,表面积为 42π cm 2,则圆柱 OO ′的底面半径 r =______cm.解析:圆柱 OO ′的侧面积为 2πrl =8πr (cm 2),两底面面积为 2×πr 2=2πr 2(cm 2), 所以 2πr 2+8πr =42π, 解得 r =3 或 r =-7(舍去), 所以圆柱的底面半径为 3 cm. 答案:37.表面积为 3π的圆锥,它的侧面展开图是一个半圆面,则该圆锥的底面直径为________.解析:设圆锥的母线为 l ,圆锥底面半径为 r ,由题意可知,πrl +πr 2=3π,且 πl =2πr .解得 r =1,即直径为 2.答案:28.圆柱内有一个内接长方体 ABCD -A 1B 1C 1D 1,长方体的体对角线长是 10 2 cm ,圆柱的侧面展开图为矩形,此矩形的面积是 100π cm 2,则圆柱的底面半径为______cm ,高为______cm.解析:设圆柱底面半径为 r cm ,高为 h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则:⎩⎪⎨⎪⎧(2r )2+h 2= (102)2,2πrh =100π,所以⎩⎪⎨⎪⎧r =5,h =10.即圆柱的底面半径为 5 cm ,高为 10 cm. 答案:5 109.如图,已知正三棱锥 S -ABC 的侧面积是底面积的 2 倍,正三棱锥的高 SO =3,求此正三棱锥的表面积.解:如图,设正三棱锥的底面边长为 a ,斜高为 h ′,过点 O 作 OE ⊥AB ,与 AB 交于点 E ,连接 SE ,则 SE ⊥AB ,SE =h ′.因为 S 侧=2S 底, 所以 3×12·a ·h ′=34a 2×2.所以 a =3h ′. 因为 SO ⊥OE , 所以 SO 2+OE 2=SE 2. 所以32+⎝⎛⎭⎫36×3h ′2=h ′2. 所以 h ′=23,所以 a =3h ′=6. 所以 S 底=34a 2=34×62=93, S 侧=2S 底=18 3.所以 S 表=S 侧+S 底=183+93=27 3.10.若 E ,F 是三棱柱 ABC -A 1B 1C 1 侧棱 BB 1和 CC 1 上的点,且 B 1E =CF ,三棱柱的体积为 m ,求四棱锥 A -BEFC 的体积.解:如图所示, 连接 AB 1,AC 1. 因为 B 1E =CF ,所以 梯形 BEFC 的面积等于梯形 B 1EFC 1 的面积. 又四棱锥 A -BEFC 的高与四棱锥 A -B 1EFC 1 的高相等, 所以 V A ­BEFC =VA ­B 1EFC 1 =12VA ­BB 1C 1C . 又 VA ­A 1B 1C 1=13S △A 1B 1C 1·h ,VABC ­A 1B 1C 1=S △A 1B 1C 1·h =m ,所以 VA ­A 1B 1C 1=m3,所以 VA ­BB 1C 1C =VABC ­A 1B 1C 1-VA ­A 1B 1C 1=23m .所以 V A ­BEFC =12×23m =m3,即四棱锥A-BEFC的体积是m3.[B能力提升]11.(2018·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4C.6 D.8解析:选C.由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V=12×(1+2)×2×2=6.故选C.12.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:26 2-113.用一张正方形的纸把一个棱长为 1 的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.解析:如图①为棱长为 1 的正方体礼品盒,先把正方体的表面按图所示方式展开成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图②所示,由图知正方形的边长为 22,其面积为 8.答案:814.如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求证:三棱柱ABC -A ′B ′C ′的体积V =12Sa .证明:法一:如图所示,连接A ′B ,A ′C ,这样就把三棱柱分割成了两个棱锥.显然三棱锥A ′­ABC 的体积是13V ,而四棱锥A ′­BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,所以三棱柱ABC -A ′B ′C ′的体积V =12Sa .法二:如图所示,将三棱柱ABC -A ′B ′C ′补成一个四棱柱ACBD -A ′C ′B ′D ′,其中AC ∥BD ,AD ∥BC ,即ACBD 为一个平行四边形,显然三棱柱ABD ­A ′B ′D ′的体积与原三棱柱ABC -A ′B ′C ′的体积相等.因为四棱柱ACBD -A ′C ′B ′D ′以BCC ′B ′为底面,高为点A ′到面BCC ′B ′的距离,所以补形后的四棱柱的体积为Sa ,于是三棱柱ABC -A ′B ′C ′的体积V =12Sa .[C 拓展探究]15.某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪用).已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪种方案更经济些?解:(1)设两种方案所建的仓库的体积分别为V 1,V 2.方案一:仓库的底面直径变成16 m ,则其体积V 1=13×π×⎝⎛⎭⎫1622×4=2563π(m 3);方案二:仓库的高变成8 m ,则其体积V 2=13×π×⎝⎛⎭⎫1222×8=96π(m 3).(2)设两种方案所建的仓库的表面积分别为S 1,S 2. 方案一:仓库的底面直径变成16 m ,半径为8 m , 此时圆锥的母线长为l 1=82+42=45(m),则仓库的表面积S 1=π×8×(8+45) =(64+325)π(m 2);方案二:仓库的高变成8 m ,此时圆锥的母线长为l 2=82+62=10(m),则仓库的表面积S 2=π×6×(6+10) =96π(m 2).(3)因为V 2>V 1,S 2<S 1, 所以方案二比方案一更加经济.。

人教A版高中同步学案数学必修第二册精品课件 第八章 立体几何初步 棱柱、棱锥、棱台的表面积和体积

人教A版高中同步学案数学必修第二册精品课件 第八章 立体几何初步 棱柱、棱锥、棱台的表面积和体积

[解析]如图,∵正四棱锥 − 的底面边长为 ,
∴ 正方形 = .
连接,,交于,连接,则 ⊥底面,




= = × × = ,
又棱长 = ,
∴ = − = ,
(4)棱柱、棱锥、棱台体积公式之间的关系.
2.方法归纳:等体积法、割补法.
3.常见误区:平面图形与立体图形的切换不清楚.
1 3

6
=
5 3
.
6
1 3
.
6
1

2
⋅ =
1 2
.
2
(2)已知正四棱台两底面边长分别为20 cm和10 cm,侧面面积为780 cm2,求其体积.
探究点二 棱柱、棱锥、棱台的体积
解 如图所示,在正四棱台 − 1 1 1 1 中,
1 1 = 10 cm, = 20 cm,取1 1 的中点1 ,的中点
解如图,连接1 1 ,因为1 = 2 m,1 = 4 m,
所以1 1 = 1 1 = 42 − 22 = 2 3 m ,
取1 1 的中点为,连接1 ,,易得 ⊥ 1 1 .
1
2
所以1 = 1 1 = 3, =
12 − 1 2 = 13 m ,
32 2 cm2
2 cm和6 cm,两底面之间的距离为2 cm,则该四棱台的侧面积为__________.
[解析]如图,取上、下底面中心 ,, 和的中点
,.在直角梯形 中, 为侧面等腰梯形的高,过
作 ⊥ ,垂足为, = , = ,
= ,∴ = .
在ቤተ መጻሕፍቲ ባይዱ△ 中, =

高中数学必修第二册 第八章立体几何初步 8.3 简单几何体的表面积与体积

高中数学必修第二册 第八章立体几何初步 8.3 简单几何体的表面积与体积

棱柱、棱锥、 棱台
展开图
各面面积之和
柱体、锥体、台体的体积
柱体V Sh
柱体、锥体、 台体的体积
台体V 1 (S SS S)h
3
锥体V 1 Sh
3
S 半径为R的球的表面积公式: 4 R2
半径为R的球的体积公式: V 4 R3
3
A
2 2
BD
C
所以:SSBC
1 2
BC
SD
1 2
a
3a 2
3 a2 4
因此,四面体S-ABC 的表面积.
S 4 3 a2 3a2 4
思考
• 求多面体的表面积可以通过求各个平面 多边形的面积和得到,那么旋转体的表面 积该如何求呢?
r
l 2r
S圆柱表面积 2r 2 2rl 2r(r l)
A1
C1 A1
C1
B1
B1
A
CA
C
B
B
将一个三棱柱按如图所示分解成三 个三棱锥,那么这三个三棱锥的体积有 什么关系?它们与三棱柱的体积有什么 关系?
3 2
1 1
3 2
1
棱锥(圆锥)是同底等高的棱柱(圆柱)的
3
Vsh锥体=13
台体(棱台、圆台)的体积
1 V台体 3 h(S
SS S)
x
S
h
S
x
S h
S S
V V大锥 V小锥
= 1 S x h 1 Sx
3
3
= 1 Sh 1 S S x
33
1 3
Shxx13h
2
S S
S
S
S
S h S
13Shxx13h
S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.3 简单几何体的表面积与体积(精练)【题组一 多面体表面积】1.(2020·全国高一课时练习)长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32 【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =.又由题意知22210a b +⨯=,解得4,3a b ==或3,4a b ==.故长方体的侧面积为()243228⨯+⨯=.故选:C.2.(2021·江苏南通市)一个正四棱锥的底面边长为2,高为3,则该正四棱锥的全面积为A .8B .12C .16D .20 【答案】B【解析】由题得侧面三角形的斜高为223+1=2, 所以该四棱锥的全面积为212+422=122⋅⋅⋅. 故选B 3.(2020·全国高一课时练习)若正三棱台上、下底面边长分别是a 和2a ,棱台的高为336a ,则此正三棱台的侧面积为( )A .2aB .212aC .292aD .232a 【答案】C 【解析】如图,1,O O 分别为上、下底面的中心,1,D D 分别是AC ,11A C 的中点,过1D 作1D E OD ⊥于点E .在直角梯形11ODD O 中,1332323OD a a =⨯⨯=,11133326O D a a =⨯⨯=,1136DE OD O D a ∴=-=.在1RtDED中,1336D E a =, 则22133366D D a a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭223333636a a a =+=. 2193(2)22S a a a a ∴=⨯+=侧.故选:C4.(2020·河北沧州市一中高一月考)正四棱锥底面正方形的边长为4,高与斜高的夹角为30,则该四棱锥的侧面积( )A .32B .48C .64D .323【答案】A【解析】如图:正四棱锥的高PO ,斜高PE ,底面边心距OE 组成直角△POE .∵OE =2cm ,∠OPE =30°,∴斜高h ′=PE =4sin 30o OE =,∴S正棱锥侧=114443222ch=⨯⨯⨯='故选:A5.(2020·全国高一课时练习)已知正四棱锥的底面边长是2,侧棱长是5,则该正四棱锥的表面积为( ) A.3B.12C.8D.43【答案】B【解析】如图所示,在正四棱锥S ABCD-中,取BC中点E,连接SE,则SBE△为直角三角形,所以22512SE SB BE=-=-=,所以表面积1422422122SBCABCDS S S=+⨯=⨯+⨯⨯⨯=正方形△.故选:B.6.(2021·内蒙古包头市·高三期末(文))已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A.()451+B.51-C.()451-D.()851+【答案】D【解析】正四棱锥如图,设四棱锥的高OE h =,由底面边长为4,可知2OF =,斜高24EF h =+,故221442h h =⨯⨯+,解得2=225h +, 故侧面积为()22144448858152h h ⨯⨯⨯+==+=+, 故选:D. 7.(2020·山西吕梁市)已知,AB CD 是某一棱长为2的正方体展开图中的两条线段,则原正方体中几何体ABCD 的表面积为( )A .24223++B .22223++C .22243++D .24243++【答案】A 【解析】由所给正方体的展开图得到直观图,如图:则此三棱锥的表面积为:△△△△+++=BCD ABC ADC ABD S S S S111132222222222222422322222⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯=++ 故选:A8.(2020·黑龙江哈师大青冈实验中学)长方体一个顶点上的三条棱长分别为3,4,a ,表面积为108,则a 等于( )A .2B .3C .5D .6 【答案】D【解析】长方体一个顶点上的三条棱长分别为3,4,a ,则长方体的表面积为342+2423108a a ⨯⨯⨯+⨯=,解得a =6,故选:D9.(2020·湖北省汉川市第一高级中学高一期末)一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为( )A .2(242)cm +B .2(482)cm +C .2(8162)cm +D .2(16322)cm + 【答案】C【解析】∵一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,正四棱柱的底面边长为2cm , ∴球的直径为正四棱柱的体对角线∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为22,正四棱柱的高为224(22)22-=,∴该棱柱的表面积为2×22+4×2×22=8+162(2cm ),故选:C【题组二 多面体台体积】1.(2021·扶风县法门高中)正方体的全面积为18cm 2,则它的体积是_________ 3cm 【答案】33【解析】设该正方体的棱长为a cm ,由题意可得,2618a =,解得3a =,所以该正方体的体积为333V a ==3cm .故答案为:332.(2021·湖南长沙市)如图,在长方体1AC 中,棱锥1A ABCD -的体积与长方体的体积之比为( )A.2∶3 B.1∶3 C.1∶4 D.3∶4【答案】B【解析】设长方体过同一顶点的棱长分别为,,a b c则长方体的体积为1V abc=,四棱锥1A ABCD-的体轵为213V abc=,所以棱锥1A ABCD-的体积与长方体1AC的体积的比值为13.故选:B.3.(2020·浙江高一期末)由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21 米,底宽34米,则该金字塔的体积为( )A.38092m B.34046mC.324276m D.312138m【答案】A【解析】如图正四棱锥P ABCD -中,34AB BC ==,21PO =,所以正四棱锥P ABCD -的体积为311343421809233ABCD S PO m ⨯⨯=⨯⨯⨯=, 故选:A4.(2020·辽宁沈阳市·沈阳二中高一期末)《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h=丈.问它的体积是多少立方丈?( )A .75B .3053C .3203D .4003 【答案】B【解析】()()222211++=33V S S S S h a a b b h ''=⋅++⋅ ()22221130555445615333=+⨯+⨯=⨯⨯=. 故选:B 5.(2021·浙江高一期末)出华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧楼长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .32427mD .312138m【答案】A【解析】如图正四棱锥P ABCD-中,PO⊥底面ABCD,21PO=,34AB=,底面正方形的面积为234341156S m=⨯=,则正四棱锥P ABCD-的体积为311115621809233S PO m⨯⨯=⨯⨯=,故选:A6.(2020·济南市·山东师范大学附中高一月考)如图,在棱长为2的正方体1111ABCD A B C D-中,截去三棱锥1A ABD-,求(1)截去的三棱锥1A ABD-的表面积;(2)剩余的几何体1111A B C D DBC-的体积.【答案】(1)623+;(2)203【解析】(1)由正方体的特点可知三棱锥1A ABD-中,1A BD是边长为22的等边三角形,1A AD、1A AB、ABD△都是直角边为2的等腰直角三角形,所以截去的三棱锥1A ABD-的表面积()1112312232262342A BD A AD A AB ABDS S S S S=+++=⨯+⨯⨯⨯=+(2)正方体的体积为328=,三棱锥1A ABD -的体积为111142223323ABD SAA ⨯⨯=⨯⨯⨯⨯=, 所以剩余的几何体1111A B C D DBC -的体积为420833-=. 【题组三 旋转体的表面积】1.(2021·浙江丽水市)经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的侧面积是( )A .42πB .4πC .22πD .2π 【答案】C【解析】设圆锥的底面半径为r ,母线长为l ,则2l r =,由题可知()21222r ⨯=, ∴2,2r l ==,侧面积为22rl ππ=,故选:C.2.(2020·全国高一课时练习)某圆台的上、下底半径和高的比为1:4:4,母线长为10,则该圆台的表面积为( )A .81πB .100πC .168πD .169π 【答案】C【解析】该圆台的轴截面如图所示.设圆台的上底面半径为r ,则下底面半径4r r '=,高4h r = 则它的母线长()2222(4)(3)510h r r l r r r '+-=+===∴2r,8r '=. ∴()(82)10100S r r l πππ'=+=+⨯=侧,22100464168S S r r ππππππ'=++=++=表侧.故选:C3.(2020·全国高一课时练习)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( )A .94B .3C .12D .36【答案】B【解析】根据题意,设圆台的上、下底面的半径分别为r 、R ,设圆锥的母线长为L ,截得小圆锥的母线长为l ,∵圆台的上、下底面互相平行∴14l r L R ==,可得L=4l ∵圆台的母线长9,可得L ﹣l =9 ∴3L 4=9,解得L=12, ∴截去的圆锥的母线长为12-9=3故选B4.(2020·全国高一课时练习)圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .7【答案】D 【解析】设圆台较小底面圆的半径为r ,由已知有另一底面圆的半径为3r ,而圆台的侧面积公式为(3)4384,7r r l r r πππ+=⨯⨯==,选D.5.(2020·江苏淮安市·淮阴中学高一期末)圆柱底面半径为1,母线长为2,则圆柱侧面积为( )A .4πB .3πC .5πD .2π 【答案】A【解析】圆柱底面半径为1,母线长为2,圆柱侧面积为224S rl =π=π⨯1⨯2=π ,故选:A6.(2021·广西河池市·高一期末)已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.【答案】4【解析】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.7.(2021·河南焦作市·高一期末)已知圆锥的底面半径为2,高为4,在圆锥内部有一个圆柱,则圆柱的侧面积的最大值为______.【答案】4π【解析】如图是圆锥与圆柱的轴截面,设内接圆柱的高为a,圆柱的底面半径为r()02r<<,则由224r a-=,可得42a r=-,所以圆柱的侧面积()22242484(1)4S r r r r rπππππ=⋅-=-+=--+,所以1r=时,该圆柱的侧面职取最大值4π.故答案为:4π.8.(2020·北京高一期末)将底面直径为8,高为23的圆锥体石块打磨成一个圆柱,则该圆柱侧面积的最大值为______.【答案】43π【解析】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h,底面半径为r,则23423h r-=,解得3232h r=-;所以()232223342S rh r r r rπππ⎛⎫==-=-⎪⎪⎝⎭圆柱侧;当2r时,S圆柱侧取得最大值为43π故答案为:43π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.9.(2021·陕西西安市·西安中学高一期末)若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________.【答案】4:1【解析】设圆锥的底面半径为r ,母线长为l ,由题意得:22l r ππ=,即4l r ,所以其侧面积是214S rl r ππ==,底面积是22S r π=,所以该圆锥的侧面积与底面积之比为4:1故答案为:4:1【题组四 旋转体的体积】1.(2020·山东菏泽市·高一期末)若圆锥的底面半径为3cm ,侧面积为215cm π,则该圆锥的体积为( )A .4π3cmB .9π3cmC .12π3cmD .36π3cm【答案】C 【解析】设圆锥母线长为l ,则侧面积为123152S l r l πππ=⋅==,故5l =. 故圆锥的高224h l r =-=,圆锥体积为21123V r h ππ==3cm .故选:C. 2.(2021·黑龙江双鸭山市·双鸭山一中)现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm .【答案】128π【解析】设铁皮扇形的半径和弧长分别为R 、l ,圆锥形容器的高和底面半径分别为h 、r ,则由题意得R=10,由1802Rl π=,得16l π=, 由2l r π=得8r =.由222R r h =+可得6h =.∴()231164612833V r h cm πππ==⋅⋅=∴该容器的容积为3128cmπ.故答案为128π.3.(2020·湖南长沙市·高一期末)圆锥的母线与底面所成的角为60︒,侧面积为8π,则其体积为________. 【答案】833π【解析】如图所示,圆锥的母线与其底面所成角的大小为60︒,60SAO∴∠=︒,由题意设圆锥的底面半径为r,则母线长为2l r=,高为3h r=圆锥的侧面积为8π,2228S rl r r rππππ∴==⋅⋅==侧面积,解得2r,23h=,∴圆锥的体积为221183223333V r hπππ=⋅⋅=⨯⨯=圆锥.故答案为:833π.4.(2020·江苏南京市·高一期末)把一个棱长为2的正方体木块,切出一个最大体积的圆柱,则该圆柱的体积为( )A.23πB.πC.2πD.4π【答案】C【解析】正方体棱长为2,所以正方体底面正方形的内切圆半径为1,面积为21ππ⨯=,以此内切圆为底、高为2的圆柱是可切出的最大圆柱.且该圆柱的体积为22ππ⨯=.故选:C5.(2020·山东日照市·高一期末)《五曹算经》是我国南北朝时期数学家甄驾为各级政府的行政人员编撰的一部实用算术书,其第四卷第九题如下:“今有平地聚粟,下周三丈,高四尺,问粟几何”?其意思为场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?已知1丈等于10尺,1斛稻谷的体积约为1.62立方尺,圆周率约为3,估算堆放的稻谷约有多少斛(保留两位小数)( )A .61.73B .61.71C .61.70D .61.69 【答案】A【解析】设圆锥的底面半径为r ,高为h ,体积为V ,则230r π=,所以=5r ,故221135410033V r h π==⨯⨯⨯=(立方尺), 因此10061.731.62V =≈(斛). 故选:A.6.(2020·江苏无锡市·高一期末)某养路处有一圆锥形仓库用于储藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米,为存放更多的食盐,养路处拟重建仓库,将其高度增加4米,底面直径不变,则新建仓库比原仓库能多储藏食盐的体积为( )A .24π米3B .48π米3C .96π米3D .192π米3 【答案】B【解析】原仓库圆锥的底面半径为6米,高为4米,则容积为21614483V ππ=⨯⨯⨯=立方米; 仓库的高增加4米,底面直径不变,则仓库的容积为22618963V ππ=⨯⨯⨯=立方米. 所以新建仓库比原仓库能多储藏食盐的体积为2148V V π-=立方米.故选:B.【题组五 球】1.(2021·天津滨海新区)在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43,则正方体外接球的体积为( )A .43πB .6πC .323πD .86π 【答案】B【解析】设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======,由于三棱锥11A B CD -的表面积为43,所以()12133442242AB C S S a ==⨯⨯=所以2a =所以正方体的外接球的半径为()()()222222622++=,所以正方体的外接球的体积为346632ππ⎛⎫= ⎪ ⎪⎝⎭故选:B .2.(2020·广东高二期末)在长方体1111ABCD A B C D -中,22AB BC ==,若此长方体的八个顶点都在体积为92π的球面上,则此长方体的表面积为( ) A .16B .18C .20D .22 【答案】A【解析】根据长方体的结构特征可得,长方体外接球直径等于长方体体对角线的长,因为长方体外接球的体积为92π,设外接球半径为R , 则33924R ππ=,解得32R =, 因此22212R AB BC BB =++,因为22AB BC ==, 所以21341BB =++,解得:12BB =,因此长方体的表面积为:1122248416S AB BC AB BB BC BB =⨯⨯+⨯⨯+⨯⨯=++=.故选:A.3.(2020·江苏无锡市第六高级中学高一期中)正三棱柱有一个半径为3cm 的内切球,则此棱柱的体积是( ).A .393cmB .354cmC .327cmD .3183cm【答案】B【解析】∵正三棱柱有一个半径为3cm的内切球,则正三棱柱的高为23cm,底面正三角形的内切圆的半径为3cm,设底面正三角形的边长为a cm,则31323a⨯=,解得6a=cm,∴正三棱柱的底面面积为13669322⨯⨯⨯=cm2,故此正三棱柱的体积V=932354⨯=cm3.故选:B.4.(2021·全国高一)如图所示,球内切于正方体.如果该正方体的棱长为a,那么球的体积为( ) A.343aπB.3a C.332aπD.316aπ【答案】D【解析】因为球内切于正方体,所以球的半径等于正方体棱长的12,所以球的半径为2a,所以球的体积为334326a aππ⎛⎫=⎪⎝⎭,故选:D.5.(2021·湖南邵阳市·高一期末)一个球的体积为36π,则这个球的表面积为( )A.12πB.36πC.108πD.4π【答案】B【解析】设球的半径为R ,球的体积为3436=3R ππ,解得3R =,则球的表面积244936R πππ=⨯=, 故选:B6.(2020·浙江高一期末)已知正方体外接球的体积是323π,那么该正方体的内切球的表面积为_____________.【答案】163π 【解析】设正方体棱长为a ,则34332323a ππ⎛⎫⨯= ⎪ ⎪⎝⎭,解得433a =, ∴内切球半径为2323a r ==,表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π.【题组六 组合体的体积表面积】1.(2020·全国高一课时练习)如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.【答案】20 162323- 【解析】由图形观察可知,几何体的面共有2(242)20⨯⨯+=个,该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为222432V =⨯⨯⨯=.交叉部分的体积为四棱锥S ABCD -的体积的2倍.在等腰ABS 中,22,SB SB =边上的高为2,则 6.SA =由该几何体前后,左右上下均对称,知四边形ABCD 为边长为6的菱形.设AC 的中点为H ,连接,BH SH 易证SH 即为四棱锥S ABCD -的高,在Rt ABH 中,2262 2.BH AB AH =-=-= 又22AC SB ==所以 12222422ABCD S =⨯⨯⨯= 因为BH SH =,所以11822422333ABCD S ABCD V S -=⨯=⨯⨯=四棱柱, 所以求体积为8216232232.33-⨯=- 故答案为:20;16232.3-2.(2020·新疆巴音郭楞蒙古自治州·高一期末)如图,直三棱柱,高为6,底边三角形的边长分别为3、4、5,以上下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积.【答案】366π-【解析】因为222345+=,所以底面是直角三角形,所以上、下底面内切圆半径34512r +-==, 所以剩余部分几何体的体积21346163662V ππ=⨯⨯⨯⨯=-⨯-, 所以剩余部分几何体的体积为366π-.3.(2021·江西九江市)在底面半径为2,高为22的圆锥中内接一个圆柱,且圆柱的底面积与圆锥的底面积之比为1:4,求圆柱的表面积.【答案】2(21)π+【解析】由圆柱的底面积与圆锥的底面积之比为1:4,知:底面半径比为1:2,即圆柱底面半径1r =,若设圆柱的高为h ,则有221222h -=,即2h =, ∴由圆柱的表面积等于侧面积加上两底面的面积,即:2222(21)S rh r πππ=+=+.。

相关文档
最新文档